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Abstract. Without the convexity or analyticity assumption, we study error bounds for an in-
equality system defined by a general lower semicontinuous function and establish sufficient/necessary
conditions on the existence of error bounds in infinite dimensional normed spaces. Some characteri-
zations for a convex inequality system to possess an error bound in a reflexive Banach space are also
given. As applications, in dealing with the Hoffman error bound result in normed spaces, we give
a computable Lipschitz bound constant, which is better than previous Lipschitz bound constants in
some examples; we also consider error bounds for quadratic functions on Rn.
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1. Introduction. Let X be a normed space, f : X → R
⋃{+∞} a proper lower

semicontinuous function, and let S = {x ∈ X|f(x) � 0}. We always assume S �= ∅.
We say that an error bound for f holds if there is a positive constant τ such that for
each x ∈ X

dist(x, S) � τ [f(x)]+,

where dist(x, S) = inf{‖x − y‖|y ∈ S} and [f(x)]+ = max{f(x), 0}. Error bounds
have important applications in sensitivity analysis of mathematical programming and
in convergence analysis of some algorithms. In recent years, the study of error bounds
has received increasing attention in the mathematical programming literature. See
[1, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and especially
the excellent survey papers [16, 26] for details. However, most of the previous error
bound results are concerned with either convex or analytic [20] inequality systems,
and to the best of our knowledge an error bound for a general lower semicontinuous
function has not been studied. One of our aims is to study an error bound for a
lower semicontinuous function on X. Using the Dini-directional derivatives, a main
result (Theorem 2.5) in section 2 implies that if X is a Banach space and f is lower
semicontinuous, then an error bound for f holds provided that

sup
x∈X\S

inf
‖h‖=1

d+f(x)(h) < 0(1.1)

(a partial converse is given in Theorem 2.7). If f is convex and X is a reflexive Banach
space, then one has that an error bound for f holds if and only if (1.1) holds, and
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this is the case if and only if there exists a positive constant δ such that

inf{d+f(x)(h)|h ∈ N1
S(x)} � δ(1.2)

whenever x is a boundary point of S with

∅ �= N1
S(x) := {h ∈ X|‖h‖ = 1 and dist(x+ th, S) = t for some t > 0}.

(The above characterization in terms of N1
S(x) is due to Lewis and Pang [16] for the

case when X = Rn.) As applications, we deal with, in Theorem 4.4, the Hoffman
error bound result in normed spaces (our proof is very different from that of Hoffman
[14] and others [10, 3]) and give a computable Lipschitz bound constant; we also give a
systematic treatment for the existence (or nonexistence) of error bounds for quadratic
functions.

2. An error bound for a proper lower semicontinuous function on a
normed space. We will need the following notation. For x ∈ X and h ∈ X with
‖h‖ = 1, we denote the upper and lower Dini-directional derivatives, respectively, by

d̄+f(x)(h) := lim sup
t→0+

f(x+ th)− f(x)

t

and

d+f(x)(h) := lim inf
t→0+

f(x+ th)− f(x)

t
.

(In the case when f(x) = +∞, we define d+f(x)(h) = −∞.) Clearly, d+f(x)(h) �
d̄+f(x)(h). If d+f(x)(h) = d̄+f(x)(h), f is said to be right differentiable at x in the
direction h. For x ∈ ∂S (the boundary of S), define

N1
S(x) = {h ∈ X|‖h‖ = 1 and dist(x+ th, S) = t for some t > 0}

and

∂NS = {x ∈ ∂S|N1
S(x) �= ∅}.

If X is a Hilbert space and S is convex, then it is easy to verify that

N1
S(x) = {h ∈ NS(x)|‖h‖ = 1}, where NS(x) = {v ∈ X|〈v, y − x〉 � 0, y ∈ S}

is the normal cone of S at x.
The following result of the mean-valued theorem type will help us establish error

bound results in terms of the Dini-directional derivatives. It is known (cf. [4] and [6])
when f is assumed continuous.

Lemma 2.1. Let X be a normed space and f a proper lower semicontinuous
function on X; let x ∈ dom(f) := {x ∈ X|f(x) < +∞}, and let h ∈ X with
‖h‖ = 1 and t > 0. Assume that there exists δ ∈ R such that for each α ∈ [0, t),
d+f(x+ αh)(h) � δ. Then

f(x+ th)− f(x) � tδ.

Proof. For any ε > 0, let tε = sup{0 � s � t|f(x + sh) − f(x) � s(δ + ε)}. By
the lower semicontinuity of f , one has

f(x+ tεh)− f(x) � tε(δ + ε).(2.1)
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We claim that tε = t. Indeed, if tε < t, then x+tεh ∈ dom(f) and so d+f(x+tεh)(h) �
δ by assumption. Consequently there exists t′ ∈ (tε, t) such that

f(x+ t′h)− f(x+ tεh) � (t′ − tε)(δ + ε).

This and (2.1) imply that f(x+ t′h)− f(x) � t′(δ+ ε). It follows from the definition
of tε that t′ � tε, a contradiction. This shows that f(x+th)−f(x) � t(δ+ε). Letting
ε→ 0, one has that f(x+ th)(h)− f(x) � tδ.

The following lemma itself is an interesting result on an error bound for a general
function (without the continuity assumption).

Lemma 2.2. Let (X, d) be a metric space and f : X → R
⋃{+∞} a proper func-

tion; let τ > 0 and 0 � ρ < 1 be constants. Suppose that for each x ∈ f−1(0, +∞) =
{y ∈ X|0 < f(y) < +∞} there is x′ ∈ f−1[0, +∞) such that

dist(x′, S) � ρdist(x, S)(2.2)

and

d(x, x′) � τ [f(x)− f(x′)].

Then, for each x ∈ X, dist(x, S) � τ [f(x)]+.
Proof. It suffices to show that for each x ∈ f−1(0, +∞), dist(x, S) � τf(x). For

each x ∈ f−1(0, +∞), let x0 = x and suppose that x0, . . . , xk have been chosen in
f−1(0, +∞) such that for each 1 � i � k

dist(xi, S) � ρidist(x, S) and d(xi−1, xi) � τ [f(xi−1)− f(xi)].

By the given condition, there is xk+1 ∈ f−1[0, +∞) such that

dist(xk+1, S) � ρdist(xk, S) � ρk+1dist(x, S) and d(xk, xk+1) � τ [f(xk)− f(xk+1)].

If f(xk+1) = 0, then

dist(x, S) � d(x0, xk+1) �
k+1∑
i=1

d(xi−1, xi) � τ

k+1∑
i=1

[f(xi−1)− f(xi)] = τf(x).

Thus we may assume that f(xk+1) �= 0, and hence inductively we obtain a sequence
{xn} in f−1(0, +∞) such that x0 = x,

dist(xn, S) � ρndist(x, S) and d(xn−1, xn) � τ [f(xn−1)− f(xn)]

for all n ∈ N , where N is the natural number set. Hence for n ∈ N ,

dist(x, S) � d(x, xn) + dist(xn, S)

�
n∑
i=1

d(xi−1, xi) + ρndist(x, S)

= τ

n∑
i=1

[f(xi−1)− f(xi)] + ρndist(x, S)

� τf(x) + ρndist(x, S)
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as f(xn) � 0. It follows that

dist(x, S) � τ

1− ρn f(x) for each n ∈ N.

This implies that

dist(x, S) � τf(x).

The following lemma is a straightforward consequence of Theorem 2(ii) in Hamel
[11]; it shows that in Lemma 2.2, if we add the conditions that X is complete and f
is lower semicontinuous, then the conclusion is still true when (2.2) is removed.

Lemma 2.3. Let (X, d) be a complete metric space and f : X → R
⋃{+∞} a

proper lower semicontinuous function; let τ > 0 be a constant. Suppose that for each
x ∈ f−1(0, +∞) there is x′ ∈ f−1[0, +∞) such that

0 �= d(x, x′) � τ [f(x)− f(x′)].

Then, for each x ∈ X, dist(x, S) � τ [f(x)]+.
Proof. We may assume that X �= S. Let g(x) = max{f(x), 0} for each x ∈ X.

Then gmin := inf{g(x)|x ∈ X} = 0 and S = {x ∈ X|g(x) = gmin}. For each
x ∈ dom(g) with g(x) > gmin (i.e., x ∈ f−1(0, +∞)), by the given condition there
exists x′ ∈ f−1[0, +∞) such that 0 �= d(x, x′) � τ [f(x) − f(x′)], that is, g(x′) +
1
τ d(x, x

′) � g(x); this last inequality is trivially true if x �∈ dom(g). By Theorem 2(ii)
in Hamel [11], for each x ∈ X, one has

dist(x, S) � τ(g(x)− gmin),

that is,

dist(x, S) � τ [f(x)]+.

Theorem 2.4. Let X be a normed space and f a proper lower semicontinuous
function on X; let 0 < δ < +∞ and 0 � ρ < 1. Suppose that for each x ∈ f−1(0, +∞)
there exist hx ∈ X with ‖hx‖ = 1 and tx > 0 such that for t ∈ [0, tx),

dist(x+ txhx, S) � ρdist(x, S) and d+f(x+ thx)(hx) � −δ.(2.3)

Then for each x ∈ X, dist(x, S) � 1
δ [f(x)]+.

Proof. Given x ∈ f−1(0,+∞), we will check that there exists x′ ∈ f−1([0, +∞))
satisfying the properties stated in Lemma 2.2 with τ = 1

δ . If f(x + txhx) � 0, then
we can take x′ := x + txhx because, by Lemma 2.1 (applied to −δ instead of δ) and
assumption (2.3), one has ‖x− x′‖ = tx � 1

δ [f(x)− f(x+ txhx)]. If f(x+ txhx) < 0,
let sx = sup{0 � t � tx|f(x + shx) > 0 for each s ∈ [0, t]}. Then f(x + sxhx) � 0
and f(x+ thx) > 0 for all t ∈ [0, sx). By the lower semicontinuity of f , S is a closed
set. It follows from x �∈ S that dist(x, S) > 0. Thus, there exists s′x ∈ (0, sx) such
that

dist(x+ s′xhx, S) � ‖x+ s′xhx − (x+ sxhx)‖ = sx − s′x � ρdist(x, S)

and x+ s′xhx ∈ f−1([0, +∞)). Note that d+f(x+ thx)(hx) � −δ for each t ∈ [0, s′x].
As in the first part of our proof, it follows that x + s′xhx has the desired properties
for x′.
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If X is assumed to be a Banach space, conditions in Theorem 2.4 can be simplified
(by considering d+f(x) in place of d+f(x+ thx)).

Theorem 2.5. Let X be a Banach space, f : X → R
⋃{+∞} a proper lower

semicontinuous function, and let 0 < δ < +∞. Suppose that for each x ∈ f−1(0, +∞)
there exists hx ∈ X with ‖hx‖ = 1 such that d+f(x)(hx) � −δ. Then for each x ∈ X,
dist(x, S) � 1

δ [f(x)]+.

Proof. Let x ∈ X with 0 < f(x) < +∞. Then d+f(x)(hx) � −δ < −(δ − ε) for
any ε ∈ (0, δ). It follows from the lower semicontinuity of f and f(x) > 0 that there
exists t > 0 small enough such that x+ thx ∈ f−1[0,+∞) and 1

t [f(x+ thx)− f(x)] <
−(δ − ε). Thus

‖x− (x+ thx)‖ = t � 1

δ − ε [f(x)− f(x+ thx)].

By Lemma 2.3, one has that for each x ∈ X, dist(x, S) � 1
δ−ε [f(x)]+. Letting ε→ 0,

the proof is completed.
Recall that the cone of feasible directions of a convex set C ⊂ X at a point x ∈ C

is, by definition, the set

FC(x) = {v ∈ X|x+ tv ∈ C; for some t > 0}.

The following is a general constraint error bound result.
Corollary 2.6. Let X be a Banach space, f : X → R

⋃{+∞} a proper lower
semicontinuous function; let 0 < δ < +∞ and C be a closed convex subset of X
such that SC = S

⋂
C �= ∅. Suppose that for each x ∈ f−1(0, +∞)

⋂
C there exists

hx ∈ FC(x) with ‖hx‖ = 1 such that d+f(x)(hx) � −δ. Then for each x ∈ C,
dist(x, SC) � 1

δ [f(x)]+.
Proof. Define g(x) := f(x) + δC(x) for each x ∈ X, where δC is the indicator

function of C. Then g is a proper lower semicontinuous function, g−1(0, +∞) =
f−1(0, +∞)

⋂
C, SC = {x ∈ X|g(x) � 0}, and for each x ∈ g−1(0, +∞) and h ∈

FC(x), d+g(x)(h) = d+f(x)(h). It follows from the given conditions and Theorem 2.5
that for each x ∈ X, dist(x, SC) � 1

δ [g(x)]+. This implies that dist(x, SC) � 1
δ [f(x)]+

for all x ∈ C.
The following result gives a necessary condition for f to have a local error bound.
Theorem 2.7. Let X be a normed space, f a proper lower semicontinuous

function on X, and τ > 0. Suppose that for each x ∈ ∂S, there is δ(x) > 0 such that
whenever y ∈ X with ‖y − x‖ < δ(x),

dist(y, S) � τ [f(y)]+.(2.4)

Then for each x ∈ ∂NS,

inf{d+f(x)(h)|h ∈ N1
S(x)} � 1

τ
.

Proof. For each x ∈ ∂NS and each h ∈ N1
S(x), one has, by definition, that there

exists t > 0 such that dist(x+ th, S) = t. It is easy to verify that for each s ∈ (0, t),
dist(x + sh, S) = s > 0, and so x + sh �∈ S; that is, f(x + sh) > 0. Hence, for
0 < s < min{δ(x), t}, (2.4) gives

s � τf(x+ sh) = τ [f(x+ sh)− f(x)].
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This implies that d+f(x)(h) � 1
τ , and hence that

inf{d+f(x)(h)|h ∈ N1
S(x)} � 1

τ
.

Corollary 2.8. Let X be a normed space and f a proper lower semicontinuous
function on X. Suppose τ > 0 such that for each x ∈ X, dist(x, S) � τ [f(x)]+. Then,
for each x ∈ ∂NS,

inf{d+f(x)(h)|h ∈ N1
S(x)} � 1

τ
.(2.5)

In section 3, we shall show that (2.5) is also sufficient for f to have an error bound
when f is assumed convex.

Corollary 2.9. Let X be a finite dimensional normed space and f a differen-
tiable function on X. Suppose that an error bound for f holds. Then f satisfies the
Slater condition (i.e., there exists x0 ∈ X such that f(x0) < 0).

Proof. Suppose to the contrary that f does not satisfy the Slater condition. Then
for each x ∈ S, one has f(x) = inf{f(y)|y ∈ X}, and so �f(x) = 0. It follows from
Corollary 2.8 thatN1

S(x) must be empty for each x ∈ ∂S. Pick a point z inX\S. Since
X is a finite dimensional space, there exists x0 ∈ ∂S such that dist(z, S) = ‖z − x0‖.
This implies that

z − x0

‖z − x0‖ ∈ N
1
S(x0),

contradicting an earlier remark.
For convex f , the finite dimension assumption of X can be relaxed.
Corollary 2.10. Let X be a reflexive Banach space and f a differentiable

convex function on X. Suppose that an error bound for f holds. Then f satisfies the
Slater condition.

Proof. Since f is a differentiable convex function, S is closed convex in X. Pick
a point z ∈ X \S; by the reflexivity of X, there exists x0 ∈ ∂S such that dist(z, S) =
‖z − x0‖. The proof follows as in the proof of Corollary 2.9.

3. Error bounds for lower semicontinuous convex functions on reflexive
spaces. The aim of this section is to show that, when f is assumed to be convex, the
results presented in the preceding section lead to conditions which are both necessary
and sufficient for f to have an error bound. Throughout this section we let f be a
proper lower semicontinuous convex function on X. Recall that the right directional
derivative and the left directional derivative of f are defined by

d+f(x)(h) = lim
t→0+

f(x+ th)− f(x)

t

and

d−f(x)(h) = lim
t→0−

f(x+ th)− f(x)

t
.

They always exist and d−f(x)(h) = −d+f(x)(−h) for each x ∈ dom(f) and h ∈
X \ {0}. When f(x) = +∞, we define d+f(x)(h) = −∞ for all h ∈ X. It is known
[7] that for 0 � t1 < t2 with x+ t1h and x+ t2h in dom(f),

d+f(x+ t1h)(h) � d−f(x+ t2h)(h) � d+f(x+ t2h)(h).(3.1)



ERROR BOUNDS FOR LOWER SEMICONTINUOUS FUNCTIONS 7

Theorem 3.1. Let X be a reflexive Banach space and f a proper lower semi-
continuous convex function on X. Let τ > 0. Then the following statements are
equivalent.

(i) τ is an error bound: dist(x, S) � τ [f(x)]+ for each x ∈ X.
(ii) τ is a local error bound for f at each boundary point of S: for each x ∈ ∂S,

there exists δ(x) > 0 such that whenever y ∈ X with ‖y − x‖ < δ(x), one has
dist(y, S) � τ [f(y)]+.

(iii) For each x ∈ ∂NS,

inf{d+f(x)(h)|h ∈ N1
S(x)} � 1

τ
.(3.2)

(iv) For each x ∈ X \ S there exist tx > 0 and hx ∈ X with ‖hx‖ = 1 satisfying

x+ txhx ∈ S and d+f(x+ thx)(hx) � −1

τ
for all t ∈ [0, tx).

(v) For each x ∈ X \ S, there exists hx ∈ X with ‖hx‖ = 1 satisfying

d+f(x)(hx) � −1

τ
.

Proof. (i)⇒(ii) and (iv)⇒(v) are trivial; (ii)⇒(iii) and (v)⇒(i) follow directly
from Theorems 2.7 and 2.5.

(iii)⇒(iv): Note that for each x ∈ X with f(x) = +∞, d+f(x)(h) = −∞ for all
h ∈ X with ‖h‖ = 1. Given an x ∈ f−1(0, +∞), by the reflexivity of X and the
convexity of S, there exists x0 ∈ ∂S such that ‖x− x0‖ = dist(x, S). Let

tx = ‖x− x0‖ and hx =
1

tx
(x0 − x).

Then x0 = x+ txhx ∈ S and −hx ∈ N1
S(x0). By the convexity of f and x, x+ txhx ∈

dom(f), it is clear that x + thx ∈ dom(f) for each t ∈ [0, tx]. By (iii), one has that
d+f(x0)(−hx) � 1

τ , that is, d−f(x0)(hx) � − 1
τ . Consequently, by (3.1), we have that

for each t ∈ [0, tx),

d+f(x+ thx)(hx) � d−f(x+ txhx)(hx) = d−f(x0)(hx) � −1

τ
.

Let β = inf{τ > 0|dist(x, S) � τ [f(x)]+ for each x ∈ X}. Note that β = 0 if and
only if X = S and that β = +∞ if and only if f does not have any error bound. The
following result comes directly from Theorem 3.1.

Corollary 3.2. Let X be a reflexive Banach space and f a proper lower semi-
continuous convex function. Then

1

β
= − sup

x∈X\S
inf

h∈X,‖h‖=1
d+f(x)(h) = inf

x∈∂NS
inf

h∈N1
S(x)

d+f(x)(h).

If the continuity is assumed in place of the lower semicontinuity, we have the
following.

Theorem 3.3. Let X be a reflexive Banach space and f a continuous convex
function. Then f has an error bound if and only if

δ := inf
x∈X\S

inf{‖x∗‖|x∗ ∈ ∂f(x)} > 0.(3.3)
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In this case, dist(x, S) � 1
δ [f(x)]+ for each x ∈ X.

Proof. Suppose that (3.3) holds. Then, for each x ∈ X\S, int(δB(X∗))
⋂
∂f(x) =

∅, and so by the separation theorem, there exists hx ∈ X with ‖hx‖ = 1 such that

−δ = inf{〈x∗, hx〉|x∗ ∈ δB(X∗)} � sup{〈x∗, hx〉|x∗ ∈ ∂f(x)},(3.4)

where B(X∗) denotes the unit ball of the dual space X∗ of X. Since f is continuous
at x, d+f(x)(hx) = sup{〈x∗, hx〉|x∗ ∈ ∂f(x)}, and so, d+f(x)(hx) � −δ. By Theorem
3.1, one obtains that dist(x, S) � 1

δ [f(x)]+ for each x ∈ X. This shows the sufficiency
part. It is clear that the necessity part is directly from (v) of Theorem 3.1 and
d+f(x)(hx) = sup{〈x∗, hx〉|x∗ ∈ ∂f(x)}.

In [12], R. Y. He informed us that he obtained the result of Theorem 3.3 for general
Banach spaces by using suitable subdifferentials and Ekeland’s variation principles.

Corollary 3.4. Let X be a reflexive Banach space and f a continuous convex
function. Suppose that

sup
x∈∂S

inf
h∈X,‖h‖=1

d+f(x)(h) < 0.(3.5)

Then an error bound for f holds.
Proof. We need only show the local version: (ii) of Theorem 3.1 holds. Take

δ0 > 0 such that for each x ∈ ∂S there exists hx ∈ X with ‖hx‖ = 1 satisfying
d+f(x)(hx) < −δ0. Since d+f(·)(hx) is upper semicontinuous (see [7]), there exists
r > 0 such that

d+f(·)(hx) < −δ0 on B(x, r).

By the continuity of f , for ε := rδ0
2 , there exists r1 ∈ (0, r2 ) such that

f(·) = f(·)− f(x) < ε on B(x, r1).(3.6)

Let y ∈ B(x, r1) \ S. Then, it follows from Lemma 2.1 that

f
(
y +

r

2
hx

)
− f(y) � −r

2
δ0.

It follows from (3.6) that f(y+ r
2hx) < 0 < f(y), and hence f(y+ tyhx) = 0 for some

ty ∈ (0, r2 ). Again by Lemma 2.1, f(y + tyhx)− f(y) � −tyδ0, and so

f(y) � δ0ty = δ0‖y − (y + tyhy)‖ � δ0dist(y, S).

Therefore, for each y ∈ B(x, r1),

dist(y, S) � 1

δ0
[f(y)]+.

Remark. For the case X = Rn, the equivalence of (i) and (iii) in Theorem 3.1
is due to Lewis and Pang [16] (also see Klatte and Li [15]), while the other parts of
Theorem 3.1 are new even for the finite dimensional case. Since it is not always easy
to compute N1

S(x) and inf{d+f(x)(h)|h ∈ N1
S(x)}, it is sometimes more convenient

to check an error bound for f by using (v) of Theorem 3.1 and Theorem 3.3. We will
take advantage of this in section 4 in the proof of an extension of Hoffman’s error
bound result to the setting of normed spaces (our proof is quite different from the
approach of Hoffman [14] and that of others [3, 10, 15]). It may be of interest to note
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that (3.3) in Theorem 3.3 is a weaker condition than (ACQ9) in [15] (the condition
first considered in [16]):

inf
x∈∂S

inf
x∗∈∂f(x)

‖x∗‖ > 0.

For example, let X = R and f(x) = |x| for each x ∈ X. Then S = {0}, and

0 = inf
x∈∂S

inf
x∗∈∂f(x)

‖x∗‖ < inf
x∈X\S

inf
x∗∈∂f(x)

‖x∗‖ = 1.

However (3.5) in Corollary 3.4 is equivalent to (AQC9) in Klatte and Li [15]. In
what follows, we give a proof of this equivalence. Since d+f(x)(h) = sup{〈x∗, h〉|x∗ ∈
∂f(x)}, it is clear that (3.5) in Corollary 3.4 implies (ACQ9) in [15]. Conversely,
suppose that (ACQ9) holds. Then there exists δ > 0 such that for each x ∈ ∂S,
δB(X∗)

⋂
∂f(x) = ∅. As in (3.4) it follows that infh∈X,‖h‖=1 d

+f(x)(h) � −δ for
each x ∈ ∂S.

Theorem 2.7, Corollary 2.8, and (iii) of Theorem 3.1 all concern the condition
(3.2) for points in ∂NS. By the definitions, it is obvious that ∂NS ⊂ ∂S. The
following proposition further explains the relationship between ∂NS and ∂S.

Proposition 3.5. Let X be a reflexive Banach space and f a continuous convex
function. Then ∂NS = ∂S. In addition, if f also satisfies the Slater condition,
∂NS = ∂S.

Proof. For x ∈ ∂S and ε > 0, pick a point y ∈ X \S and a point y0 ∈ S such that

0 < ‖y − x‖ < ε

2
and dist(y, S) = ‖y − y0‖.

Then it is easy to verify that y0 ∈ ∂NS; also ‖y − y0‖ = dist(y, S) � ‖y − x‖ and so

‖y0 − x‖ � ‖y − y0‖+ ‖y − x‖ < ε.
This shows that x ∈ ∂NS, and hence that

∂NS = ∂S.

If f satisfies the Slater condition, S is a closed convex set with a nonempty interior.
By the separation theorem, for each x ∈ ∂S, there is an x∗ ∈ X∗ with x∗ �= 0 such
that

〈x∗, x〉 = sup{〈x∗, y〉|y ∈ S}.(3.7)

By the reflexivity of X, there is an h ∈ X with ‖h‖ = 1 such that 〈x∗, h〉 = ‖x∗‖. By
(3.7), for any y ∈ S, we have

‖x∗‖ = 〈x∗, h〉 � 〈x∗, x+ h− y〉 � ‖x∗‖‖x+ h− y‖,
and so

‖x+ h− x‖ = 1 � ‖x+ h− y‖.
This shows that dist(x + h, S) = 1. Hence h ∈ N1

S(x) and so x ∈ ∂NS. Therefore,
∂NS = ∂S.

If the reflexivity of X in Proposition 3.5 is dropped, ∂NS may be empty even
though f is a continuous convex function satisfying the Slater condition.
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Example 3.6. Let X be a nonreflexive Banach space. Then, by the well-known
James theorem there exists x∗ ∈ X∗ with x∗ �= 0 such that for each h ∈ X with
‖h‖ = 1

〈x∗, h〉 < ‖x∗‖.(3.8)

It is clear that x∗ satisfies the Slater condition. Next we show that ∂NS∗ = ∅, where
S∗ = {x ∈ X|〈x∗, x〉 � 0}. Indeed, if there exists x0 ∈ ∂NS∗, then 〈x∗, x0〉 = 0, and
for some h0 ∈ X with ‖h0‖ = 1 and some t0 > 0, one has

dist(x0 + t0h0, S∗) = t0.

This and (3.8) imply that 0 < 〈x∗, h0〉 < ‖x∗‖. By the definition of ‖x∗‖, there are
h1 ∈ X with ‖h1‖ = 1 and 0 < r < 1 such that 〈x∗, rh1〉 = 〈x∗, h0〉. It follows from
〈x∗, x0〉 = 0 that

〈x∗, x0 + t0h0 − t0rh1〉 = 0.

This implies that

dist(x0 + t0h0, S∗) � ‖x0 + t0h0 − (x0 + t0h0 − t0rh1)‖ = rt0,

contradicting dist(x0 + t0h0, S∗) = t0.

4. Application to linear inequality system. Let X be a normed space and
X∗ denote the dual space of X; let x∗1, . . . , x

∗
n ∈ X∗, c1, . . . , cn ∈ R, and S = {x ∈

X|〈x∗i , x〉−ci � 0, i = 1, . . . , n}. Define f(x) = max{〈x∗i , x〉−ci|i = 1, . . . , n} for each
x ∈ X. It is clear that S = {x ∈ X|f(x) � 0}. Assuming that S �= ∅, the fundamental
result of Hoffman [13] asserts that if X = Rn, then there exists a constant τ > 0 such
that dist(x, S) � τ [f(x)]+ for each x ∈ X. This Lipschitz error bound constant
τ is related to the convergence rate of algorithms appearing in some applications.
Several authors considered the constants of this type; see Mangsarian and Shiau [24],
Bergthaller and Singer [2], Güler, Hoffman, and Rothblum [10], Burke and Tseng [3],
and references therein. In this section, we will explicitly give a new Lipschitz error
bound constant, which is better than the previous ones in some examples. We first
introduce some notation. Let I denote the set {1, . . . , n} and, for each i ∈ I, gi
denotes the affine function defined by gi(x) = 〈x∗i , x〉 − ci. For each x ∈ X, let I(x)
denote the set of active indexes at x, that is, I(x) = {i ∈ I|gi(x) = f(x)}. We recall
from [7] that

∂f(x) =



∑
i∈I(x)

tix
∗
i |ti � 0 and

∑
i∈I(x)

ti = 1


 .(4.1)

We make the following definitions.
Definition 4.1. A nonempty subset D of I is said to be
(i) full if

span{x∗i |i ∈ D} = span{x∗i |i ∈ I},(4.2)

(ii) regular if 0 �∈ co{x∗i |i ∈ D}, that is, τD > 0 where

τD := inf

{
‖
∑
i∈D

tix
∗
i ‖|ti � 0 and

∑
i∈D

ti = 1

}
.(4.3)
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Definition 4.2. A nonempty subset D of I is called
(i) a peak-set in I if there exists xD ∈ X such that

gk(xD) < gi(xD) = f(xD)(4.4)

for all k ∈ I \D and all i ∈ D,
(ii) a positive peak-set in I if there exists xD satisfying (4.4) such that f(xD) > 0,
(iii) a normal set in I if it is full and a positive peak-set.
Let R(I) denote the family of all full and regular subsets of I, and let N (I) denote

the family of all normal subsets of I. Define

µ := inf{τD|D ∈ N (I)}(4.5)

and

ν := inf{τD|D ∈ R(I)},(4.6)

where τD is defined by (4.3). R(I) can be easily identified. It also is not difficult to
identify N (I), and hence µ is a computable constant. It is easy to see that a subset D
of I is in N (I) if and only if (4.2) holds and there exists a solution xD of the linear
equation system

〈x∗i , x〉 − ci = 〈x∗j , x〉 − cj , i, j ∈ D,(4.7)

such that for each k ∈ I \D and i ∈ D
〈x∗k, xD〉 − ck < 〈x∗i , xD〉 − ci and 0 < 〈x∗i , xD〉 − ci.(4.8)

For a subset D of I, if (4.2) holds then for each j ∈ D, dim(span{x∗i |i ∈ I}) differs
to dim(span{x∗i − x∗j |i ∈ D}) at most by 1, and so the solution set of (4.7) is either
z +

⋂
i∈I ker(x∗i ) for some z ∈ X or z + Re +

⋂
i∈I ker(x∗i ) for some z ∈ X and

e ∈ X \⋂i∈I ker(x∗i ), where ker(x∗i ) = {x ∈ X|〈x∗i , x〉 = 0}. Thus, it is not difficult to
check whether or not a subset of I is normal. Note that N (I) depends on the system
{gi|i ∈ I} while R(I) depends only on {x∗i |i ∈ I} (not depending on the constants
ci). Note that ν > 0 because I is a finite set (so is R(I)). The main result in this
section is to show that 1

µ and 1
ν are Lipschitz error bound constants (for the system

S = {x ∈ X|f(x) � 0}).
Lemma 4.3. N (I) ⊂ R(I) and so µ � ν > 0.
Proof. By Definitions 4.1 and 4.2, it suffices to show that for each D ∈ N (I),

0 �∈ co{x∗i |i ∈ D}. Take xD satisfying (4.4). Then I(xD) = D and xD is not a
minimizer of f as S is assumed nonempty. It follows from [7] and (4.1) that 0 �∈
∂f(xD) = co{x∗i |i ∈ D}.

Theorem 4.4. Let X be a normed space and x∗1, . . . , x
∗
n ∈ X∗. Let S, f , gi, and

x∗i , . . . , x
∗
n ∈ X∗ as above in this section. Let δ, µ, and ν be as in (3.3), (4.5), and

(4.6), respectively. Then 0 < ν � µ � δ and, for each x ∈ X,

dist(x, S) � 1

δ
[f(x)]+ � 1

ν
[f(x)]+ � 1

µ
[f(x)]+.

The Lipschitz error bound constants 1
µ and 1

ν given in Theorem 4.4 can be prac-

tically computed. The following example shows that the constant 1
µ in Theorem 4.4

is better than previous Lipschitz bound constants in some cases.
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Pick X = R, x∗1 = 1, x∗2 = 1
2 , x∗3 = 1

3 , c1 = 3, c2 = 1, c3 = 2, and f(x) =
max{x− 3, 1

2x− 1, 1
3x− 2} for each x ∈ R, that is,

f(x) =




1
3x− 2, x � −6,
1
2x− 1, −6 � x � 4,

x− 3, 4 � x.

Hence S = {x ∈ R : f(x) � 0} = (−∞, 2] �= ∅. In this case, I = {1, 2, 3} and N (I)
consists of three sets: {1}, {2}, and {1, 2}. It is clear that µ = 1

2 and ν = 1
3 . It is

easy to verify that, in this case, Lipschitz error bound constants in [3, 10] are all 3.
This shows that, in this case, the Lipschitz constant 1

µ = 2 in Theorem 4.4 is better.
In fact, one can easily see that 2 is the best Lipschitz error bound constant in this
case.

The proof of this theorem is based on its finite dimension version.
Lemma 4.5. Assume that X is finite dimensional and that dim(X) =

dim(span{x∗i |1 � i � n}). Then Theorem 4.4 holds.
Proof. In view of Theorem 3.3 and Lemma 4.3, we need only prove that µ � δ.

To do this, let x ∈ X \ S and x∗ ∈ ∂f(x). We have to show that µ � ‖x∗‖. By (4.1),
we can express x∗ as x∗ =

∑
i∈I(x) tix

∗
i for some ti � 0 such that

∑
i∈I(x) ti = 1.

We will find a normal set D ⊂ I containing I(x). Granting this, (4.3) implies that
τD � ‖∑i∈I(x) tix

∗
i ‖ (by taking ti = 0 for each i ∈ D \ I(x)); hence µ � τD � ‖x∗‖ as

required. Therefore it remains to find D with the stated properties. Since x is fixed,
we write α > 0 for the constant f(x). Define the polyhedral sets A and B by

A = {y ∈ X|gi(y) � α ∀i ∈ I} and B = {y ∈ A|gi(y) = α ∀i ∈ I(x)}.
Note that B is an extreme subset of A. Moreover, A contains no lines. Otherwise,
there exists z �= 0 such that 〈x∗i , z〉 = 0 for all i ∈ I, contradicting the assumption that
dim(X) = dim(span{x∗i |i ∈ I}). By Corollary 18.5.3 in [28], B must have at least one
extreme point, say e. Then e is also an extreme point of A. Since e ∈ B ⊂ A, it is easy
to verify that I(x) ⊂ I(e) and f(e) = f(x) = α. By Definition 4.2 and the definitions
of A and B, it is clear that I(e) is a positive peak-set in I. Finally, we show that I(e)
is full. Suppose to the contrary that dim(span{x∗i |i ∈ I(e)}) < dim(X). Then there
exists z ∈ X \ {0} such that 〈x∗i , z〉 = 0 for each i ∈ I(e). Take ε > 0 small enough
such that gi(e± εz) < 0 for each i ∈ I \ I(e). Then e± εz ∈ B. This contradicts the
fact that e is an extreme point of B. Therefore, letting D = I(e), we see that D is a
normal subset of I containing I(x), and the proof of Lemma 4.5 is completed.

Proof of Theorem 4.4. Let X0 =
⋂n
i=1 ker(x∗i ). Then X/X0 is finite dimensional.

For each x ∈ X, let [x] denote the equivalent class containing x in X/X0, that is,
[x] = x +X0. Define x̂∗i ∈ (X/X0)∗ such that 〈x̂∗i , [x]〉 = 〈x∗i , x〉 for each x ∈ X and
i ∈ I. It is clear that

(X/X0)∗ = span{x̂∗1, . . . , x̂∗n}.

Let ĝi([x]) := 〈x̂∗i , [x]〉− ci and f̂([x]) = max{〈x̂∗i , [x]〉− ci|i ∈ I} for each [x] ∈ X/X0.

Let Ŝ = {[x] ∈ X/X0 : f̂([x]) � 0}. It is clear that Ŝ = {[x] : x ∈ S}. Hence
dist(x, S) = dist([x], Ŝ) for each x ∈ X. Note that for each subset D of I, the norm
of
∑
i∈D tix̂

∗
i is equal to the norm of

∑
i∈D tix

∗
i for any ti ∈ R and i ∈ D. Moreover,

D is of the properties defined in Definitions 4.1 and 4.2 with respect to the system
{gi(x) � 0, i ∈ I} if and only if D has the corresponding properties with respect to
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{ĝ∗i ([x]) � 0, i ∈ I}. Therefore the constants µ, ν remain unchanged regardless of
whether they hold with respect to {gi} or {ĝi}. Therefore Theorem 4.4 follows from
Lemma 4.5.

5. Error bound for a quadratic function on Rn. Consider a general
quadratic function on Rn

f(x) = x⊥Qx+ b⊥x+ c,

where Q is an n× n symmetric matrix, b ∈ Rn, and c ∈ R; x⊥ denotes the transpose
of x. Since we do not assume f being of convexity, Q is not necessarily positive
semidefinite. Recall that for a symmetric matrix Q, there exists an inversible matrix
A and integer numbers k and m with 0 � k � m � n such that

A⊥QA =


 Ik 0 0

0 −Im−k 0
0 0 0


 ,

where Ik and Im−k are the k× k unit matrix and the (m− k)× (m− k) unit matrix,
respectively. Define g(x) = f(Ax) for x ∈ Rn. Then

g(x) =

k∑
i=1

x2
i −

m∑
i=k+1

x2
i +

n∑
i=1

cixi + c

=
k∑
i=1

(
xi +

ci
2

)2

−
m∑

i=k+1

(
xi − ci

2

)2

+

n∑
i=m+1

cixi + r,

where r = −∑k
i=1

c2i
4 +

∑m
i=k+1

c2i
4 + c. Define

φ(x) =

k∑
i=1

x2
i −

m∑
i=k+1

x2
i +

n∑
i=m+1

cixi + r, x = (x1, . . . , xn) ∈ Rn.(5.1)

It is easy to verify that an error bound for g holds if and only if an error bound for
φ holds. Notice also that Sf = ASg, where Sf = {x ∈ X|f(x) � 0} and Sg = {x ∈
X|g(x) � 0}. It is clear that

‖A−1‖−1dist(A−1x, Sg) � dist(x, Sf ) � ‖A‖dist(A−1x, Sg).

This implies that an error bound for f holds if and only if an error bound for g holds,
and so if and only if an error bound for φ holds. In the remainder of the paper,
we only consider an error for a quadratic function φ expressed in the “normal” form
(5.1). Clearly, for such a quadratic function φ, exactly one of the following six cases
will occur. ((C1) is the case that φ has linear terms and (C2)–(C6) deal with the
remaining cases.)

(C1) There exists i ∈ N such that m < i � n and ci �= 0.
(C2) k < m, r �= 0, and ci = 0 for all m < i � n.
(C3) 0 = k < m, r = 0, and ci = 0 for all m < i � n.
(C4) 0 �= k < m, r = 0, and ci = 0 for all m < i � n.
(C5) k = m, r � 0, and ci = 0 for all m < i � n.
(C6) k = m, r < 0, and ci = 0 for all m < i � n.
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Theorem 5.1. Let φ be a quadratic function expressed in the form (5.1). Then
any one of (C1), (C2), (C3), and (C6) implies that an error bound for φ holds, and
any one of (C4) and (C5) implies that there are no error bounds for φ.

Proof. Case 1: (C1) is true. Without loss of generality, we can assume that
cn �= 0. Let h = (0, . . . , 0,−sign(cn)). Then ‖h‖ = 1. Notice that for each x =
(x1, . . . , xn) ∈ Rn,

�φ(x) = (2x1, . . . , 2xk,−2xk+1, . . . ,−2xm, cm+1, . . . , cn).

For each x ∈ Rn \ S,

d+φ(x)(h) = 〈�φ(x), h〉 = −|cn|.

Hence an error bound for φ holds by Theorem 2.5.
Case 2: (C2) is true. Then

φ(x) =

k∑
i=1

x2
i −

m∑
i=k+1

x2
i + r.

This case is subdivided into three subcases.
(C2)1: k = 0 and r < 0. Then S = Rn, and the result is trivial.
(C2)2: k �= 0 and r < 0. For each x ∈ Rn \ S, one has

k∑
i=1

x2
i >

m∑
i=k+1

x2
i + |r| � |r|.

Let

hx = (−x1, . . . ,−xk, 0, . . . , 0)/

(
k∑
i=1

x2
i

) 1
2

.

Then ‖hx‖ = 1 and

d̄+φ(x)(hx) = 〈�φ(x), hx〉 = −2

(
k∑
i=1

x2
i

) 1
2

� −2|r| 12 .

By Theorem 2.5, an error bound for φ holds.
(C2)3: r > 0. For each x ∈ Rn \ S with

∑m
i=k+1 x

2
i � r

2 , one has

φ(x) �
k∑
i=1

x2
i +

r

2
.(5.2)

Pick a point y = (y1, . . . , yn) ∈ Rn such that yi = 0 for 1 � i � k,
∑m
i=k+1 y

2
i = r

and yi = xi for m < i � n. Then φ(y) = 0, and so

dist(x, S) � ‖x− y‖ �
(

k∑
i=1

x2
i

) 1
2

+ 2r
1
2 .(5.3)
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Notice that there is a positive constant τr such that for t � 0,

t
1
2 + 2r

1
2

t+ r
2

� τr.

It follows from (5.2) and (5.3) that for each x ∈ Rn \ S with
∑m
i=k+1 x

2
i <

r
2 ,

dist(x, S) � τrφ(x).

Next consider those x in Rn \ S with
∑m
i=k+1 x

2
i >

r
2 ; let

hx = (0, . . . , 0, xk+1, . . . , xm, 0, . . . , 0)/

(
m∑

i=k+1

x2
i

) 1
2

.

Then ‖hx‖ = 1 and, for t � 0,

d+φ(x+ thx)(hx) = 〈�φ(x+ thx), hx〉 = −2


( m∑

i=k+1

x2
i

) 1
2

+ t


 � −(2r)

1
2 .

Let

tx =

(
k∑
i=1

x2
i + r

) 1
2

−
(

m∑
i=k+1

x2
i

) 1
2

.

Then φ(x+ txhx) = 0 and tx > 0 because x �∈ S. By Lemma 2.1, one has

−φ(x) = φ(x+ txhx)− φ(x) � −tx(2r)
1
2 .

It follows that

dist(x, S) � ‖x− (x+ txhx)‖ = tx � φ(x)

(2r)
1
2

.

Therefore, letting τ = max{τr, 1

(2r)
1
2
}, we have shown that if (C2)3 is true, then

dist(x, S) � τφ(x) for all x ∈ Rn \ S.

Case 3: (C3) is true. Then S = Rn, and the result is trivial.

Case 4: (C4) is true. Then

φ(x) =

k∑
i=1

x2
i −

m∑
i=k+1

x2
i , x ∈ Rn.
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For t > 0, let xt = (t, 0, . . . , 0). Then φ(xt) = t2. It is clear from dist(xt, S) =
dist(xt, ∂S) that

dist(xt, S) = inf{‖xt − x‖|x ∈ Rn, φ(x) = 0}

= inf



(

(x1 − t)2 +

n∑
i=2

x2
i

) 1
2

|x ∈ Rn,
k∑
i=1

x2
i =

m∑
i=k+1

x2
i




= inf



[

(x1 − t)2 + x2
1 + 2

k∑
i=2

x2
i +

n∑
i=m+1

x2
i

] 1
2

|xi ∈ R for each i




= inf{[(x1 − t)2 + x2
1]

1
2 |x1 ∈ R}

=
t√
2
.

Therefore,

lim
t→0+

dist(xt, S)

φ(xt)
= lim
t→0+

1√
2t

= +∞.

This shows that there are no error bounds for φ.
Case 5: (C5) is true. If r > 0, S = ∅. We do not consider this trivial case as

stated at the beginning. If r = 0, then φ(x) =
∑k
i=1 x

2
i and S = {0}. For t > 0, let

xt = (t, 0, . . . , 0). Then

lim
t→0+

dist(xt, S)

φ(xt)
= lim
t→0+

t

t2
= +∞.

This implies that there are no error bounds for φ.
Case 6: (C6) is true. Then φ(x) =

∑k
i=1 x

2
i − |r|. It follows as part (C2)2 of Case

2 that an error bound for φ holds.
Notes added in revision. After the submission of this paper, the authors further

carried out, in a follow-up paper [25], a detailed analysis on the issue of error bounds
with fractional exponents. The Luo–Sturm inequality for quadratic functions (recently
established in [21])

dist(x, S) � τ(|φ(x)|+ |φ(x)| 12 ).

is sharpened: we show that either the first term or the second term at the right-hand
side of the above Luo–Sturm inequality can be dropped. The approach of [25] is based
on analysis of eigenvalues.

Acknowledgment. We are grateful to the referee who drew our attention to
reference [11] and pointed out its connection with our work here.
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Abstract. A transshipment problem with demands that exceed network capacity can be solved
by sending flow in several waves. How can this be done in the minimum number of waves? This is
the question tackled in the quickest transshipment problem. Hoppe and Tardos [Math. Oper. Res.,
25 (2000), pp. 36–62] describe the only known polynomial time algorithm to solve this problem.
They actually solve the significantly harder problem in which it takes a prespecified amount of time
for flow to travel from one end of an arc to the other. Their algorithm repeatedly calls an oracle
for submodular function minimization. We present an algorithm that finds a quickest transshipment
with a polynomial number of maximum flow computations, and a faster algorithm that also uses
minimum cost flow computations. When there is only one sink, we show how the algorithm can
be sped up to return a solution using O(k) maximum flow computations, where k is the number of
sources.

Hajek and Ogier [Networks, 14 (1984), pp. 457–487] describe an algorithm that finds a fractional
solution to the single sink quickest transshipment problem on a network with n nodes andm arcs using
O(n) maximum flow computations. They actually solve the universally quickest transshipment—a
flow over time that minimizes the amount of supply left in the network at every moment of time. In
this paper, we show how to solve the universally quickest transshipment in O(mn log(n2/m)) time,
the same asymptotic time as a push-relabel maximum flow computation.
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algorithms
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1. Introduction. The field of network flows blossomed in the 1940s and 1950s
with interest in transportation planning and has developed rapidly since then. There is
a significant body of literature devoted to this subject. However, it has largely ignored
a crucial aspect of transportation: transportation occurs over time. In the 1960s, Ford
and Fulkerson introduced flows over time to include time in the network model. Since
then, flows over time have been used widely to model network-structured, decision-
making problems over time: problems in electronic communication, production and
distribution, economic planning, cash flow, job scheduling, and transportation. For
examples, see the surveys of Aronson [4] and Powell, Jaillet, and Odoni [24].

A flow-over-time network consists of a network N on vertex set V with a capacity
vector u and a transit-time vector, both associated with the edge set E. Flow moves
through this network over time. Edge capacities restrict the rate of flow and edge
transit times determine how long each unit of flow spends traversing the network.

Flows over time have been previously referred to as dynamic network flows [4, 8,
14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 29]. However, this term causes confusion about
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the problem being considered: “dynamic” is more consistently used for a problem
with input that changes over time. In this paper and many of the earlier papers, the
network is fixed. It is the solution that changes over time. For this reason, we use
the more descriptive, albeit slightly awkward, terminology of flows over time.

We discuss a special case of flows over time: we assume all transit times are zero.
This special case has been considered in [2, 14, 20, 28, 19], where it is of interest as
a tractable problem in data routing and congestion control. When all transit times
are zero, the flow on an arc at any moment of time is independent of the flow on
this arc in any previous moment. This independence allows for the problem to be
easily decomposed into time intervals. One example of this is the greatly simplified
time-expanded graph for networks with all zero transit times. One way to picture
networks for flows over time is to equate the transit time of an arc with the arc length
and the capacity of an arc with the diameter. Thus a zero transit time arc still can
handle only a finite amount of flow in a finite time interval, since the capacity of the
arc depends on the diameter, but flow passing through a series of zero transit time
arcs arrives at the end of the series the instant it enters the beginning arc.

Models of flows over time with zero transit times capture some time-related issues:
they can be used to model instances when network capacities restrict the quantity of
flow that can be sent at any one time, and thus necessitate sending flow in phases.
Solving these problems efficiently may help in finding a more efficient exact or ap-
proximate algorithm to solve harder problems with transit times or multicommodity
demands.

1.1. The general model. In this paper we consider problems defined on a
network N = (V,E, u, S) with vertex set V of cardinality n, arc set E of cardinality
m, arc capacity vector u, and terminal set S. Vertex i has supply γi, which is nonzero
if and only if i ∈ S. Let S+ be the set of terminals, also called sources, with γi > 0,
and S− be the set of terminals, also called sinks, with γi < 0. The sum of all supply
in a set of nodes A ⊂ V is denoted γ(A) :=

∑
i∈A γi. We assume γ(V ) = 0. Define

U = maxe ue, Γ = maxi |γi|, and k = |S|.
1.2. The discrete model. A (static) transshipment problem is defined on an

arbitrary network with edge capacity vector u and with node supply vector γ. The
objective is to find a flow f obeying capacities such that the net flow leaving each
node equals the supply at the node:

∑
j [fij − fji] = γi for all vertices i, and fe ≤ ue

for all edges e.

A transshipment over time with node supply vector γ that completes by time T
is a time-dependent flow f : {1, 2, . . . , T} → R through a flow-over-time network that
obeys edge capacity constraints f(t) ≤ u for all t ∈ {1, 2, . . . , T}, flow conservation
constraints

∑r
t=1

∑
j [fij(t) − fji(t)] ≤ max{0, γi} for all r ∈ {1, 2, . . . , T} and all

i ∈ V , and zeroes all supplies and demands by time T :
∑T
t=1

∑
j∈V fij(t) = γi for

all i ∈ V . The quickest transshipment problem is a transshipment over time that
zeroes all supplies and demands in the minimum possible time. Solving a quickest
transshipment problem with fixed supplies is useful for clearing a network after a
communication breakdown.

Many of the applications of flows over time need integral solutions: when flows
are of big objects, like airplanes or train engines, the amounts are often small, so
fractional approximations are not very useful. Ford and Fulkerson [9] describe the
first polynomial time algorithm to solve the maximum flow over time problem: This
is a transshipment problem over time with just one source and sink and unspecified
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demand. Their algorithm returns an integral solution. In conjunction with binary
search, this can be used to solve the quickest flow problem: the quickest transshipment
problem with one source and sink. Burkard, Dlaska, and Klinz [5] show that using the
discrete Newton’s method, instead of binary search, leads to improved run times for
this problem. Recently, Hoppe and Tardos [15] described the only known polynomial
time algorithm to solve the discrete quickest transshipment problem. All of the above
papers actually solve the harder problem in which arcs have nonzero transit times.
The algorithm in [15], however, repeatedly calls a general algorithm for submodular
function minimization.

Traditional approaches to solving the transshipment over time problem consider
the discrete time model and make use of a time-expanded version of the original
network [4, 24]. A time-expanded network is a directed graph that contains a copy
of the network for every time step, and holdover arcs from a copy of a node at time
θ to the copy of the same node at time θ + 1. It is well known and easy to see
that the discrete-time transshipment over time problem is equivalent to a traditional
static transshipment problem in the time expanded network with the set of sources
composed of the copies of sources in the first copy of the network and the set of sinks
consisting of the copies of sinks in the final copy of the network. Unfortunately, the
size of this graph depends on T , not log T , and thus its size may be exponential in the
size of the input. Hoppe and Tardos [15] describe the only polynomial time algorithm
to solve the discrete problem with nonnegative, integer transit times.

1.2.1. Results on quickest transshipment. We present a new framework for
solving quickest transshipment problems. A fractional solution for a transshipment
over time problem given time bound T is easy to find, and we will show this can be
done with a single maximum flow. The new framework also allows us to find inte-
ger solutions quickly. In the special case when there is only one sink, we solve the
integral quickest transshipment problem with O(k) maximum flows. In the general,
multisource, multisink case, we show that the integral quickest transshipment problem

can be solved with O(min{km, k log Γ+k2 log(mU)
1+log log(mΓU)−log log(mU)}) maximum flow computa-

tions, or O(k min{log Γ, log(mΓU)
1+log log(mΓU)−log log(mU)}) maximum flow computations and

2k {0,±1}-minimum cost flow computations. These algorithms are discussed in sec-
tion 3.

We rely on minimum cost flow and maximum flow algorithms developed by others.
Our minimum cost flow computations have very special structure in that all arc costs
are zero, except for some arcs leaving the source or entering the sink, which have costs
in {1,−1}. Thus they can be solved more efficiently than general minimum cost flow
problems—for example, using the cancel and tighten algorithm of Goldberg and Tar-
jan [13]. There are many efficient maximum flow algorithms. The most recent result

is the O(min(n2/3,m1/2)m log(n
2

m ) logU) time algorithm of Goldberg and Rao [11].
We will also use the O(mn log(n2/m) push-relabel algorithm of Goldberg and Tar-
jan [12]. Other efficient algorithms are described in the book of Ahuja, Magnanti,
and Orlin [1].

In a follow-up paper, we describe a faster algorithm for the minimum cost quickest
transshipment problem [7], again assuming all transit times are zero.

1.3. The continuous-time model. Network flows over time have also been
considered in the continuous-time setting [2, 3, 23, 25]. Most of the work in this area
has examined networks with time-varying edge capacities, storage capacities, or costs.
The focus of this research is on proving the existence of optimal solutions for classes
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of time-varying functions and proving the convergence of algorithms that eventually
find solutions. These algorithms fall short of being efficient, either theoretically or
practically, and implementations do not seem able to handle problems with more than
a few nodes. For the case in which capacity functions are constant, it is possible to
extend the polynomial, discrete-time transshipment over time algorithm in [15] to
work in the continuous-time setting [8].

A continuous transshipment over time is a flow f : E × T → R≥0 that varies
over time. (We use R≥0 to denote the set of all nonnegative real numbers.) Let
x : E × T → R≥0 be the rate of flow of f : x(t) = df(t)/dt, and let xij be x restricted
to edge (i, j). We assume that each xij is a Lebesgue-measurable function on (0, T ].
Here, the capacities u are upper bounds on the rate of flow through the arcs. The
formulation is similar to the formulation of the discrete-time problem. We do not
require that mass balance constraints be satisfied at equality before time T . Instead
this formulation allows for storage at any node of the network, but does not allow
deficit to exceed the initial deficit at the node:

x(t) ≤ ue for all 0 ≤ t ≤ T,∫ r
0

∑
j∈V [xij(t)− xji(t)]dt ≤ max{0, γi} for all r ∈ (0, T ], for all i ∈ V,∫ T

0

∑
j∈V [xij(t)− xji(t)]dt = γi for all i ∈ V.

If this problem is feasible and T is integral, there is a solution f that changes only at
times in {1, 2, . . . , T}: A discrete-time solution can be transformed into a continuous-
time solution by sending flow at rate f(t) in the interval (t−1, t]. This transformation
of the optimal discrete-time solution is optimal for the continuous-time problem [8].
Thus, the continuous-time problem is no harder than the discrete-time problem; the
integral quickest transshipment algorithms mentioned in the preceding section and
presented in this paper also solve the continuous-time problem.

1.3.1. Results on universally quickest transshipment. A universally quick-
est transshipment is a quickest transshipment that simultaneously minimizes the
amount of excess left in the network at every moment of time. An optimal solu-
tion may require fractional flow sent over fractional intervals of time. There is a two
source, two sink example for which a universally quickest transshipment does not exist
(see Figure 4.1 in section 4). Hajek and Ogier [14] describe an algorithm that solves
the universally quickest transshipment problem in networks with multiple sources and
a single sink. Their algorithm uses O(n) maximum flow computations. We describe
how this problem can be solved in O(mn log(n2/m)) time—the same asymptotic time
as the fastest implementation of the push-relabel maximum flow algorithm. This al-
gorithm is described in section 4. Table 1.1 summarizes the work on polynomial time
algorithms to solve various quickest transshipment problems.

1.4. Extensions. Everyday usage often involves continuous streams of traffic.
All of the algorithms presented here, like the algorithm of Hajek and Ogier [14], allow
for constant streams of flow into or out of any node in the network. The details are
discussed in section 5.

The model presented above assumes that there is infinite buffer capacity at all
nodes of the network. The model can be adapted to handle finite buffer capacity. We
assume the minimum buffer capacity at node i is max{0, γi}. If we allow additional
finite storage ai at i, then we have the additional constraint (in the discrete-time
model) that

∑r
t=1

∑
j [fij(t) − fji(t)] ≥ min{0, γi} − ai for all r ∈ {1, . . . , T} and all

i ∈ V . However, the algorithms we use for both the discrete-time problems and the
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Table 1.1
New and existing polynomial time algorithms for the multiple source, quickest transshipment

problem. (Here, k is the number of terminals, Γ upper bounds the absolute value of any supply or
demand, U equals the maximum edge capacity, and τ is the maximum transit time).

Multi- Integral Discrete Transit Uni-
In sink flow time times versal Run time

[14]
√

O(n) maximum flows
O(k3 log(nUΓτ) log(nUτ))

[15]
√ √ √ √

minimum cost flows

§ 4
√

O(1) maximum flows
§ 3.4

√ √
O(k) maximum flows
O(k2 log(Un) + k log Γ)

§ 3.2
√ √ √

maximum flows, or
O(km) maximum flows
O(k log Γ)

§ 3.3
√ √ √

maximum flows +
2k min (0,±1)-cost flows

continuous-time problems will find a flow over time that depletes all supplies in the
minimal time and does not ever require more storage at node i than max{0, γi}. That
is, the optimal solution for the case when ai = 0 for all i ∈ V is also optimal when all
ai = ∞. This is also true with general transit times. However, once time-dependent
capacities, or other generalizations, are introduced, buffer capacity may need to be
utilized in an optimal solution [20, 6].

2. Computing the minimum time required for feasibility. All algorithms
described in this paper rely on testing feasibility of transshipment over time. In
the problem with transit times, Hoppe and Tardos [15] use submodular function
minimization to resolve transshipment over time feasibility. Zero transit times make
the problem much easier.

Theorem 2.1. Given time bound T , a feasible, fractional transshipment over
time can be found with one maximum flow computation.

Proof. A problem of transshipment over time is feasible in time T if and only if
the static transshipment problem is feasible in the same network with edge capacities
multiplied by T : Flow on any edge summed over the course of a feasible transshipment
over time cannot exceed T times the capacity of the edge. A feasible static transship-
ment f can be transformed into a feasible transshipment over time by sending flow
at rate fij/T through each arc (i, j) from time 0 until time T .

The feasibility test described in the proof of Theorem 2.1 computes a flow in the
network with capacities multiplied by T . The minimum time bound T ∗ is the smallest
value of T for which the flow problem is feasible. This is a parametric flow problem:
find the minimum value of parameter T such that the static transshipment problem
with supplies γ and capacities uT is feasible.

Given A ⊂ V , let o(A) denote the amount of flow that can be sent from sources
inside A to sinks outside A in one unit of time. Since all transit times are zero,
the amount of flow that can be sent from A to outside A in time T is o(A)T . The
minimum time T ∗ required for feasibility is therefore defined by some cut A in the
network with the property that o(A)T ∗ = γ(A). Any set A with this property is
called tight.

While T ∗ can be found by binary search, Radzik [27] describes a more efficient
procedure for a slightly more general class of parametric flow problems: where ca-
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pacities are of the form a + bT for fixed vectors a and b in RE and parameter T .
One common name for the procedure he describes is the discrete Newton’s method.
Radzik shows that for parametric flow problems, it is possible to give an improved
bound on the number of search iterations. Let A bound the maximum absolute value
of components in γ and a, and B bound the maximum absolute value of components
in B.

Theorem 2.2 (see [27, Theorems 3.4 and 4.3]). The parametric flow problem

with supplies γ and capacities a+ bT can be solved using O( log(mAB)
1+log log(mAB)−log log(mB) )

maximum flow computations or O(m) maximum flow computations.

Corollary 2.3. The minimum time T ∗ required for feasibility of a transship-

ment problem over time can be computed using O( log(mΓU)
1+log log(mΓU)−log log(mU) ) maximum

flow computations or O(m) maximum flow computations.

Theorem 2.1 implies that the maximum flow f for optimal time T ∗ yields an
optimal fractional transshipment. A further challenge is to find a solution in which
the flow rates (or flow amounts, in the discrete-time case) are integers. If we are
looking for a completely integral solution, where the flow rates and the time intervals
are integers, we can assume T ∗ = �T ∗�. If T ∗ is integral, the transshipment over
time problem is equivalent to a static transshipment in the time expanded graph, so
standard network flow theory proves the existence of an integral solution. We describe
how to construct an integral solution in the following section.

3. Quickest integral transshipment. We describe two variants of an algo-
rithm to solve the integral quickest transshipment problem. The first variant requires

O(min{km, k log Γ+k2 log(mU)
1+log log(mΓU)−log log(mU)}) maximum flow computations, while the sec-

ond requires k min{log Γ, log(mΓU)
1+log log(mΓU)−log log(mU)} maximum flow computations and

2k {0,±1}-minimum cost flow computations. When there is only one sink, a modified
version of the first algorithm solves the integral quickest transshipment problem with
only O(k) maximum flow computations.

3.1. The basic algorithm. All of the algorithms start off using a two-level
network inspired by the time-expanded network. Unlike the time-expanded network,
the two-level network consists of just two copies of the original network (Figure 3.1).
The upper copy, NU , represents the first unit of time and has original arc capacities.
The lower copy, NL, represents the remaining T − 1 units of time and thus has its
capacities multiplied by T − 1. These two copies of the network are connected via an
additional copy of each terminal, called a super-terminal, and denoted sSi , i = 1 to k.
Let sUi be the copy of terminal si in NU , and let sLi be the corresponding terminal
in NL. If si is a source node, then the two-level network contains arcs eUi = (sSi , s

U
i )

and eLi = (sSi , s
L
i ), each with infinite capacity. If sj is a sink node, then the two-level

network contains infinite capacity arcs eUj = (sUj , s
S
j ) and eLj = (sLj , s

S
j ). Node sSi is

assigned supply γi and node sSj is assigned demand γj .

A static transshipment computation in the two-level network gives an integral
flow, since all inputs are integral. The flow in NU corresponds to the flow sent in
the first unit of time. The flow in NL indicates that the remaining supplies can be
satisfied in time T − 1. That is, this reduced transshipment-over-time problem with
reduced supplies f(eLi ) = |γi| − f(eUi ) at si is feasible in time T − 1.

If we construct a new two-level network for this reduced problem and repeat the
process, we then find an integral flow for the second unit of time and a further reduced
problem feasible in time T − 2. This leads to the following observation.
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Fig. 3.1. A network and the corresponding two-level network.

Observation 3.1. Given feasible time bound T , an integral transshipment over
time can be found with T − 1 maximum flow computations.

To develop a more efficient algorithm, it is necessary to reduce the number
of static transshipment problems considered. Let fU be the flow f restricted to
NU . Denote by fU (A) the net flow fU leaving node subset A. That is fU (A) =∑
i∈A,j /∈A[fij − fji]. We would like to continue to use fU for as long as the remain-

ing supplies {γi − λfU ({i})}i∈S can be satisfied in the remaining time, T ∗ − λ. The
problem with supplies {γi − λfU ({i})}i∈S and time bound T ∗ − λ is called the λ-
reduced problem. Here, λ is the amount of time we will use the first integral flow.
Starting with λ = 1, we can increase λ either until the supply is depleted at some
terminal (e.g., γi − λfU ({i}) = 0 for some i) or until the λ-reduced problem becomes
infeasible. We seek the maximum λ such that the λ-reduced problem is feasible. This
is a parametric flow problem of a form apparently more general than the problem
considered in Theorem 2.2, since both supplies and capacities are linear functions of
the parameter. We now show how to transform this parametric flow problem into an
equivalent one of the form given in Theorem 2.2.

Let T ′ := mini:γi �=0
γi

fU ({i}) . Note that T ′ > 0 since fU has the same sign as γ.

This T ′ is the minimum value of λ for which supply at some source or sink depletes.
Thus we may assume that we search for a λ ≤ T ′. (If T ′ > T , set T ′ = T .) Consider
the parametric flow problem parameterized by k with supplies gi := γi − T ′fU ({i})
and capacities u(T − T ′) + (u − fU )k. This problem is of the form considered in
Theorem 2.2.

Lemma 3.1. Let k be the minimum value in the range [0, T ′ − 1] for which the
parametric flow problem with supplies gi and capacities u(T − T ′) + (u − fU )k is
feasible. Then, the maximum value of λ in the range [1, T ′] for which the parametric
flow problem with supplies γi − fU ({i})λ and capacities u(T − λ) is feasible equals
T ′ − k.

Proof. For any value of k, consider the set A that minimizes κ(A) := [u(T −T ′)+
(u− fU )k](A)− g(A). This value equals κ′(A) := [u(T − λ)](A)− γ(A) + λfU (A) for
λ = T ′ − k, since fU (A) :=

∑
i∈A,j /∈A fUij =

∑
i∈A fU ({i}) by the fact that fU is a

flow. The first problem in Lemma 3.1 is feasible if κ(A) ≥ 0, and the second problem
is feasible if κ′(A) ≥ 0. Since λ = 1 yields a feasible form of the second problem, this
implies that k = T ′ − 1 is feasible for the first problem. Thus the minimum value of
k ∈ [0, T ′ − 1] that makes the first problem feasible determines the maximum value
λ = T ′ − k that makes the second problem feasible.

Corollary 3.2. The maximum value of the parameter λ such that the parametric
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Basic (N , u, γ, T ∗)

T = T ∗, p = 0.
while γ �= 0,

p = p + 1.
Construct the two-level network with u, γ, T .
Solve the transshipment problem on this two level network.
fp = flow through NU , the small capacity level.
λp = maximum λ such that transshipment problem (N , u, γ − λfp, T − λ)

is feasible.
T = (T − λp).
γ = (γ − λpf

p).
end while
return {(f1, λ1), (f

2, λ2), . . . , (f
p, λp)}.

Fig. 3.2. The basic quickest transshipment algorithm.

flow problem with supplies γi − λf̃({i}) and capacities u(T − λ) is feasible can be

found O( log(mΓU)
1+log log(mΓU)−log log(mU) ) maximum flow computations, or O(m) maximum

flow computations.

Proof. By definition of T ′, 0 ≤ |gi| ≤ |γi|. Since the most flow through an arc is
the total supply, which is at most kΓ ≤ mΓ, we can assume u(T − T ′) is bounded by
mΓ. Also, U remains a bound on the multiplier of k. Plugging these bounds into the
statement of Theorem 2.2, we see that we obtain a factor of log(m2ΓU) = O(mΓU).
Thus, together Lemma 3.1 and Theorem 2.2 imply the corollary.

Figure 3.2 summarizes the algorithm. The quickest integral transshipment takes
as input a network with arc capacity vector u, vertex supply vector γ, and time
bound T , and returns a set of flow-duration pairs {(fp, λp)}rp=1 that specify the flows
fp that compose the optimal transshipment and the duration of time λp for which
they continue.

The algorithm repeatedly finds integral flows and their corresponding time periods
until all supplies are exhausted. Each time we fix a λ, one of two things happens.
Either supply at some terminal is exhausted, or there is some new set of nodes A whose
total supply is equal to the amount of flow that can leave this set in the current time
bound. That is, A is tight, as defined in section 2, and it wasn’t tight previously.
We will refer to such a tight set as a new tight set. The flow leaving A must be at
a maximum for the remainder of the algorithm: once a set is tight, it remains tight.
The following sequence of lemmas shows that the algorithm searches for at most k
values of λ before all supplies are exhausted.

Lemma 3.3. The intersection and union of tight sets are tight.

Proof. Recall o(A) is the amount of flow that can leave set A in one unit of
time. Megiddo [17] shows that o(A) + o(B) ≥ o(A∪B) + o(A∩B). Any set function
satisfying this inequality for all subsets A and B is a submodular function. Since
γ(A) =

∑
i∈A γi satisfies this inequality at equality, it is easy to see that o(A)T−γ(A)

is also submodular. For a tight set A, o(A)T − γ(A) = 0 by definition. Since T is
feasible if and only if o(A)T − γ(A) ≥ 0, the submodular inequality implies that the
intersection of tight sets is tight and the union of tight sets is tight for any feasible
T .
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Observe that it is possible for a new tight set to be a subset of an existing tight
set, and for sources in a tight set to run out of supply before time T : It could be that
the total flow out of a tight set B must be at its maximum possible for the remainder
of the algorithm, but that under the current flow, some sources in B are sending out
flow at a rate that will deplete their supply before time T , while others are sending out
flow at a rate slower than needed to deplete their supply by time T . In this scenario,
the set of sources in B that are sending out flow too quickly either will be contained
in a tight set A ⊂ B found later in the algorithm or will determine λ at some point
when they run out of supply. At this point, the rates of flow out of these sources will
decrease, and the rates of flow out of the remaining sources in B will increase.

Define a chain of sets to be a sequence of nested sets: each set is strictly contained
in its successor.

Lemma 3.4. Each time the algorithm forces a new set to become tight, the number
of nested tight sets in the largest chain increases by at least one.

Proof. When we find a new tight set of terminals, we know the old tight sets are
still tight. Let N be the new tight set, and let B0 ⊂ B1 ⊂ · · · ⊂ Br be the existing
chain of nested tight sets, with B0 = ∅. If j is an index such that N ∩ (Bj+1\Bj) is
a proper subset of Bj+1\Bj , then Lemma 3.3 implies N ′ = N ∩ Bj+1 is a tight set
and thus N ′ ∪ Bj also is a tight set. This implies that B0 ⊂ · · · ⊂ Bj ⊂ Bj ∪ N ′ ⊂
Bj+1 ⊂ · · · ⊂ Br is a larger chain of nested tight sets.

We now show that there is at least one index j such that N∩(Bj+1\Bj) is a proper
subset of Bj+1\Bj . First, note that for any j, Hj := Bj+1\Bj either is tight before this
iteration or is never tight throughout the remainder of the algorithm. This is because
the amount of flow leaving Bj+1\Bj in each time unit is fixed at o(Bj+1) − o(Bj)
for the remainder of the algorithm. Similarly, the amount of flow leaving ∪j∈JHj for
any subset of indices J is fixed at

∑
j∈J o(Bj+1) − o(Bj) for the remainder of the

algorithm. Hence ∪j∈JHj cannot be a new tight set. This implies that N �= ∪j∈JHj

for any subset J . Thus, there is some index j for which N ∩ (Bj+1\Bj) is a proper
subset of Bj+1\Bj .

A terminal is active if it has nonzero supply remaining. Let A represent the set of
active terminals. Let C represent the chain of tight sets encountered by the algorithm.
We prove below that each iteration of the algorithm decreases |A| − |C| by at least
one. Thus after at most k iterations, we have a complete chain of nested tight sets,
and the flow is constant for the remaining time.

Lemma 3.5. The basic algorithm searches for a new feasible integral flow fp at
most k times.

Proof. Each time we find a new λ by finding a new tight set, |A| − |C| decreases
by one: |A| does not change and by Lemma 3.4, |C| increases.

Each time we deplete a supply, |A| decreases by one. If |C| decreases by 1, then |A|
decreases by at least 2: if the difference between two tight sets of terminals is just one
terminal, then the flow rate out of that terminal must be constant for the remaining
time. If such a terminal is active, it must be active until the end. If Bj ⊂ Bj+1 are
consecutive tight sets that collapse into one tight set, then Bj+1\Bj must contain at
least two terminals (one source and one sink) that deplete at the same time.

Since there are at most k terminals, the total number of times the algorithm
stops with a nonempty reduced problem is at most k. (It could be that two indepen-
dent events occur simultaneously, causing the algorithm to complete after less than k
iterations.)

There is the problem that some of the λp we find may be fractional. The next
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two sections present two different approaches to handling this problem.

3.2. A continuous-time approach to the quickest transshipment prob-
lem. In this section, we solve the quickest transshipment problem by first producing
a solution with constant, integral rates of flow over time periods of arbitrary lengths.
We then transform this continuous-time solution into a discrete-time integral trans-
shipment with at most k more maximum flow computations. The solution is then fully
integral, which is of interest for applications that can handle only integer quantities.

We apply the algorithm of the previous section. This could give us not only
fractional λp but also fractional fp, since after one iteration, the remaining supplies
may be fractional. To avoid this, after one computation of λ, we rescale the remaining
problem so that all data is integer. For iteration p, this involves multiplying remaining
supplies and time bound by the denominator dp−1 of λp−1 to obtain an equivalent,
but integral problem: Any flow g for the original problem can be transformed into a
flow satisfying the multiplied problem by sending each amount of flow for a period
that is dp times longer than the time it is sent in the original problem. Any integer
solution to the multiplied problem can be transformed into a feasible, integral flow
for the original problem by reducing the time any particular flow is sent by a factor
of dp. This means we can find a solution where the flow rates are integral, but the
intervals during which they are sent are fractional.

If all λ’s are integers, then the continuous-time solution is easily transformed into
a discrete-time solution by sending fij units of flow on arc (i, j) at each of λ time units.
If there are fractional λ’s, then we subtract the fractional part from each λ to get a
partial solution that is integral and hence satisfies an integral amount of the supplies.
Since our initial supplies are integers, the sums of the supplies sent in the fractional
times are also integers, and they can be satisfied in time ∆ =

∑k
p=1 λp−�λp� < k. We

can now use Observation 3.1 to solve this smaller transshipment over time problem
with < k maximum flow computations. These two partial solutions scheduled one
after the other form a feasible, integral, discrete transshipment over time completing
by the optimal time.

Theorem 3.6. A fully integral solution for the quickest transshipment problem

with zero transit times can be found with O(min{km, k log Γ+k2 log(mU)
1+log log(mΓU)−log log(mU)}) max-

imum flow computations.

Proof. By Corollary 3.2, at most O(min{m, log(mΓU)
1+log log(mΓU)−log log(mU)}) maximum

flow computations are required to find λ1. Note that λ1, and in general λp, may
be fractional with denominator dp ≤ Um. This latter quantity is a bound on the
size of a cut in the original graph. After the first iteration, we multiply remain-
ing supplies by at most d1. Let dr be the denominator of λr, r < j. The sup-
ply vector in the parametric flow problem for λj is bounded by d1d2 · · · dj−1Γ ≤
(Um)j−1Γ. Thus the number of maximum flow computations required to find λj is at

most O(min{m, log Γ+j log(mU)
1+log(log Γ+j log(mU))−log log(mU)}). Summing over all p = 1, . . . , k,

the total number of maximum flow computations to find all λp, p = 1, . . . , k is

O(min{km, k log Γ+k2 log(mU)
1+log log(mΓU)−log log(mU)}).

3.3. A minimum cost flow approach to the quickest transshipment
problem. In this section, we demonstrate how the quickest integral transshipment
can be solved without creating parametric flow problems with very large supply vec-
tors, and hence large input sizes. We start with the basic algorithm as described
in section 3.1, constructing the two-level network with capacities determined by the
remaining time T and computing a static transshipment f in this network. Again, we
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Fig. 3.3. Flow f represented by thicker lines on the left and, on the right, the two-level network
for the corresponding minimum cost flow problem.

seek to repeat the flow described by f restricted to the upper network NU , denoted
fU , as long as the remaining problem is feasible. However, this time we insist fU

is repeated for an integer number of periods. In the basic algorithm in the previous
section, we calculated the maximum time λ that we could send flow fU , and we sent
the flow for this period of time. Now, we will send fU for only �λ� units of time. This
avoids creating new parametric flow problems with supply vectors increasing arith-
metically in size. But with this restriction, there may not be a new tight set at time
T −�λ�. Recall that in section 3.1, our progress is measured by the number of nested
tight sets created. We modify the algorithm to address this problem as follows.

We describe a procedure using a minimum cost flow computation that will force a
new set to become tight in one additional unit of time, after sending fU for �λ� units
of time. We observe that since repeating fU for one additional time unit is infeasible,
there must be some set of terminals that is close to being tight. We try to force such
a set to become tight by sending either as little out of the set, or as much into the
set, as possible in the next time unit, while keeping the remaining problem feasible.

To do this, we use one minimum cost flow computation in a modified two-level
network. We construct a minimum cost flow problem that encourages sending as much
of fU as possible and as little additional flow as possible: We place the remaining
supplies and demands at the terminals of a two-level network with capacities deter-
mined by remaining time T −λ as described in section 3.1. All arcs in the network are
assigned cost 0. For each source in NU , we reduce the capacity of the arc from the
super-source to be the amount of flow fU leaving the source in NU , and assign this
arc a cost of −1. We also add an infinite capacity, cost 1 arc from the super-source
to each source in NU . We make similar additions and adjustments of arcs from the
sinks in NU to the super-sinks. Figure 3.3 gives an example of this modification. We
prove below that after sending the part of the minimum cost flow restricted to NU ,
|A| − |C| is reduced by at least one.

Theorem 3.7. A solution for the integral quickest transshipment with zero
transit times can be computed with 2k {0,±1}-minimum cost flow computations and

k min{log Γ, log(mΓU)
1+log log(mΓU)−log log(mU)} maximum flow computations.

To prove Theorem 3.7, we show that after sending the minimum cost flow re-
stricted to NU , |A|− |C| is reduced by at least one. Since each decrease in |C| implies
at least a decrease of two in |A| (see proof of Lemma 3.5) and |A| never increases,
this amounts to showing that either |A| decreases or |C| increases. Lemma 3.5 then
implies the theorem.

Let x be the minimum cost flow in the modified network. Standard optimality
conditions for minimum cost flows [1] imply that there exists a set of labels π on
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the vertices in the two-level network that obey the following complementary slackness
conditions. Define cπij := cij − π(i) + π(j) for all arcs (i, j) in the two-level network.
Then

xij < uij ⇒ cπij ≥ 0,

xij > lij ⇒ cπij ≤ 0.

If some source or sink that is active at time T − λ does not send or receive any flow
in NL, then it has been emptied in NU and thus |A| decreases by one.

We must now show that |A| − |C| decreases even if all active sources and sinks
send some flow in NL. We show this by finding a new tight set of terminals. Thus
by Lemma 3.4, this implies that |C| increases by one.

We first suppose that there is nonzero flow on a cost 1 edge entering a source.
For terminal sj , let eUj denote the original arc connecting the terminal in NU and

super-terminal. Let eUj− and eUj+ denote the two arcs that replace eUj in the minimum
cost flow problem, of cost −1 and +1, respectively.

Lemma 3.8. If all active terminals send or receive flow in NL and s∗ ∈ S+ is
such that x(eU∗+) > 0, then L0 := {vi ∈ V |π(vLi ) ≥ π(sL∗ )} is a new tight set.

Proof. Since cπ is unchanged by adding the same constant to every label, we can
assume without loss of generality that π(sL∗ ) = 0. Thus L0 = {vi ∈ V |π(vLi ) ≥ 0}.
Similarly, define U0 := {vi ∈ V |π(vUi ) ≥ 0}. The proof consists of establishing a
sequence of statements that build on each other, ending in the claim of the lemma.

(i) If sj ∈ L0 ∩ S+ sends out less x-flow in NU than it sent out f -flow, then
sj ∈ U0.

(ii) If sj ∈ L0 ∩ S− receives more x-flow in NU than it received f -flow, then
sj ∈ U0.

(iii) If L0 is tight in NU , then L0 ∩ U0 is tight in NU .
(iv) s∗ �∈ U0.
(v) Either L0 is not tight in NU or L0 sends out strictly more x-flow in NU than

it sends out f -flow.
(vi) L0 is a new tight set in NL.

In the arguments below, we repeatedly use complementary slackness and the assump-
tion that all active terminals send or receive flow in NL. For instance, the capacity of
all arcs connecting super-terminals to terminals in NL is infinite, so cπ = 0 for each
of these arcs. Since c = 0 by design for each of these arcs, π(sLi ) = π(sSi ) for all active
terminals si.

(i) If x(eUj−) < f(eUj ), complementary slackness and sj ∈ L0∩S+ imply π(sUj ) ≥
π(sSj ) + 1 = π(sLj ) + 1 ≥ 1.

(ii) If x(eUj+) > 0, complementary slackness and sj ∈ L0 ∩ S− imply π(sUj ) =

π(sSj ) + 1 = π(sLj ) + 1 ≥ 1.

(iii) Complementary slackness implies all arcs leaving U0 inNU are at full capacity
and all arcs entering U0 in NU are empty. Thus U0 is tight in NU . Since the
intersection of tight sets is tight (Lemma 3.3), L0 tight in NU implies that
L0 ∩ U0 is also tight in NU .

(iv) Using complementary slackness, π(sU∗ ) = π(sS∗ )− 1 = π(sL∗ )− 1 = −1.
(v) If L0 is tight in NU , then (iii) implies that L0 ∩ U0 is tight in NU . Thus in
NU , (i) and (iii) together imply that for all i ∈ L0 ∩ S+, the x-flow out of
i is ≥ the f -flow out of i. Similarly, in NU , (ii) and (iii) imply that for all
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j ∈ L0 ∩ S−, the x-flow into j is ≤ the f -flow into j. Thus L0 sends out at
least as much flow in NU as it does with f . By (iv), s∗ ∈ L0\U0. Since sU∗
sends out more flow with x than s∗ does with f , L0 actually sends out more
flow in NU than it does with f .

(vi) By complementary slackness, all arcs leaving L0 in NL are at full capacity
and all arcs entering L0 in NL carry no flow. Thus, L0 is tight in NL. If L0

is not tight in NU , it is clearly a new tight set. Otherwise L0 is sending out
more flow in NU than it did with f . Thus, it was not tight for flow f , and
hence is newly tight.

If the only cost 1 arcs used are those leaving sinks, consider the reverse network
obtained by reversing the direction of arcs and flow x, and multiplying all labels by
−1. The new labels and new flow are feasible and satisfy the complementary slackness
conditions and hence are optimal. Since there is flow entering a source on a cost 1
arc in this reverse network, Lemma 3.8 implies that there is a new tight set L0 in this
reverse network. Thus L0 is a new tight set in the original graph.

If no cost 1 edge is used, then since fU is not feasible, there is a cost −1 edge
adjacent to a source that is not at full capacity. The following lemma shows that
there is also a new tight set of terminals in this case.

Lemma 3.9. If all active terminals send or receive flow in NL and s∗ ∈ S+ is
such that x(eU∗−) < f(eU∗ ), then L0 := {vi ∈ V |π(vLi ) ≥ π(sL∗ )} is a new tight set.

Proof. As in Lemma 3.8, we assume π(sL∗ ) = 0, and we show that L0 = {vi ∈
V |π(vLi ) ≥ 0} is a new tight set. The proof of this proceeds along the lines of the
proof of Lemma 3.8, establishing the following sequence of statements using similar
ideas. Because of its similarity to the proof of Lemma 3.8, we leave the details of the
proof to the reader. As before, define U0 := {vi ∈ V |π(vUi ) ≥ 0}.

(i) If sj ∈ L0∩S− receives less x-flow in NU than it receives f -flow, then sj ∈ U0.
(ii) If sj ∈ L0 ∩ S+ sends out more x-flow in NU than it sends out f -flow, then

sj ∈ U0.
(iii) If L0 is tight in NU , then L0 ∩ U0 is tight in NU .
(iv) s∗ �∈ U0.
(v) Either L0 is not tight in NU or L0 receives strictly less x-flow in NU than it

receives f -flow.
(vi) L0 is a new tight set in NL.
Proof of Theorem 3.7. Each iteration of the altered basic algorithm uses one min-

imum cost flow computation, reducing |A|−|C| by at least one. The search for λp can
be performed using either Radzik’s parametric flow algorithm or binary search. In the

former case, this requires O(min{m, log(mΓU)
1+log log(mΓU)−log log(mU)}) maximum flow com-

putations, by Corollary 3.2. In the latter case, this requires at most log λp maximum
flow computations. Since Γ is an upper bound on λp for all p, the total number of max-

imum flow computations required is k min{log Γ, log(mΓU)
1+log log(mΓU)−log log(mU)}.

3.4. The single sink case. When there is only one sink, the transshipment
over time problem is also known as the evacuation problem. In this section, we
explain how to compute a quickest integral evacuation with O(k) maximum flow
computations. The best previous solution for computing a quickest integral evacuation
is the algorithm of Hoppe and Tardos [15] which uses the ellipsoid method as a
subroutine. The algorithm of Hajek and Ogier [14] computes a fractional solution
using O(n) maximum flow computations.

We start with the basic algorithm described in section 3.1 and observe that, since
there is only one sink, the general parametric flow problem that we have to solve
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to find the maximum feasible λ is simpler. Namely, we can replace Radzik’s [27]
parametric flow algorithm or binary search for the maximum λ with a parametric
flow algorithm of Gallo, Grigoriadis, and Tarjan [10]. This parametric flow algorithm
is based on the push-relabel maximum flow algorithm of Goldberg and Tarjan [12]
and runs in the same asymptotic time: O(mn log(n2/m)).

The simpler parametric flow problem is defined on the original network with only
one new node: a super-source—the single sink obviates the need for a super-sink.
Now the arcs from super-source to source i have capacity γi−λf̃({i}), and all original
network arcs have capacity uij(T − λ). Gallo, Grigoriadis, and Tarjan [10] show that
if the capacities on arcs leaving the source are nonincreasing functions of a parameter
and all other capacities are constant, then the minimum value of the parameter for the
source to be a minimum cut can be found in the same asymptotic time as computing
one maximum flow with the push-relabel algorithm. In our example, let α = T − λ.
Dividing all capacities by α gives us an equivalent problem with the original constant
capacities on the original arcs, and capacities which are nonincreasing functions of
1/α on the arcs leaving the source. This is the form required by the parametric
flow algorithm of Gallo, Grigoriadis, and Tarjan. Thus, for the special case of a
single sink, we find one λp in the same asymptotic time as one push-relabel maximum
flow computation. Since there may be at most k iterations to find all flows and
intervals, the quickest transshipment problem—also known as the quickest evacuation
problem—can be solved in the same asymptotic time as O(k) push-relabel maximum
flow computations.

Theorem 3.10. The quickest evacuation problem with zero transit times can
be solved in the same asymptotic time as k push-relabel maximum flow computa-
tions.

4. Universally quickest transshipment. The universally quickest transship-
ment is a flow that minimizes the amount of excess left in the network at every
moment of time. Hajek and Ogier [14] solve this problem with O(n) maximum flows
when there is only one sink. There is a two-source, two-sink example for which a
universally quickest transshipment does not exist (Figure 4.1). In this section, we
describe an algorithm that solves the single sink, universally quickest transshipment
in the same asymptotic time as one maximum flow computation.

If there are multiple sinks, a universally quickest solution may not exist. For
example, consider the network in Figure 4.1. In one unit of time it is possible to
satisfy four units of demand by sending one unit of supply from each source to each
sink (Figure 4.1(a)). In this case, in the second time unit, it is possible only to send
supply from the first source to the second sink, and the amount is restricted to one
unit by the capacity of the arc. Thus a total of 3 time units are necessary to satisfy
all demands. Consider instead Figure 4.1(b), where the maximum amount of supply
is not sent in the first time unit. In particular the second source does not send any
flow to the first sink. In this case, all demands can be satisfied in two time units. This
example shows that it may not be possible to maximize the total satisfied demand at
every time unit if there are multiple sources and sinks. The problem with multiple
sinks is that, in the rush to send flow, some source may send flow to the wrong sink.
This is not a problem when there is only one sink.

The universally quickest transshipment algorithm described here will find a series
of subsets of V , A1 ⊂ A2 ⊂ · · · ⊂ Ar, such that each set contains at least one more
source than the previous set, and Ar contains all sources but not the sink. Each set
will have a corresponding time bound Ti with T1 > T2 > . . . > Tr, such that, in the
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Fig. 4.1. An example with no universally quickest transshipment.

constructed solution, the rate of flow leaving set Ai equals o(Ai) from time 0 until
time Ti after which all sources in Ai\Ai−1 are empty.

Theorem 4.1. A single sink transshipment over time that sends flow out of node
set Ai at rate o(Ai) from time 0 until time Ti, after which all sources in Ai\Ai−1

are empty of supply, for all Ai and Ti as defined above, is a universally quickest
transshipment.

In the following proof and algorithm, we use the following notation: Given a flow-
over-time network N , a set of sources with supplies, and a time bound T let GT be
the graph obtained from N by multiplying the capacity of all arcs by T and adding a
super-source with arcs from the super-source to all sources of capacities equal to the
supply at the sources.

Proof. By the same argument in the proof of Theorem 2.1, the maximum amount
of supply that can be sent to the sink by time T equals the maximum static flow
sent to the sink in GT . Represent this maximum quantity by s(T ). This is also
the value of a minimum cut in the time-expanded network. A universally quickest
transshipment must therefore send the supply of s(T ) to the sink by time T for every
0 < T ≤ T ∗. We show that a transshipment over time obeying the conditions of the
theorem achieves this.

Proof is by induction on c, the number of sets Ai. If c = 1, then A1 contains all
sources, and flow leaving A1 equals o(A1) from time 0 until time T1. This is clearly a
universally quickest evacuation.

Suppose the theorem is true for c < r, and consider the case when c = r. Now
consider the time bound Tr corresponding to the set Ar that contains all sources. By
definition of Tr and Ar, a minimum cut in GTr contains Ar. Because Ar contains all
sources, only arcs in the original network N cross this cut; all arcs leaving the source
have their endpoints in the source side of this cut. Hence, this cut is also a minimum
cut in GT for every T ≤ Tr. So the flow over time that sends flow out of Ar at rate
o(Ar) at every moment 0 ≤ θ ≤ Tr is a universally quickest flow in this time interval.

By definition, after time Tr, all sources in Ar\Ar−1 are empty of supply. In
addition, since Ti > Tr for all i < r, up until time Tr all other sets Ai (i < r) have
been sending flow out at a rate equal to o(Ai). Now consider the altered problem
with no supplies at the sources in Ar\Ar−1. By induction, the flow that sends flow
out of all Ai at rate o(Ai) up until time Ti for i = 1 to r − 1 is a universally quickest
transshipment. In particular, it is universally quickest at all times after Tr. Before
time Ti, the flow on all arcs entering or leaving Ai\Ai−1 is fixed. Thus, the flow
within Ai\Ai−1 can be determined independently in this time period. This implies
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that any flow that maintains the appropriate flow conservation constraints at all nodes
in Ai\Ai−1 for 1 ≤ i < r for all times T ≤ Tr is equivalent to any other. In particular,
the flow computed with supplies in Ar\Ar−1 and the flow computed without supplies
in Ar\Ar−1 are interchangeable on Ar for the interval [0, Tr). Hence, the output
of the algorithm on the original problem with r sets is also a universally quickest
evacuation.

We demonstrate the existence of a flow obeying the conditions of Theorem 4.1
constructively. Our algorithm has three stages: (a) It first finds sets Ai using the
parametric flow algorithm of Gallo, Grigoriadis, and Tarjan [10], which also returns
the corresponding time bounds Ti. Here, Ai is a minimum cut in GTi . (b) This
information is then used to construct a static flow which represents the initial flow
rate. (c) Finally, the flow over time is constructed from this static flow by reducing
the flow rate along source-sink paths when the supplies at the corresponding sources
are depleted.

(a) Finding nested sets Ai and time bounds Ti. The proof of Theorem 4.1
shows the need to compute maximum flows on GT̂ for values of T̂ ∈ [0, T ]. An
equivalent problem is to find maximum flows on the network with original capacities
on original arcs and capacities equal to supply divided by T on the arcs from the
super-source to the original sources. Gallo, Grigoriadis, and Tarjan [10] notice that
the value of the maximum flow when the only arcs that are parameterized by T leave
the source, as is the case for this latter problem, is a piecewise linear function of T
with at most k breakpoints. They also show that the associated minimum cuts form
a nested set of cuts. They describe an algorithm to find these breakpoints and cuts in
O(nm log(n2/m)) time. Let the Ti be the values of T at these breakpoints and define
Ai to be the minimum cut for T in interval [Ti+1, Ti). Using the algorithm of Gallo,
Grigoriadis, and Tarjan, all Ai and Ti are found in time O(nm log(n2/m)), i.e., the
same asymptotic time as one maximum flow computation.

(b) Constructing the static flow. Gallo, Grigoriadis, and Tarjan [10, Theorem
4.1] show that there exists a flow in the network GT with f(s) = γ(s)/Ti for all sources
s in Ai\Ai−1 for all i simultaneously. They give an O(mn log(n2/m)) algorithm to
compute such a flow. This is the initial flow used by our algorithm.

(c) Constructing the flow over time. Given the static flow f obtained in
(b), we compute a universally quickest transshipment by computing, for time interval
[0, Tr) and for each time interval of form [Ti, Ti−1), a static flow that defines the flow
rate in each interval. To start, fr = f is the flow rate from time 0 until time Tr.
At time Ti, the supplies of the sources in Ai\Ai−1 are depleted, so fi is reduced by
the flow leaving these sources to form fi−1. To compute these successive static flows,
decompose f into paths and cycles. Let fi denote the desired flow rate in interval
[Ti+1, Ti), with fr = f . Once fi+1 is obtained, fi can be computed by reducing flow
along paths with positive flow leaving sources in Ai\Ai−1.

Ford and Fulkerson explain how a flow decomposition can be computed efficiently
in O(mn) time [9]: Until no arc carries flow, find a simple cycle or source-sink path
with flow, and subtract the maximum amount of flow possible from this path or
cycle. Each subtraction reduces the flow on some arc to 0, so there are at most m
subtractions. Finding a simple source-sink path or cycle takes at most O(n) time, as
does subtracting the flow.

Note that all three steps of the algorithm run in time asymptotic to one maximum
flow computation. Thus the run time of the algorithm is established.

Theorem 4.2. The single sink, universally quickest transshipment problem
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can be solved in the same asymptotic time as one push-relabel maximum flow
computation.

5. Incoming and outgoing traffic. While solving a transshipment problem
with fixed supplies is useful for clearing a network after a communication breakdown,
everyday usage more often involves continuous streams of traffic. The algorithms
presented here, like the algorithm of Hajek and Ogier [14], allow for constant streams
of flow into or out of any node in the network.

If there are constant streams of flow into and out of the nodes, the sum of the
rates of these flows must equal zero in order for the problem to remain stable. Before
solving the transshipment over time part of the problem, we can determine the course
of this flow with one maximum flow computation.

Let εi be the rate of external flow into node i. Introduce a super-source connected
to all nodes i with incoming flow by arcs with capacity εi. Similarly, introduce a
super-sink, and connect all nodes j with outgoing flow to the super-sink with arcs
of capacity −εj . If the maximum flow has value strictly less than the sum of the
rates of incoming flow, then excess will build up in the network, and the problem is
infeasible. Otherwise, the maximum flow determines the course these external flows
will take through the network. The residual network of this flow, i.e., the network of
arcs e with capacities u′

e = ue − fe, is passed on to any of the previously described
algorithms.

Theorem 5.1. Any algorithm that solves the quickest transshipment problem
or the universally quickest transshipment problem, can also solve the corresponding
problem with constant streams of flow into and out of any node in the network.

Proof. Define ε(A) =
∑
i∈A εi to be the rate of external flow into set A, and

consider a fixed time T . In order for the original problem to be feasible in time T ,
the total flow that can leave any set A in time T must be at least as great as the total
external flow that enters A in time T , plus the total supply in A. That is, the problem
is feasible in time T if and only if o(A)T ≥ γ(A)+ε(A)T for allA ⊂ V . Define A to be
snug if A satisfies this inequality at equality. Now consider a minimum time bound T ∗

computed by one of the algorithms in the paper, on a residual network. For example,
suppose T ∗ is the minimum time in which the residual network can be emptied of
excess supply, computed as described in section 2. T ∗ is constrained by some tight
set A with the property that o′(A)T ∗ = γ(A), where o′(A) is the sum of all residual
capacities u′ of edges leaving A. Call this set of edges I. In the original network, A
is snug: o(A)T ∗ = [o′(A) +

∑
e∈I ue − u′

e]T
∗ = γ(A) +

∑
e∈I feT

∗ = γ(A) + ε(A)T ∗.
Hence the T ∗ is also constrained by A, a snug set, in the original problem, and thus
remains minimum.
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[8] L. Fleischer and É. Tardos, Efficient continuous-time dynamic network flow algorithms,
Oper. Res. Lett., 23 (1998), pp. 71–80.

[9] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[10] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm
and applications, SIAM J. Comput., 18 (1989), pp. 30–55.

[11] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45 (1998), pp.
783–797.

[12] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. ACM,
35 (1988), pp. 921–940.

[13] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by canceling negative
cycles, J. ACM, 36 (1989), pp. 388–397.

[14] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with con-
tinuous traffic, Networks, 14 (1984), pp. 457–487.
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Abstract. We show that the effects of finite-precision arithmetic in forming and solving the
linear system that arises at each iteration of primal-dual interior-point algorithms for nonlinear
programming are benign, provided that the iterates satisfy centrality and feasibility conditions of
the type usually associated with path-following methods. When we replace the standard assumption
that the active constraint gradients are independent by the weaker Mangasarian–Fromovitz constraint
qualification, rapid convergence usually is attainable, even when cancellation and roundoff errors
occur during the calculations. In deriving our main results, we prove a key technical result about the
size of the exact primal-dual step. This result can be used to modify existing analysis of primal-dual
interior-point methods for convex programming, making it possible to extend the superlinear local
convergence results to the nonconvex case.
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1. Introduction. We investigate the effects of finite-precision arithmetic on the
calculated steps of primal-dual interior-point (PDIP) algorithms for the nonlinear
programming problem

NLP: min
z

φ(z) subject to g(z) ≤ 0,(1.1)

where φ : R
n → R and g : R

n → R
m are twice Lipschitz continuously differentiable

functions. Optimality conditions for this problem can be derived from the Lagrangian
function L(z, λ), which is defined as

L(z, λ) = φ(z) +
m∑
i=1

λigi(z) = φ(z) + λT g(z),(1.2)

where λ ∈ R
m is a vector of Lagrange multipliers. When a constraint qualification

(discussed below) holds at the point z∗, first-order necessary conditions for z∗ to be a
solution of (1.1) are that there exists a vector of Lagrange multipliers λ∗ ∈ R

m such
that the following conditions are satisfied for (z, λ) = (z∗, λ∗):

Lz(z, λ) = ∇φ(z) +∇g(z)λ = 0, g(z) ≤ 0, λ ≥ 0, λT g(z) = 0,(1.3)
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where

∇g(z) = [∇g1(z),∇g2(z), . . . ,∇gm(z)] .

The conditions (1.3) are the well-known Karush–Kuhn–Tucker (KKT) conditions. We
use Sλ to denote the set of vectors λ∗ such that (z∗, λ∗) satisfies (1.3). The primal-dual
solution set is defined by

S = {z∗} × Sλ.(1.4)

This paper discusses local convergence of PDIP algorithms for (1.1), assuming
that the algorithm is implemented on a computer that performs calculations accord-
ing to the standard model of floating-point arithmetic. Because of our focus on local
convergence properties, we assume throughout that the current iterate (z, λ) is close
enough to the solution set S that superlinear convergence would occur if exact steps
(uncorrupted by finite precision) were taken. In the interests of generality, we weaken
an assumption that is often made in the analysis of algorithms for (1.1), namely,
that the gradients of the active constraints are linearly independent at the solution.
We replace this linear independence constraint qualification (LICQ) with the weaker
Mangasarian–Fromovitz constraint qualification (MFCQ) [18]. MFCQ allows con-
straint gradients to become dependent at the solution, so that the set Sλ of optimal
Lagrange multipliers is no longer necessarily a singleton, though it remains bounded.
We continue to assume that a strict complementarity (SC) condition holds, that is,

gi(z
∗) = 0 ⇒ λ∗

i > 0 for some λ∗ ∈ Sλ.(1.5)

In the context of rapidly convergent algorithms, the SC condition makes good sense.
If SC fails to hold, superlinear convergence of Newton-like algorithms does not occur,
except for specially modified algorithms such as those that identify the active con-
straints explicitly (see Monteiro and Wright [20] and El-Bakry, Tapia, and Zhang [8]).

The major conclusion of the paper is that the effects of roundoff errors on the
rapid local convergence of the algorithm are fairly benign. When a standard second-
order condition is added to the assumptions already mentioned, the steps produced
under floating-point arithmetic approach S almost as effectively as do exact steps,
as long as the distance to the solution set remains significantly greater than the unit
roundoff u. The latter condition is hardly restrictive, since the data errors made in
storing the problem in a digital computer mean that the solution set is known only
to within some multiple of u in any case.

The conclusions about the effectiveness of the computed steps are not obvious,
because all three formulations of the linear system that must be solved to compute
the step at each iteration may become highly ill conditioned near the solution. Our
analysis would be significantly simpler if we were to make the LICQ assumption
because, in this case, one formulation of the linear equations remains well conditioned,
and stability of the three standard formulations can be proved by exploiting their
relationship to this system of equations.

This work is related to earlier work of the author on finite-precision analysis of
interior-point algorithms for linear complementarity problems [24] and linear pro-
gramming [27, 30]. The existence of second-order effects gives the analysis here a
somewhat different flavor, however. In addition, we go into more depth in checking
that the computed iterates can continue to satisfy the approximate centrality con-
ditions usually required in primal-dual algorithms, and in deriving expressions for
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the rate at which the computed iterates approach the solution set. Related work by
Forsgren, Gill, and Shinnerl [9] deals with one formulation of the step equations for
the nonlinear programming problem—the so-called augmented form treated here in
section 6—but makes assumptions on the pivot sequence that do not always hold in
practice. M. H. Wright [23] recently presented an analysis of the condensed form of
the step equations discussed in section 5 under the assumption that LICQ holds, and
found that the computed steps were more accurate than would be expected from a
naive analysis.

For linear programming, the PDIP approach has emerged as the most powerful of
the interior-point approaches. The supporting theory is strong, in terms of global and
local convergence analysis and complexity theory (see the bibliography of Wright [26]).
Implementations yield better results than pure-primal or barrier-function approaches;
see Andersen et al. [1]. Strong theory is also available for these algorithms when
applied to convex programming, in which φ(·) and gi(·), i = 1, . . . ,m, are all convex
functions; see, for example, Wright and Ralph [31] and Ralph and Wright [21, 22].
The latter paper drops the LICQ assumption in favor of MFCQ, making the local
theory stronger in one sense than the corresponding local theory for the sequential
quadratic programming (SQP) algorithm. The use of MFCQ complicates the analysis
considerably, however; under LICQ, the implicit function theorem can be used to prove
a key technical result about the length of the step, while more complicated logic is
needed to derive this same result under MFCQ.

A significant by-product of the current paper is to prove the key technical result
about the length of the rapidly convergent step (Corollary 4.3) under MFCQ and SC,
even when the problem (1.1) is not convex. This allows the local convergence results
of Ralph and Wright [31, 21, 22] to be extended to general nonconvex nonlinear
problems.

The analysis of this paper could also be applied to the recently proposed stabilized
sequential quadratic programming (sSQP) algorithm (see Wright [29] and Hager [15]),
in which small penalties on the change in the multiplier estimate λ from one iteration
to the next ensure rapid convergence even when LICQ is relaxed to MFCQ. A finite-
precision analysis of the sSQP method appears in [29, section 3.2], but only for the
augmented form of the step equations. Analysis quite similar to that of the current
paper could be applied to show that similar conclusions continue to hold when a
condensed form of the step equations is used instead. We omit the details.

The remainder of this paper is structured in the following way. Section 2 contains
notation, together with our basic assumptions about (1.1) and some relevant results
from the literature. Section 3 discusses the primal-dual interior-point framework,
defining the general form of each iteration and the step equations that must be solved
at each iteration. Subsection 3.2 proves an important technical result about the
relationship between the distance of an interior-point iterate to the solution set S and
a duality measure µ. Section 4 describes perturbed variants of the linear systems that
are solved to obtain PDIP steps, and proves our key results about the effect of the
perturbations on the accuracy of the steps.

Section 5 focuses on one form of the PDIP step equations: the most compact
form in which most of the computational effort goes into factoring a symmetric pos-
itive definite matrix, usually by a Cholesky procedure. We trace the effect on step
accuracy of errors in evaluation of the functions, formation of the system, and the
factorization/solution process. Further, we show the effects of these inaccuracies on
the distance that we can move along the steps before the interiority condition is vi-
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olated, and on various measures of algorithmic progress. An analogous treatment of
the augmented form of the step equations appears in section 6. The conclusions of
this section depend on the actual algorithm used to solve the augmented system—it
is not sufficient to assume, as in section 5, that any backward-stable procedure is used
to factor the matrix. (We note that similar results hold for the full form of the step
equations, but we omit the details of this case, which can be found in the technical
report [28].) We conclude with a numerical illustration of the main results in section 7
and summarize the paper in section 8.

2. Notation, assumptions, and basic results. We use B to denote the set
of active indices at z∗, that is,

B = {i = 1, 2, . . . ,m | gi(z∗) = 0},(2.1)

whereas N denotes its complement

N = {1, 2, . . . ,m}\B.(2.2)

The set B+ ⊂ B is defined as

B+ = {i ∈ B |λ∗
i > 0 for some λ∗ satisfying (1.3)}.(2.3)

The strict complementarity condition (1.5) is equivalent to

B+ = B.(2.4)

We frequently make reference to submatrices and subvectors corresponding to the
index sets B and N . For example, the quantities λB and gB(z) are the vectors con-
taining the components λi and gi(z), respectively, for i ∈ B, while ∇gB(z) is the
matrix whose columns are ∇gi(z), i ∈ B.

The Mangasarian–Fromovitz constraint qualification (MFCQ) is satisfied at z∗ if
there is a vector ȳ ∈ R

n such that

∇gB(z∗)T ȳ < 0.(2.5)

The following fundamental result about MFCQ is due to Gauvin [11].
Lemma 2.1. Suppose that the first-order conditions (1.3) are satisfied at z = z∗.

Then Sλ is bounded if and only if the MFCQ condition (2.5) is satisfied at z∗.
This result is crucial because it allows our (local) analysis to place a uniform

bound on all λ in a neighborhood of the dual solution set Sλ.
The second-order condition used in most of the remainder of the paper is that

there is a constant ξ > 0 such that

wTLzz(z∗, λ∗)w ≥ ξ‖w‖2(2.6)

for all λ∗ ∈ Sλ and all w satisfying

∇gi(z∗)Tw = 0 for all i ∈ B+,
∇gi(z∗)Tw ≤ 0 for all i ∈ B\B+.

(2.7)

When the SC condition (1.5) (alternatively, (2.4)) is satisfied, this direction set is
simply null∇gB(z∗)T .
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A simple example that satisfies MFCQ but not LICQ at the solution and that
satisfies the second-order conditions (2.6), (2.7) and the SC condition is as follows:

min
z∈R2

z1 subject to (z1 − 1/3)2 + z2
2 ≤ 1/9, (z1 − 2/3)2 + z2

2 ≤ 4/9.(2.8)

The solution is z∗ = 0, and the optimal multiplier set is

Sλ = {λ ≥ 0 | 2λ1 + 4λ2 = 3}.(2.9)

The gradients of the two constraints at the solution are (−2/3, 0)T and (−4/3, 0)T ,
respectively. They are linearly dependent, but the MFCQ condition (2.5) can be
satisfied by choosing ȳ = (1, 0)T .

We use u to denote the unit roundoff, which we define as the smallest number such
that the following property holds: When x and y are any two floating-point numbers,
op denotes +, −, ×, or /, and fl(z) denotes the floating-point approximation of a real
number z, we have

fl(x op y) = (x op y)(1 + ε), |ε| ≤ u.(2.10)

Modest multiples of u are denoted by δu.
We assume that the problem is scaled so that the values of g and φ and their first

and second derivatives in the vicinity of the solution set S, and the values (z, λ) them-
selves, can all be bounded by moderate quantities. When multiplied by u, quantities
of this type are absorbed into the notation δu in the analysis below.

Order notation O(·) and Θ(·) is used as follows: If v (vector or scalar) and ε
(nonnegative scalar) are two quantities that share a dependence on other variables,
we write v = O(ε) if there is a moderate constant β1 such that ‖v‖ ≤ β1ε for all values
of ε that are interesting in the given context. (The “interesting context” frequently
includes cases in which ε is either sufficiently small or sufficiently large, but we often
use v = O(µ) to indicate that ‖v‖ ≤ β1µ for all sufficiently small µ that satisfy µ� u
for some β1; see later discussion.) We write v = Θ(ε) if there are constants β1 and β0

such that β0ε ≤ ‖v‖ ≤ β1ε for all interesting values of ε. Similarly, we write v = O(1)
if ‖v‖ ≤ β1, and v = Θ(1) if β0 ≤ ‖v‖ ≤ β1.

We use the notation δ(z, λ) to denote the distance from (z, λ) to the primal-dual
solution set, that is,

δ(z, λ)
def
= min

(z∗,λ∗)∈S
‖(z, λ)− (z∗, λ∗)‖.(2.11)

It is well known (see, for example, Theorem A.1 of Wright [25]) that this distance can
be estimated in terms of known quantities at (z, λ). We state this result formally as
follows.

Theorem 2.2. Suppose that the first-order conditions (1.3), the MFCQ condition
(2.5), and the second-order conditions (2.6), (2.7) are satisfied at the solution z∗. Then
if λ ≥ 0, we have

δ(z, λ) = Θ

(∥∥∥∥
[ Lz(z, λ)

min(λ,−g(z))

]∥∥∥∥
)
.(2.12)

We write the singular value decomposition (SVD) of the matrix ∇gB(z∗) of first
partial derivatives as follows:

∇gB(z∗) =
[
Û V̂

] [ Σ 0
0 0

] [
UT

V T

]
= ÛΣUT ,(2.13)
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where the matrices
[
Û V̂

]
and

[
U V

]
are orthogonal and Σ is a diagonal

matrix with positive diagonal elements.
Note that the columns of Û form a basis for the range space of ∇gB(z∗), while the

columns of V̂ form a basis for the null space of ∇gB(z∗)T . Similarly, the columns of U
form a basis for the range space of ∇gB(z∗)T , while the columns of V form a basis for
the null space of ∇gB(z∗). These four subspaces are key to our analysis, particularly
the subspace spanned by the columns of V . For the computational methods used to
solve the primal-dual step equations discussed in this paper, the computed step in
the B-components of the multipliers—that is, ∆λB—has a larger error in the range
space of V than in the complementary subspace spanned by the columns of U . The
errors in the computed primal step ∆z, the computed step of the N -components of
the multipliers λN , and the computed step in the dual slack variables (defined later)
are typically also less significant than the error in V T∆λB. We show, however, that
the potentially large error in V T∆λB does not affect the performance of primal-dual
algorithms that use these computed steps until µ becomes similar to u1/2.

When the stronger LICQ condition holds, the matrix V is vacuous, and the SVD
(2.13) reduces to∇gB(z∗) = ÛΣUT . Much of the analysis in this paper would simplify
considerably under LICQ, in part because V T∆λB—the step component with the large
error—is no longer present.

We use σmin(·) to denote the smallest eigenvalue, and cond(·) to denote the con-
dition number, as measured by the Euclidean norm.

3. Primal-dual interior-point methods.

3.1. Centrality conditions and step equations. Primal-dual interior-point
methods are constrained, modified Newton methods applied to a particular form of
the KKT conditions (1.3). By introducing a vector s ∈ R

m of slacks for the inequality
constraint, we can rewrite the nonlinear program as

min
(z,s)

φ(z) subject to g(z) + s = 0, s ≥ 0,

and the KKT conditions (1.3) as

Lz(z, λ) = 0, g(z) + s = 0, (λ, s) ≥ 0, λT s = 0.(3.1)

Motivated by this form of the conditions, we define the mapping F(z, λ, s) by

F(z, λ, s)
def
=


 ∇φ(z) +∇g(z)λ

g(z) + s
SΛe


 ,(3.2)

where the diagonal matrices S and Λ are defined by

S
def
= diag(s1, s2, . . . , sm), Λ

def
= diag(λ1, λ2, . . . , λm)

and e is defined as

e = (1, 1, . . . , 1)T .(3.3)

The KKT conditions (3.1) can now be stated equivalently as

F(z, λ, s) = 0, (s, λ) ≥ 0.(3.4)
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Primal-dual iterates (z, λ, s) invariably satisfy the strict bound (s, λ) > 0, while
they approach satisfaction of the condition F(·) = 0 in the limit. An important
measure of progress is the duality measure µ(λ, s), which is defined by

µ(λ, s)
def
= λT s/m.(3.5)

When µ is used without arguments, we assume that µ = µ(λ, s), where (z, λ, s) is
the current primal-dual iterate. We emphasize that µ is a function of (z, λ, s), rather
than a target value explicitly chosen by the algorithm, as is the case in some of the
literature.

A typical step (∆z,∆λ,∆s) of the primal-dual method satisfies

∇F(z, λ, s)


 ∆z

∆λ
∆s


 = −F(z, λ, s)−


 0

0
t


 ,(3.6)

where t defines the deviation from a pure Newton step for F (which is also known as
a “primal-dual affine-scaling” step). The vector t frequently contains a centering term
σµe, where σ is a centering parameter in the range [0, 1]. It sometimes also contains
higher-order information, such as the product ∆Λaff∆Saffe, where ∆Λaff and ∆Saff

are the diagonal matrices constructed from the components of the pure Newton step
(Mehrotra [19]). In any case, the vector t usually goes to zero rapidly as the iterates
converge to a solution, so that the steps generated from (3.6) approach pure Newton
steps, which in turn ensures rapid local convergence. Throughout this paper, we
assume that t satisfies the estimate

t = O(µ2).(3.7)

All our major results continue to hold, with slight modification, if we replace (3.7) by
t = O(µσ) for some σ ∈ (1, 2]. Our essential point remains unchanged; the theoretical
superlinear convergence rate promised by this choice of t is not seriously compromised
by roundoff errors as long as µ remains significantly larger than the unit roundoff u.
To avoid notational clutter, however, we analyze only the case (3.7).

Using the definition (1.2), we can write the system (3.6) explicitly as follows:
 Lzz(z, λ) ∇g(z) 0
∇g(z)T 0 I

0 S Λ




 ∆z

∆λ
∆s


 = −


 Lz(z, λ)

g(z) + s
SΛe + t


 .(3.8)

Block eliminations can be performed on this system to yield more compact formula-
tions. By eliminating ∆s, we obtain the augmented system form, which is[ Lzz(z, λ) ∇g(z)

∇g(z)T −Λ−1S

] [
∆z
∆λ

]
=

[ −Lz(z, λ)
−g(z) + Λ−1t

]
.(3.9)

By eliminating ∆λ from this system, we obtain a system that is sometimes referred to
as the condensed form (or in the case of linear programming as the normal equations
form), which is [Lzz(z, λ) +∇g(z)ΛS−1∇g(z)T

]
∆z(3.10)

= −Lz(z, λ)−∇g(z)ΛS−1[g(z)− Λ−1t].
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We consider primal-dual methods in which each iterate (z, λ, s) satisfies the fol-
lowing properties:

‖rf (z, λ)‖ ≤ Cµ, where rf (z, λ)
def
= Lz(z, λ),(3.11a)

‖rg(z, s)‖ ≤ Cµ, where rg(z, s)
def
= g(z) + s,(3.11b)

(λ, s) > 0, λisi ≥ γµ for all i = 1, 2, . . . ,m(3.11c)

for some constants C > 0 and γ ∈ (0, 1), where µ is defined as in (3.5). (In much
of the succeeding discussion, we omit the arguments from the quantities µ, rf , and
rg when they are evaluated at the current iterate (z, λ, s).) These conditions ensure
that the pairwise products siλi, i = 1, 2, . . . ,m are not too disparate and that the
first two components of F in (3.2) can be bounded in terms of the third component.
They are sometimes called the centrality conditions because they are motivated by
the notion of a central path and its neighborhoods. Conditions of the type (3.11) are
imposed in most path-following interior-point methods for linear programming (see,
for example, [26]). For nonlinear convex programming, examples of methods that
require these conditions can be found in Ralph and Wright [31, 21, 22]. In nonlinear
programming, we mention Gould et al. [14] (see Algorithm 4.1 and Figure 5.1) and
Byrd, Liu, and Nocedal [4]. In the latter paper, (3.11a) and (3.11b) are imposed
explicitly, while (3.11c) can be guaranteed by choosing εµ = (1− γ)µ. Even when the
choice εµ = µ is made, as in the bulk of the discussion in [4], their other conditions
concerning positivity of (s, λ) can be expected to produce iterates that satisfy (3.11c)
in practice.

For points (z, λ, s) that satisfy (3.11), we can use µ to estimate the distance
δ(z, λ) from (z, λ) to the solution set S (see (2.11)). These results, which are proved
in the following subsection, can be summarized briefly as follows. When the MFCQ
condition (2.5) and the second-order conditions (2.6), (2.7) are satisfied, we have that
δ(z, λ) = O(µ1/2). When the strict complementarity assumption (1.5) is added, we
obtain the stronger estimate δ(z, λ) = O(µ). We can use these estimates to obtain
bounds on the elements of the diagonal matrices S, Λ, S−1Λ, and Λ−1S in the systems
above; these bounds are the key to the error analysis of the remainder of the paper.

3.2. Using the duality measure to estimate distance to the solution.
The main result of this section, Theorem 3.3, shows that under certain assumptions,
the distance δ(z, λ) of a primal-dual iterate (z, λ, s) to the solution set S can be
estimated by the duality measure µ. We start with a technical lemma that proves the
weaker estimate δ(z, λ) = O(µ1/2). Note that this result does not assume that the
SC condition (1.5) holds.

Lemma 3.1. Suppose that z∗ is a solution of (1.1) at which the MFCQ condition
(2.5) and the second-order conditions (2.6), (2.7) are satisfied. Then for all (z, λ) with
λ ≥ 0 for which there is a vector s such that (z, λ, s) satisfies (3.11), we have that

δ(z, λ) = O(µ1/2).(3.12)

Proof. We prove the result by showing that

[ Lz(z, λ)
min(λ,−g(z))

]
= O(µ1/2)(3.13)
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and then applying Theorem 2.2. Since Lz(z, λ) = rf = O(µ), the first part of the
vector satisfies the required estimate. For the second part, we have from (3.11b) that

−g(z) = s− rg = s + O(µ)

and hence that

min(−gi(z), λi) = min(si, λi) + O(µ).(3.14)

Because of (3.5) and (3.11c), we have that siλi ≤ mµ and (λi, si) > 0. It follows
immediately that min(λi, si) ≤ (mµ)1/2 for i = 1, 2, . . . ,m. Hence, by substitution
into (3.14), we obtain

min(−gi(z), λi) ≤ (mµ)1/2 + O(µ) = O(µ1/2).

We conclude that the second part of the vector in (3.13) is of size O(µ1/2), so the
proof is complete.

The following examples show the upper bound of Lemma 3.1 is indeed achieved
and that it is not possible to obtain a lower bound on δ(z, λ) as a strictly increasing
nonnegative function of µ. To demonstrate the first claim, consider the problem

min 1
2z

2 subject to −z ≤ 0.

The point (z, λ, s) = (ε, ε, ε) satisfies

Lz(z, λ) = 0, g(z) + s = 0, sλ = ε2, µ = ε2,

so that the conditions (3.11) are satisfied. Clearly the distance from the point (z, λ)
to the solution set S = (0, 0) is

√
2ε =

√
2µ1/2. For the second claim, consider any

nonlinear program such that B = {1, 2, . . . ,m} (that is, all constraints active) and
strict complementarity (1.5) holds at some multiplier λ∗. Then for appropriate choices
of γ and C, the point

(z, λ, s) = (z∗, λ∗, (mµ)/(eTλ∗)e)(3.15)

satisfies the definition (3.5) and the condition (3.11) for any µ > 0. On the other
hand, we have δ(z, λ) = δ(z∗, λ∗) = 0 by definition, so there are no β > 0 and σ > 0
that yield a lower bound estimate of the form δ(z, λ) ≥ βµσ.

We now prove an extension of Lemma 5.1 of Ralph and Wright [21], dropping the
monotonicity assumption of this earlier result.

Lemma 3.2. Suppose that the conditions of Lemma 3.1 hold and in addition that
the SC condition (1.5) is satisfied. Then for all (z, λ, s) satisfying (3.11), we have that

i ∈ B ⇒ si = Θ(µ), λi = Θ(1),(3.16a)

i ∈ N ⇒ si = Θ(1), λi = Θ(µ).(3.16b)

Proof. By boundedness of S (Lemma 2.1), we have for all (z, λ, s) sufficiently
close to S that

λi = O(1), si = −gi(z) + (rg)i = O(1).(3.17)
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Given (z, λ, s) satisfying (3.11), let P (λ) be the projection of λ onto the set Sλ, and
let λ∗ ∈ Sλ be some strictly complementary optimal multiplier (for which (1.5) is
satisfied). From Lemma 3.1 we obtain

‖z − z∗‖ = O(µ1/2).(3.18)

Using this observation together with smoothness of φ(·) and g(·), we have for the
gradient of L that

Lz(z, λ)− Lz(z∗, λ∗)
= ∇φ(z)−∇φ(z∗) +∇g(z)λ−∇g(z∗)λ∗

= O(µ1/2) +∇g(z)[λ− P (λ)] + [∇g(z)−∇g(z∗)]P (λ) +∇g(z∗)[P (λ)− λ∗].

Since P (λ) and λ∗ are both in Sλ, we find from (1.3) that the last term vanishes. From
(3.18) and P (λ) = O(1), the second-to-last term has size O(µ1/2). For the remaining
term, we have ∇g(z) = O(1), and ‖λ−P (λ)‖ ≤ δ(z, λ) = O(µ1/2). By assembling all
these observations and using Lz(z∗, λ∗) = 0, we obtain

Lz(z, λ) = Lz(z, λ)− Lz(z∗, λ∗) = O(µ1/2).(3.19)

Using again that ∇g(z∗)[P (λ)− λ∗] = 0, we have from (3.18) that

[P (λ)− λ∗]T [g(z)− g(z∗)] = [P (λ)− λ∗]T [∇g(z∗)T (z − z∗) + O(‖z − z∗‖2)]
= O(‖z − z∗‖2) = O(µ).(3.20)

By gathering the estimates (3.12), (3.18), (3.19), and (3.20), we obtain[
z − z∗

λ− λ∗

]T [ Lz(z, λ)− Lz(z∗, λ∗)
−g(z) + g(z∗)

]

=

[
z − z∗

λ− P (λ)

]T [ Lz(z, λ)− Lz(z∗, λ∗)
−g(z) + g(z∗)

]
+[P (λ)− λ∗]T [−g(z) + g(z∗)]

= O(δ(z, λ))O(µ1/2) + O(µ) = O(µ).(3.21)

By substituting from (3.11) and using (3.21), we obtain[
z − z∗

λ− λ∗

]T [
rf

s− rg − s∗

]
=

[
z − z∗

λ− λ∗

]T [ Lz(z, λ)− Lz(z∗, λ∗)
−g(z) + g(z∗)

]
= O(µ),

and therefore

(λ− λ∗)T (s− s∗) = −(z − z∗)T rf + (λ− λ∗)T rg + O(µ).

By using the conditions (3.11a), (3.11b), and the definition (3.5), we obtain

−
m∑
i=1

λ∗
i si −

m∑
i=1

λis
∗
i

= −(λ∗)T s− λT s∗ = −λT s + O(µ) + O(‖z − z∗‖‖rf‖) + O(‖λ− λ∗‖‖rg‖) = O(µ).

Since (λ, s) > 0 and (λ∗, s∗) ≥ 0, all terms λ∗
i si and λis

∗
i , i = 1, 2, . . . ,m are nonneg-

ative, so there is a constant C1 > 0 such that

0 ≤ λ∗
i si ≤ C1µ, 0 ≤ λis

∗
i ≤ C1µ for all i = 1, 2, . . . ,m.
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For all i ∈ B, we have λ∗
i > 0 by our strictly complementary choice of λ∗, and so

0 < si ≤ C1

λ∗
i

µ ≤ C1

mini∈B λ∗
i

µ
def
= C2µ.(3.22)

On the other hand, we have by boundedness of Sλ and our assumption (3.11c) that

si ≥ γµ

λi
≥ γminµ for all i = 1, 2, . . . ,m(3.23)

for some constant γmin > 0. By combining (3.22) and (3.23), we have that

si = Θ(µ), for all i ∈ B.

For the λB component, we have that

siλi ≥ γµ ⇒ λi ≥ γµ

si
≥ γ

C2
for all i ∈ B.

By combining this bound with (3.17), we obtain that

λi = Θ(1) for all i ∈ B.

This completes the proof of (3.16a). We omit the proof of (3.16b), which is
similar.

Next, we show that when the strict complementarity assumption is added to the
assumptions of Lemma 3.1, the upper bound on the distance to the solution set in
(3.12) can actually be improved to O(µ).

Theorem 3.3. Suppose that z∗ is a solution of (1.1) at which the MFCQ con-
dition (2.5), the second-order conditions (2.6), (2.7), and the SC condition (1.5) are
satisfied. Then for all (z, λ) with λ ≥ 0 for which there is a vector s such that (z, λ, s)
satisfies (3.11), we have that

δ(z, λ) = O(µ).(3.24)

Proof. From (3.11a), we have directly that rf = O(µ). We have from (3.11) and
(3.16a) that

gi(z) = −si + (rg)i = O(µ), λi = Θ(1), λi > 0 for all i ∈ B,

so that

min(−gi(z), λi) = −gi(z) = O(µ) for all i ∈ B,(3.25)

whenever µ is sufficiently small. For the remaining components, we have

min(−gi(z), λi) = λi = O(µ) for all i ∈ N .(3.26)

By substituting (3.11a), (3.25), and (3.26) into (2.12), we obtain the result.
Similar conclusions to Lemma 3.2 and Theorem 3.3 can be reached in the case

of linear programming algorithms. The second-order conditions (2.6), (2.7) are not
relevant for this class of problems, and the SC assumption (1.5) holds for every linear
program that has a solution.
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4. Accuracy of PDIP steps: General results. By partitioning the constraint
index set {1, 2, . . . ,m} into active indices B and inactive indices N , we can express
the system (3.9) without loss of generality as follows:

 Lzz(z, λ) ∇gB(z) ∇gN (z)
∇gB(z)T −DB 0
∇gN (z)T 0 −DN




 ∆z

∆λB
∆λN


 =


 −Lz(z, λ)
−gB(z) + Λ−1

B tB
−gN (z) + Λ−1

N tN


 ,(4.1)

where DB and DN are positive diagonal matrices defined by

DB = Λ−1
B SB, DN = Λ−1

N SN .(4.2)

When the SC condition (1.5) is satisfied, we have from Lemma 3.2 that the diagonals
of DB have size Θ(µ) while those of DN have size Θ(µ−1). By eliminating ∆λN from
(4.1), we obtain the following intermediate stage between (3.9) and (3.10):[

H(z, λ) ∇gB(z)
∇gB(z)T −DB

] [
∆z

∆λB

]
(4.3)

=

[ −Lz(z, λ)−∇gN (z)D−1
N [gN (z)− Λ−1

N tN ]
−gB(z) + Λ−1

B tB

]
,

where we have defined

H(z, λ)
def
= Lzz(z, λ) +∇gN (z)D−1

N ∇gN (z)T .(4.4)

In this section, we start by proving a key result about the solutions of perturbed
forms of the system (4.3). Subsequently, we use this result as the foundation for
proving results about the three alternative formulations (3.8), (3.9), and (3.10) of
the PDIP step equations. The principal reason for our focus on (4.3) is that the
proof of the main result can be derived from fairly standard linear algebra arguments.
Gould [13, section 6] obtains a system similar to (4.3) for the Newton equations for
the primal log-barrier function, and notes that the matrix approaches a nonsingular
limit when certain optimality conditions, including LICQ, are satisfied. Because we
replace LICQ by MFCQ, the matrix in (4.3) may approach a singular limit in our
case.

We note that the form (4.3) is also relevant to the stabilized sequential quadratic
programming (sSQP) method of Wright [29] and Hager [15]; that is, slight modifica-
tions to the results of this paper can be used to show that the condensed and aug-
mented formulations of the step equations for the sSQP algorithm yield good steps
even in the presence of roundoff errors and cancellation. We omit further details in
this paper.

Errors in the step equations arise from cancellation and roundoff errors in evalu-
ating both the matrix and right-hand side and from roundoff errors that arise in the
factorization/solution process. We discuss these sources of error further and quantify
them in the next section. In this section, we consider the following perturbed version
of (4.3):[

H(z, λ) + Ẽ11 ∇gB(z) + Ẽ12

∇gB(z)T + Ẽ21 −DB + Ẽ22

] [
w
y

]
=

[
r1

∇gB(z∗)T r3 + r4

]
.(4.5)

Here, Ẽ is the perturbation matrix (appropriately partitioned and not assumed to
be symmetric) and r1, r3, and r4 represent components of a general right-hand side.
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Note the partitioning of the second right-hand side component into a component
∇gB(z∗)T r3 in the range space of ∇gB(z∗)T and a remainder term r4. When LICQ is
satisfied, the range space of ∇gB(z∗)T spans the full space, so we can choose r4 to be
zero. Under MFCQ, however, we have in general that r4 must be nonzero. The main
interest of the results below is in isolating the component of the solution of (4.5) that
is sensitive to r4.

To make the results applicable to a wider class of linear systems, we do not
impose the assumptions that were needed in the preceding section to ensure that the
matrices DB and DN defined by (4.2) have diagonals of the appropriate size. Instead,
we assume that the diagonals have the given size, and derive the application to the
linear systems of interest (those that arise in primal-dual interior-point methods) as
a special case.

Our results in this and later sections make extensive use of the SVD (2.13) of
∇gB(z∗). They also make assumptions about the size of the smallest singular value
of this matrix, and about the size of the smallest eigenvalue of V̂ TLzz(z∗, λ∗)V̂ , the
two-sided projection of the Lagrangian Hessian onto the active constraint manifold.

Theorem 4.1. Let (z, λ) be an approximate primal-dual solution of (1.1) with
δ(z, λ) = O(µ), and suppose the diagonal matrices DB and D−1

N defined by (4.2) have
all their diagonal elements of size Θ(µ). Suppose that the perturbation submatrices in
(4.5) satisfy

Ẽ11 = δu/µ + O(µ), Ẽ21, Ẽ12, Ẽ22 = δu(4.6)

and that the following conditions hold for some β > 0:

u/µ� 1, u� 1,(4.7a)

σmin(Σ) ≥ β max(µ1/3,u/µ),(4.7b)

σmin(V̂ TLzz(z∗, λ∗)V̂ ) ≥ β max(µ1/3,u/µ) for all λ∗ ∈ Sλ.(4.7c)

Then if β is sufficiently large (in a sense to be specified in the proof), the step (w, y)
computed from (4.5) satisfies

(UT y, V̂ Tw, ÛTw) = O(‖r1‖+ ‖r3‖+ ‖r4‖),
V T y = O(‖r1‖+ ‖r3‖+ ‖r4‖/µ).

Proof. If we define

yU = UT y, yV = V T y, wÛ = ÛTw, wV̂ = V̂ Tw,

we have

y = UyU + V yV , w = ÛwÛ + V̂ wV̂ .

Using this notation, we can rewrite (4.5) as


ÛTM11Û ÛTM11V̂ ÛTM12U ÛTM12V

V̂ TM11Û V̂ TM11V̂ V̂ TM12U V̂ TM12V

UTM21Û UTM21V̂ UTM22U UTM22V

V TM21Û V TM21V̂ V TM22U V TM22V






wÛ
wV̂
yU
yV


(4.8)

=




ÛT r1
V̂ T r1

UT∇gB(z∗)T r3 + UT r4
V T∇gB(z∗)T r3 + V T r4


 ,
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where we have defined

M11 = H(z, λ) + Ẽ11, M12 = ∇gB(z) + Ẽ12,(4.9)

M21 = ∇gB(z)T + Ẽ21, M22 = −DB + Ẽ22,

and H(·, ·) is defined in (4.4). From (2.13), we have

V T∇gB(z∗)T = 0, UT∇gB(z∗)T = ΣÛT .

The fact that V T annihilates ∇gB(z∗)T is crucial, because it causes the term with r3
to disappear from the last component of the right-hand side of (4.8), which becomes


ÛT r1
V̂ T r1

ΣÛT r3 + UT r4
V T r4


 .(4.10)

From the definitions (4.9) and (4.4), the perturbation bound (4.6), our assumptions
that D−1

N = O(µ) and δ(z, λ) = O(µ), compactness of S, and the fact that Lzz is
Lipschitz continuous, we have that

M11 = Lzz(z∗, λ∗) + δu/µ + O(µ)(4.11)

for some λ∗ ∈ Sλ. Using these same facts, we have likewise that

M21 = ∇gB(z∗)T + δu + O(µ),

so by substituting from (2.13), we have that

UTM21Û = Σ + δu + O(µ), UTM21V̂ = δu + O(µ),(4.12a)

V TM21Û = δu + O(µ), V TM21V̂ = δu + O(µ).(4.12b)

Similarly, from the definition of M12, we have

ÛTM12U = Σ + δu + O(µ), ÛTM12V = δu + O(µ),(4.13a)

V̂ TM12U = δu + O(µ), V̂ TM12V = δu + O(µ).(4.13b)

For the M22 block, we have from (4.9) and (4.6) that

UTM22U = −UTDBU + δu = O(µ) + δu,(4.14a)

UTM22V = O(µ) + δu, V TM22U = O(µ) + δu,(4.14b)

V TM22V = −V TDBV + δu = M̃V V + δu,(4.14c)

where M̃V V
def
= −V TDBV has all its singular values of size Θ(µ), so that

M̃−1
V V = Θ(µ−1).(4.15)

Using these estimates together with (4.10), we can rewrite (4.8) as

{[
Q 0

0 M̃V V

]
+

[
Ê11 Ê12

Ê21 Ê22

]}
wÛ
wV̂
yU
yV


 =




ÛT r1
V̂ T r1

ΣÛT r3 + UT r4
V T r4


 ,(4.16)
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where

Q =


 ÛTLzz(z∗, λ∗)Û ÛTLzz(z∗, λ∗)V̂ Σ

V̂ TLzz(z∗, λ∗)Û V̂ TLzz(z∗, λ∗)V̂ 0
Σ 0 0


(4.17)

+


 δu/µ + O(µ) δu/µ + O(µ) δu + O(µ)

δu/µ + O(µ) δu/µ + O(µ) 0
δu + O(µ) 0 0




def
=


 NUU NUV Σ̄1

NV U NV V 0
Σ̄2 0 0


 ,(4.18)

while

Ê11 =


 0 0 0

0 0 δu + O(µ)
0 δu + O(µ) δu + O(µ)


 ,(4.19)

and

Ê12, Ê21 = δu + O(µ) = O(µ), Ê22 = δu.(4.20)

For purposes of specifying the required conditions on β in (4.7b) and (4.7c), we
define κ to be a constant such that expressions of size δu and O(µ) that arise in the
perturbation terms in the coefficient matrix in (4.16) can be bounded by κu and κµ,
respectively. For example, we suppose that the perturbations in Σ̄1, Σ̄2, and NV V

can be bounded as

‖Σ̄1 − Σ‖ ≤ κ(µ + u), ‖Σ̄2 − Σ‖ ≤ κ(µ + u),(4.21a)

‖NV V − V̂ TLzz(z∗, λ∗)V̂ ‖ ≤ κ(u/µ + µ)(4.21b)

and that

‖Ê11‖ ≤ κ(u+ µ), ‖Ê12‖ ≤ κ(u+ µ), ‖Ê21‖ ≤ κ(u+ µ), ‖Ê22‖ ≤ κu.(4.22)

From (4.21a) and (4.7b), we have that

‖Σ̄1 − Σ‖ ≤ κmax(µ1/3,u/µ) ≤ (κ/β)σmin(Σ) ≤ (κ/β)‖Σ‖.

It is therefore easy to show that if β can be chosen large enough that β > 2κ (while
still satisfying (4.7b) and (4.7c)), then

‖Σ̄1‖ ≤ 2‖Σ‖, ‖Σ̄−1
1 ‖ ≤ 2‖Σ−1‖.(4.23)

Similarly, we can show that

‖Σ̄2‖ ≤ 2‖Σ‖, ‖Σ̄−1
2 ‖ ≤ 2‖Σ−1‖,(4.24)

‖NV V ‖ ≤ 2‖V̂ TLzz(z∗, λ∗)V̂ ‖, ‖N−1
V V ‖ ≤ 2‖(V̂ TLzz(z∗, λ∗)V̂ )−1‖.(4.25)
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Note, too, that because of Lipschitz continuity of Lzz and compactness of S, and the
bounds (4.7a), the norms of NUU , NUV , NV U , NV V , and Σ are all O(1). Hence the
matrix Q is itself invertible, and we have

Q−1 =


 0 0 Σ̄−1

2

0 N−1
V V −N−1

V VNV U Σ̄−1
2

Σ̄−1
1 −Σ̄−1

1 NUVN
−1
V V −Σ̄−1

1 (NUU −NUVN
−1
V VNV U )Σ̄−1

2


 .(4.26)

Noting that

(Q + Ê11)
−1 = (I + Q−1Ê11)

−1Q−1,(4.27)

we examine the size of Q−1Ê11. Note first from (4.7b) and (4.7c) together with (4.23),
(4.24), and (4.25) that

‖Σ̄−1
1 ‖ ≤

2

β
(u/µ)−1, ‖Σ̄−1

2 ‖ ≤
2

β
(u/µ)−1, ‖N−1

V V ‖ ≤
2

β
(u/µ)−1,(4.28a)

‖Σ̄−1
1 ‖ ≤

2

β
µ−1/3, ‖Σ̄−1

2 ‖ ≤
2

β
µ−1/3, ‖N−1

V V ‖ ≤
2

β
µ−1/3.(4.28b)

By forming the product of (4.26) with (4.19) and using the bounds in (4.28), we can
show that the norm of Q−1Ê11 can be made less than 1/2 provided that β in (4.7b),
(4.7c) is sufficiently large. The (3, 3) block of Q−1Ê11, for instance, has the form

−Σ̄−1
1 NUVN

−1
V V (δu + O(µ)) + Σ̄−1

1 (NUU −NUVN
−1
V VNV U )Σ̄−1

2 (δu + O(µ)).

Because of (4.22), its norm can be bounded by a quantity of the form

Cκ
(‖Σ̄−1

1 ‖ ‖N−1
V V ‖+ ‖Σ̄−1

1 ‖ ‖Σ̄−1
2 ‖ ‖N−1

V V ‖+ ‖Σ̄−1
1 ‖ ‖Σ̄−1

2 ‖
)

((u/µ)µ + µ)

(for some C that depends on ‖Lzz(z∗, λ∗)‖), which in turn because of (4.28) is bounded
by the following quantity:

8Cκ

(
1

β2
µ2/3 +

1

β3
µ1/3

)
+ 8Cκ

(
1

β2
µ1/3 +

1

β3

)
.

Provided that β is large enough that this and the other blocks of Q−1Ê11 can be
bounded appropriately, we have that ‖Q−1Ê11‖ ≤ 1/2, and therefore from (4.27) we
have

‖(Q + Ê11)
−1‖ = 2‖Q−1‖.

Our conclusion is that for β satisfying the conditions outlined in this paragraph, the
inverse of the (1, 1) block of the matrix in (4.16) can be bounded in terms of ‖Q−1‖,
which because of (4.23), (4.24), (4.25), and (4.26) can in turn be bounded by a finite
quantity that depends only on the problem data and not on µ.

Returning to (4.16) and using (4.20), we have that
 wÛ

wV̂
yU


 = −(Q + Ê11)

−1Ê12yV + (Q + Ê11)
−1


 ÛT r1

V̂ T r1
ΣÛT r3 + UT r4




= O(‖Ê12‖‖yV ‖) + O(‖r1‖+ ‖r3‖+ ‖r4‖)
= O(µ)‖yV ‖+ O(‖r1‖+ ‖r3‖+ ‖r4‖).(4.29)
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Meanwhile, for the second block row of (4.16), we obtain

yV = −(M̃V V + Ê22)
−1Ê21


 wÛ

wV̂
yU


+ (M̃V V + Ê22)

−1V T r4.(4.30)

Since from (4.15), (4.20), and (4.7a) we have

(M̃V V + Ê22)
−1 = (I + M̃−1

V V Ê22)
−1M̃−1

V V = (I + δu/µ)M̃−1
V V = O(µ−1),

it follows from (4.30) and (4.20) that

yV = O(µ−1)O(µ)

∥∥∥∥∥∥

 wÛ

wV̂
yU



∥∥∥∥∥∥+ O(µ−1)O(‖r4‖).

By substituting from (4.29), we obtain

‖yV ‖ = O(µ)‖yV ‖+ O(‖r1‖+ ‖r3‖+ ‖r4‖) + O(‖r4‖/µ),

and therefore

‖yV ‖ = O(‖r1‖+ ‖r3‖+ ‖r4‖/µ),

as claimed. The estimate for (wÛ , wV̂ , yU ) is obtained by substituting into
(4.29).

The conditions (4.7) need a little explanation. For the typical value u = 10−16, the
minimum value of the quantity max(µ1/3,u/µ) is 10−4, achieved at µ−12. Moreover,
we have max(µ1/3,u/µ) ≤ 10−2 only for µ in the range [10−14, 10−6]. It would seem,
then, that the problem would need to be quite well conditioned for (4.7b) and (4.7c)
to hold and that µ may have to become quite small before the results apply. We
note, however, that the purpose of the bounds (4.7b) and (4.7c) is to ensure that
the inverse of Q+ Ê11 can be bounded independently of µ, and that for this purpose
they are quite conservative. That is, we would expect to find that ‖(Q + Ê11)

−1‖ is
not too much larger than the norm of the inverse of the corresponding exact matrix
(the first term on the right-hand side of (4.17)) for µ not much less than the smallest
eigenvalues of Σ and V̂ TLzz(z∗, λ∗)V̂ .

The requirement that u/µ and µ both be small in (4.7) may not seem to sit well
with expressions such as O(µ) and O(µ2), which crop up repeatedly in the analysis
and which assert that certain bounds hold “for all sufficiently small µ.” As noted in
the preceding paragraph, this requirement implies that the analysis holds for µ in a
certain range, or “window,” of values. Similar windows are used in the analysis of
S. Wright [24, 27, 30] and M. H. Wright [23], and numerical experience indicates that
such a window does indeed exist in most practical cases. We expect the same to be
true of the problem and algorithms discussed in this paper.

At this point, we assemble the assumptions that are made in the remainder of
the paper into a single catch-all assumption.

Assumption 4.1.
(a) z∗ is a solution of (1.1), so that the condition (1.3) holds. The MFCQ con-

dition (2.5), the second-order conditions (2.6), (2.7), and the SC condition
(1.5) are satisfied at this solution. The current iterate (z, λ, s) of the PDIP
algorithm satisfies the conditions (3.11), and the right-hand side modification
t satisfies (3.7).
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(b) The quantities µ, u (2.10), Lzz(z∗, λ∗), Σ, and V̂ (2.13) satisfy the conditions
(4.7).

From our observations following (4.2), we have under this assumption that

DB = O(µ), D−1
B = O(µ−1), DN = O(µ−1), D−1

N = O(µ).(4.31)

Our next result considers a perturbed form of the system (4.1) with a general
right-hand side. By eliminating one component to obtain the form (4.3), we can apply
Theorem 4.1 to obtain estimates of the dependence of the solution on the right-hand
side components.

Theorem 4.2. Suppose that Assumption 4.1 holds. Consider the linear system
 Lzz(z, λ) + E11 ∇gB(z) + E12 ∇gN (z) + E13

∇gB(z)T + E21 −DB + E22 E23

∇gN (z)T + E31 E32 −DN + E33




 w

y
q




=


 r5
∇gB(z∗)T r6 + r7

r8


 ,(4.32)

where

E11 = δu/µ, E33 = δu/µ
2,(4.33a)

E12, E21, E22 = δu, E13, E31, E23, E32 = δu/µ.(4.33b)

Then the step (w, y, q) satisfies the following estimates:

(UT y, w) = O(‖r5‖+ ‖r6‖+ ‖r7‖+ µ‖r8‖),
V T y = O(‖r5‖+ ‖r6‖+ ‖r7‖/µ + (δu/µ + O(µ))‖r8‖),

q = O(µ) [‖r5‖+ ‖r6‖+ ‖r8‖] + (δu/µ + O(µ))‖r7‖.

Proof. From (4.31) and the assumed bound (4.33a) on the size of E33, we have
that

(−DN + E33)
−1

= −(I −D−1
N E33)

−1D−1
N = (I + O(µ)δu/µ

2)O(µ) = O(µ).(4.34)

By eliminating q from (4.32), we obtain the reduced system

[
H(z, λ) + Ẽ11 ∇gB(z) + Ẽ12

∇gB(z)T + Ẽ21 −DB + Ẽ22

] [
w
y

]
=

[
r5 + O(µ)‖r8‖

∇gB(z∗)T r6 + r7 + δu‖r8‖
]
,

where from (4.7) and (4.4), we obtain

Ẽ11 = E11 − (∇gN (z) + E13)(−DN + E33)
−1(∇gN (z)T + E31)−∇gN (z)D−1

N ∇gN (z)T

= δu/µ + O(µ),

Ẽ12 = E12 − (∇gN (z) + E13)(−DN + E33)
−1E32 = δu + O(1)O(µ)δu/µ = δu,

Ẽ21 = E21 − E23(−DN + E33)
−1(∇gN (z)T + E31) = δu + (δu/µ)O(µ)O(1) = δu,

Ẽ22 = E22 − E23(−DN + E33)
−1E32 = δu + (δu/µ)2O(µ) = δu.
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These perturbation matrices satisfy the assumptions of Theorem 4.1, which can be
applied to give

(UT y, V̂ Tw, ÛTw) = O(‖r5‖+ ‖r6‖+ ‖r7‖+ µ‖r8‖),(4.35a)

V T y = O(‖r5‖+ ‖r6‖+ ‖r7‖/µ) + (δu/µ + O(µ))‖r8‖.(4.35b)

From the last block row of (4.32), and using (4.7), (4.34), (4.35), we obtain

q = (−DN + E33)
−1
[
r8 − (∇gN (z)T + E31)w − E32y

]
= O(µ) [‖r8‖+ ‖w‖+ (δu/µ)‖y‖]
= O(µ) [‖r5‖+ ‖r6‖+ ‖r7‖+ ‖r8‖]

+δu [‖r5‖+ ‖r6‖+ ‖r7‖/µ + (δu/µ + O(µ))‖r8‖]
= O(µ) [‖r5‖+ ‖r6‖+ ‖r8‖] + (δu/µ + O(µ))‖r7‖.

An estimate for the solution of the exact system (3.8) follows almost immediately
from this result. This is the key technical result used by Ralph and Wright [21, 22] to
prove superlinear convergence of PDIP algorithms for convex programming problems.
The result below, however, does not require a convexity assumption.

Corollary 4.3. Suppose that Assumption 4.1(a) holds. Then the (exact) solu-
tion (∆z,∆λ,∆s) of the system (3.8) satisfies

(∆z,∆λ,∆s) = O(µ).(4.36)

Proof. Note first that Assumption 4.1(b) holds trivially in this case for µ suffi-
ciently small, because our assumption of exact computations is equivalent to setting
u = 0. We prove the result by identifying the system (4.1) with (4.32) and then
applying Theorem 4.2.

For the right-hand side, we note first that, because of smoothness of g, Taylor’s
theorem, the definition (2.1) of B, and Theorem 3.3,

gB(z) = gB(z∗) +∇gB(z∗)T (z − z∗) + O(‖z − z∗‖2)
= ∇gB(z∗)T (z − z∗) + O(µ2).(4.37)

We now identify the right-hand side of (4.1) with (4.32) by setting

r5 = −Lz(z, λ),

r6 = (z − z∗),
r7 = −∇gB(z∗)T (z − z∗)− gB(z) + Λ−1

B tB,
r8 = −gN (z) + Λ−1

N tN .

The sizes of these vectors can be estimated by using (3.11), Lemma 3.2, (4.37), The-
orem 3.3, and the assumption (3.7) on the size of t to obtain

r5 = O(µ), r6 = O(µ), r7 = O(µ2), r8 = O(1).(4.38)

(By choosing r6 and r7 in this way, we ensure that the terms involving ‖r7‖/µ in the
estimates of the solution components in Theorem 4.2 are not grossly larger than the
other terms in these expressions.) We complete the identification of (4.1) with (4.32)
by setting all the perturbation matrices E11, E12, . . . , E33 to zero and by identifying
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the solution vector components ∆z, ∆λB, and ∆λN with w, y, and q, respectively. By
directly applying Theorem 4.2, substituting the estimates (4.38), and setting δu = 0
(since we are assuming exact computations), we have that

(UT∆λB,∆z) = O(µ), V T∆λB = O(µ), ∆λN = O(µ).

To show that the remaining solution component ∆s of (3.8) is also of size O(µ),
we write the second block row in (3.8) as

∆s = −(g(z) + s)−∇g(z)T∆z,

from which the desired estimate follows immediately by substituting from (3.11b) and
∆z = O(µ).

The next result uses Theorem 4.2 to compare perturbed and exact solutions of
the system of the system (4.1).

Corollary 4.4. Suppose that Assumption 4.1 holds. Let (w, y, q) be obtained
from the following perturbed version of (3.9):

 Lzz(z, λ) + E11 ∇gB(z) + E12 ∇gN (z) + E13

∇gB(z)T + E21 −DB + E22 E23

∇gN (z)T + E31 E32 −DN + E33




 w

y
q




=


 −Lz(z, λ) + f1

−gB(z) + Λ−1
B tB + f2

−gN (z) + Λ−1
N tN + f3


 ,(4.39)

where Eij, i, j = 1, 2, 3, satisfy the conditions (4.33) and f1, f2, and f3 are all of size
δu. Then if (∆z,∆λ,∆s) is the (exact) solution of the system (3.8), we have

(∆z − w,UT (∆λB − y)) = δu,

V T (∆λB − y) = δu/µ,

∆λN − q = δu.

Proof. By combining (4.39) with (4.1), we obtain
 Lzz(z, λ) + E11 ∇gB(z) + E12 ∇gN (z) + E13

∇gB(z)T + E21 −DB + E22 E23

∇gN (z)T + E31 E32 −DN + E33




 w −∆z

y −∆λB
q −∆λN




=


 f1

f2

f3


−


 E11 E12 E13

E21 E22 E23

E31 E32 E33




 ∆z

∆λB
∆λN


 .(4.40)

From the bounds on the perturbations E in (4.33) and the result of Corollary 4.3, we
have for the right-hand side of this expression that

 r5
r7
r8


 def

=


 f1

f2

f3


−


 E11 E12 E13

E21 E22 E23

E31 E32 E33




 ∆z

∆λB
∆λN




=


 δu + (δu/µ)µ + δuµ + (δu/µ)µ

δu + δuµ + δuµ + (δu/µ)µ
δu + (δu/µ)µ + (δu/µ)µ + (δu/µ

2)µ


 =


 δu

δu
δu/µ


 .(4.41)
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Using these estimates, we can simply apply Theorem 4.2 to (4.40) (with r6 = 0) to
obtain the result.

For later reference, we show how the estimates of Corollary 4.4 can be modified
when the perturbations have a special form. Suppose that

E23 = 0, E33 = δu/µ, f2 = UfU2 + O(µ2), where fU2 = δu,(4.42)

where U is the matrix from (2.13). Instead of setting r6 = 0 as in the proof above,
we set

r6 = ÛΣfU2 = δu

(using (2.13) to obtain an r6 for which ∇gB(z∗)T r6 = UfU2 ). By modifying (4.41) to
account for the remaining perturbations, we can identify (4.40) with (4.32) by setting

 r5
r7
r8


 def

=


 f1

f2 − UfU2
f3


−


 E11 E12 E13

E21 E22 E23

E31 E32 E33




 ∆z

∆λB
∆λN




=


 δu + (δu/µ)µ + δuµ + (δu/µ)µ

O(µ2) + δuµ + δuµ
δu + (δu/µ)µ + (δu/µ)µ + (δu/µ

2)µ


 =


 δu

O(µ2)
δu/µ


 .(4.43)

Using these modified right-hand side estimates, we can apply Theorem 4.2 to obtain
the following improved bound on one of the components:

V T (∆λB − y) = O(µ).(4.44)

The bounds on the other components remain unchanged.
We emphasize that the conditions (3.11), and in particular (3.11c), are critical to

the results of this and all the remaining sections of the paper. These conditions enable
Lemma 3.2, which in turn enable us to assert that the diagonals of DB all have size
Θ(µ) while those of DN all have size Θ(µ−1) (see (4.31)). This neat classification of
the diagonals of D into two categories drives all subsequent analyses. The motivation
for conditions like (3.11) in the literature for path-following methods (with exact
steps) is not unrelated: It allows us to obtain bounds on the steps and to show that
we can move a significant distance along this direction while ensuring that (3.11)
continues to be satisfied at the new iterate. (See, for example, [26, Chapters 5 and
6] and its bibliography for the case of linear programming and [31, 21, 22] for the
case of nonlinear convex programming.) In the analysis above, we obtain bounds on
the errors (rather than the steps themselves) when perturbation terms of a certain
structure appear in the matrix and right-hand side.

Many practical implementations of path-following methods for linear program-
ming do not explicitly check that the condition (3.11c) is satisfied by the calculated
iterates (see, for example, [19] and [5]). However, the heuristics for “stepping back”
from the boundary of the nonnegative orthant by a small but significant quantity are
motivated by this condition, and it is observed to hold in practice on all but the most
recalcitrant problems.

5. The condensed system. Here we consider an algorithm in which the con-
densed linear system (3.10) is formed and solved to obtain ∆z, and the remaining
step components ∆λ and ∆s are recovered from (3.8). We obtain expressions for the

errors in the calculated step (∆̂z, ∆̂λ, ∆̂s) and discuss the effects of these errors on
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certain measures of step quality. We also derive conditions under which the Cholesky
factorization applied to (3.10) is guaranteed to run to completion.

Formally, the complete procedure can be described as follows.

procedure condensed
given the current iterate (z, λ, s)

form the coefficient matrix and right-hand side for (3.10);
solve (3.10) using a backward stable algorithm to obtain ∆z;
set ∆λ = D−1[g(z)− Λ−1t +∇g(z)T∆z];
set ∆s = −(g(z) + s)−∇g(z)T∆z.

We have used the definition (4.2) of the matrix D. For convenience, we restate
the system (3.10) here as follows:[Lzz(z, λ) +∇g(z)D−1∇g(z)T

]
∆z = −Lz(z, λ)−∇g(z)D−1[g(z)− Λ−1t].(5.1)

Note that this procedure requires evaluation of D−1 = S−1Λ, rather than D itself.

5.1. Quantifying the errors. When implemented in finite-precision arithmetic,
solution of (5.1) gives rise to errors of three types:

- cancellation in evaluation of the matrix and right-hand side;
- roundoff errors in evaluation of the matrix and right-hand side;
- roundoff errors that accumulate during the process of factoring the matrix

and using triangular substitutions to obtain the solution.
Cancellation may be an issue in the evaluation of the nonlinear functions Lzz(z, λ),

Lz(z, λ), g(z), and ∇g(z), because intermediate terms computed during the additive
evaluation of these quantities may exceed the size of the final result (see Golub and
Van Loan [12, p. 61]). The intermediate terms generally contain rounding error (which
occurs whenever real numbers are represented in finite precision). Cancellation be-
comes a significant phenomenon whenever we take a difference of two nearly equal
quantities, since the error in the computed result due to roundoff in the two argu-
ments may be large relative to the size of the result. If, as we can reasonably assume,
intermediate quantities in the calculations of our right-hand sides remain bounded,
the absolute size of the errors in the result is δu. In the case of Lz(z, λ) and gB(z),
the final result in exact arithmetic has size O(µ), so that the error δu takes on a large
relative significance for small values of µ. This fact causes the error bound in some
components of the solution to be larger than in others, as we see in (5.6c) below. In
summary, the computed versions of the quantities discussed above differ from their
exact values in the following way:

computed Lzz(z, λ)← Lzz(z, λ) + F̄ ,(5.2a)

computed Lz(z, λ)← Lz(z, λ) + f̄ ,(5.2b)

computed ∇g(z)← ∇g(z) + F =

[ ∇gB(z)
∇gN (z)

]
+

[
FB
FN

]
,(5.2c)

computed g(z)← g(z) + f =

[
gB(z)
gN (z)

]
+

[
fB
fN

]
,(5.2d)

where F̄ , f̄ , F , and f are all of size δu. Earlier discussion of cancellation in similar
contexts can be found in the papers of S. Wright [24, 27, 30] and M. H. Wright [23].

The second source of error is evaluation of the matrix D−1. From the model
(2.10) of floating-point arithmetic and the estimates (3.16) of Lemma 3.2, we have
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that

computed D−1
B ← (DB + GB)−1, GB = µδu,(5.3a)

computed D−1
N ← (DN + GN )−1, GN = δu/µ,(5.3b)

where GB and GN are both diagonal matrices that can be composed into a single
diagonal matrix G.

Third, we account for the error in forming the matrix and right-hand side of
(5.1) from the computed quantities described in the last two paragraphs. Since we
are now dealing with floating-point numbers, the model (2.10) applies; that is, any
additional errors that arise during the combination of these floating-point quantities
have size u relative to the size of the result of the calculation. Since the norm of
the coefficient matrix is of size O(µ−1) while the right-hand side has size O(1) (see

(3.11)), we represent these errors by a matrix F̂ of size δu/µ and a vector f̂ of size
δu.

Finally, we account for the error that arises in the application of a backward-stable
method to solve (5.1). Specifically, we assume that the method yields a computed
solution that is the exact solution of a nearby problem whose data contains relative
perturbations of size u. The absolute sizes of these terms would therefore be δu/µ in
the case of the matrix and δu in the case of the right-hand side. Since these errors
are the same size as those discussed in the preceding paragraph, we incorporate them
into the matrix F̂ and the vector f̂ .

Summarizing, we find that the computed solution ∆̂z of (5.1) satisfies the follow-
ing system:[

Lzz(z, λ) + F̄ + (∇g(z) + F )(D + G)−1(∇g(z) + F )T + F̂
]

∆̂z(5.4)

= −Lz(z, λ)− f̄ − (∇g(z) + F )(D + G)−1[g(z) + f − Λ−1t] + f̂ ,

where the perturbation terms F̄ , F , F̂ , G, f̄ , f̂ , and f are described in the paragraphs
above. By “unfolding” this system and using the partitioning of F , G, and f defined
in (5.2) and (5.3), we find that ∆̂z also satisfies the following system for some vectors
y and q: 

 Lzz(z, λ) + F̄ + F̂ ∇gB(z) + FB ∇gN (z) + FN
∇gB(z)T + FTB −DB −GB 0
∇gN (z)T + FTN 0 −DN −GN




 ∆̂z

y
q


(5.5)

=


 −Lz(z, λ)− f̄ + f̂
−gB(z) + Λ−1

B tB − fB
−gN (z) + Λ−1

N tN − fN


 .

This system has precisely the form of (4.39) (in particular, the perturbation matrices
satisfy the appropriate bounds). Hence, by a direct application of Corollary 4.4, we
conclude that

∆z − ∆̂z = δu,(5.6a)

UT (∆λB − y) = δu,(5.6b)

V T (∆λB − y) = δu/µ.(5.6c)

We return now to the recovery of the remaining solution components ∆̂λ and ∆̂s
in the procedure condensed. We have from Assumption 4.1 together with (3.11b),
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Lemma 3.2, (4.36), (5.6a), (5.3a), (4.7), and (4.31) that

gB(z) = rg(z, s)B − sB = O(µ), Λ−1
B = Θ(1), ∆̂z = ∆z + δu = O(µ),(5.7a)

(DB + GB)−1 = (I + D−1
B GB)D−1

B = (I + δu)−1O(µ−1) = O(µ−1).(5.7b)

Since t = O(µ2), we have from our model (2.10) that the floating-point version of the

calculation of ∆̂λB in the procedure condensed satisfies the following:

∆̂λB = (DB + GB)−1
[
gB(z) + fB − Λ−1

B tB + (∇gB(z) + FB)T ∆̂z + µδu

]
+ δu.

(The final term δu arises from (2.10) because our best estimate of the quantity in the
brackets at this point of the analysis is O(µ), so from (5.7b) the result has size O(1).)
Meanwhile, we have from the second block row of (5.5) that

y = (DB + GB)−1
[
gB(z) + fB − Λ−1

B tB + (∇gB(z) + FB)T ∆̂z
]
.

By a direct comparison of these two expressions, and using (DB +GB)−1 = O(µ), we
find that

∆̂λB − y = δu.(5.8)

By combining (5.8) with (5.6b) and (5.6c), we find that

UT (∆λB − ∆̂λB) = δu, V T (∆λB − ∆̂λB) = δu/µ.(5.9)

For the “nonbasic” part ∆̂λN , we have from (3.11b), Lemma 3.2, (4.36), (5.6a),
(5.3b), (4.7), and (4.31) that

gN (z) = O(1), Λ−1
N = O(µ−1), ∆̂z = O(µ),(5.10a)

(DN + GN )−1 = (I + D−1
N GN )−1D−1

N = D−1
N + µδu = O(µ).(5.10b)

By using tN = O(µ2) and applying the model (2.10) to the appropriate step in the
procedure condensed, we obtain

∆̂λN = (DN + GN )−1
[
gN (z) + fN − Λ−1

N tN + (∇gN (z) + FN )T ∆̂z + δu

]
+ µδu.

By comparing this expression with the corresponding exact formula, which is

∆λN = D−1
N
[
gN (z)− Λ−1

N tN +∇gN (z)T∆z
]
,

and by using the bounds (5.10) and the fact that fN and FN have size δu, we obtain

∆̂λN −∆λN = µδu + (DN + GN )−1[fN + δu]

+ [(DN + GN )−1 −D−1
N ][gN (z)− Λ−1

N tN ]

+ (DN + GN )−1(∇gN (z) + FN )T ∆̂z −D−1
N ∇gN (z)T∆z

= µδu + (DN + GN )−1[∇gN (z)T (∆̂z −∆z) + FTN ∆̂z]

+ [(DN + GN )−1 −D−1
N ]∇gN (z)T∆z

= µδu.(5.11)
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Finally, for the recovered step ∆̂s, we have from the last step of procedure con-
densed, together with (3.11b), (5.2d), (5.7b), and (2.10), that

∆̂s = −(g(z) + f + s)− (∇g(z) + F )T ∆̂z + δu,

where the final term accounts for the rounding error (2.10) that arises from accumu-
lating the terms in the sum, which are all bounded. By substituting the expression
for the exact ∆s together with the estimates (5.2d) and (5.7b) on the sizes of the
perturbation terms, we obtain

∆̂s = −(g(z) + s)−∇g(z)T∆z − f −∇g(z)T (∆̂z −∆z)− FT ∆̂z + µδu

= ∆s + δu.(5.12)

We summarize the results obtained so far in the following theorem.
Theorem 5.1. Suppose that Assumption 4.1 holds. Then when the step

(∆̂z, ∆̂λ, ∆̂s) is calculated in a finite-precision environment by using the procedure
condensed (and where, in particular, a backward stable method is used to solve the

linear system for the ∆̂z component), we have that

(∆z − ∆̂z, UT (∆λB − ∆̂λB),∆s− ∆̂s) = δu,(5.13a)

V T (∆λB − ∆̂λB) = δu/µ,(5.13b)

∆λN − ∆̂λN = µδu.(5.13c)

This theorem extends the result of M. H. Wright [23] for accuracy of the computed
solution of the condensed system by relaxing the LICQ assumption to MFCQ. When
LICQ holds, the matrix V is vacuous, so the absolute error in all components is of size

at most δu. The higher accuracy (5.13c) of the components ∆̂λN (also noted in [23])
does not contribute significantly to the progress that can be made along the inexact

direction (∆̂z, ∆̂λ, ∆̂s), in the sense of section 5.3.
We return briefly to the case discussed immediately after Corollary 4.4, in which

the perturbations have the special form (4.42), using these results to show that the
bound (5.13b) can be strengthened when fB satisfies

V T fB = O(µ2).(5.14)

This case is of interest when the cancellation errors in computing gB(z) are smaller
than the estimate we made following (5.2d), possibly because of use of higher-precision
arithmetic or the fact that the computation did not require differencing of quantities
whose size is large relative to the final result. When (5.14) holds, we see by comparing
(4.39) with (5.5) that

E23 = 0, E33 = GN = δu/µ, f2 = UUT fB + O(µ2), where fB = δu.

Therefore, we deduce from (4.44) that (5.6c) can be replaced by

V T (∆λB − y) = O(µ).

Using (5.8) and µ� δu, we can therefore replace (5.13b) in this case by

V T (∆λB − ∆̂λB) = O(µ).(5.15)
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5.2. Termination of the Cholesky algorithm. In deriving the estimate (5.6),
we have assumed that a backward stable algorithm is used to solve (5.1). Because of
(2.6), (2.7), and the SC condition, and the estimates of the sizes of the diagonals of
D (from (4.2) and Lemma 3.2), it is easy to show that the matrix in (5.1) is positive
definite for all sufficiently small µ. The Cholesky algorithm is therefore an obvious
candidate for solving this system. However, the condition number of the matrix
in (5.1) usually approaches ∞ as µ ↓ 0, raising the possibility that the Cholesky
algorithm may break down when µ is small. A simple argument, which we now
sketch, suffices to show that successful completion of the Cholesky algorithm can be
expected under the assumptions we have used in our analysis so far.

We state first the following technical result. Since it is similar to one proved by
Debreu [6, Theorem 3], its proof is omitted.

Lemma 5.2. Suppose that M and A are two matrices with the properties that M
is symmetric and

ATx = 0 ⇒ xTMx ≥ α‖M‖‖x‖2

for some constant α > 0. Then for all µ such that

0 < µ < µ̄
def
= min

(
α‖A‖2
4‖M‖ ,

‖A‖
α‖M‖

)
,

we have that

xT (M + µ−1AAT )x ≥ α

2
‖x‖2 for all x.

We apply this result to (5.1) by setting

M = Lzz(z, λ) +∇gN (z)D−1
N ∇gN (z)T = Lzz(z, λ) + O(µ),

A = µ1/2∇gB(z)D
−1/2
B

(where again we use (4.2) and Lemma 3.2 to derive the order estimates). The con-
ditions (2.6), (2.7), and strict complementarity ensure that this choice of M and A
satisfies the assumptions of Lemma 5.2. The result then implies that the smallest
singular value of the matrix in (5.1) is positive and of size Θ(1) for all values of µ
below a threshold that is also of size Θ(1). Since D = O(µ−1), the largest eigenvalue
of this matrix is of size O(µ−1), so we have

cond(Lzz(z, λ) +∇g(z)D−1∇g(z)T ) = O(µ−1).(5.16)

(An estimate similar to this is derived by M. H. Wright [23, Theorem 3.2] under the
LICQ assumption.) It is known from a result of Wilkinson (cited by Golub and Van
Loan [12, p. 147]) that the Cholesky algorithm runs to completion if qnδucond(·) ≤ 1,
where qn is a modest quantity that depends polynomially on the dimension n of the
matrix. By combining this result with (5.16), we conclude that for the matrix in (5.1),
we can expect completion of the Cholesky algorithm whenever µ � δu. That is, no
new assumptions need to be added to those made in deriving the results of earlier
sections.

We note that this situation differs a little from the case of linear programming
where, because second-order conditions are not applicable, it is usually necessary to
modify the Cholesky procedure to ensure that it runs to completion (see [30]).
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5.3. Local convergence with computed steps. We begin this section by

showing how the quantities rf , rg, and µ change along the computed step (∆̂z, ∆̂λ, ∆̂s)
obtained from the finite-precision implementation of the procedure condensed. We
compare these with the changes that can be expected along the exact direction
(∆z,∆λ,∆s). We then consider the effects of these perturbations on an algorithm of
the type in which the iterates are expected to satisfy the conditions (3.11). Rapidly
convergent variants of these algorithms for linear programming problems usually al-
low the values of C and γ in these conditions to be relaxed, so that a near-unit step
can be taken. We address the following question: If similar relaxations are allowed in
an algorithm for nonlinear programming, are near-unit steps still possible when the
steps contain perturbations of the type considered above?

We show in particular that for the computed search direction, the maximum step
length that can be taken without violating the nonnegativity conditions on λ and s
satisfies

1− α̂max = δu/µ + O(µ),(5.17)

while the reductions in pairwise products, µ, rf , and rg, satisfy

(λi + α∆̂λi)(si + α∆̂si) = (1− α)λisi + δu + O(µ2), i = 1, 2, . . . ,m,(5.18a)

µ(λ + α∆̂λ, s + α∆̂s) = (1− α)µ + δu + O(µ2),(5.18b)

rf (z + α∆̂z, λ + α∆̂λ) = (1− α)rf + δu + O(µ2),(5.18c)

rg(z + α∆̂z, s + α∆̂s) = (1− α)rg + δu + O(µ2).(5.18d)

The corresponding maximum steplength for the exact direction satisfies

1− αmax = O(µ),(5.19)

while the reductions in rf , rg, and µ satisfy

(λi + α∆λi)(si + α∆si) = (1− α)λisi + O(µ2), i = 1, 2, . . . ,m,(5.20a)

µ(λ + α∆λ, s + α∆s) = (1− α)µ + O(µ2),(5.20b)

rf (z + α∆z, λ + α∆λ) = (1− α)rf + O(µ2),(5.20c)

rg(z + α∆z, s + α∆s) = (1− α)rg + O(µ2).(5.20d)

Our proof of the estimates (5.17) and (5.18) is tedious but not completely straight-
forward, and we have included it in the appendix.

It is clear from (5.17) and (5.18) that the direction (∆̂z, ∆̂λ, ∆̂s) makes good
progress toward the solution set S. If the actual steplength α is close to its maximum
value α̂max, in the sense that

α̂max − α = δu/µ + O(µ),(5.21)

we have by direct substitution in (5.17) and (5.18) that

µ(λ + α∆̂λ, s + α∆̂s) = δu + O(µ2),

rf (z + α∆̂z, λ + α∆̂λ) = δu + O(µ2),

rg(z + α∆̂z, s + α∆̂s) = δu + O(µ2).
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These formulae suggest that finite precision does not have an observable effect on the
quadratic convergence rate of the underlying algorithm until µ drops below about√
u. Stopping criteria for interior-point methods usually include a condition such as

µ ≤ 104u or µ ≤ √u (see, for example, [5]), so that µ is not allowed to become so
small that the assumption µ� u made in (4.7) is violated.

In making this back-of-the-envelope assessment, however, we have not taken into
account the approximate centrality conditions (3.11), which must continue to hold
(possibly in a relaxed form) at the new iterate. These conditions play a central role
both in the analysis above and in the convergence analysis of the underlying “exact”
algorithms, and also appear to be important in practice. Typically (see, for example,
Ralph and Wright [21]), the conditions (3.11) are relaxed by allowing a modest increase
in C and a modest decrease in γ on the rapidly convergent steps. We show in the next
result that enforcement of these relaxed conditions is not inconsistent with taking a
step length α that is close to α̂max, so that rapid convergence can still be observed
even in the presence of finite-precision effects.

Theorem 5.3. Suppose Assumption 4.1 holds. Then when the step (∆̂z, ∆̂λ, ∆̂s)
is calculated in a finite-precision environment by using the procedure condensed,
there is a constant Ĉ such that for all τ ∈ [0, 1/2] and all α satisfying

α ∈ [0, 1− Ĉτ−1(u/µ + µ)],(5.22)

the following relaxed form of the approximate centrality conditions holds:

rf (z + α∆̂z, λ + α∆̂λ) ≤ C(1 + τ)µ(λ + α∆̂λ, s + α∆̂s),(5.23a)

rg(z + α∆̂z, s + α∆̂s) ≤ C(1 + τ)µ(λ + α∆̂λ, s + α∆̂s),(5.23b)

(λi + α∆̂λi)(si + α∆̂si) ≥ γ(1− τ)µ(λ + α∆̂λ, s + α∆̂s)(5.23c)

for all i = 1, 2, . . . ,m,

where C is the constant from conditions (3.11). Moreover, when we set α to its upper
bound in (5.22), we find that

δ(z + α∆̂z, λ + α∆̂λ) ≤ τ−1(δu + O(µ2)).(5.24)

Proof. From (3.11) and (5.18), we have that

‖rf (z + α∆̂z, λ + α∆̂λ)‖
= (1− α)‖rf‖+ δu + O(µ2)

≤ C(1− α)µ + δu + O(µ2)

= C(1 + τ)(1− α)µ− Cτ(1− α)µ + δu + O(µ2)

= C(1 + τ)µ(λ + α∆̂λ, s + α∆̂s)− Cτ(1− α)µ + δu + O(µ2).

We deduce that the required condition (5.23a) will hold provided that

δu + O(µ2) ≤ Cτ(1− α)µ.

Since by definition we have that δu + O(µ2) ≤ C̄(u+ µ2) for some positive constant
C̄, we find that a sufficient condition for the required inequality is that

(1− α) ≥ (C̄/C)τ−1(u/µ + µ),
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which is equivalent to (5.22) for an obvious definition of Ĉ. Identical logic can be
applied to ‖rg‖ to yield a similar condition on α.

For the condition (5.23c), we have from (3.11) and (5.18) that

(λi + α∆̂λi)(si + α∆̂si)

= (1− α)λisi + δu + O(µ2)

≥ (1− α)γµ + δu + O(µ2)

= γ(1− τ)(1− α)µ + γτ(1− α)µ + δu + O(µ2)

= γ(1− τ)µ(λ + α∆̂λ, s + α∆̂s) + γτ(1− α)µ + δu + O(µ2).

Hence, the condition (5.23c) holds provided that

γτ(1− α)µ + δu + O(µ2) ≥ 0.

Similar logic can be applied to this inequality to derive a bound of the type (5.22),
after a possible adjustment of Ĉ.

Finally, we obtain (5.24) by substituting α = 1− Ĉτ−1(u/µ + µ) into (5.18) and
applying Theorem 3.3. (Note that, despite the relaxation of the centrality conditions
(5.23), the result of Theorem 3.3 still holds; we simply modify the proof to replace C
by (3/2)C in (3.11a) and (3.11b) and γ by γ/2 in (3.11c).)

6. The augmented system. In this section, we consider the case in which the
augmented system (3.9) (equivalently, (4.1)) is solved to obtain (∆z,∆λ), while the
remaining step component ∆s is recovered from (3.8). The formal specification for
this procedure is as follows.

procedure augmented
given the current iterate (z, λ, s)

form the coefficient matrix and right-hand side for (4.1);
solve (4.1) to obtain (∆z,∆λ);
set ∆s = −(g(z) + s)−∇g(z)T∆z.

Much of our work in analyzing the augmented system form (4.1) has already been
performed in section 4; the main error result is simply Corollary 4.4. However, we
can apply this result only if the floating-point errors made in evaluating and solving
this system satisfy the assumptions of this corollary. In particular, we need to show
that the perturbation matrices Eij , i, j = 1, 2, 3, in (4.39) satisfy the estimates (4.33).

This task is not completely straightforward. Unlike the condensed and full-system
cases, it is not simply a matter of assuming that a backward-stable algorithm has been
used to solve the system (4.1). The reason is that the largest terms in the coefficient
matrix in (3.9)—the diagonal elements in the matrix DN—have size O(µ−1). The
usual analysis of backward-stable algorithms represents the floating-point errors as a
perturbation of the entire coefficient matrix whose size is bounded by δu times the
matrix norm—in this case, δu/µ. However, Corollary 4.4 requires some elements of the
perturbation matrix to be smaller than this estimate; in particular, the submatrices
E12, E21, and E22 need to be of size δu. Therefore, we need to look closely at the
particular algorithms used to solve (4.1) to see whether they satisfy the following
condition.

Condition 6.1. The solution obtained by applying the algorithm in question to the
system (4.1) in floating-point arithmetic is the exact solution of a perturbed system
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in which the perturbations of the coefficient matrix satisfy the estimates (4.33), while
the right-hand side is unperturbed.

We focus on diagonal pivoting methods, which take a symmetric matrix T and
produce a factorization of the form

PTPT = LY LT ,(6.1)

where P is a permutation matrix, L is unit lower triangular, and Y is block diagonal,
with a combination of 1× 1 and symmetric 2× 2 blocks. The best-known methods of
this class are due to Bunch and Parlett [3] and Bunch and Kaufman [2], while Duff et
al. [7] and Fourer and Mehrotra [10] have described sparse variants. These algorithms
differ in their selection criteria for the 1× 1 and 2× 2 pivot blocks. In our case, the
presence of the diagonal elements of size Θ(µ−1) (from the submatrix DN = Λ−1

N SN )
and their place in these pivot blocks are crucial to the result.

We start by stating a general result of Higham [17] concerning backward stability
that applies to all diagonal pivoting schemes. We then examine the Bunch–Kaufman
scheme, showing that the large diagonals appear only as 1 × 1 pivots and that this
algorithm satisfies Condition 6.1. (In [17, Theorem 4.2], Higham actually proves that
the Bunch–Kaufman scheme is backward stable in the normwise sense, but this result
is not applicable to our context, for the reasons mentioned above.)

Next, we briefly examine the Bunch–Parlett method, showing that it starts out
by selecting all the large diagonal elements in turn as 1× 1 pivots, before going on to
factor the remaining matrix, whose elements are all O(1) in size. This method also
satisfies Condition 6.1. We then examine the sparse diagonal pivoting approaches of
Duff et al. [7] and Fourer and Mehrotra [10], which may not satisfy Condition 6.1
because of the possible presence of 2× 2 pivots in which one of the diagonals has size
Θ(µ−1). These algorithms can be modified in simple ways to overcome this difficulty,
possibly at the expense of higher density in the L factor. We then mention Gaussian
elimination with pivoting and refer to previous results in the literature to show that
this approach satisfies Condition 6.1. Finally, we state a result like Theorem 5.3
about convergence of a finite-precision implementation of an algorithm based on the
augmented system form.

Higham [17, Theorem 4.1] proves the following result.
Theorem 6.1. Let T be an n̄ × n̄ symmetric matrix, and let x̂ be the computed

solution to the linear system Tx = b produced by a method that yields a factorization
of the form (6.1), with any diagonal pivoting strategy. Assume that, during recovery
of the solution, the subsystems that involve the 2 × 2 diagonal blocks are solved via
Gaussian elimination with partial pivoting. Then we have that

(T + ∆T )x̂ = b, |∆T | ≤ δu(|T |+ PT |L̂||Ŷ ||L̂T |P ) + δ2
u,(6.2)

where L̂ and Ŷ are the computed factors, and |A| denotes the matrix formed from A
by replacing all its elements by their absolute values.

In Higham’s result, the coefficient of u in the δu term is actually a linear poly-
nomial in the dimension of the system. The partial pivoting strategy for the 2 × 2
systems can actually be replaced by any method for which the computed solution
of Ry = d satisfies (R + ∆R)ŷ = d, where R is the 2 × 2 matrix in question and
|∆R| ≤ δu|R|. This property was also key in an earlier paper of S. Wright [27], who
derived a result similar to Theorem 6.1 in the context of the augmented systems that
arise from interior-point methods for linear programming.
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All the procedures below have the property that the growth in the maximum
element size in the remaining submatrix is bounded by a modest quantity at each in-
dividual step of the factorization. (In the case of Bunch–Kaufman and Bunch–Parlett,
this bound averages about 2.6 per elimination step; see Golub and Van Loan [12, sec-
tion 4.4.4].) As with Gaussian elimination with partial pivoting, exponential element
growth is possible, so that L and Y in (6.1) contain much larger elements than the
original matrix T . Such behavior is, however, quite rare and is confined to pathologi-
cal cases and certain special problem classes. In our analysis below, we make the safe
assumption that catastrophic growth of this kind does not occur.

6.1. The Bunch–Kaufman procedure. At each iteration, the Bunch–Kaufman
procedure chooses either a 1× 1 or a 2× 2 pivot by examining at most two columns
of the remaining matrix, that is, the part of the matrix that remains to be factored
at this stage of the process. It makes use of quantities χi defined by

χi = max
j | j 	=i

|Tij |,

where in this case T denotes the remaining matrix. We define the pivot selection
strategy for the first step of the factorization process. The entire algorithm is obtained
by applying this procedure recursively to the remaining submatrix.

set ν = (1 +
√

17)/8;
calculate χ1, and store the index r for which χ1 = |Tr1|;
if |T11| ≥ νχ1

choose T11 as a 1× 1 pivot;
else

calculate χr;
if χr|T11| ≥ νχ2

1

choose T11 as a 1× 1 pivot;
else if |Trr| ≥ νχr

choose Trr as a 1× 1 pivot;
else

choose a 2× 2 pivot with diagonals T11 and Trr;
end if

end if.

For each choice of pivot, the permutation matrix P1 is chosen so that the desired
1× 1 or 2× 2 pivot is in the upper left of the matrix P1TP

T
1 . If one writes

P1TP
T
1 =

[
R CT

C T̂

]
,

where R is the chosen pivot, the first step of the factorization yields

P1TP
T
1 =

[
I

CR−1 I

] [
R

T̄

] [
I R−1CT

I

]
,(6.3)

where T̄ = T̂ −CR−1CT is the matrix remaining after this stage of the factorization.
At the first step of the factorization, the quantities χ1 and χr (if calculated) both

have size O(1), since the large elements of this matrix occur only on the diagonal.
Since a 2× 2 pivot is chosen only if

|T11| < νχ1 and |Trr| < νχr,
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it follows immediately that both diagonals in a 2× 2 pivot must be O(1). Hence, the
pivot chosen by this procedure is one of three types:

1× 1 pivot of size O(1);(6.4a)

2× 2 pivot in which both diagonals have size O(1);(6.4b)

1× 1 pivot of size Θ(µ−1).(6.4c)

In fact, the pivots are one of the types (6.4) at all stages of the factorization, not
just the first stage. The reason is that the updated matrix T̄ in (6.3) has the same
essential form as the original matrix T—its elements are all of size O(1) except for
some large diagonal elements of size Θ(µ−1). We demonstrate this claim by showing
that the update CR−1CT that is applied to the remaining matrix in (6.3) is a matrix
whose elements are of size at most O(1), regardless of the type of pivot, so that it
does not disturb the essential structure of the remaining matrix. When the pivots are
of type (6.4a) and (6.4b), the standard argument of Bunch and Kaufman [2] can be
applied to show that the norm of CR−1CT is at most a modest multiple of ‖C‖. We
know that ‖C‖ = O(1), since C consists only of off-diagonal elements, so we conclude
that ‖CR−1CT ‖ = O(1) in this case as claimed. For the other pivot type (6.4c), we
have R = Θ(µ−1) and C = O(1), so the elements of CR−1CT have size O(µ), and
the claim holds in this case, too.

In the rest of this subsection, we show by using Theorem 6.1 that Condition 6.1
holds for the Bunch–Kaufman algorithm. In fact, we prove a stronger result: When
T in Theorem 6.1 is the matrix (4.1), the perturbation matrix ∆T contains elements
of size δu, except in those diagonal locations corresponding to the elements of DN ,
where they may be as large as δu/µ. Given the bound on |∆T | in (6.2), we need only
to show that PT |L̂||Ŷ ||L̂|TP has the desired structure. In fact, it suffices to show
that the exact factor product PT |L||Y ||L|TP has the structure in question, since the
difference between these two products is just δu in size.

We demonstrate this claim inductively, using a refined version of the arguments
from Higham [17, section 4.3] for some key points and omitting some details. For
simplicity, and without loss of generality, we assume that P = I.

When n̄ = 1 (that is, T is 1× 1), we have that L = 1 and Y = T , and the result
holds trivially. When n̄ = 2, there are three cases to consider. If the matrix contains
no elements of size Θ(µ−1), then the analysis for general matrices can be used to
show that |L||Y ||L|T = O(1), as required. If either or both diagonal elements have
size Θ(µ−1), then both pivots are 1× 1, and the factors have the form

L =

[
1 0

T21/T11 1

]
, Y =

[
T11 0
0 T22 − T 2

21/T11

]
.(6.5)

Two cases arise.
(i) A diagonal of size O(1) is accepted as the first pivot and moved (if necessary)

to the (1, 1) position. We then have

|T11| ≥ νχ1 = νχ2 = ν|T21|,
and therefore |T21/T11| ≤ 1/ν and hence |T 2

21/T11| ≤ |T21|/ν = O(1). If the
(2, 2) diagonal is also O(1), we have that L = O(1) and Y = O(1), and we are
done. Otherwise, T22 = Θ(µ−1), and so the (2, 2) element of Y satisfies this
same estimate. We conclude from (6.5) that |L||Y ||L|T also has an Θ(µ−1)
element in the (2, 2) position and O(1) elements elsewhere.
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(ii) A diagonal of size Θ(µ−1) is accepted as the first pivot and moved (if neces-
sary) to the (1, 1) position. We then have

|T21/T11| = O(µ), |T 2
21/T11| = O(µ).

It follows from (6.5) that

|L||Y ||L|T =

[ |T11| |T21|
|T21| |T22|+ O(µ)

]
,

which obviously has the desired structure.
We now assume that our claim holds for some dimension n̄ ≥ 2, and we prove

that it continues to hold for dimension n̄ + 1. Using the notation of (6.3) (assuming
that P1 = I), and denoting the factorization of the Schur complement T̄ in (6.3) by
T̄ = L̄Ȳ L̄T , we have that

T = LY LT =

[
I

CR−1 L̄

] [
R

Ȳ

] [
I R−1CT

L̄T

]
.(6.6)

It follows that

|L||Y ||L|T =

[ |R| |R||R−1CT |
|CR−1||R| |CR−1||R||R−1CT |+ |L̄||Ȳ ||L̄|T

]
.(6.7)

Since, as we mentioned above, the norm of CR−1CT is at most O(1), the Schur
complement T̄ = T̂ − CR−1CT has size O(1) except for large Θ(µ−1) elements in
the same locations as in the original matrix. Hence, by our inductive hypothesis,
|L̄||Ȳ ||L̄|T has a similar structure, and we need to show only that the effects of the
first step of the factorization (6.3) do not disturb the desired structure.

For the case in which R is a pivot of type either (6.4a) and (6.4b), Higham [17,
section 4.3] shows all elements of both |CR−1||R| and |CR−1||R||R−1CT | are bounded
by a modest multiple of either χ1 (if T11 was selected as the pivot because it passed
the test |T11| ≥ νχ1) or (χ1 + χr), where r is the “other” column considered during
the selection process. In our case, this observation implies that both |CR−1||R| and
|CR−1||R||R−1CT | have size O(1). By combining these observations with those of the
preceding paragraph, we conclude that for pivots of types (6.4a) and (6.4b), “large”
elements of the matrix in (6.7) occur only in the diagonal locations originally occupied
by DN .

For the remaining case—pivots of type (6.4c)—we have that C has size O(1) while
R−1 has size O(µ). Therefore, |CR−1||R| has size O(1) and |CR−1||R||R−1CT | has
size O(µ), while |R|, which occupies the (1, 1) position in the matrix (6.7), just as it
did in the original matrix T , has size Θ(µ−1). We conclude that the desired structure
holds in this case as well.

We conclude from this discussion that Condition 6.1 holds for the Bunch–Kaufman
procedure. We show later that the perturbations arising from other sources, namely,
roundoff and cancellation in the evaluation of the matrix and right-hand side, also
satisfy the conditions of Corollary 4.4, so this result can be used to bound the error
in the computed steps.

Finally, we note that it is quite possible for pivots of types (6.4a) and (6.4b)
to be chosen while diagonal elements of size Θ(µ−1) still remain in the submatrix.
Therefore, a key assumption of the analysis of Forsgren, Gill, and Shinnerl [9, Theo-
rem 4.4]—namely, that all the diagonals of size Θ(µ−1) are chosen as 1×1 pivots before
any of the other diagonals are chosen—may not be satisfied by the Bunch–Kaufman
procedure.
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6.2. The Bunch–Parlett procedure. The Bunch–Parlett procedure is con-
ceptually simpler but more expensive to implement than Bunch–Kaufman, since it
requires O(n2) (rather than O(n)) comparisons at each step of the factorization. The
pivot selection strategy is as follows.

set ν = (1 +
√

17)/8;
calculate χoff = |Trs| = maxi 	=j |Tij |, χdiag = |Tpp| = maxi |Tii|;
if χdiag ≥ νχoff

choose Tpp as the 1× 1 pivot;
else

choose the 2× 2 pivot whose off-diagonal element is Trs;
end if.

The elimination procedure then follows as in (6.3).
It is easy to show that the Bunch–Parlett procedure starts by selecting all the

diagonals of size Θ(µ−1) in turn as 1× 1 pivots. (Because of this property, it satisfies
the key assumption of [9] mentioned at the end of the preceding section.) The update
CR−1CT generated by each of these pivot steps has size only O(µ), so the matrix
that remains after this phase of the factorization contains only O(1) elements. The
remaining pivots are then a combination of types (6.4a) and (6.4b).

By using the arguments of the preceding subsection in a slightly simplified form,
we can show that Condition 6.1 holds for this procedure as well.

6.3. Sparse diagonal pivoting. For large instances of (1.1), the Bunch–
Kaufman and Bunch–Parlett procedures are usually inefficient because they do not
try to maintain sparsity in the lower triangular factor L. Sparse variants of these
algorithms, such as those of Duff et al. [7] and Fourer and Mehrotra [10], use pivot se-
lection strategies that combine stability considerations with Markowitz-like estimates
of the amount of fill-in that a candidate pivot will cause in the remaining matrix.

At each stage of the factorization, both algorithms examine a roster of possible
1× 1 and 2× 2 pivots, starting with those that would create the least fill-in. As soon
as a pivot is found that meets the stability criteria described below, it is accepted.
Both algorithms prefer to use 1× 1 pivots where possible.

For candidate 1×1 pivots, Duff et al. [7, p. 190] use the following stability criterion:

|R−1|‖C‖∞ ≤ ρ,(6.8)

where the notation R and C is from (6.3) and ρ ∈ [2,∞) is some user-selected pa-
rameter that represents the tolerable growth factor at each stage of the factorization.
For a 2× 2 pivot, the criterion is

|R−1|
[ ‖C·,1‖∞
‖C·,2‖∞

]
≤
[
ρ
ρ

]
,(6.9)

where C·,1 and C·,2 are the two columns of C. The stability criteria of Fourer and
Mehrotra [10] are similar.

As they stand, the stability tests (6.8) and (6.9) do not necessarily restrict the
choice of pivots to the three types (6.4). If a 1 × 1 pivot of size Θ(µ−1) is ever
considered for structural reasons, it will pass the test (6.8) (the left-hand side of this
expression will have size O(µ)) and therefore will be accepted as a pivot. However, it
is possible that 2×2 pivots in which one or both diagonals have size Θ(µ−1) may pass
the test (6.9) and may therefore be accepted. Although the test (6.9) ensures that
the size of the update CR−1CT is modest (so that the update T̄ = T̂ −CR−1CT does
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not disturb the large-diagonal structure of T̂ ), there is no obvious assurance that the
matrix |L||Y ||L|T in (6.7) mirrors the structure of |T |, in terms of having the large
diagonal elements in the same locations. The terms |CR−1||R| and |CR−1||R||R−1CT |
in (6.7) may not have size O(1), as they do for pivots of the three types (6.4) arising
from the Bunch–Kaufman and Bunch–Parlett selection procedures.

The Fourer–Mehrotra algorithm does, however, rule out the possibility of a 2× 2
pivot in which both diagonals are of size Θ(µ−1). It considers a 2×2 candidate only if
one of its diagonal elements has previously been considered as a 1× 1 pivot but failed
the stability test. However, if either of the diagonals had been subjected to the test
(6.8), they would have been accepted, as noted in the preceding paragraph, so this
situation cannot occur.

If the sparse algorithms are modified to ensure that all pivots have one of the
three types (6.4), and all continue to satisfy the stability tests (6.8) or (6.9), then
simple arguments (simpler than those of section 6.1!) can be applied to show that
Condition 6.1 is satisfied. One possible modification that achieves the desired effect
is to require that a 2 × 2 pivot be allowed only if both its diagonals have previously
been considered as 1× 1 pivots but failed the stability test (6.8).

6.4. Gaussian elimination. Another possibility for solving the system (4.1) is
to ignore its symmetry and apply a Gaussian elimination algorithm, with row and/or
column pivoting to preserve sparsity and prevent excessive element growth. Such
a strategy satisfies Condition 6.1. In [24], the author uses a result of Higham [16]
to show that the effects of the large diagonal elements are essentially confined to the
columns in which they appear. Assuming that the pivot sequence is chosen to prevent
excessive element growth in the remaining matrix, and using the notation of (4.32)
and (4.33), we can account for the effects of roundoff error in Gaussian elimination
with perturbations in the coefficient matrix that satisfy the following estimates:

E11, E21, E31, E12, E22, E32 = δu, E13, E23, E33 = δu/µ.

These certainly satisfy the conditions (4.33), so Condition 6.1 holds.

6.5. Local convergence with the computed steps. We can now state a for-
mal result to show that when the evaluation errors are taken into account as well
as the roundoff errors from the factorization/solution procedure discussed above, the
accuracies of the computed steps obtained from the procedure augmented, imple-
mented in finite precision, satisfy the same estimates as for the corresponding steps
obtained from the procedure condensed. The result is analogous to Theorem 5.1.

Theorem 6.2. Suppose Assumption 4.1 holds. Then when the step (∆̂z, ∆̂λ, ∆̂s)
is calculated in a finite-precision environment by using the procedure augmented,
where the algorithm used to solve (4.1) satisfies Condition 6.1, we have

(∆z − ∆̂z, UT (∆λB − ∆̂λB),∆s− ∆̂s) = δu,(6.10a)

V T (∆λB − ∆̂λB) = δu/µ,(6.10b)

∆λN − ∆̂λN = δu.(6.10c)

Proof. The proof follows from Corollary 4.4 when we show that the perturbations
to (4.1) from all sources—evaluation of the matrix and right-hand side as well as the
factorization/solution procedure—satisfy the bounds required by this earlier result.
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Because of Condition 6.1, perturbations arising from the factorization/solution
procedure satisfy the bounds (4.33). The expressions (5.2) show that the errors arising
from evaluation of Lzz(z, λ), Lz(z, λ), ∇g(z), and g(z) are all of size δu, and hence
they too satisfy the required bounds. Similarly to (5.3), evaluation of DB and DN
yields errors of relative size δu, that is,

computed DB ← DB + GB, GB = µδu,(6.11a)

computed DN ← DN + GN , GN = δu/µ,(6.11b)

where GB and GN are diagonal matrices.
We now obtain all the estimates in (6.10) by a direct application of Corollary 4.4,

with the exception of the estimate for (∆s− ∆̂s). Since the expressions for recovering
∆s are identical in procedures condensed and augmented, we can apply expression
(5.12) from section 5.1 to deduce that the desired estimate holds for this component
as well.

The only difference between the error estimates of Theorem 5.1 for the condensed

system and those obtained above for the augmented system is that the ∆̂λN com-
ponents are slightly less accurate in the augmented case. If we work through the
analysis of section 5.3 with the estimate (6.10c) replacing (5.13c), we find that the
main results are unaffected. Therefore, we conclude this section by stating without
proof a result similar to Theorem 5.3.

Theorem 6.3. Suppose that all the assumptions of Theorem 5.3 hold, except

that the step (∆̂z, ∆̂λ, ∆̂s) is calculated by using the procedure augmented with a
factorization/solution algorithm that satisfies Condition 6.1. Then the conclusions of
Theorem 5.3 hold.

7. Numerical illustration. We illustrate the results of sections 5 and 6 using
the two-variable example (2.8). Consider a simple algorithm that takes steps satisfying
(3.8) with t set rather arbitrarily to t = µ2e. (The search directions thus used are
like those generated in the later stages of a practical primal-dual algorithm such as
Mehrotra’s algorithm [19].) We start this algorithm from the point

z0 = (1/30, 1/9)T , λ0 = (1, 1/5)T , s0 = (1/10, 1/2).

(It is easy to check that the conditions (3.11) are satisfied at this point for a modest
value of C.) At each step we calculated α̂max, defined in section 5.3, and took an
actual step of .99α̂max.

We programmed the method in Matlab, using double-precision arithmetic. In our
first experiment, we solved the formulation (4.1) of the linear equations using Matlab’s
standard Gaussian elimination solver for general systems of linear equations, which
was analyzed in section 6.4. From Theorem 6.2, the estimates (6.10) apply to this
case.

Results are tabulated in Table 1. Note first the size of the component ‖V T ∆̂λB‖,
which grows as µ decreases below u1/2, in accordance with (6.10b). (We cannot

tabulate the difference ‖V T (∆̂λB−∆λB‖) because of course we do not know the true
step (∆z,∆λ,∆s), but since the true step has size O(µ) (Corollary 4.3), the error is

dominated by the term V T ∆̂λB in any case.) As predicted by (5.17), the maximum
step α̂max becomes significantly smaller than 1 as µ is decreased below u1/2. As
indicated by (5.18), however, good progress still can be made along this direction
(in the sense of reducing µ and the norms of the residuals rf and rg) almost until µ
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Table 1
Details of iteration sequence for PDIP applied to (2.8), with steps computed by solving the

augmented system.

iter log µ log ‖∆̂z‖ log ‖UT ∆̂λB‖ log ‖V T ∆̂λB‖ α̂max λT

0 -1.0 -0.9 -1.9 -1.9 .9227 (1.00,.20)
1 -2.7 -1.5 -1.3 -1.2 .9193 (0.99,.19)
...
5 -9.4 -6.7 -6.3 -4.6 1.0 (1.04,.23)
6 -11.4 -8.7 -8.3 -5.9 1.0 (1.04, .23)
7 -13.4 -10.7 -10.3 -3.8 .9999 (1.04,.23)
8 -15.4 -12.7 -12.3 -1.2 .9439 (1.04,.23)
9 -17.1 -13.9 -13.4 -0.6 .9723 (1.10,.20)

Table 2
Details of iteration sequence for PDIP applied to (2.8), with steps computed by solving the

condensed system.

iter log µ log ‖∆̂z‖ log ‖UT ∆̂λB‖ log ‖V T ∆̂λB‖ α̂max λT

0 -1.0 -0.9 -1.9 -1.9 .9227 (1.00,.20)
1 -2.7 -1.5 -1.3 -1.2 .9193 (0.99,.19)
...
5 -9.4 -6.7 -6.3 -4.6 1.0 (1.04,.23)
6 -11.4 -8.7 -8.3 -5.7 1.0 (1.04, .23)
7 -13.4 -10.7 -10.3 -8.3 1.0 (1.04,.23)
8 -15.4 -12.7 -12.4 -10.3 1.0 (1.04,.23)
9 -17.4 -14.7 -13.3 -12.3 1.0 (1.04,.23)

reaches the level of u. In fact, between iterations 5 and 8 we see the reduction factor
of 100 that we would expect by moving a distance of .99 along a direction that is close

to the pure Newton direction. The component with the large error—V T ∆̂λB—does
not interfere significantly with rapid convergence, but only causes the λ iterates to
move tangentially to Sλ. This effect may be noted in the final iterate where the value
of λ changes significantly. In some cases, however, when the current λ is near the
edge of the set Sλ, this error may result in a severe curtailment of the step length.

Next, we performed the same experiment using the condensed formulation (3.10)
of the linear system, as described in section 5. Results are shown in Table 2. The

main difference with Table 1 is that Table 2 shows no increase in the value ‖V T ∆̂λB‖
as µ approaches unit roundoff; this component appears to decrease at the same rate
as the other step components. This observation can be explained by our analysis of
the case in which the cancellation error term fB incurred in the evaluation of gB(z)
satisfies (5.14). We calculated the product V T (gB(z) + fB) (the product of V with
our computed version of gB(z)) and found it to be exactly zero on iterations 7, 8, and
9. Therefore, using Taylor’s theorem, (2.13), and Theorem 3.3, we have

V T fB = −V T gB(z) = −V T∇gB(z∗)(z − z∗) + O(‖z − z∗‖2) = O(µ2).

Hence, (5.15) together with Corollary 4.3 shows that V T ∆̂λB = O(µ), which is con-
sistent with the results in Table 2. Note too that because of the higher accuracy in

the V T ∆̂λB component, the maximum step length stays very close to 1 during the
last few iterations. By comparing Tables 1 and 2, however, we can verify that the
convergence of µ to zero, and of the iterates to the solution set, is not materially

affected by the presence or absence of the large error in V T ∆̂λB.
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Table 3
Details of iteration sequence for PDIP applied to (2.8), (7.1), with steps computed from the

condensed system.

iter log µ log ‖∆̂z‖ log ‖UT ∆̂λB‖ log ‖V T ∆̂λB‖ α̂max λT

0 -1.0 -0.9 -2.1 -2.3 .9161 (1.00,.20)
1 -2.7 -1.5 -1.3 -1.4 .8872 (0.99,.20)
...
5 -7.6 -5.7 -5.7 -4.2 .9999 (.93,.29)
6 -9.5 -7.7 -7.7 -6.3 1.0 (.93, .29)
7 -11.5 -9.7 -9.7 -4.3 .9999 (.93, .29)
8 -13.5 -11.7 -11.5 -2.6 .9960 (.93,.29)
9 -15.3 -13.5 -11.7 -0.6 .7386 (.93,.29)

To show that the lack of cancellation effects in Table 2 cannot be assumed in
general, we modified problem (2.8) slightly, changing the second constraint to

g2(z)
def
=

2

3
√

5
(z1 −

√
5)2 + z2

2 −
2
√

5

3
≤ 0.(7.1)

The primal and dual solutions remain unchanged, and we ran the condensed-equations
version of the algorithm from the same starting point as above. Results are shown in
Table 3. We observed that gB(z) did not escape cancellation errors in this instance

and, as in Table 1, we observe significant errors in V T ∆̂λB that do not materially
affect the convergence of the algorithm to the solution set.

8. Summary and conclusions. In this paper, we have analyzed the finite-
precision implementation of a PDIP method whose convergence rate is theoretically
superlinear. We have made the standard assumptions that appear in most analyses
of local convergence of nonlinear programming algorithms and path-following algo-
rithms, with one significant exception: The assumption of linearly independent active
constraint gradients is replaced by the weaker MFCQ which is equivalent to bound-
edness of the set of optimal Lagrange multipliers. Because of this assumption, it is
possible that all reasonable formulations of the step equations—the linear system that
needs to be solved to obtain the search direction—are ill conditioned, so it is not obvi-
ous that the numerical errors that occur when this system is solved in finite precision
do not eventually render the computed search direction useless. We show that al-
though the error in the computed step may indeed become large as µ decreases, most
of the error is restricted to a subspace that does not matter, namely, the null space
of the matrix ∇gB(z∗) of first derivatives of the active constraints. Although this
error causes the computed iterates to “slip” in a tangential direction to the optimal
Lagrange multiplier set, it does not interfere with rapid convergence of the iterates to
the primal-dual solution set.

We found that the centrality conditions (3.11), which are usually applied in path-
following methods, played a crucial role in the analysis, since they enabled us to
establish the estimates (3.16) in Lemma 3.2 concerning the sizes of the basic and
nonbasic components of s and λ near the solution set. The analysis of section 4,
culminating in Corollary 4.4, finds bounds on the errors induced in step components
by certain structured perturbations of the step equations. We show in the same
section that the exact step is O(µ), allowing the local convergence analysis of Ralph
and Wright [22] to be extended from convex programs to nonlinear programs.
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In sections 5 and 6 we apply the general results of section 4 to the two most
obvious ways of formulating and solving the step equations; namely, as a “condensed”
system involving just the primal variables z, or as an “augmented” system involv-
ing both z and the Lagrange multipliers λ. In each case, the errors introduced in
finite-precision implementation have the structure of the perturbations analyzed in
section 4, so the error bounds obtained in Corollary 4.4 apply. In section 5.3 (whose
analysis also applies to the computed solutions analyzed in section 6), we show that
the potentially large error component discussed above does not interfere apprecia-
bly with the near-linear decrease of the quantities µ, rf , and rg to zero along the
computed steps, indicating that until µ becomes quite close to u, the convergence
behavior predicted by the analysis of the “exact” algorithm will be observed in the
finite-precision implementation. We conclude in section 7 with a numerical illustration
of our major observations on a simple problem with two variables and two constraints,
first introduced in section 2.

Appendix A. Justification of the estimates (5.17) and (5.18). To prove
(5.17), we use analysis similar to that of S. Wright [30]. From the definition (3.5) of
µ, and the centrality condition (3.11c), we have that

λisi = Θ(µ) for all i = 1, 2, . . . ,m.

Hence, from the third block row of (3.8) and the assumption (3.7) on the size of t, we
have that

∆λi
λi

+
∆si
si

= −1− ti
siλi

= −1 + O(µ) for all i = 1, 2, . . . ,m.(A.1)

We have from Lemma 3.2 and (4.36) that ∆λi/λi = O(µ) for all i ∈ B. Hence, by
using (3.16a) from (3.2) together with (A.1), we obtain

∆si = −si + O(µ2) for all i ∈ B.(A.2)

For the computed step components ∆̂sB, we have by combining (5.13a) with (A.2)
that

∆̂si = −si + δu + O(µ2) for all i ∈ B.(A.3)

Therefore, if si + α∆̂si = 0 for some i ∈ B and some α ∈ [0, 1], we have by using
(3.16a) again that

si + α(−si + δu + O(µ2)) = 0

⇒ (1− α)si = δu + O(µ2)

⇒ (1− α) = δu/µ + O(µ) for any i ∈ B.(A.4)

Meanwhile, for i ∈ N , we have from Lemma 3.2, (4.36), and (5.13a) that

si + α∆̂si > 0 for all i ∈ N and all α ∈ [0, 1],(A.5)

so the components ∆̂sN do not place a limit on the step length bound α̂max. For the

components ∆̂λN , we have by using Lemma 3.2, (4.36), (5.13c), and (A.1) that

∆̂λi = −λi + µδu + O(µ2) for all i ∈ N .
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Therefore, if λi + α∆̂λi = 0 for some i ∈ N and some α ∈ [0, 1], we have by arguing
as in (A.4) that

1− α = δu + O(µ).(A.6)

Finally, for i ∈ B, we have from Lemma 3.2 that λi = Θ(1), while from (4.36), (5.13a),
and (5.13b), we have that

∆λi = O(µ), ∆̂λi = O(µ) + δu/µ for all i ∈ B.(A.7)

Therefore, we have for µ� u that

λi + α∆̂λi > 0 for all i ∈ B and all α ∈ [0, 1].(A.8)

By combining the observations (A.4), (A.5), (A.6), and (A.8), we conclude that there
is a value α̂max satisfying

α̂max ∈ [0, 1], 1− α̂max = δu/µ + O(µ)

such that

(λ, s) + α(∆̂λ, ∆̂s) > 0 for all α ∈ [0, α̂max],

proving the claim (5.17). By making various simplifications to the analysis above, it
is easy to show that (5.19) holds as well.

We now prove the claims (5.18) concerning the changes in the feasibility and
duality measures along the computed step.

From (1.2), (3.11a), and the first block row of (3.8), we have

rf (z + α∆̂z, λ + α∆̂λ)

= Lz(z + α∆̂z, λ + α∆̂λ)

= Lz(z, λ) + αLzz(z, λ)∆̂z + α∇g(z)∆̂λ + O(α2‖∆̂z‖2)
= (1− α)Lz(z, λ) + αLzz(z, λ)(∆̂z −∆z) + α∇gB(z)(∆̂λB − ∆̂λB)

+α∇gN (z)(∆̂λN −∆λN ) + O(α2‖∆̂z‖2).(A.9)

From (4.36) and (5.13a), we have ∆̂z = δu + O(µ), so for µ � u and α ∈ [0, 1], we
have

α2‖∆̂z‖2 = O(µ2).(A.10)

From the definition (2.13) of the SVD of ∇gB(z∗), Theorem 3.3, and (5.13a), we have
that

∇gB(z)(∆̂λB −∆λB) = ∇gB(z∗)(∆̂λB −∆λB) + O(‖z − z∗‖‖∆̂λB −∆λB‖)
= ÛΣUT (∆̂λB −∆λB) + O(µ)δu/µ

= δu.(A.11)

Note that the larger error (5.13b) in the component V T (∆̂λB−∆λB), which is present
when MFCQ is satisfied but not when LICQ is satisfied, does not enter into the
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estimate (A.11). By substituting this estimate into (A.9) together with estimates for

∆̂z −∆z and ∆̂λN −∆λN from (5.13), we obtain that

rf (z + α∆̂z, λ + α∆̂λ) = (1− α)rf + δu + O(µ2),

verifying our claim (5.18c). The potentially large error (5.13b) does not affect rapid
decrease of the rf component along the computed search direction.

For the second feasibility measure rg, we have from (3.11b), the second block row
of (3.8), and the estimates (5.13a) and (A.10) that

rg(z + α∆̂z, s + α∆̂s)

= g(z + α∆̂z) + s + α∆̂s

= g(z) + α∇g(z)T ∆̂z + s + α∆̂s + O(α2‖∆̂z‖2)
= (1− α)(g(z) + s) + α∇g(z)T (∆̂z −∆z) + α(∆̂s−∆s) + O(µ2)

= (1− α)rg + δu + O(µ2),

verifying (5.18d).
To examine the change in µ, we look at the change in each pairwise product λisi,

i = 1, 2, . . . ,m. We have

(λi + α∆̂λi)(si + α∆̂si)

= λisi + α(si∆̂λi + λi∆̂si) + α2∆̂si∆̂λi

= λisi + α(si∆λi + λi∆si) + αsi(∆̂λi −∆λi) + αλi(∆̂si −∆si)(A.12)

+α2∆̂λi∆̂si.

From the last block row in (3.8), the estimate t = O(µ2) (3.7), and the estimate (4.36)
of the exact step, we have

λisi + α(si∆λi + λi∆si) = (1− α)λisi + O(µ2).(A.13)

From (4.36) and (5.13), we have

∆̂λi∆̂si = (δu/µ + O(µ))(O(µ) + δu) = δu + O(µ2),(A.14)

since µ� u. For i ∈ B, we have from Lemma 3.2, (5.13a), and (5.13b) that

si(∆̂λi −∆λi) = O(µ)δu/µ = δu for all i ∈ B.(A.15)

For i ∈ N , we have from Lemma 3.2 and (5.13c) that

si(∆̂λi −∆λi) = µδu for all i ∈ N .(A.16)

For the remaining term λi(∆̂si −∆si), we have from Lemma 3.2 and (5.13a) that

λi(∆̂si −∆si) = δu for all i = 1, 2, . . . ,m.(A.17)

By substituting (A.13)–(A.17) into (A.12), we obtain

(λi + α∆̂λi)(si + α∆̂si) = (1− α)λisi + δu + O(µ2) for all i = 1, 2, . . . ,m.(A.18)

Therefore, by summing over i and using (3.5), we obtain (5.18b).
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THE ORDERED SUBSETS MIRROR DESCENT OPTIMIZATION
METHOD WITH APPLICATIONS TO TOMOGRAPHY∗
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Abstract. We describe an optimization problem arising in reconstructing three-dimensional
medical images from positron emission tomography (PET). A mathematical model of the problem,
based on the maximum likelihood principle, is posed as a problem of minimizing a convex function
of several million variables over the standard simplex. To solve a problem of these characteris-
tics, we develop and implement a new algorithm, ordered subsets mirror descent, and demonstrate,
theoretically and computationally, that it is well suited for solving the PET reconstruction problem.

Key words. positron emission tomography, maximum likelihood, image reconstruction, convex
optimization, mirror descent
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1. Introduction. The goal of this paper is to develop a practical algorithm for
an extremely large-scale convex optimization problem arising in nuclear medicine—
that of reconstructing images from data acquired by positron emission tomography
(PET).

The PET technique is described in section 2, and the corresponding mathematical
optimization problem is given in section 3. The specific characteristics of the problem
rule out most advanced optimization methods, and as a result we focus on gradient-
type methods. Specifically, we develop an accelerated version of the mirror descent
(MD) method [Nem78]. The acceleration is based on the incremental gradient idea
[Ber95], [Ber96], [Ber97], [Luo91], [Luo94], [Tse98], also known as the ordered subsets
(OS) technique in the medical imaging literature [Hud94], [Man95], [Kam98]. The
MD method is described in section 4. The accelerated version, ordered subsets mirror
descent (OSMD), is studied in section 5 in particular for a specific setup of OSMD,
suitable for the PET reconstruction problem. In section 6 we report the results of
testing the OSMD algorithm on several realistic cases, and also compare it to the
classical SD method. Our conclusion from these tests is that OSMD is a reliable and
efficient algorithm for PET reconstruction, which compares favorably with the best
currently commercially used methods.

2. PET. PET is a powerful, noninvasive, medical diagnostic imaging technique
for measuring the metabolic activity of cells in the human body. It has been in clin-
ical use since the early 1990s. PET imaging is unique in that it shows the chemical
functioning of organs and tissues, while other imaging techniques—such as X-ray, com-
puterized tomography (CT), and magnetic resonance imaging (MRI)—show anatomic
structures. PET is the only method that can detect and display metabolic changes in
tissue; distinguish normal tissue from diseased tissue, such as in cancer; differentiate
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viable from dead or dying tissue; show regional blood flow; and determine the distri-
bution and fate of drugs in the body. It is useful clinically in patients with certain
conditions affecting the brain and the heart as well as in patients with certain types
of cancer. Because of its accuracy, effectiveness, and cost efficiency, PET is becoming
indispensable for the diagnosis of disease and treatment of patients.

2.1. The physical principles of PET. A PET scan involves the use of a
small amount of a radioactive material which has the property of emitting positrons
(positively charged electrons). Such a substance is referred to as positron emitter.
One of the prime reasons for the importance of PET in medical research and practice
is the existence of positron-emitting isotopes of elements such as carbon, oxygen, and
fluorine. These isotopes can be attached or tagged to biochemical compounds such
as glucose, ammonia, water, etc., to form radioactive tracers that will mimic their
stable counterparts biologically (i.e., the radio-tracer element does not modify the
biochemical behavior of the molecule). The choice of the biochemical compound and
the radioactive tracer depends on the particular medical information being sought.
When these radioactive drugs (or “radio-pharmaceuticals”) are administered to a
patient, either by injection or by inhalation of gas, they distribute within the body
according to the physiologic pathways associated with their stable counterparts.

The scan begins after a delay ranging from seconds to minutes to allow for the
radio-tracer transport to the organ of interest. Then, the radio-isotope decays to a
more stable atom by emitting a positron from its nucleus. The emitted positron loses
most of its kinetic energy after traveling only a few millimeters in living tissue. It is
then highly susceptible to interaction with an electron, an event that annihilates both
particles. The mass of the two particles is converted into 1.02 million electron volts
of energy, divided equally between two gamma rays.

The two gamma rays fly off the point of annihilation in nearly opposite direc-
tions along a line with a completely random orientation (i.e., uniformly distributed in
space). They penetrate the surrounding tissue and are recorded outside the patient
by a PET scanner consisting of circular arrays (rings) of gamma radiation detectors.

Since the two gamma rays are emitted simultaneously and travel in almost ex-
actly opposite directions, their source can be established with high accuracy. This is
achieved by grouping the radiation detectors in pairs. Two opposing detectors regis-
ter a signal only if both sense high-energy photons within a short (∼ 10−8sec) timing
window. Detection of two events at the same time is referred to as coincidence event.
Each detector is in coincidence with a number of detectors opposite so as to cover a
field of view (FOV) about half as large in diameter as the diameter of the detector
array.

A coincidence event is assigned to a line of response (LOR) connecting the two
relevant detectors. In the two-dimensional case, an LOR is identified by the angle
φ and the distance s from the scanner axis (the center of the FOV). A certain pair
of detectors is identified by the LOR joining their centers, and is sometimes referred
to as a bin. The total number of coincidence events detected by a specific pair of
detectors approximates the line integral of the radio-tracer concentration along the
relevant LOR. Considering the total number of coincidence events detected by all
pairs of detectors with the same angle φ, we get a parallel set of such line integrals,
known as a parallel projection set or shortly, as a projection.

The measured data set is the collection of numbers of coincidences counted by
different pairs of detectors, or equivalently, the number of counts in all bins that
intersect the FOV. Based on the measured data, a mathematical algorithm, applied
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by a computer, tries to reconstruct the spatial distribution of the radioactivity within
the body. The principle of image reconstruction by computerized tomography is that
an object can be reproduced from a set of its projections taken at different angles.
The validity of such a reconstruction depends, of course, on the number of counts
collected. The number of projections is a parameter of the scanner, and it determines
the size of the mathematical reconstruction problem.

Note that there are several factors affecting quantitative accuracy of the measured
data (e.g., detector efficiency, attenuation, scatter, random events, etc.). Therefore,
the total number of counts is typically much smaller than the total number of emis-
sions.

The final result of the scan study is usually presented as a set of two-dimensional
(2D) images (known as slices), which together compose the three-dimensional (3D)
mapping of the tracer distribution within the body.

3. The optimization problem. For consistent data, i.e., free of noise and
measurement errors, there is a unique analytic solution of the 2D inversion problem
of recovering a 2D image from the set of its one-dimensional (1D) projections. This
solution was derived by Radon in 1917 and later became the basis for computerized
tomography. The method, named filtered back-projection (FBP), was first applied for
2D PET image reconstruction by Shepp and Logan in 1974 [She74].

The images obtained by the FBP method as well as other analytical methods,
which are based on inverse transforms, tend to be “streaky” and noisy. To address
the problem of noise, the study of statistical (iterative) reconstruction techniques has
received much attention in the past few years. Iterative methods allow incorporation of
physical constraints and a priori knowledge not contained in the measured projections,
e.g., the Poisson nature of the emission process.

The formulation of the PET reconstruction problem as a maximum likelihood
(ML) problem rather than as an inverse problem was initially suggested by Rockmore
and Mackovski in 1976 [Roc76]. It became feasible when Shepp and Vardi in 1982
[She82] and Vardi, Shepp, and Kaufman in 1985 [Var85] showed how the expectation
maximization (EM) algorithm could be used for the ML computation.

3.1. Mathematical model and the ML problem. The goal of ML estima-
tion, as applied to emission tomography, is to find the expected number of annihi-
lations by maximizing the probability of the set of observations, i.e., the detected
coincidence events.

The mathematical model is based on the realistic assumption that photon counts
follow a Poisson process. To simplify the computations, we form a finite parame-
ter space by imposing a grid of boxes (voxels) over the emitting object. Let X(j)
denote the number of radioactive events emitted from voxel j. It is assumed that
X(j), j = 1, . . . , n, are independent Poisson-distributed random variables with un-
known means λj ,

X(j) ∼ Poisson(λj).

Let pij be the probability that an emission from voxel j will be detected in bin i.
Note that pij defines a transition matrix (likelihood matrix) assumed to be known
from the geometry of the detector array. The probability to detect an event emitted
from voxel j is

pj =

m∑
i=1

pij .(1)
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The number of events emitted from voxel j and detected in bin i is defined byX(i, j) =
pijX(j). By a Bernoulli thinning process with the probabilities pij , for different j and
i, {X(i, j)} are also independent Poisson random variables. Let Y (i) denote the total
number of events detected by bin i, i.e.,

Y (i) =
∑
j

pijX(i, j);(2)

then Y (i) is also a Poisson random variable, with the mean

µi =
∑
j

pijλj ,(3)

and Y (i)’s are independent of each other. A more accurate model of the observations
would be

µi =
∑
j

mipijλj + ri + si,

where, ri, and si are known values for random and scatter coincidences and mi are
known attenuation coefficients, but we will use the simplified model. We denote by
yi the observations, namely the realizations of the random variables Y (i).

The problem of PET image reconstruction can be formulated in the context of
an incomplete data problem: the complete data (but unobserved) are the number of
counts emitted from each voxel (X(j)); the incomplete data (observed) are counts
of photons collected in various bins (yi); and the parameter to be estimated is the
expected number of counts emitted from each voxel (λj). Thus, the reconstruction
problem is equivalent to a parameter estimation problem, and a maximum likelihood
function can be formulated. In general, the likelihood function can be defined as
the joint probability density of the measured data known up to the unobservable
parameters to be estimated. Maximizing this likelihood function with respect to
the unobservable parameters yields the parameters with which the data are most
consistent.

According to (2) and (3) the vector of observed data y = (y1, . . . , ym)
T

has the
following likelihood function:

L(λ) = p(Y = y|λ) =
m∏
i=1

e−µi
µ
yi
i

yi!

=
m∏
i=1

(
exp[−∑n

j=1 λjpij ]
[
∑n

j=1 λjpij ]
yi

yi!

)
.

(4)

The maximum likelihood estimate of λ is the vector λmaximizing L(λ) or equivalently
its logarithm:

lnL(λ) = −
n∑

j=1

λjpj +

m∑
i=1

yi ln(

n∑
j=1

λjpij)− constant.(5)

Note that the function lnL(λ) is concave [She82]. Therefore, we can write the follow-
ing convex minimization problem with nonnegativity constraints:

F (λ) ≡
n∑

j=1

pjλj −
m∑
i=1

yi ln


 n∑

j=1

pijλj


→ min | λ ≥ 0.(6)
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The optimal solution to the problem is the ML estimate of the (discretized) density
of the tracer.

Problem (6) is an extremely large-scale convex optimization program: the design
dimension n (the number of voxels) normally is 1283 = 2, 097, 152, while the number
m of bins (i.e., the number of log-terms in the objective) can vary from 6,000,000 to
20,000,000, depending on the type of the tomograph. On a 450 MHz Pentium III
computer with 200 Mb RAM, a single computation of the value and the gradient of
the objective (i.e., multiplication of given vectors once by the matrix P = ||pij || and
once by PT ) takes from 15 to 45 minutes, depending on m.

The huge sizes of the PET image reconstruction problem impose severe restric-
tions on the type of optimization techniques which could be used to solve (6):

A. With the design dimension of order of n = 106, the only option is to use
methods whose computational effort per iteration is linear in n. Even with
this complexity per iteration, the overall number of iterations should be at
most few tens—otherwise the running time of the method will be too large
for actual clinical applications.

B. The objective in (6) is not defined on the whole Rn and may blow up to ∞
as λ approaches a “bad” boundary point of the nonnegative orthant (e.g., the
origin); moreover, (6) is a constrained problem, however simple the constraint
might look.

Observation A rules out basically all advanced optimization methods, like interior
point ones (or other Newton-based optimization techniques): in spite of the fast con-
vergence in terms of iteration counts, these techniques (at least in their “theoretically
valid” forms) will “never” finish even the first iteration. In principle, it could be
possible to use quasi-Newton techniques. Such an approach, however, would require
resolving difficulties coming from B, without a clear reward for the effort: to the best
of our knowledge, in the case when the number of iterations is restricted to only a
small fraction of the design dimension (see A), there is no theoretical or computational
evidence in favor of quasi-Newton methods.

Consequently, in our case, the most promising methods seem to be simple gradient-
descent type methods aimed at solving convex problems with simple constraints. For
these methods, the complexity per iteration is linear in n. Moreover, in favorable
circumstances, the rate of convergence of gradient-type methods, although poor, is
independent (or nearly so) of the design dimension. As a result, with a gradient-type
method one usually reaches the first one or two digits of the optimal value in a small
number of iterations, and then the method “dies,” i.e., in many subsequent iterations
no more progress in accuracy is obtained. Note that this “convergence pattern” is,
essentially, what is needed in the PET image reconstruction problem. Indeed, this is
an inverse (and, as such, an ill-posed) optimization problem; practice demonstrates
that when solving it to high accuracy, in terms of the optimal value (which is possible
in the 2D case), the quality of the image first improves and then tends to deterio-
rate, resulting eventually in a highly noisy image. Thus, in the case in question we
in fact are not interested in high-accuracy solutions, which makes gradient descent
techniques an appropriate choice.

4. The mirror descent scheme and minimization over a simplex.

4.1. The general mirror descent scheme. The general mirror descent (gMD)
scheme is aimed at solving a convex optimization problem

f(x)→ min | x ∈ X ⊂ Rn,(7)
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whereX is a convex compact set inRn and f is a Lipschitz continuous convex function
on X.

Note that the PET image reconstruction problem with pij > 0 can be easily con-
verted to (7). Indeed, from the KKT conditions for (6) we deduce the complementarity
equations 

pj −∑
i

yi
pij∑




pi
λ



λj = 0, j = 1, . . . , n.

Summing up these equations, we see that any optimal solution λ to problem (6) must
satisfy the equation ∑

j

pjλj = B ≡
∑
i

yi.

Thus, we loose nothing by adding to problem (6) the equality constraint
∑
j

pjλj = B.

If we further introduce the change of variables

xj =
pjλj
B

,

we end up with the optimization program

f(x) ≡ −
m∑
i=1

yi ln


∑

j

rijxj


→ min | x ∈ ∆n ≡

{
x ∈ Rn

+ :
∑
i

xi = 1

}
,(8)

where

rij = B
pij
pj
,

which is equivalent to (6). The new formulation (8) is of the form (7), with the
standard simplex ∆n playing the role of X. Besides this, the resulting objective f is
convex and Lipschitz continuous on X = ∆n, provided that pij > 0.

The setup for the gMD method is given by the following entities:
1. a compact convex set Y ⊃ X;
2. a norm ‖ · ‖ on Rn and its associated projector of Y onto X

π(y) ∈ Argmin
x∈X

‖y − x‖,

along with the corresponding separator

η(y) ∈ Rn : ‖η(y)‖∗ ≤ 1, ηT (y)(y − x) ≥ ‖y − π(y)‖ ∀x ∈ X,(9)

where

‖ξ‖∗ = max{ξTx | ‖x‖ ≤ 1}
is the norm on Rn conjugate to ‖ · ‖;

3. a positive real α and a continuously differentiable convex function w : Y → R
which is α-strongly convex on Y w.r.t. the norm ‖ · ‖, i.e.,

(w′(x)− w′(y))T (x− y) ≥ α‖y − x‖2 ∀x, y ∈ Y (w′ ≡ ∇w).
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It is assumed that we can compute efficiently
• the projector π(y) and the separator η(y), y ∈ Y ;
• the Legendre transformation

W (ξ) = max
y∈Y

[
ξT y − w(y)]

of w(·), ξ ∈ Rn.
Note that α-strong convexity of w on Y implies, via the standard duality
relations [RW98, Proposition 12.54], that W is continuously differentiable on
the entire Rn with Lipschitz continuous gradient

‖W ′(ξ)−W ′(η)‖ ≤ 1

α
‖ξ − η‖∗ ∀ξ, η ∈ Rn.(10)

Moreover, the mapping ξ �→ W ′(ξ) = argmaxx∈Y [ξ
Tx − w(x)] is a parame-

terization of Y .
The gMD method for solving (7) generates sequences ξt ∈ Rn, x̂t ∈ Y , xt ∈ X as
follows:
• Initialization: Choose (arbitrarily) x0 ∈ X and set ξ1 = w′(x0);
• Step t,t = 1, 2, . . .:

(S.1) Set

x̂t =W ′(ξt); xt = π(x̂t); ηt = η(x̂t).

(S.2) Compute the value f(xt) and a subgradient f ′(xt) of f at xt.
If f ′(xt) = 0, then xt is the exact minimizer of f on X, and we
terminate. If f ′(xt) �= 0, we set

ξt+1 = w′(x̂t)− γt[f ′(xt) + ‖f ′(xt)‖∗ηt],(11)

where γt > 0 is a stepsize, and pass to step t+ 1.
• Approximate solution xt generated in the course of the first t steps of the

method is the best (with the smallest value of f) of the points x1, . . . , xt: xt ∈
Argminx∈{x1,...,xt} f(x).

The convergence properties of the MD method are summarized in the following
theorem.

Theorem 4.1. Assume that f is convex and Lipschitz continuous on X, with
Lipschitz constant, w.r.t. ‖ · ‖, equal to L‖·‖(f), and that the subgradients f ′(xt) used
in the gMD satisfy the condition

‖f ′(xt)‖∗ ≤ L‖·‖(f).

Then for every t ≥ 1 one has

f(xt)−min
x∈X

f(x) ≤ min
1≤s≤r≤t

Γ(w) + 2
α

r∑
τ=s

γ2
τ‖f ′(xτ )‖2∗

r∑
τ=s

γτ

,(12)

where

Γ(w) = max
x,y∈Y

[w(x)− w(y)− (x− y)Tw′(y)].
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In particular, whenever γt → +0 as t → ∞ and
∑

τ γτ = ∞, one has f(xt) −
minx∈X f(x)→ 0 as t→∞. Moreover, with the stepsizes chosen as

γτ =
C(αΓ(w))1/2

‖f ′(xτ )‖∗
√
t
,(13)

one has

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)L‖·‖(f)

√
Γ(w)

α
t−1/2, t = 1, 2, . . . ,(14)

with certain universal function Ĉ(·).
The theorem, in a slightly modified setting, is proved in [Nem78]. Here it will be

derived as a straightforward simplification of the proof of Theorem 5.1 below.

4.2. ‖ · ‖p-MD and minimization over the standard simplex. As we have
seen, the PET image reconstruction problem can be converted to the form of (8), i.e.,
posed as the problem of minimizing a convex function f over the standard simplex ∆n.
Therefore we focus on the gMD scheme as applied to the particular case of X = ∆n.

Let us choose somehow p ∈ (1, 2] and consider the following setup for gMD:

Y = {x | ‖x‖p ≤ 1} [⊃ ∆n]; ‖ · ‖ = ‖ · ‖p; w(x) =
1

2
‖x‖2p.(15)

This setup defines a family {MDp}1<p≤2 of !p-MD methods for minimizing convex
functions over the standard simplex ∆n (in fact, MDp can be used to minimize a
convex function over a convex subset of the unit ‖ · ‖p-ball). A natural question is,
Which one of these methods is best suited for minimization over ∆n ? To answer this
question, note first that for setup (15), a straightforward calculation yields that

W (ξ) =

{
1
2‖ξ‖2q, ‖ξ‖q ≤ 1

‖ξ‖q − 1
2 , ‖ξ‖q > 1

, q =
p

p− 1
.(16)

Moreover, it is known (to be self-contained, we reproduce the proof in Appendix 1)
that the parameter α of strong convexity of w w.r.t. the ‖ · ‖p-norm satisfies the
relation

α ≡ αp(n) ≥ O(1)(p− 1),(17)

and the quantity Γ(w) defined in (12) is

Γ(w) = O(1)

(here and in what follows, O(1) are appropriate positive absolute constants). Conse-
quently, the efficiency estimate (14) becomes

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)L‖·‖p
(f)√

p− 1
t−1/2, t = 1, 2, . . . .(18)

Recalling that for every x ∈ Rn one clearly has ‖x‖p ≤ ‖x‖1 ≤ ‖x‖pn
p−1
p , and

therefore

L‖·‖1(f) ≤ L‖·‖p
(f) ≤ L‖·‖1n

p−1
p ,



TOMOGRAPHY RECONSTRUCTION VIA MIRROR DESCENT 87

we derive from (18) that

f(xt)−min
x∈X

f(x) ≤ Ĉ(C) n
p−1
p√

p− 1
L‖·‖1(f)t

−1/2, t = 1, 2, . . . .(19)

Assuming n > 1 and minimizing the right-hand side over p ∈ (1, 2], we see that a
good choice of p is

p = p(n) = 1 +
O(1)

lnn
.(20)

With this choice of p, the efficiency estimate (19) becomes

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)
√
lnnL‖·‖1(f)√

t
, t = 1, 2, . . . ,(21)

while the underlying stepsizes are

γt =
C

‖f ′(xτ )‖∗
√
lnn
√
t

[C > 0].(22)

In what follows, we refer to the MD method with the setup given by (15), (20), (22)
(where C = O(1)) as to ‖ · ‖1-MD method MD1.

Discussion. In the family {MDp}1≤p≤2 of MD methods, the special case MD2 is
well known—it is a kind of the standard subgradient descent (SD) method originating
from [Sho67] and [Pol67] and studied in numerous papers. (For the “latest news” on
SD, see [KLP99] and references therein.) The only modification needed to get from
the MD scheme not a “kind of” the SD but exactly the standard SD method

xt+1 = πX(xt − γtf ′(xt)), πX(x) = argmin
y∈X

‖x− y‖2(23)

for minimizing a convex function over a convex subset X of the unit Euclidean ball,
is to set in (15) p = 2 and Y = X rather than p = 2 and Y = {x | ‖x‖2 ≤ 1}. Our
analysis demonstrates, however, that when minimizing over the standard simplex, the
“non-Euclidean” mirror descent MD1 is preferable to the usual SD. Indeed, the best
efficiency estimate known so far for SD as applied to minimizing a convex Lipschitz
continuous function f over the standard simplex ∆n is

f(xt)− min
x∈∆n

f(x) ≤ O(1)L‖·‖2(f)√
t

,

while the efficiency bound for MD1 is

f(xt)− min
x∈∆n

f(x) ≤ O(1)
√
lnnL‖·‖1(f)√

t
;

the ratio of these efficiency estimates is

R = O(1)
L‖·‖2(f)√
lnnL‖·‖1(f)

.

Now, the ratio L‖·‖2(f)/L‖·‖1(f) is always ≥ 1 and can be as large as O(1)
√
n (in the

case where all partial derivatives of f are of order of 1, and their sum is identically
zero). It follows that for the problem of minimization over the standard simplex,
as far as the efficiency estimates are concerned, the “non-Euclidean” mirror descent
MD1 can outperform the standard SD by a factor of the order of (n/ lnn)1/2, which,
for large n, can make a huge difference.
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4.3. MD1 and complexity of large-scale convex minimization over a
simplex. We next show that the efficiency estimate of MD1 as applied to mini-
mization of Lipschitz continuous functions over an n-dimensional simplex cannot be
improved by more than an O(lnn)-factor, provided that n is large. Thus, MD1 is
a “nearly optimal” method, in the sense of information-based complexity theory, for
large-scale convex minimization over the standard simplex.

Consider the family F ≡ F(L, n) of all problems

f(x)→ min | x ∈ ∆n ≡
{
x ∈ Rn

+ :

n∑
i=1

xi = 1

}

associated with convex functions f : ∆n → R which are Lipschitz continuous and
whose Lipschitz constant (taken w.r.t. ‖ · ‖1) does not exceed a given positive L. The
information-based complexity Compl(ε) of the family F is defined as follows. Let B be
a routine which, as applied to a problem f from the family F , successively generates
search points xt = xt(B, f) ∈ Rn and approximate solutions xt = xt(B, f); the only
restriction on the mechanism of generating the search points and the approximate
solutions is that both xt and x

t should be deterministic functions of the values f(xτ )
and the subdifferentials ∂f(xτ ) of the objective taken at the previous search points
xτ , τ < t, so that x1, x

1 are independent of f , x2, x
2 depend only on f(x1), ∂f(x1),

and so on. We define the complexity of F w.r.t. B as the function

ComplB(ε) = inf{T : f(xt(B, f))−min
∆n

f ≤ ε ∀(t ≥ T, f ∈ F)},

i.e., as the smallest number of steps after which the inaccuracy of approximate solu-
tions generated by B is at most ε, whatever is f ∈ F . The complexity of the family
F is defined as

Compl(ε) = min
B

ComplB(ε),

where the minimum is taken over all aforementioned “solution methods” B. Note that
the efficiency bound (21) says that

ComplMD1
(ε) ≤ O(1)

[
L2 lnn

ε2
+ 1

]
, ε > 0.(24)

On the other hand, the following statement takes place (for the proof, see Appendix 2).

Proposition 4.2. The information-based complexity of the family F(L, n) is at
least O(1)min[L

2

ε2 , n].

Comparing (24) with the lower complexity bound given by Proposition 4.2, we
see that in the case of ε ≥ Ln−1/2 the accuracy guarantees given by MD1 as applied
to optimization problems from F cannot be improved by more than factor O(lnn).

5. Incremental gradient version of the MD scheme—the OSMD me-
thod. The objective function in the PET image reconstruction problem is a sum of a
huge number m of simple convex functions. A natural way to exploit this fact in order
to reduce the computational effort per iteration is offered by the incremental gradient
technique (see, e.g., [Ber95]), which in the medical imaging literature is known as the
OS scheme (see [Hud94]).
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The idea of the OS scheme is very simple: when solving problem (7) with the
objective of the form

f(x) =

k∑

=1

f
(x),(25)

one replaces at iteration t the “true” gradient f ′(xt) with “partial gradient” f ′
(t)(xt),
with !(t) running, in the cyclic order, through the set 1, . . . , k of indices of the compo-
nents f1, . . . , fk. With this approach, one reduces the computational effort required to
compute f ′ and thus reduces the complexity of an iteration. Computational practice
in many cases demonstrates that such a modification does not much affect the quality
of approximate solutions generated after a given number of iterations, provided that
k is not too large.

Below, we present the OS version of the general MD scheme and demonstrate
that its convergence properties are similar to those of the original scheme.

The OSMD scheme for solving problem (7) with objective of the form (25) (where
all components f
 are convex and Lipschitz continuous on X) has the same setup
(Y,X, ‖ · ‖, w,W ) as the original gMD scheme and is as follows:
• Initialization: Choose x0 ∈ X and set ξ1 = w′(x0);
• Outer iteration t,t = 1, 2, . . .:
(O.1) Given ξt, run a k-iteration inner loop as follows:

• Initialization: Set ξ1t = ξt;
• Inner iteration !, ! = 1, . . . , k:

I.1) Given ξ
t , compute

x̂
t =W ′(ξ
t ); x
t = π(x̂
t); η
t = η(x̂
t)

(cf. step S.1 in the original MD scheme).
I.2) Compute the value f
(x



t) and a subgradient f ′
(x



t) of

f
 at the point x
t and set

ξ
+1
t = ξ
t − γt[f ′
(x
t) + ‖f ′
(x
t)‖∗η
t ],

where γt > 0 is a stepsize.
(O.2) Set

ξt+1 = w′(W ′(ξm+1
t ))

and pass to outer iteration t+ 1.
• Approximate solution xt generated in course of t steps of the method is the point
x1
τ(t), where

τ(t) ∈ Argmin
t/2≤τ≤t

f̃τ , f̃τ =

k∑

=1

f
(x


τ )

(note that f̃τ is a natural estimate of f(x1
τ )).

The main theoretical result of our paper summarizes the convergence properties
of the OS version of the MD scheme in the following theorem.

Theorem 5.1. Assume that f
, ! = 1, . . . ,m, are convex and Lipschitz contin-
uous on X, with Lipschitz constants w.r.t. ‖ · ‖ not exceeding L‖·‖(f), and that the
subgradients f ′
(x



t) used in the MD method satisfy the condition

‖f ′
(x
t)‖∗ ≤ L‖·‖(f).
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Assume, in addition, that the ‖ · ‖-projector π(·) is Lipschitz continuous on Y , with a
Lipschitz constant β w.r.t. ‖ · ‖, i.e.,

‖π(x)− π(x′)‖ ≤ β‖x− x′‖ ∀x, x′ ∈ Y.

Then for every t ≥ 1 one has

f(xt)−min
x∈X

f(x) ≤
Γ(w) + 2k(k + 1)βα−1L2

‖·‖(f)
∑

t/2≤τ≤t
γ2
τ∑

t/2≤τ≤t
γτ

+4k2βα−1L2
‖·‖(f) max

t/2≤τ≤t
γτ .

(26)
In particular, whenever γt → +0 and

∑
t/2≤τ≤t γτ → ∞ as t → ∞, one has f(xt)−

minx∈X f(x)→ 0 as t→∞. Moreover, with the stepsizes chosen as

γt =
(αβ−1Γ(w))1/2

kLt
√
t

,(27)

where Lt are any numbers satisfying

0 < Lmin ≤ Lt ≤ Lmax <∞,

one has

f(xt)−min
x∈X

f(x) ≤ O(1)k
√
βΓ(w)

α

(
Lmax +

L2
‖·‖(f)

Lmin

)
t−1/2, t = 1, 2, . . . .(28)

Proof. 10. Let x∗ be a minimizer of f on X, let W∗(ξ) =W (ξ)− ξTx∗, and let

g
τ = f ′
(x


τ ), h
τ = g
τ + ‖g
τ‖∗η
τ .

Observe, first, that from ‖η
τ‖∗ ≤ 1 and ‖f ′
(x
τ )‖∗ ≤ L‖·‖(f) it follows that

‖h
τ‖∗ ≤ 2‖g
τ‖∗ ≤ 2L, L = L‖·‖(f),(29)

whence

‖ξ
τ − ξ
+1
τ ‖∗ ≤ 2γτL.

Besides this, by (10) and by assumptions on π(·) and f
 we have

‖W ′(ξ)−W ′(η)‖ ≤ 1
α‖ξ − η‖∗ ∀ξ, η ∈ Rn,

‖π(x)− π(y)‖ ≤ β‖x− y‖ ∀x, y ∈ Y,
|f
(x)− f
(y)| ≤ L‖x− y‖ ∀x, y ∈ X.

Combining these relations and taking into account the description of the method,
we get

(a) ‖x̂
τ − x̂1
τ‖ ≤ 2kα−1γτL, ! = 1, . . . , k;

(b) ‖x
τ − x1
τ‖ ≤ 2kβα−1γτL, ! = 1, . . . , k;

(c) |f
(x
τ )− f
(x1
τ )| ≤ 2kβα−1γτL

2, ! = 1, . . . , k.
(30)
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20. Since W∗ differs from W by a linear function, relation (10) holds true for W∗
as well, whence

W∗(ξ + η) =W∗(ξ) + ηTW ′
∗(ξ) +

∫ 1

0

[W ′
∗(ξ + tη)−W ′

∗(ξ)]
T ηdt

≤W∗(ξ) + ηTW ′
∗(ξ) +

1

2α
‖η‖2∗.(31)

Besides this, whenever ξ ∈ Rn, we have

W ′(ξ) = argmaxx∈Y [ξ
Tx− w(x)],

and since w is continuously differentiable on Y , it follows that

[ξ − w′(W ′(ξ))]T (W ′(ξ)− y) ≥ 0 ∀y ∈ Y.

It follows that

W∗(ξ) = W (ξ)− ξTx∗ = ξTW ′(ξ)− w(W ′(ξ))− ξTx∗
= [w′(W ′(ξ))]TW ′(ξ)− w(W ′(ξ))

+[ξ − w′(W ′(ξ))]T (W ′(ξ)− x∗)− [w′(W ′(ξ))]Tx∗
≥ [w′(W ′(ξ))]TW ′(ξ)− w(W ′(ξ))− [w′(W ′(ξ))]Tx∗
= W∗(w′(W ′(ξ))).

(32)

We now have

W∗(ξ
+1
τ ) =W∗(ξ
τ − γτh
τ )

≤ W∗(ξ
τ )− γτ [h
τ ]TW ′
∗(ξ



τ ) +

1
2αγ

2
τ‖h
τ‖2∗ (by (31))

≤ W∗(ξ
τ )− γτ [h
τ ]TW ′
∗(ξ



τ ) +

2
αγ

2
τL

2 (by (29))
= W∗(ξ
τ )− γτ [h
τ ]T [x̂
τ − x∗] + 2

αγ
2
τL

2

= W∗(ξ
τ ) +
2
αγ

2
τL

2 + γτ [h


τ ]
T [x∗ − x̂
τ ]

= W∗(ξ
τ ) +
2
αγ

2
τL

2 + γτ [f
′

(x



τ )]

T [x∗ − x̂
τ ] + γt‖f ′
(x
τ )‖∗[η
τ ]T [x∗ − x̂
τ ].

The last term here is ≤ −‖x̂
τ − x
τ‖ by (9), so that

W∗(ξ
+1
τ ) ≤ W∗(ξ
τ ) +

2
αγ

2
τL

2 − γt‖f ′
(x
τ )‖∗‖x̂
τ − x
τ‖+ γτ [f ′
(x
τ )]T [x∗ − x̂
τ ]
= W∗(ξ
τ ) +

2
αγ

2
τL

2 − γt‖f ′
(x
τ )‖∗‖x̂
τ − x
τ‖
+γτ [f

′

(x



τ )]

T [x∗ − x
τ ] + γτ [f ′
(x
τ )]T [x
τ − x̂
τ ].

The last term here is ≤ ‖f ′
(x
τ )‖∗‖x̂
τ − x
τ‖, whence

W∗(ξ
+1
τ ) ≤ W∗(ξ
τ ) +

2
αγ

2
τL

2 + γτ [f
′

(x



τ )]

T [x∗ − x
τ ]
≤ W∗(ξ
τ ) +

2
αγ

2
τL

2 + γτ [f
(x∗)− f
(x
τ )] (convexity of f
)
≤ W∗(ξ
τ ) +

2
αγ

2
τL

2 + γτ [f
(x∗)− f
(x1
τ )] + γτ [f
(x

1
τ )− f
(x
τ )].

Since the last term is ≤ 2kβα−1γτL
2 by (30c), we come to

W∗(ξ
+1
τ ) ≤W (ξ
τ )− γτ [f
(x1

τ )− f
(x∗)] + 2(k + 1)βα−1γ2
τL

2.

Adding up these inequalities for ! = 1, . . . , k, we conclude that

W∗(ξk+1
τ ) ≤W (ξ1τ )− γτ [f(x1

τ )− f(x∗)] + 2k(k + 1)βα−1γ2
τL

2.
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Since ξ1τ = ξτ and ξτ+1 = w′(W ′(ξk+1
τ )), the latter inequality, by (32), implies that

W∗(ξτ+1) ≤W∗(ξτ )− γτ [f(x1
τ )− f(x∗)] + 2k(k + 1)βα−1γ2

τL
2.(33)

Summing up the resulting inequalities over τ , t/2 ≤ τ ≤ t, and denoting by t̄ the
smallest value of τ in this range, we get[

min
t̄≤τ≤t

f(x1
τ )− f(x∗)

]
t∑

τ=t̄

γτ ≤
t∑

τ=t̄

γτ [f(x
1
τ )− f(x∗)]

≤ W∗(ξt̄)−W∗(ξt+1) + 2k(k + 1)βα−1L2
t∑

τ=t̄

γ2
τ .

(34)
Now, since W is the Legendre transformation of w|Y and x∗ ∈ X ⊂ Y , we have
W∗(ξt+1) = W (ξt+1) − ξTt+1x∗ ≥ −w(x∗), while, by construction, ξt̄ = w′(yt̄) for
certain yt̄ ∈ Y . It follows that W∗(ξt̄) = [w′(yt̄)]T yt̄ − w(yt̄)− [w′(yt̄)]Tx∗, whence

W∗(ξt̄)−W∗(ξt+1) ≤ w(x∗)−
[
w(yt̄) + [w′(yt̄)]T (x∗ − yt̄)

] ≤ Γ(w).

Thus, (34) implies that

min
t̄≤τ≤t

f(x1
τ )− f(x∗) ≤

Γ(w) + 2k(k + 1)βα−1L2
t∑

τ=t̄

γ2
τ

t∑
τ=t̄

γτ

.(35)

At the same time, from (30c) it follows that whenever t ≥ τ ≥ t/2, one has

|f̃τ − f(x1
τ )| ≤ 2k2βα−1L2 max

t/2≤τ≤t
γτ

[
f̃τ =

m∑

=1

f
(x


τ )

]

Taking into account the latter inequality, the inequality (30), and the rule for gener-
ating xt, we come to (26).

The remaining statements of Theorem 5.1 are straightforward consequences of
(26).

Remark 5.1. The theoretical efficiency estimate of OSMD stated by Theorem
5.1 is not better (in fact, it is larger, by a factor O(kβ1/2)) than the estimate stated
in Theorem 4.1 for gMD. The advantage of the OS techniques is a matter of practical
experience in several difficult application areas (e.g., training of neural nets [Ber97]
and tomography [Hud94]). In this regard, the role of Theorem 5.1 is to make the
approach theoretically legitimate.

5.1. OS implementation of MD1. From now on, we focus on problem (7)
with objective of the form (25), and assume that X is the standard n-dimensional
simplex ∆n. Our current goal is to complete the description of the associated OS
version of MD1. The only elements still missing are the calculation of the projector

π(x) ≡ πp(x) = argmin
y∈∆n

‖x− y‖p

of the separator η(x) and an explicit upper bound on the Lipschitz constant of this
projector w.r.t. ‖ · ‖p-norm, i.e., on the quantity

β(p) = sup
x,x′∈Rn,x �=x′

‖πp(x)− πp(x′)‖p
‖x− x′‖p .
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The required information is provided by the following result.
Proposition 5.2. Let 1 < p <∞. Then the following hold.
(i) The projector πp(x) is independent of p and is given componentwise by

(πp(x))j = (xj + λ(x))+, j = 1, . . . , n (a+ = max[0, a])(36)

where λ(x) is the unique root of the equation

n∑
j=1

(xj + λ)+ = 1.(37)

In particular, πp(x), for every p > 1, is also a ‖ · ‖1-projector of Rn onto ∆n:

πp(x) ∈ Argmin{‖x− y‖1 : y ∈ ∆n}.
The separator ηp(x),

‖ηp(x)‖q ≤ 1, ηTp (x)(x− y) ≥ ‖x− πp(x)‖p ∀y ∈ X
(
q = p

p−1

)
,

is readily given by πp(x):

x ∈ X ⇒ ηp(x) = 0;

x �∈ X ⇒ ηp(x) = [∇‖z‖p]z=x−πp(x) =
{

|δi|p−1 sign(δi)

‖δ‖p−1
p

}n

i=1
, δ = x− πp(x).(38)

(ii) β(p) ≤ 2.
Proof. 00. Relation (38) is evident, since ‖ · ‖p is continuously differentiable

outside of the origin for p > 1.
10. Let us verify first that πp(x) is indeed given by (36) and thus is independent

of p. There is nothing to prove when x ∈ ∆n (in this case the unique root of (37) is
λ(x) = 0, and (36) says correctly that πp(x) = x). Now let x �∈ ∆n. It is immediately
seen that λ(x) is well defined; let y be the vector with the coordinates given by the
right hand side of (36). This vector clearly belongs to ∆n, and the vector d = y − x
is as follows: there exists a nonempty subset J of the index set {1, . . . , n} such that
dj = λ(x) for j ∈ J and dj < λ(x) and yj = 0 for j �∈ J . In order to verify that y is

the ‖ · ‖p-projection of x onto ∆n, it suffices to prove that if δ =
∂‖z‖p

∂z |z=d, then the
linear form δTu attains its minimum over u ∈ ∆n at the point y. We have

δj = θ|dj |p−1 sign(dj), j = 1, . . . , n (θ > 0),

i.e., the same as for the vector d itself, for certain µ it holds δj = µ, j ∈ J and δj < µ,
yj = 0 for j �∈ J , so that the linear form δTu indeed attains its minimum over u ∈ ∆n

at the point y.
20. Now let us prove that β(p) ≤ 2. Observe that πp(x) is Lipschitz continuous

(since πp(·) is independent of p, and the ‖ · ‖2-projector onto a closed convex set is
Lipschitz continuous, with constant 1, w.r.t. ‖ · ‖2).

20.1. Let J(x) = {j | xj + λ(x) ≥ 0}, and let k(x) be the cardinality of J(x).
Since λ(x) solves (37), we have k(x) ≥ 1 and λ(x) = 1

k(x) [1 −
∑

j∈J(x) xj ]. Denoting

by e(x) the characteristic vector of the set J(x) and by E(x) the matrix Diag(e(x)),
we therefore get

πp(x) = E(x)x+
1

k(x)
e(x)− 1

k(x)
e(x)eT (x)x.(39)
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Let J be the set of all nonempty subsets of the index set {1, . . . , n}, and let X[J ] =
{x | J(x) = J} for J ∈ J . From (39) it follows that for every J ∈ J we have

x, y ∈ X[J ]⇒
‖πp(x)− πp(y)‖p ≤ ‖E(x)(x− y)‖p + 1

k(x)‖e(x)eT (x)(x− y)‖p
≤ ‖x− y‖p + 1

k(x)‖e(x)‖p‖e(x)‖ p
p−1 ‖x− y‖p

= 2‖x− y‖p.
(40)

20.2. Let

X = {x ∈ Rn : ∃(J ∈ J , j ≤ n) : Card(J)xj =
∑
j′∈J

xj′ − 1}.

Note that X is the union of finitely many hyperplanes. We claim that if x, y ∈ Rn are
such that the segment [x, y] does not intersect X , then J(x) = J(y) and, consequently
(see (40)),

‖πp(x)− πp(y)‖p ≤ 2‖x− y‖p.(41)

Indeed, assume that J(x) �= J(y), or, which is the same, the sets {j : xj ≥ −λ(x)}
and {j : yj ≥ −λ(y)} are distinct from each other. Since λ(·) clearly is continuous, it
follows that on the segment [x, y] there exists a point x̄ such that one of the coordinates
of the point equals to −λ(x̄), i.e., to 1

k(x̄) [
∑

j′∈J(x̄) x̄j′ − 1]. In other words, x̄ ∈ X ,
which contradicts the assumption.

20.3. Now let y, y′ ∈ Rn\X . Since X is a union of finitely many hyperplanes, the
segment [y, y′] can be partitioned into subsequent segments [y, y1], [y1, y2],. . . , [ys, y

′]
in such a way that the interior of every segment of the partition does not intersect
X . By the result of 20.2, πp(·) is Lipschitz continuous with constant 2 w.r.t. ‖ · ‖p on
the interiors of the above segments. Since πp(·), as we just mentioned, is continuous,
it follows that

‖πp(y)− πp(y′)‖p ≤ 2‖y − y′‖p.

The latter relation holds true for all pairs y, y′ ∈ Rn\X , i.e., for all pairs from a
set which is dense in Rn; since πp(·) is continuous, this relation in fact holds for all
y, y′.

Remark 5.2. The upper bound 2 on β(p) cannot be improved, unless one restricts
the range of values of p and/or values of n. Indeed, the ‖ · ‖p-distance from the origin
to a vertex of ∆n is 1, while the ‖ · ‖p-distance between the ‖ · ‖p-projections of these
points onto ∆n, i.e., the ‖ · ‖p-distance from a vertex to the barycenter of ∆n, is(
n−1
np +

(
n−1
n

)p)1/p
; when n is large and p is close to 1, the latter quantity is close

to 2.

We see that to project onto ∆n is easy: computation of π(x) requires, basically,
the same effort as ordering the coordinates of x, which can be done in time O(n lnn).

6. Implementation and testing. In this section, we present results of the MD
method as applied to the PET image reconstruction problem based on several sets of
simulated and real clinical data. We compare the results obtained by OSMD1 and
MD1. In addition, we compare the results of MD to those of the usual SD method.
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6.1. Implementation of the algorithms. In our experiments, we have worked
with several sets of tomography data. Each data set gives rise to a particular opti-
mization problem of the form of (8) which was solved by the MD scheme (in both the
usual and the OS versions). The setup for MD was

Y = {x | ‖x‖p ≤ 1} [⊃ ∆n], ‖ · ‖ = ‖ · ‖1, w(x) =
1

2
‖x‖2p, p = p(n) = 1 +

1

lnn
.

This setup differs from (15) – (20) by setting ‖·‖ = ‖·‖1 instead of ‖·‖ = ‖·‖p(n); with
the above p(n), this modification does not affect the theoretical efficiency estimate of
the algorithm.

The indicated setup defines the algorithm up to the stepsize policy. The latter
for the “no ordered subsets” version MD of the method was chosen as (cf. (22))

γt =
C

‖f ′(xτ )‖∞
√
lnn
√
t

with C = 0.03. (This value of the stepsize factor C was found to be the best one in
our preliminary experiments and was never changed afterwards.)

The OS version OSMD of the method uses 24-component representation (25) of
the objective, the components being partial sums of the terms in the sum (8), with
m/24 subsequent terms in every one of the partial sums. The stepsizes here were
chosen according to the rule (cf. (27))

γt =
C

24Lt
√
t
√
lnn

,

where Lt is a current guess for the ‖ · ‖1-Lipschitz constant of the objective; in our
implementation, this guess, starting with the second outer iteration, was defined as∑

1≤
≤24 ‖f ′
(x
t−1)‖∞. The stepsize factor C in OSMD was set to 0.3.
In our experiments we have used, as a “reference point,” the standard SD method

(23) (in the usual “no subsets”) version with the “theoretical” stepsize policy

γt =
C

‖f ′(xt)‖2
√
t
.

The stepsize factor C was tuned to get the best reconstruction possible; the resulting
“optimal value” turned out to be 0.006.

The starting point x0 in all our runs was the barycenter of the simplex ∆n.
Measuring quality of reconstructions. In medical imaging, the standard way to

evaluate the quality of a reconstruction algorithm is to apply the algorithm to simu-
lated data and to check how the resulting pictures reproduce important—for a partic-
ular application—elements of the true image. (In tomography, these elements could
be, e.g., small areas with high density of the tracer mimicking tumors.) In what fol-
lows we combine this, basically qualitative, way of evaluation with a quantitative one,
where the quality of the approximate solution xt to (8) yielded after t steps of the
method is measured by the quantity εt = f(xt)−min∆n f . Note that this quantity is
not “observable” (since the true optimal value f∗ = min∆n f is unknown). We can,
however, easily compute a lower bound on f∗. Assume, e.g., that we have run a “no
subset” version of the method and in the course of computations have computed the
values f(xt) and subgradients f ′(xt) of the objective at N search points xt, 1 ≤ t ≤ N .
Then we can build the standard piecewise-linear minorant fN (·) of our objective:

fN (x) = max
1≤t≤N

[
[f(xt)− xTt f ′(xt)] + xT f ′(xt)

] ≤ f(x).
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The quantity fN∗ ≡ minx∈∆n
fN (x) clearly is a lower bound on f∗, so that the “ob-

servable” quantities

ε̂t = f(xt)− fN∗ , 1 ≤ t ≤ N,

are upper bounds on the actual inaccuracies εt. In our experiments, the bound fN∗
was computed at the post-optimization phase according to the relation

fN∗ ≡ min
x∈∆n

max
t≤N

[
[f(xt)− xTt f ′(xt)] + xT f ′(xt)

]
= max

λ∈∆N

φ(λ),

φ(λ) ≡ min
x∈∆n

N∑
t=1

λt


[f(xt)− xTt f ′(xt)]︸ ︷︷ ︸

dt

+xT f ′(xt)


 =

N∑
t=1

λtdt +min
j≤n

[
N∑
t=1

λtf
′(xt)

]
j

,

which reduces the computation of fN∗ to maximizing a concave function φ(λ) of N
variables. In our experiments, the total number of iterations N was just 10, and there
was no difficulty in minimizing φ.

In the OS version of the method, the policy for bounding f∗ from below was
similar: here after N outer iterations we know the values and the subgradients of the
components f
, ! = 1, . . . , k, in decomposition (25) along the points x
t, t = 1, . . . , N .
This allows us to build a piecewise linear minorant

fN (x) =

k∑

=1

max
t=1,...,N

[
[f
(x



t)− [x
t]

T f ′
(x


t)] + x

T f ′
(x


t)
]

of the objective and to use, as the lower bound on f∗, the quantity

fN∗ ≡ min
x∈∆n

fN (x) = max
µ

{
ψ(µ) : µ = {µt
} ≥ 0,

∑
t
µt
 = 1, ! = 1, . . . , k

}
,

ψ(µ) ≡ min
x∈∆n

∑
t,


µt



[f
(x
t)− [x
t]

T f ′
(x


t)]︸ ︷︷ ︸

dt�

+xT f ′
(x


t)


= ∑

t,


µt
dt
 +min
j

[∑
t,


µt
f
′

(x



t)

]
j

.

6.2. Results. We tested the algorithms on five sets of tomography data; the
first four are simulated scans of phantoms (artificial bodies) obtained from the Eidolon
simulator [Zai98], [Zai99] of the PRT-1 PET-scanner. The phantoms (Cylinder, Utah,
Spheres, Jaszczak) are 3D cylinders with piecewise constant density of the tracer;
they are commonly used in tomography to test the effectiveness of scanners and
reconstruction methods (for more details, see [Thi99]). The fifth data set Brain is
obtained from the GE Advance PET-scanner in an actual brain study.

All experiments were carried out on the Intel Marlinspike Windows NT Work-
station (500 MHz 1Mb Cache Intel Pentium III Xeon processor, 2GB RAM). A
single outer iteration of OSMD takes nearly the same time as a single iteration
of MD, namely, approximately two minutes in each of the four “phantom” tests
(n = 515, 871,m = 3, 170, 304), and approximately 90 minutes in the Brain test
(n = 2, 763, 635,m ≈ 25, 000, 000). About 95% of the running time is used to com-
pute the value and the gradient of the objective.
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Table 1
Objective values along iterations (for OSMD, xt = x1t ).

Itr#
Cylinder

f(xt) × 10−8
Utah

f(xt) × 10−8
Spheres

f(xt) × 10−7
Jazszak

f(xt) × 10−7
Brain

f(xt) × 10−9
MD OSMD MD OSMD MD OSMD MD OSMD MD OSMD

1 −2.382 −2.382 −2.549 −2.549 −4.295 −4.295 −5.021 −5.021 −1.463 −1.463
2 −2.648 −2.725 −2.807 −2.902 −4.767 −5.132 −5.643 −5.908 −1.725 −1.848
3 −2.708 −2.732 −2.890 −2.926 −5.079 −5.191 −5.867 −5.968 −1.867 −2.001
4 −2.732 −2.732 −2.929 −2.939 −5.189 −5.200 −5.970 −6.000 −1.951 −2.012
5 −2.723 −2.734 −2.917 −2.938 −5.168 −5.212 −5.950 −5.988 −1.987 −2.015
6 −2.738 −2.738 −2.943 −2.937 −5.230 −5.216 −6.001 −6.005 −1.978 −2.015
7 −2.727 −2.740 −2.923 −2.936 −5.181 −5.205 −5.967 −5.991 −1.997 −2.016
8 −2.740 −2.742 −2.942 −2.936 −5.227 −5.218 −6.007 −6.005 −2.008 −2.016
9 −2.731 −2.737 −2.925 −2.937 −5.189 −5.212 −5.974 −5.994 −1.999 −2.016
10 −2.741 −2.741 −2.941 −2.937 −5.225 −5.205 −6.030 −6.002 −2.009 −2.016

Lower
bound

-2.754 -2.966 -5.283 -6.093 -2.050
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Fig. 1. Cylinder, progress in accuracy: plot of θ(t) =
f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗

]
. � = MD;

◦ = OSMD.

Our numerical results are summarized in Table 1.

Note that in OSMD there is no necessity to compute the true values of the ob-
jective along the iterates x
t, and an attempt to compute these values would increase
the execution time by factor k. For the sake of this paper we, however, did compute
the values f(x1

t ).

A more detailed description of the data and the results is as follows.

Cylinder (n = 515, 871,m = 3, 170, 304): This phantom is a cylinder with a
uniform density of the tracer. Figure 1 displays the “progress in accuracy” in the
experiment.

Utah (n = 515, 871,m = 3, 170, 304): This phantom (see Figure 2) is a pair of
coaxial cylinders with two vertical tubes in the inner cylinder, and the density of the
tracer is high between the cylinders and in one of the tubes, is low in the other tube,
and is moderate within the inner cylinder outside the tubes. The phantom allows
us to test the ability of an algorithm to reconstruct the borders between areas with
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Fig. 2. The Utah phantom.
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Fig. 3. Utah, progress in accuracy: plot of θ(t) =
f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗

]
. � = MD; ◦ = OSMD.

different densities of the tracer and the ratios of these densities.

Figure 3 displays the “progress in accuracy.”

In clinical applications, the yield of a reconstruction algorithm is a collection of
slices—pictures of different 2D cross-sections of the resulting 3D image. To give an
idea of the quality of our reconstructions, Figure 4 represents their slices (the cross-
sections of the outer cylinder by a plane orthogonal to its axis); in all our pictures,
white corresponds to high and black to low density of the tracer.

Spheres (n = 515, 871,m = 3, 170, 304): This phantom is a cylinder containing
six spheres of different radii centered at the mid-slice of the cylinder. The density of
the tracer is high within the spheres and low outside of them. The mid-slice of the
phantom is shown on Figure 5.
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Fig. 4. Utah, near-top slice of the reconstruction.

The phantom is used to test tumor detection capability, mainly for torso studies.
Figure 6 displays the “progress in accuracy.”
The mid-slices of our 3D reconstructions are shown on Figure 7. The Spheres

experiment clearly demonstrates the advantages of the ‖ · ‖1-MD as compared to the
usual SD. The best progress in accuracy we were able to get with SD was to reduce
in 10 iterations the initial residual in the objective by factor 5.26, which is 3.5 times
worse than the similar factor (18.51) for MD. What is much more dangerous from the
clinical viewpoint is that the reconstructions given by SD can be heavily affected by
artifacts, as can be seen from Figure 8.

Jaszczak (n = 515, 871,m = 3, 170, 304): This phantom is a cylinder containing a
number of vertical tubes of different cross-sections. The density of the tracer is high
outside of the tubes and is zero inside them. The mid-slice of the phantom is shown
on Figure 9.

The number and the sizes of tubes “recognized” by a reconstruction algorithm
allow us to quantify the resolution of the algorithm.

Figure 10 displays the “progress in accuracy.”
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Fig. 5. Mid-slice of the Spheres phantom.
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Fig. 6. Spheres, progress in accuracy: plot of θ(t) =
f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗

]
. ∆ = MD;

◦ = OSMD; ∗ = SD.
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Fig. 7. Spheres, mid-slice of the reconstructions.

Fig. 8. Spheres, mid-slice of the SD reconstruction after 10 iterations.
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Fig. 9. Mid-slice of the Jaszczak phantom.
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Fig. 10. Jaszczak, progress in accuracy: plot of θ(t) =
f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗

]
. � = MD;

◦ = OSMD.

The mid-slices of our 3D reconstructions are shown on Figure 11.

The Jaszczak experiment clearly demonstrates the advantages of OSMD as com-
pared to MD. We see that the quality of the image after just 2 outer iterations of
OSMD is at leas as good as the one obtained after 4 iterations of MD. Likewise, 4
iterations of OSMD result in an image comparable to the one obtained by MD in 10
iterations.

Brain (n = 2, 763, 635,m ≈ 25, 000, 000): This data is an actual clinical brain
study of a patient with Alzheimer’s disease.
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Fig. 11. Jaszczak, mid-slice of the reconstructions.

Figure 12 displays the ”progress in accuracy.”

The mid-slices of our 3D reconstructions are shown on Figure 13.

The Brain experiment again demonstrates the advantages of OSMD as compared
to MD. Indeed, OSMD produced in 4 iterations an image which is as good as the one
produced after 10 iterations of MD.

The quality of our reconstructions compares favorably with the one given by the
commercially used algorithms (based on FBP). As compared to the “golden standard”
of the new generation of 3D imaging algorithms—the so-called OSEM (ordered subset
expectation maximization) algorithm, OSMD is highly competitive both in image
quality and computational effort. Moreover, the OSMD algorithm possesses a solid
theoretical background (guaranteed efficiency estimates), which is not the case for
OSEM.

7. Conclusions. The outlined results of our research suggest the following con-
clusions:

1. Simple gradient-descent type optimization techniques, which seem to be the
only option when solving really large-scale (hundreds, thousands, and millions
of variables) convex optimization problems, can be quite successful and can
yield a solution of a satisfactory quality in few iterations.
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Fig. 12. Brain, progress in accuracy: plot of θ(t) =
f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗

]
. � = MD;

◦ = OSMD.

Fig. 13. Brain, near-mid slice of the reconstructions. (The top-left missing part is the area
affected by Alzheimer’s disease.)
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2. When implementing gradient-type optimization techniques, one should try to
adjust the method to the “geometry” of the problem. For such an adjustment,
the general MD scheme can be used.

3. Implementing gradient-descent–type techniques in an “incremental gradient”
fashion can accelerate significantly the solution process.

8. Appendix 1: Strong convexity of 1
2
‖ · ‖2

p. Here we reproduce the proof
of the following known fact (see, e.g., [Nem78]).

Lemma 8.1. Let 1 < p ≤ 2, and let w(x) = 1
2‖x‖2p : Rn → R. Then the function

w is α-strongly convex w.r.t. the norm ‖ · ‖p, with

α = p− 1.(42)

Proof. It is known [RW98, Propositions 12.54], 12.60 that the fact that a contin-
uously differentiable convex function v : Rn → R is α-strongly convex on Rn w.r.t.
a norm ‖ · ‖ is equivalent to the fact that the Legendre transformation

V (ξ) = max
x∈Rn

[ξTx− v(x)]

of v is continuously differentiable and satisfies the relation

V (ξ + η) ≤ V (ξ) + ηT∇V (ξ) +
1

2α
‖η‖2∗ ∀ξ, η ∈ Rn,(43)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. In our case, ‖ · ‖ = ‖ · ‖p and V (ξ) = 1
2‖ξ‖2q,

q = p/(p− 1) ≥ 2, so that V is twice continuously differentiable outside of the origin
(and, of course, is convex); therefore, in order to verify that (43) is satisfied with
α = p− 1, it suffices to prove that

ηT∇2V (ξ)η ≤ 1

p− 1
‖η‖2q(44)

for every ξ �= 0. By homogeneity, ∇2V (tξ) = ∇2V (ξ), t > 0, so that when proving
(44), we may assume that ‖ξ‖q = 1. We now have

ηT∇V (ξ) = ‖ξ‖2−qq

n∑
i=1

|ξ|q−1
i sign(ξi)ηi,

ηT∇2V (ξ)η = (2− q)‖ξ‖2−2q
q

(
n∑
i=1

|ξ|q−1
i sign(ξi)ηi

)2

+(q − 1)‖ξ‖2−qq

n∑
i=1

|ξi|q−2η2
i

≤ (q − 1)
n∑
i=1

|ξi|q−2η2
i (since q ≥ 2, ‖ξ‖q = 1)

≤ (q − 1)

(∑
i

|ξi|q
) q−2

q
(∑

i

|η|qi
) 2

q

(Hölder’s inequality)

≤ (q − 1)‖η‖2q,

so that (44) is satisfied, due to q − 1 = 1
p−1 .
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9. Appendix 2: Proof of Proposition 4.2.
Proof. 10. W.l.o.g., we can assume that n is a power of 2: n = 2k. It is

known that there exists an orthogonal basis u1, . . . , um in Rm, m = 2k−1, such that

|u
j | = 1 ∀ !, j = 1, . . . ,m. Let e
 = ( u�

−u� ) ∈ R2m = Rn, ! = 1, . . . ,m. Note that

10.A. ‖e
‖22 = n, ! = 1, . . . ,m;
10.B. [e
]T e


′
= 0, 1 ≤ ! < !′ ≤ m.

10.C.
∑n

t=1 e


t = 0, ! = 1, . . . ,m.

10.D. For every linear combination e[λ] =
∑m


=1 λ
e

 one has ei[λ] = −em+i[λ],

i = 1, . . . ,m, whence

‖e[λ]‖∞ = max
i≤n

ei[λ] = −min
i≤n

ei[λ].

20. Let δ > 0, 1 < k ≤ m, and let B be a method for solving problems from
F = F(L, n). Let us set

ε(B, k) = sup
f∈F

[
f(xk−1(B, f))−min

∆n

f

]
.

We are about to prove that

ε(B, k) ≥ L√
k
.(45)

Note that this inequality immediately implies the desired lower bound on the information-
based complexity of F .

From the viewpoint of the behavior of B at the first k − 1 steps (which is the
only issue we are interested in when proving (45)), we change nothing when assuming
that B, as applied to a problem from F , performs exactly k steps; the search points
generated by the method at the first k − 1 steps are as given by the search rules
specifying the method, and the last search point xk is the kth approximate solution
generated by B as applied to the problem. Thus, from now on we assume that the
point xk−1(B, f) in (45) is the kst search point generated by B as applied to f .

30. To prove (45), we intend to construct a “difficult” for B objective f as the
pointwise maximum of k linear functions with orthogonal descent directions chosen
from the set {±!1, . . . ,±!m}. These linear functions will be successively constructed
according to the adversary principle, i.e., when B requires evaluation at search point
xi, the ith linear function is defined such that little progress is achieved while con-
sistency with previous information is maintained. The construction is as follows. Let
x1 be the first search point of the method (this point is problem-independent), let

!1 ∈ Argmax
1≤
≤k

|xT1 e
|, σ1 = sign(xT1 e

1)

[
sign(s) =

{
1, s ≥ 0
−1, s < 0

]
,

f1(x) = Lσ1x
T e
1 − δ.

Suppose we have already defined x1, . . . , xp, !1, . . . , !p, f
1(·), . . . , fp(·), σ1, . . . , σp ∈

{−1; 1} in such a way that
(ap) 1 ≤ !i ≤ k and the indices !1, . . . , !p are distinct from each other;

(bp) f
i(x) = maxj=1,...,i[Lσjx

T e
j − jδ], i = 1, . . . , p;
(cp) x1, . . . , xi is the initial i-element segment of the trajectory (the sequence of

search points) of B as applied to f i(·);
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(dp) σix
T
i e


i = max{|xTi e
| | ! ∈ {1, . . . , k}\{!1, . . . , !i−1}}, i = 1, . . . , p.
Note that with our initialization conditions (a1)–(d1) do hold.

In the case of p < k, let us extend the collection we have built to a similar collec-
tion of (p+1)-element tuples; to this end we define xp+1 as the (p+1)th search point
of B as applied to fp(·), !p+1 as the index from the set Ip = {1, . . . , k}\{!1, . . . , !p}
which maximizes the quantities xTp+1e


 over ! ∈ Ip, and σp+1 as sign(xTp+1e

p+1), and

finally set

fp+1(x) = max{fp(x), Lσp+1x
T e
p+1 − (p+ 1)δ}.

It is easily seen that when 1 ≤ i ≤ j ≤ p + 1, one has f j(x) = f i(x) in a
neighborhood of xi; with this observation, (ap+1)–(dp+1) immediately follow from
(ap)–(dp) and our construction.

After k steps of the aforementioned construction, we get a function

f(x) ≡ fk(x) = max
1≤i≤k

[Lσix
T e
i − iδ]

such that the trajectory of B on f is x1, .., xk, so that xk is the result of B as applied
to f . Observe that f ∈ F(L, n), due to ‖e
‖∞ = 1. In view of (dp), we have

f(xk) ≥ −kδ.(46)

On the other hand, let us bound from above the minimum value of f over ∆n. We
have

f(x) = max
i=1,...,k

[Lσix
T e
i − iδ] ≤ g(x) ≡ max

i=1,...,k
Lσix

T e
i

and therefore

min
x∈∆n

f(x) ≤ min
x∈∆n

g(x) = L min
x∈∆n

max
i≤k

xT [σie

i ]

= L min
x∈∆n

max
λ∈∆k

xT

[
k∑
i=1

λiσie

i

]
︸ ︷︷ ︸

ẽ[λ]

= L max
λ∈∆k

min
x∈∆n

xT ẽ[λ] = L max
λ∈∆k

min
i=1,...,n

ẽi[λ]

= L max
λ∈∆k

[−‖ẽi[λ]‖∞] (see 10.D)

= −L min
λ∈∆k

‖ẽ[λ]‖∞ ≤ −Ln−1/2 min
λ∈∆k

‖ẽ[λ]‖2

= −Ln−1/2 min
λ∈∆k

√
k∑
i=1

λ2
iσ

2
i ‖e
i‖22 (see 10.B)

= −Ln−1/2 min
λ∈∆k

√
k∑
i=1

λ2
in (see 10.A)

≤ −Lk−1/2.

We see that minx∈∆n f(x) ≤ −Lk−1/2, which combines with (46) to yield that

f(xk)− min
x∈∆n

f ≥ Lk−1/2 − kδ.

Since f ∈ F , xk = xk−1(B, f), and δ > 0 is arbitrary, (45) follows.
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Abstract. We consider a class of subgradient methods for minimizing a convex function that
consists of the sum of a large number of component functions. This type of minimization arises in a
dual context from Lagrangian relaxation of the coupling constraints of large scale separable problems.
The idea is to perform the subgradient iteration incrementally, by sequentially taking steps along
the subgradients of the component functions, with intermediate adjustment of the variables after
processing each component function. This incremental approach has been very successful in solving
large differentiable least squares problems, such as those arising in the training of neural networks,
and it has resulted in a much better practical rate of convergence than the steepest descent method.

In this paper, we establish the convergence properties of a number of variants of incremental
subgradient methods, including some that are stochastic. Based on the analysis and computational
experiments, the methods appear very promising and effective for important classes of large problems.
A particularly interesting discovery is that by randomizing the order of selection of component
functions for iteration, the convergence rate is substantially improved.

Key words. nondifferentiable optimization, convex programming, incremental subgradient
methods, stochastic subgradient methods
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PII. S1052623499362111

1. Introduction. Throughout this paper, we focus on the problem

minimize f(x) =

m∑
i=1

fi(x)

subject to x ∈ X,
(1.1)

where fi : �n → � are convex functions, and X is a nonempty, closed, and convex
subset of �n. We are primarily interested in the case where f is nondifferentiable. A
special case of particular interest is when f is the dual function of a primal separable
combinatorial problem of the form

maximize

m∑
i=1

c′iyi

subject to yi ∈ Yi, i = 1, . . . ,m,

m∑
i=1

Aiyi ≥ b,

where prime denotes transposition, ci are given vectors in �p, Yi is a given finite
subset of �p, Ai are given n × p matrices, and b is a given vector in �n. Then, by
viewing x as a Lagrange multiplier vector for the coupling constraint

∑m
i=1Aiyi ≥ b,

we obtain a dual problem of the form (1.1), where

fi(x) = max
yi∈Yi

(ci +A
′
ix)

′yi − β′ix, i = 1, . . . ,m,(1.2)
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βi are vectors in �n such that β1 + · · · + βm = b, and X is the positive orthant
{x ∈ �n | x ≥ 0}. It is well known that solving dual problems of the type above,
possibly in a branch-and-bound context, is one of the most important and challenging
algorithmic areas of optimization.

A principal method for solving problem (1.1) is the subgradient method

xk+1 = PX
[
xk − αk

m∑
i=1

di,k

]
,(1.3)

where di,k is a subgradient of fi at xk, αk is a positive stepsize, and PX denotes
projection on the set X. There is an extensive theory for this method (see, e.g.,
the textbooks by Dem’yanov and Vasil’ev [DeV85], Shor [Sho85], Minoux [Min86],
Polyak [Pol87], Hiriart-Urruty and Lemaréchal [HiL93], and Bertsekas [Ber99]). In
many important applications, the set X is simple enough so that the projection can
be easily implemented. In particular, for the special case of the dual problem (1.1),
(1.2), the set X is the positive orthant and projecting on X is not expensive.

The incremental subgradient method is similar to the standard subgradient method
(1.3). The main difference is that at each iteration, x is changed incrementally,
through a sequence of m steps. Each step is a subgradient iteration for a single
component function fi, and there is one step per component function. Thus, an iter-
ation can be viewed as a cycle of m subiterations. If xk is the vector obtained after
k cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k,(1.4)

where ψm,k is obtained after the m steps

ψi,k = PX [ψi−1,k − αkgi,k] , gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m,(1.5)

starting with

ψ0,k = xk,(1.6)

where ∂fi(ψi−1,k) denotes the subdifferential (set of all subgradients) of fi at the
point ψi−1,k. The updates described by (1.5) are referred to as the subiterations of
the kth cycle.

Incremental gradient methods for differentiable unconstrained problems have a
long tradition, most notably in the training of neural networks, where they are known
as backpropagation methods. They are related to the Widrow–Hoff algorithm [WiH60]
and to stochastic gradient/stochastic approximation methods, and they are supported
by several recent convergence analyses (Luo [Luo91], Gaivoronski [Gai94], Grippo
[Gri94], Luo and Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and
Tsitsiklis [BeT96], Bertsekas [Ber97], Tseng [Tse98], Bertsekas and Tsitsiklis [BeT00]).
It has been experimentally observed that incremental gradient methods often con-
verge much faster than the steepest descent method when far from the eventual limit.
However, near convergence, they typically converge slowly because they require a di-
minishing stepsize (e.g., αk = O(1/k)) for convergence. If αk is instead taken to be a
small enough constant, “convergence” to a limit cycle occurs, as first shown by Luo
[Luo91]. In the special case where all the stationary points of f are also stationary
points of all the component functions fi, the limit cycle typically reduces to a single
point and convergence is obtained; this is the subject of the paper by Solodov [Sol98].
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In general, however, the limit cycle consists of m points, each corresponding to one
of the subiterations of (1.5), and these m points are usually distinct.

Incremental subgradient methods exhibit behavior similar to that of incremental
gradient methods and are similarly motivated by rate of convergence considerations.
They were studied first by Kibardin [Kib80] and more recently by Solodov and Za-
vriev [SoZ98], Nedić and Bertsekas [NeB99], [NeB00], and Ben-Tal, Margalit, and
Nemirovski [BMN00]. An asynchronous parallel version of the incremental subgra-
dient method was proposed by Nedić, Bertsekas, and Borkar [NBB00]. Incremental
subgradient methods that are somewhat different from the ones in this paper have
been proposed by Kaskavelis and Caramanis [KaC98] and Zhao, Luh, and Wang
[ZLW99], while a parallel implementation of related methods was proposed by Kiwiel
and Lindberg [KiL00]. These methods share with ours the characteristic of computing
a subgradient of only one component fi per iteration, but differ from ours in that the
direction used in an iteration is the sum of the (approximate) subgradients of all the
components fi.

In this paper, we study the convergence properties of the incremental subgradient
method for three types of stepsize rules: a constant stepsize rule, a diminishing step-
size rule (where αk → 0), and a dynamic stepsize rule (where αk is based on exact
or approximate knowledge of the optimal cost function value). Earlier convergence
analyses of incremental subgradient methods have focused only on the diminishing
stepsize rule. Some understanding into the convergence process is gained by viewing
the incremental subgradient method as an approximate subgradient method (or a
subgradient method with errors). In particular, we have for all z ∈ �n(

m∑
i=1

gi,k

)′
(z − xk) =

m∑
i=1

g′i,k(z − ψi−1,k) +

m∑
i=1

g′i,k(ψi−1,k − xk)

≤
m∑
i=1

(
fi(z)− fi(ψi−1,k)

)
+

m∑
i=1

||gi,k|| · ||ψi−1,k − xk||

= f(z)− f(xk) +
m∑
i=2

(
fi(xk)− fi(ψi−1,k)

)

+

m∑
i=2

||gi,k|| · ||ψi−1,k − xk||

≤ f(z)− f(xk) +
m∑
i=2

(||g̃i,k||+ ||gi,k||)||ψi−1,k − xk||

≤ f(z)− f(xk) +
m∑
i=2

(||g̃i,k||+ ||gi,k||)

αk i−1∑

j=1

‖g̃i,k‖



≤ f(z)− f(xk) + εk,
where g̃i,k ∈ ∂fi(xk), gi,k ∈ ∂fi(ψi−1,k), and

εk = 2αk

m∑
i=2

Ci


i−1∑
j=1

Cj


 , Ci = sup

k≥0

{||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}
.

Thus if the subgradients g̃i,k, gi,k are bounded so that the Ci are finite, εk is bounded
and diminishes to zero if αk → 0. It follows that if a diminishing stepsize rule (αk → 0)
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is used and some additional conditions hold, such as
∑∞
k=0 αk = ∞, some of the

convergence properties of the incremental method can be derived from known results
on ε-subgradient methods (see, e.g., Dem’yanov and Vasil’ev [DeV85], Polyak [Pol87,
p. 144], Correa and Lemaréchal [CoL93], Hiriart-Urruty and Lemaréchal [HiL93], and
Bertsekas [Ber99]). However, the connection with ε-subgradient methods is not helpful
for the convergence analysis under the other stepsize rules that we consider (constant
and dynamic), because for these rules αk need not tend to 0, and the same is true
for εk. As a consequence, there are no convergence results for ε-subgradient methods
under these rules, which can be applied to our analysis.

We also propose a randomized version of the incremental subgradient method
(1.4)–(1.6), where the component function fi in (1.5) is chosen randomly among the
components f1, . . ., fm, according to a uniform distribution. This method may be
viewed as a stochastic subgradient method for the problem

min
x∈X

Eω
{
fω(x)

}
,

where ω is a random variable that is uniformly distributed over the index set {1, . . . ,m}.
Thus some of the insights and analysis from the stochastic subgradient methods can
be brought to bear (see e.g., Ermoliev [Erm69], [Erm76], [Erm83], [Erm88], Shor
[Sho85, p. 46], and Bertsekas and Tsitsiklis [BeT96]). Nonetheless, the idea of using
randomization in the context of deterministic nondifferentiable optimization is origi-
nal and much of our analysis, particularly the part that relates to the constant and
the dynamic stepsize rules in section 3, is also original. An important conclusion,
based on Propositions 2.1 and 3.1, is that randomization has a significant favorable
effect on the method’s performance; see also the discussion in section 3 and Nedić and
Bertsekas [NeB99], [NeB00] which provide convergence rate estimates.

The paper is organized as follows. In the next section, we analyze the conver-
gence of the incremental subgradient method under the three types of stepsize rules
mentioned above. In section 3, we establish the convergence properties of randomized
versions of the method. Finally, in section 4, we present some computational results.
In particular, we compare the performance of the ordinary subgradient method with
that of the incremental subgradient method, and we compare different order rules for
processing the component functions fi within a cycle. The computational results in-
dicate a substantial performance advantage for the randomized processing order over
the fixed order. We trace the reason for this to a substantially better error estimate
for the randomized order (compare Propositions 2.1 and 3.1).

2. Convergence analysis of the incremental subgradient method. Through-
out this paper, we use the notation

f∗ = inf
x∈X

f(x), X∗ = {x ∈ X | f(x) = f∗}, dist(x,X∗) = inf
x∗∈X∗

‖x− x∗‖,

where ‖ · ‖ denotes the standard Euclidean norm. Our convergence results in this
section use the following assumption.

Assumption 2.1 (subgradient boundedness). There exist scalars C1, . . . , Cm such
that

||g|| ≤ Ci ∀ g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k), i = 1, . . . ,m, k = 0, 1, . . . .
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We note that Assumption 2.1 is satisfied if each fi is polyhedral (i.e., fi is the
pointwise maximum of a finite number of affine functions). In particular, Assumption
2.1 holds for the dual problem (1.1), (1.2), where for each i and all x the set of
subgradients ∂fi(x) is the convex hull of a finite number of points. More generally,
since each component fi is real-valued and convex over the entire space �n, the
subdifferential ∂fi(x) is nonempty and compact for all x and i. If the set X is
compact or the sequences {ψi,k} are bounded, then Assumption 2.1 is satisfied since
the set ∪x∈B∂fi(x) is bounded for any bounded set B (see, e.g., Bertsekas [Ber99,
Prop. B.24]).

The following lemma gives an estimate that will be used repeatedly in the subse-
quent convergence analysis.

Lemma 2.1. Let Assumption 2.1 hold and let {xk} be the sequence generated by
the incremental subgradient method (1.4)–(1.6). Then for all y ∈ X and k ≥ 0, we
have

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ α2

kC
2,(2.1)

where C =
∑m
i=1 Ci and Ci is as in Assumption 2.1.

Proof. Using the nonexpansion property of the projection, the subgradient bound-
edness (cf. Assumption 2.1), and the subgradient inequality for each component func-
tion fi, we obtain for all y ∈ X

||ψi,k − y||2 = ||PX [ψi−1,k − αkgi,k]− y||2
≤ ||ψi−1,k − αkgi,k − y||2
≤ ||ψi−1,k − y||2 − 2αkg

′
i,k(ψi−1,k − y) + α2

kC
2
i

≤ ||ψi−1,k − y||2 − 2αk
(
fi(ψi−1,k)− fi(y)

)
+ α2

kC
2
i ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all y ∈ X and k

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

m∑
i=1

(
fi(ψi−1,k)− fi(y)

)
+ α2

k

m∑
i=1

C2
i

= ||xk − y||2 − 2αk

(
f(xk)− f(y) +

m∑
i=1

(
fi(ψi−1,k)− fi(xk)

))

+ α2
k

m∑
i=1

C2
i .

By strengthening the above inequality, we have for all y ∈ X and k

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ 2αk

m∑
i=1

Ci||ψi−1,k − xk||+ α2
k

m∑
i=1

C2
i

≤ ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ α2

k


2

m∑
i=2

Ci


i−1∑
j=1

Cj


+

m∑
i=1

C2
i




= ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ α2

k

(
m∑
i=1

Ci

)2

= ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ α2

kC
2,
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where in the first inequality we use the relation

fi(xk)− fi(ψi−1,k) ≤ ||g̃i,k|| · ||ψi−1,k − xk|| ≤ Ci||ψi−1,k − xk||
with g̃i,k ∈ ∂fi(xk), and in the second inequality we use the relation

||ψi,k − xk|| ≤ αk
i∑

j=1

Cj , i = 1, . . . ,m, k ≥ 0,

which follows from (1.4)–(1.6) and Assumption 2.1.
Among other things, Lemma 2.1 guarantees that given the current iterate xk and

some other point y ∈ X with lower cost than xk, the next iterate xk+1 will be closer to
y than xk, provided the stepsize αk is sufficiently small (less than 2

(
f(xk)−f(y)

)
/C2).

This fact is used repeatedly, with a variety of choices for y, in what follows.

2.0.1. Constant stepsize rule. We first consider the case of a constant stepsize
rule.

Proposition 2.1. Let Assumption 2.1 hold. Then, for the sequence {xk} gener-
ated by the incremental method (1.4)–(1.6) with the stepsize αk fixed to some positive
constant α, we have the following:

(a) If f∗ = −∞, then

lim inf
k→∞

f(xk) = −∞.
(b) If f∗ > −∞, then

lim inf
k→∞

f(xk) ≤ f∗ + αC2

2
,

where C =
∑m
i=1 Ci.

Proof. We prove (a) and (b) simultaneously. If the result does not hold, there
must exist an ε > 0 such that

lim inf
k→∞

f(xk) > f
∗ +

αC2

2
+ 2ε.

Let ŷ ∈ X be such that

lim inf
k→∞

f(xk) ≥ f(ŷ) + αC2

2
+ 2ε,

and let k0 be large enough so that for all k ≥ k0 we have

f(xk) ≥ lim inf
k→∞

f(xk)− ε.
By adding the preceding two relations, we obtain for all k ≥ k0

f(xk)− f(ŷ) ≥ αC
2

2
+ ε.

Using Lemma 2.1 for the case where y = ŷ together with the above relation, we obtain
for all k ≥ k0,

||xk+1 − ŷ||2 ≤ ||xk − ŷ||2 − 2αε.

Thus we have

||xk+1−ŷ||2 ≤ ||xk−ŷ||2−2αε ≤ ||xk−1−ŷ||2−4αε ≤ · · · ≤ ||xk0−ŷ||2−2(k+1−k0)αε,
which cannot hold for k sufficiently large, a contradiction.
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2.0.2. Diminishing stepsize rule. The next result is the analog of a classical
convergence result for the ordinary subgradient method of Ermoliev [Erm66] (see also
Polyak [Pol67]).

Proposition 2.2. Let Assumption 2.1 hold and assume that the stepsize αk is
such that

αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk =∞.

Then, for the sequence {xk} generated by the incremental method (1.4)–(1.6), we have

lim inf
k→∞

f(xk) = f
∗.

Proof. The proof uses Lemma 2.1 and Proposition 1.2 of Correa and Lemaréchal
[CoL93].

If we assume in addition that X∗ is nonempty and bounded, Proposition 2.2 can
be strengthened as in the next proposition. This proposition is similar to a result
of Solodov and Zavriev [SoZ98], which was proved by different methods under the
stronger assumption that X is a compact set.

Proposition 2.3. Let Assumption 2.1 hold, and let X∗ be nonempty and bounded.
Also, assume that the stepsize αk is such that

αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk =∞.

Then, for the sequence {xk} generated by the incremental subgradient method (1.4)–
(1.6), we have

lim
k→∞

dist(xk, X
∗) = 0, lim

k→∞
f(xk) = f

∗.

Proof. The idea is to show that once xk enters a certain level set, it cannot get
too far away from that set. Fix a γ > 0, and let k0 be such that γ ≥ αkC2 for all
k ≥ k0. We distinguish two cases:

Case 1. f(xk) > f
∗ + γ. From Lemma 2.1 we obtain for all x∗ ∈ X∗ and all k

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2αk
(
f(xk)− f∗

)
+ α2

kC
2.(2.2)

Hence

||xk+1 − x∗||2 < ||xk − x∗||2 − 2γαk + α
2
kC

2

= ||xk − x∗||2 − αk(2γ − αkC2)

≤ ||xk − x∗||2 − αkγ,
so that

dist(xk+1, X
∗) ≤ dist(xk, X∗)− αkγ.(2.3)

Case 2. f(xk) ≤ f∗ + γ. This case must occur for infinitely many k, in view of
(2.3) and the fact

∑∞
k=0 αk =∞. Since xk belongs to the level set

Lγ =
{
y ∈ X | f(y) ≤ f∗ + γ},
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which is bounded (in view of the boundedness of X∗), we have

dist(xk, X
∗) ≤ d(γ) <∞,(2.4)

where we denote

d(γ) = max
y∈Lγ

dist(y,X∗).

From the iteration (1.4)–(1.6), we have ||xk+1 − xk|| ≤ αkC, so for all x∗ ∈ X∗

||xk+1 − x∗|| ≤ ||xk − x∗||+ ||xk+1 − xk|| ≤ ||xk − x∗||+ αkC.

By taking the minimum over x∗ ∈ X∗ and by using (2.4), we obtain

dist(xk+1, X
∗) ≤ d(γ) + αkC.(2.5)

Combining (2.3), which holds when f(xk) > f
∗ + γ (Case 1 above), with (2.5),

which holds for the infinitely many k for which f(xk) ≤ f∗ + γ (Case 2 above), we
see that

dist(xk, X
∗) ≤ d(γ) + αkC ∀ k ≥ k0.

Therefore, since αk → 0,

lim sup
k→∞

dist(xk, X
∗) ≤ d(γ) ∀ γ > 0.

In view of the continuity of f and the compactness of its level sets, we have limγ→0 d(γ)
= 0, so that limk→∞ dist(xk, X∗) = 0. This relation also implies that limk→∞ f(xk) =
f∗.

The assumption that X∗ is nonempty and bounded holds, for example, if all
infx∈X fi(x) are finite and at least one of the components fi has bounded level sets (see
Rockafellar [Roc 70, Theorem 9.3]. Proposition 2.3 does not guarantee convergence
of the entire sequence {xk}. With slightly different assumptions that include an
additional mild restriction on the stepsize sequence, this convergence is guaranteed,
as indicated in the following proposition.

Proposition 2.4. Let Assumption 2.1 hold and let the optimal set X∗ be
nonempty. Also assume that the stepsize αk is such that

αk > 0,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

Then the sequence {xk} generated by the incremental subgradient method (1.4)–(1.6)
converges to some optimal solution.

Proof. Use Lemma 2.1 with y ∈ X∗ and Proposition 1.3 of Correa and Lemaréchal
[CoL93].

In Propositions 2.2–2.4, we use the same stepsize αk in all subiterations of a cycle.
As shown by Kibardin in [Kib80] and by Nedić, Bertsekas, and Borkar in [NBB00]
(for a more general incremental method), the convergence can be preserved if we vary
the stepsize αk within each cycle, provided that the variations of αk in the cycles are
suitably small.
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2.0.3. Dynamic stepsize rule for known f∗. The preceding results apply to
the constant and the diminishing stepsize choices. An interesting alternative for the
ordinary subgradient method is the dynamic stepsize rule

αk = γk
f(xk)− f∗
||gk||2 ,

with gk ∈ ∂f(xk), 0 < γ ≤ γk ≤ γ < 2, introduced by Polyak in [Pol69] (see
also discussions in Shor [Sho85], Brännlund [Brä93], and Bertsekas [Ber99]). For the
incremental method, to avoid the calculation of gk we propose a variant of this stepsize
where ||gk|| is replaced by an upper bound C:

αk = γk
f(xk)− f∗

C2
, 0 < γ ≤ γk ≤ γ < 2,(2.6)

where

C =

m∑
i=1

Ci(2.7)

and

Ci ≥ sup
k≥0

{||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}
, i = 1, . . . ,m.(2.8)

For this choice of stepsize we must be able to calculate suitable upper bounds Ci,
which can be done, for example, when the components fi are polyhedral.

We first consider the case where f∗ is known. We later modify the stepsize, so
that f∗ can be replaced by a dynamically updated estimate.

Proposition 2.5. Let Assumption 2.1 hold and let the optimal set X∗ be
nonempty. Then the sequence {xk} generated by the incremental subgradient method
(1.4)–(1.6) with the dynamic stepsize rule (2.6)–(2.8) converges to some optimal solu-
tion.

Proof. From Lemma 2.1 with y = x∗ ∈ X∗, we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2αk
(
f(xk)− f∗

)
+ α2

kC
2 ∀ x∗ ∈ X∗, k ≥ 0,

and by using the definition of αk (cf. (2.6)), we obtain

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − γ(2− γ)
(
f(xk)− f∗

)2
C2

∀ x∗ ∈ X∗, k ≥ 0.

Therefore {xk} is bounded. Furthermore, f(xk)→ f∗, since otherwise we would have
||xk+1−x∗|| ≤ ||xk−x∗||−ε for some suitably small ε > 0 and infinitely many k. Hence
for any limit point x of {xk}, we have x ∈ X∗, and since the sequence {||xk − x∗||} is
decreasing, it converges to ||x− x∗|| for every x∗ ∈ X∗. If there are two distinct limit
points x̃ and x of {xk}, we must have x̃ ∈ X∗, x ∈ X∗, and ||x̃− x∗|| = ||x− x∗|| for
all x∗ ∈ X∗, which is possible only if x̃ = x.

2.0.4. Dynamic stepsize rule for unknown f∗. In most practical problems
the value f∗ is not known. In this case we may modify the dynamic stepsize (2.6) by
replacing f∗ with an estimate. This leads to the stepsize rule

αk = γk
f(xk)− f lev

k

C2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0,(2.9)
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where C is defined by (2.7), (2.8), and f lev
k is an estimate of f∗.

We discuss two procedures for updating f lev
k . In both procedures f lev

k is equal
to the best function value min0≤j≤k f(xj) achieved up to the kth iteration minus a
positive amount δk which is adjusted based on the algorithm’s progress. The first ad-
justment procedure (new even when specialized to the ordinary subgradient method)
is simple but is guaranteed to yield only a δ-optimal objective function value with δ
positive and arbitrarily small (unless f∗ = −∞ in which case the procedure yields the
optimal function value). The second adjustment procedure for f lev

k is more complex
but is guaranteed to yield the optimal value f∗ in the limit. This procedure is based
on the ideas and algorithms of Brännlund [Brä93] and Goffin and Kiwiel [GoK99].

In the first adjustment procedure, f lev
k is given by

f lev
k = min

0≤j≤k
f(xj)− δk,(2.10)

and δk is updated according to

δk+1 =

{
ρδk if f(xk+1) ≤ f lev

k ,

max
{
βδk, δ

}
if f(xk+1) > f

lev
k ,

(2.11)

where δ0, δ, β, and ρ are fixed positive constants with β < 1 and ρ ≥ 1. Thus in this
procedure we essentially “aspire” to reach a target level that is smaller by δk over the
best value achieved thus far. Whenever the target level is achieved, we increase δk
or we keep it at the same value depending on the choice of ρ. If the target level is
not attained at a given iteration, δk is reduced up to a threshold δ. This threshold
guarantees that the stepsize αk of (2.9) is bounded away from zero, since from (2.10)
we have f(xk)− f lev

k ≥ δ and hence

αk ≥ γ δ

C2
.

As a result, the method’s behavior resembles the one with a constant stepsize (cf.
Proposition 2.1), as indicated by the following proposition.

Proposition 2.6. Let Assumption 2.1 hold. Then, for the sequence {xk} gen-
erated by the incremental method (1.4)–(1.6) and the dynamic stepsize rule (2.9) with
the adjustment procedure (2.10)–(2.11), we have

(a) If f∗ = −∞, then

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then

inf
k≥0

f(xk) ≤ f∗ + δ.

Proof. To arrive at a contradiction, assume that

inf
k≥0

f(xk) > f
∗ + δ.(2.12)

Each time the target level is attained (i.e., f(xk) ≤ f lev
k−1), the current best function

value min0≤j≤k f(xj) decreases by at least δ (cf. (2.10) and (2.11)), so in view of
(2.12), the target value can be attained only a finite number of times. From (2.11) it
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follows that after finitely many iterations, δk is decreased to the threshold value and
remains at that value for all subsequent iterations; i.e., there is an index k such that

δk = δ, ∀ k ≥ k.(2.13)

In view of (2.12), there exists y ∈ X such that infk≥0 f(xk) − δ ≥ f(y). From
(2.10) and (2.13), we have

f lev
k = min

0≤j≤k
f(xj)− δ ≥ inf

k≥0
f(xk)− δ ≥ f(y) ∀ k ≥ k,

so that

αk
(
f(xk)− f(y)

) ≥ αk(f(xk)− f lev
k

)
= γk

(
f(xk)− f lev

k

C

)2

∀ k ≥ k.

By using Lemma 2.1 with y = y, we have

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk
(
f(xk)− f(y)

)
+ α2

kC
2 ∀ k ≥ 0.

By combining the preceding two relations and the definition of αk (cf. (2.9)), we
obtain

||xk+1 − y||2 ≤ ||xk − y||2 − 2γk

(
f(xk)− f lev

k

C

)2

+ γ2
k

(
f(xk)− f lev

k

C

)2

= ||xk − y||2 − γk(2− γk)
(
f(xk)− f lev

k

C

)2

≤ ||xk − y||2 − γ(2− γ) δ
2

C2
∀ k ≥ k,

where the last inequality follows from the facts γk ∈ [γ, γ] and f(xk) − f lev
k ≥ δ for

all k. By summing the above inequalities over k, we have

||xk − y||2 ≤ ||xk − y||2 − (k − k)γ(2− γ) δ
2

C2
∀ k ≥ k,

which cannot hold for large k—a contradiction.
When m = 1, the incremental subgradient method (1.4)–(1.6) becomes the ordi-

nary subgradient method

xk+1 = PX [xk − αkgk] ∀ k ≥ 0.

The dynamic stepsize rule (2.9) using the adjustment procedure of (2.10)–(2.11) (with
C = ||gk||), and the convergence result of Proposition 2.6 are new to our knowledge
for this method.

We now consider the second procedure for adjusting f lev
k , which guarantees that

f lev
k → f∗, and convergence of the associated method to the optimum. In this proce-
dure we reduce δk whenever the method “travels” for a long distance without reaching
the corresponding target level.

Path-Based Incremental Target Level Algorithm.
Step 0 (Initialization): Select x0, δ0 > 0, and B > 0. Set σ0 = 0, f rec

−1 =∞. Set
k = 0, l = 0, and k(l) = 0 [k(l) will denote the iteration number when the lth update
of f lev

k occurs].
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Step 1 (Function evaluation): Calculate f(xk). If f(xk) < f
rec
k−1, then set f rec

k =
f(xk). Otherwise set f

rec
k = f rec

k−1 [so that f rec
k keeps the record of the smallest value

attained by the iterates that are generated so far, i.e., f rec
k = min0≤j≤k f(xj)].

Step 2 (Sufficient descent): If f(xk) ≤ f rec
k(l) − δl

2 , then set k(l + 1) = k, σk = 0,
δl+1 = δl, increase l by 1, and go to Step 4.

Step 3 (Oscillation detection): If σk > B, then set k(l+1) = k, σk = 0, δl+1 =
δl
2 ,

and increase l by 1.
Step 4 (Iterate update): Set f lev

k = f rec
k(l) − δl. Select γk ∈ [γ, γ] and calculate

xk+1 via (1.4)–(1.6) with the stepsize (2.9).
Step 5 (Path length update): Set σk+1 = σk + αkC. Increase k by 1 and go to

Step 1.
The algorithm uses the same target level f lev

k = f rec
k(l) − δl for k = k(l), k(l) +

1, . . . , k(l+ 1)− 1. The target level is updated only if sufficient descent or oscillation
is detected (Step 2 or Step 3, respectively). It can be shown that the value σk is an
upper bound on the length of the path traveled by iterates xk(l), . . . , xk for k < k(l+1).
Whenever σk exceeds the prescribed upper bound B on the path length, the parameter
δl is decreased, which increases the target level f lev

k .
We will show that infk≥0 f(xk) = f∗ even if f∗ is not finite. First, we give a

preliminary result showing that the target values f lev
k are updated infinitely often

(i.e., l→∞), and that infk≥0 f(xk) = −∞ if δl is nondiminishing.
Lemma 2.2. Let Assumption 2.1 hold. Then for the path-based incremental target

level algorithm we have l→∞, and either infk≥0 f(xk) = −∞ or liml→∞ δl = 0.
Proof. Assume that l takes only a finite number of values, say l = 0, 1, . . . , l. In

this case we have σk + αkC = σk+1 ≤ B for all k ≥ k(l), so that limk→∞ αk = 0.
But this is impossible, since for all k ≥ k(l) we have

αk = γk
f(xk)− f lev

k

C2
≥ γ δl

C2
> 0.

Hence l→∞.
Let δ = liml→∞ δl. If δ > 0, then from Steps 2 and 3 it follows that for all l large

enough, we have δl = δ and

f rec
k(l+1) − f rec

k(l) ≤ −
δ

2
,

implying that infk≥0 f(xk) = −∞.
We have the following convergence result. In the special case of the ordinary

subgradient method, this result was proved by Goffin and Kiwiel [GoK99] using a
different (and much longer) proof.

Proposition 2.7. Let Assumption 2.1 hold. Then, for the sequence {xk} gener-
ated by the path-based incremental target level algorithm, we have

inf
k≥0

f(xk) = f
∗.

Proof. If liml→∞ δl > 0, then, according to Lemma 2.2, we have infk≥0 f(xk) =
−∞ and we are done, so assume that liml→∞ δl = 0. Let L be given by

L =

{
l ∈ {1, 2, . . .}

∣∣∣ δl = δl−1

2

}
.
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Then, from Steps 3 and 5, we obtain

σk = σk−1 + αk−1C =

k−1∑
j=k(l)

Cαj ,

so that k(l + 1) = k and l + 1 ∈ L whenever
∑k−1
j=k(l) αjC > B at Step 3. Hence

k(l)−1∑
j=k(l−1)

αj >
B

C
∀ l ∈ L,

and, since the cardinality of L is infinite, we have

∞∑
j=0

αj ≥
∑
l∈L

k(l)−1∑
j=k(l−1)

αj >
∑
l∈L

B

C
=∞.(2.14)

Now, in order to arrive at a contradiction, assume that infk≥0 f(xk) > f
∗, so that

for some ŷ ∈ X and some ε > 0

inf
k≥0

f(xk)− ε ≥ f(ŷ).(2.15)

Since δl → 0, there is a large enough l̂ such that δl ≤ ε for all l ≥ l̂, so that for all
k ≥ k(l̂)

f lev
k = f rec

k(l) − δl ≥ inf
k≥0

f(xk)− ε ≥ f(ŷ).

Using this relation, Lemma 2.1 for y = ŷ, and the definition of αk, we obtain

||xk+1 − ŷ||2 ≤ ||xk − ŷ||2 − 2αk
(
f(xk)− f(ŷ)

)
+ α2

kC
2

≤ ||xk − ŷ||2 − 2αk
(
f(xk)− f lev

k

)
+ α2

kC
2

= ||xk − ŷ||2 − γk(2− γk)
(
f(xk)− f lev

k

)2
C2

≤ ||xk − ŷ||2 − γ(2− γ)
(
f(xk)− f lev

k

)2
C2

∀ k ≥ k(l).

By summing these inequalities over k ≥ k(l̂), we have
γ(2− γ)
C2

∞∑
k=k(l̂)

(
f(xk)− f lev

k

)2 ≤ ||xk(l̂) − ŷ||2,
and consequently

∑∞
k=k(l̂) α

2
k < ∞ (see the definition of αk in (2.9)). Since αk → 0

and
∑∞
k=0 αk =∞ (cf. (2.14)), according to Proposition 2.2, we must have

lim inf
k→∞

f(xk) = f
∗.

Hence infk≥0 f(xk) = f
∗, which contradicts (2.15).

In an attempt to improve the efficiency of the path-based incremental target level
algorithm, one may introduce parameters β, τ ∈ (0, 1) and ρ ≥ 1 (whose values will
be fixed at Step 0), and modify Steps 2 and 3 as follows:
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Step 2′ If f(xk) ≤ f rec
k(l) − τδl, then set k(l + 1) = k, σk = 0, δl+1 = ρδl, increase

l by 1, and go to Step 4.
Step 3′ If σk > B, then set k(l+1) = k, σk = 0, δl+1 = βδl, and increase l by 1.
It can be seen that the result of Proposition 2.7 still holds for this modified

algorithm. If we choose ρ > 1 at Step 3′, then in the proofs of Lemma 2.2 and
Proposition 2.7 we have to replace liml→∞ δl with lim supl→∞ δl.

Let us remark that there is no need to keep the path bound B fixed. Instead, as
the method progresses, we can decrease B in such a way that

∑
l∈LBl = ∞ holds,

which ensures that the convergence result of Proposition 2.7 is preserved (cf. (2.14)).
It can be verified that all the results presented in this section are valid for the

incremental method that does not use projections within the cycles but rather employs
projections at the end of cycles:

ψi,k = ψi−1,k − αkgi,k, gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m,

where ψ0,k = xk and the iterate xk+1 is given by

xk+1 = PX [ψm,k].
This method and its modifications, including additive-type errors on subgradients,
synchronous parallelization, and a momentum term is given by Solodov and Zavriev
[SoZ98] and is analyzed for the case of a compact set X and a diminishing stepsize
rule.

3. An incremental subgradient method with randomization. It can be
verified that the preceding convergence analysis goes through assuming any order for
processing the component functions fi, as long as each component is taken into ac-
count exactly once within a cycle. In particular, at the beginning of each cycle k, we
could reorder the components fi by either shifting or reshuffling and then proceed with
the calculations until the end of the cycle. However, the order used can significantly
affect the rate of convergence of the method. Unfortunately, determining the most
favorable order may be very difficult in practice. A popular technique for incremental
gradient methods (for differentiable components fi) is to reshuffle randomly the order
of the functions fi at the beginning of each cycle. A variation of this method is to
pick randomly a function fi at each iteration rather than to pick each fi exactly once
in every cycle according to a randomized order. This variation can be viewed as a
gradient method with random errors, as shown in Bertsekas and Tsitsiklis [BeT96,
p. 143] (see also [BeT00]). Similarly, the corresponding incremental subgradient
method at each step picks randomly a function fi to be processed next. For the
case of a diminishing stepsize, the convergence of the method follows from known
stochastic subgradient convergence results (e.g., Ermoliev [Erm69], [Erm88], Polyak
[Pol87, p. 159])—see the subsequent Proposition 3.2. In this section, we also analyze
the method for the constant and dynamic stepsize rules. This analysis is new and has
no counterpart in the available stochastic subgradient literature.

The formal description of the randomized method is as follows:

xk+1 = PX
[
xk − αkg(ωk, xk)

]
,(3.1)

where ωk is a random variable taking equiprobable values from the set {1, . . . ,m} and
g(ωk, xk) is a subgradient of the component fωk

at xk. This simply means that if the
random variable ωk takes a value j, then the vector g(ωk, xk) is a subgradient of fj
at xk.
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Throughout this section we assume the following regarding the randomized method
(3.1).

Assumption 3.1.
(a) The sequence {ωk} is a sequence of independent random variables, each uni-

formly distributed over the set {1, . . . ,m}. Furthermore, the sequence {ωk} is inde-
pendent of the sequence {xk}.

(b) The set of subgradients
{
g(ωk, xk) | k = 0, 1, . . .

}
is bounded, i.e., there exists

a positive constant C0 such that with probability 1

||g(ωk, xk)|| ≤ C0 ∀ k ≥ 0.

Note that if the set X is compact or the components fi are polyhedral, then
Assumption 3.1(b) is satisfied. The proofs of several propositions in this section rely
on the supermartingale convergence theorem as stated, for example, in Bertsekas and
Tsitsiklis [BeT96, p. 148].

Theorem 3.1 (supermartingale convergence theorem). Let Yk, Zk, and Wk,
k = 0, 1, 2, . . ., be three sequences of random variables and let Fk, k = 0, 1, 2, . . ., be
sets of random variables such that Fk ⊂ Fk+1 for all k. Suppose that

(a) the random variables Yk, Zk, and Wk are nonnegative, and are functions of
the random variables in Fk;

(b) for each k, we have E
{
Yk+1 | Fk

} ≤ Yk − Zk +Wk;
(c) there holds

∑∞
k=0Wk <∞.

Then we have
∑∞
k=0 Zk < ∞, and the sequence Yk converges to a nonnegative

random variable Y , with probability 1.

3.0.5. Constant stepsize rule.
Proposition 3.1. Let Assumption 3.1 hold. Then, for the sequence {xk} gener-

ated by the randomized incremental method (3.1), with the stepsize αk fixed to some
positive constant α, we have the following:

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ + αmC2
0

2
.

Proof. By adapting Lemma 2.1 to the case where f is replaced by fωk
, we have

||xk+1 − y||2 ≤ ||xk − y||2 − 2α
(
fωk

(xk)− fωk
(y)
)
+ α2C2

0 ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {x0, . . . , xk}, the method’s
history up to xk, we obtain for all y ∈ X and k

E
{||xk+1 − y||2 | Fk

} ≤ ||xk − y||2 − 2αE
{
fωk

(xk)− fωk
(y) | Fk

}
+ α2C2

0

= ||xk − y||2 − 2α

m∑
i=1

1

m

(
fi(xk)− fi(y)

)
+ α2C2

0

= ||xk − y||2 − 2α

m

(
f(xk)− f(y)

)
+ α2C2

0 ,

(3.2)
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where the first equality follows since ωk takes the values 1, . . . ,m with equal proba-
bility 1/m.

Now, fix a nonnegative integer N , consider the level set LN defined by

LN =



{
x ∈ X | f(x) < −N + 1 +

αmC2
0

2

}
if f∗ = −∞,{

x ∈ X | f(x) < f∗ + 2
N +

αmC2
0

2

}
if f∗ > −∞,

and let yN ∈ X be such that

f(yN ) =

{
−N if f∗ = −∞,
f∗ + 1

N if f∗ > −∞.

Note that yN ∈ LN by construction. Define a new process {x̂k} as follows

x̂k+1 =

{
PX
[
x̂k − αg(ωk, x̂k)

]
if x̂k /∈ LN ,

yN otherwise,

where x̂0 = x0. Thus the process {x̂k} is identical to {xk}, except that once xk enters
the level set LN , the process terminates with x̂k = yN (since yN ∈ LN ). Using (3.2)
with y = yN , we have

E
{||x̂k+1 − yN ||2 | Fk

} ≤ ||x̂k − yN ||2 − 2α

m

(
f(x̂k)− f(yN )

)
+ α2C2

0 ,

or equivalently

E
{||x̂k+1 − yN ||2 | Fk

} ≤ ||x̂k − yN ||2 − zk,(3.3)

where

zk =

{
2α
m

(
f(x̂k)− f(yN )

)− α2C2
0 if x̂k /∈ LN ,

0 if x̂k = yN .

(a) Let f∗ = −∞. Then if x̂k /∈ LN , we have

zk =
2α

m

(
f(x̂k)− f(yN )

)− α2C2
0 ≥

2α

m

(
−N + 1 +

αmC2
0

2
+N

)
− α2C2

0 =
2α

m
.

Since zk = 0 for x̂k ∈ LN , we have zk ≥ 0 for all k, and by (3.3) and the supermartin-
gale convergence theorem,

∑∞
k=0 zk <∞, implying that x̂k ∈ LN for sufficiently large

k, with probability 1. Therefore, in the original process we have

inf
k≥0

f(xk) ≤ −N + 1 +
αmC2

0

2

with probability 1. Letting N → ∞, we obtain infk≥0 f(xk) = −∞ with probability
1.

(b) Let f∗ > −∞. Then if x̂k /∈ LN , we have

zk =
2α

m

(
f(x̂k)−f(yN )

)−α2C2
0 ≥

2α

m

(
f∗ +

2

N
+
αmC2

0

2
− f∗ − 1

N

)
−α2C2

0 =
2α

mN
.
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Hence, zk ≥ 0 for all k, and by the supermartingale convergence theorem, we have∑∞
k=0 zk < ∞ implying that x̂k ∈ LN for sufficiently large k, so that in the original

process

inf
k≥0

f(xk) ≤ f∗ + 2

N
+
αmC2

0

2

with probability 1. Letting N →∞, we obtain infk≥0 f(xk) ≤ f∗ + αmC2
0/2.

From Proposition 3.1(b), it can be seen that when f∗ > −∞, the randomized
method (3.1) with a fixed stepsize has a better error bound (by a factor m, since
C2 ≈ m2C2

0 ) than the one of the nonrandomized method (1.4)–(1.6) with the same
stepsize (cf. Proposition 2.1). This indicates that when randomization is used, the
stepsize αk should generally be chosen larger than in the nonrandomized methods of
section 2. This can also be observed from our experimental results. Being able to
use a larger stepsize suggests a potential rate of convergence advantage in favor of
the randomized methods, which is consistent with our experimental results. A more
precise result is shown in Nedić and Bertsekas [NeB00]: given any ε > 0, by using

m
(
dist(x0, X

∗)
)2
/αε iterations of the nonrandomized method we are guaranteed a

cost function value that is within a tolerance (αm2C2
0 + ε)/2 from the optimum f∗,

while by using the same expected number of iterations of the randomized method
we are guaranteed a cost function value that is within the potentially much smaller
tolerance (αmC2

0 + ε)/2 from f∗.

3.0.6. Diminishing stepsize rule. As mentioned earlier, the randomized meth-
od (3.1) with a diminishing stepsize can be viewed as a special case of a stochastic
subgradient method. Consequently, we just state the main convergence result and
refer to the literature for its proof.

Proposition 3.2. Let Assumption 3.1 hold and let the optimal set X∗ be
nonempty. Also assume that the stepsize αk in (3.1) is such that

αk > 0,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

Then the sequence {xk} generated by the randomized method (3.1) converges to some
optimal solution with probability 1.

Proof. See Theorem 1 of Ermoliev [Erm69] (also [Erm76, p. 97], [Erm83]).

3.0.7. Dynamic stepsize rule for known f∗. One possible version of the
dynamic stepsize rule for the method (3.1) has the form

αk = γk
f(xk)− f∗
mC2

0

, 0 < γ ≤ γk ≤ γ < 2,

where {γk} is a deterministic sequence, and requires knowledge of the cost function
value f(xk) at the current iterate xk. However, it would be inefficient to compute
f(xk) at each iteration since that iteration involves a single component fi, while the
computation of f(xk) requires all the components. We thus modify the dynamic
stepsize rule so that the value of f and the parameter γk that are used in the stepsize
formula are updated everyM iterations, whereM is any fixed positive integer, rather
than at each iteration. In particular, assuming f∗ is known, we use the stepsize

αk = γp
f(xMp)− f∗
mMC2

0

,

0 < γ ≤ γp ≤ γ < 2, k =Mp, . . . ,M(p+ 1)− 1, p = 0, 1, . . . ,(3.4)
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where {γp} is a deterministic sequence. We can choose M greater than m if m is
relatively small, or we can select M smaller than m if m is very large.

Proposition 3.3. Let Assumption 3.1 hold and let X∗ be nonempty. Then
the sequence {xk} generated by the randomized method (3.1) with the stepsize (3.4)
converges to some optimal solution with probability 1.

Proof. By adapting Lemma 2.1 to the case where y = x∗ ∈ X∗ and f is replaced
by fωk

, we have

||xk+1−x∗||2 ≤ ||xk−x∗||2−2αk
(
fωk

(xk)−fωk
(x∗)

)
+α2

kC
2
0 ∀ x∗ ∈ X∗, k ≥ 0.

By summing this inequality over k =Mp, . . . ,M(p+1)−1 (i.e., over theM iterations
of a cycle), we obtain for all x∗ ∈ X∗ and all p

||xM(p+1) − x∗||2 ≤ ||xMp − x∗||2 − 2αMp

M(p+1)−1∑
k=Mp

(
fωk

(xk)− fωk
(x∗)

)
+Mα2

MpC
2
0 ,

since αk = αMp for k =Mp, . . . ,M(p+1)− 1. By taking the conditional expectation
with respect to Gp = {x0, . . . , xM(p+1)−1}, we have for all x∗ ∈ X∗ and p

E
{||xM(p+1) − x∗ || 2 | Gp

} ≤ ||xMp − x∗||2(3.5)

− 2αMp

M(p+1)−1∑
k=Mp

E
{
fωk

(xk)− fωk
(x∗) | xk

}
+M2α2

MpC
2
0 ≤ ||xMp − x∗||2

− 2αMp

m

M(p+1)−1∑
k=Mp

(
f(xk)− f∗

)
+M2α2

MpC
2
0 .

We now relate f(xk) and f(xMp) for k =Mp, . . . ,M(p+ 1)− 1. We have

f(xk)− f∗ =
(
f(xk)− f(xMp)

)
+
(
f(xMp)− f∗

)
≥ g̃′Mp(xk − xMp) + f(xMp)− f∗

≥ f(xMp)− f∗ −mC0||xk − xMp||,

(3.6)

where g̃Mp is a subgradient of f at xMp and in the last inequality we use the fact

||g̃Mp|| =
∥∥∥∥∥
m∑
i=1

g̃i,Mp

∥∥∥∥∥ ≤ mC0

(cf. Assumption 3.1(b)) with g̃i,Mp being a subgradient of fi at xMp. Furthermore,
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we have for all p and k =Mp, . . . ,M(p+ 1)− 1

||xk − xMp|| ≤ ‖xk − xk−1‖+ ‖xk−1 − xMp‖

≤ αk−1‖g(ωk−1, xk−1)‖+ ‖xk−1 − xMp‖

≤ · · ·

≤ αMp

k−1∑
l=Mp

||g(ωl, xl)||

≤ (k −Mp)αMpC0,

(3.7)

which when substituted in (3.6) yields

f(xk)− f∗ ≥ f(xMp)− f∗ −
(
k −Mp)mαMpC

2
0 .

From the preceding relation and (3.5) we have

E
{||xM(p+1) − x∗||2 | Gp+1

} ≤ ||xMp − x∗||2 −
2MαMp

m

(
f(xMp)− f∗

)

+2α2
MpC

2
0

M(p+1)−1∑
k=Mp

(
k −Mp)+Mα2

MpC
2
0 .

(3.8)

Since

2α2
MpC

2
0

M(p+1)−1∑
k=Mp

(
k −Mp)+Mα2

MpC
2
0 = 2α2

MpC
2
0

M−1∑
l=1

l +Mα2
MpC

2
0 =M2α2

MpC
2
0 ,

it follows that for all x∗ ∈ X∗ and p

E
{||xM(p+1) − x∗||2 | Gp

} ≤ ||xMp − x∗||2 −
2MαMp

m

(
f(xMp)− f∗

)
+M2α2

MpC
2
0 .

This relation and the definition of αk (cf. (3.4)) yield

E
{||xM(p+1) − x∗||2 | Gp

} ≤ ||xMp − x∗||2 − γp
(
2− γp

)(f(xMp)− f∗
mC0

)2

.

By the supermartingale convergence theorem, we have

∞∑
k=0

γp
(
2− γp

)(f(xMp)− f∗
mC0

)2

<∞

and for each x∗ ∈ X∗ the sequence {||xMp − x∗||} is convergent, with probability 1.
Because γp ∈ [γ, γ] ⊂ (0, 2), it follows that with probability 1

lim
p→∞

(
f(xMp)− f∗

)
= 0.

Let {vi} be a countable subset of the relative interior ri(X∗) that is dense in X∗.
Such a set exists since ri(X∗) is a relatively open subset of the affine hull of X∗; an
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example of such a set is the intersection of X∗ with the set of the form x∗+
∑l
i=1 riξi,

where x∗ ∈ X∗, r1, . . . , rl are rational numbers, and ξ1, . . . , ξl are basis vectors for the
affine hull of X∗. For each i, let Ωvi be a set of sample paths such that the sequence
{||xMp − vi||} converges. Then the intersection

Ω = ∩∞i=1Ωvi

has probability 1, since its complement Ω is equal to ∪∞i=1Ωvi and

P
(
∪∞i=1 Ωvi

)
≤

∞∑
i=1

P (Ωvi) = 0.

For each sample path in Ω, the sequence {||xMp− vi||} converges for all i, so that
{xMp} is bounded. Since f(xMp)→ f∗ and f is continuous, all limit points of {xMp}
belong to X∗. Because {vi} is a dense subset of X∗ and the sequences {||xMp − vi||}
converge, {xMp} must have a unique limit point and hence converges to some x ∈
X∗.

3.0.8. Dynamic stepsize rule for unknown f∗. In the case where f∗ is not
known, we modify the dynamic stepsize (3.4) by replacing f∗ with a target level
estimate f lev

p . Thus the stepsize is

αk = γp
f(xMp)− f lev

p

mMC2
0

,(3.9)

0 < γ ≤ γp ≤ γ < 2, k =Mp, . . . ,M(p+ 1)− 1, p = 0, 1, . . . .

To update the target values f lev
p , we may use the adjustment procedures described in

section 2.
In the first adjustment procedure, f lev

p is given by

f lev
p = min

0≤j≤p
f
(
xMj

)− δp,(3.10)

and δp is updated according to

δp+1 =

{
δp if f

(
xM(p+1)

) ≤ f lev
p ,

max
{
βδp, δ

}
if f
(
xM(p+1)

)
> f lev

p ,
(3.11)

where δ and β are fixed positive constants with β < 1. Thus all the parameters of the
stepsize are updated everyM iterations. Note that here the parameter ρ of (2.11) has
been set to 1. Our proof relies on this (relatively mild) restriction. Since the stepsize
is bounded away from zero, the method behaves similarly to the one with a constant
stepsize (cf. Proposition 3.1). More precisely, we have the following result.

Proposition 3.4. Let Assumption 3.1 hold. Then, for the sequence {xk} gener-
ated by the randomized method (3.1) and the stepsize rule (3.9) with the adjustment
procedure (3.10)–(3.11), we have the following:

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ + δ.
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Proof. (a) Define the events

H1 =

{
lim
p→∞ δp > δ

}
, H2 =

{
lim
p→∞ δp = δ

}
.

Given that H1 occurred there is an integer R such that δR > δ and

δp = δR ∀ p ≥ R.
We let R be the smallest integer with the above property and we note that R is a
discrete random variable taking nonnegative integer values. In view of (3.11), we have
for all p ≥ R

f
(
xM(p+1)

) ≤ f lev
p .

Then from the definition of f lev
p (cf. (3.10)), the relation min0≤j≤p f

(
xMj

) ≤ f(xMp

)
,

and the fact δp = δR for all p ≥ R, we obtain
f
(
xM(p+1)

) ≤ f(xMp

)− δR ∀ p ≥ R.
Summation of the above inequalities yields

f
(
xMp

) ≤ f(xMR)− (p−R)δR ∀ p ≥ R.
Therefore, given that H1 occurred, we have infp≥0 f(xMp) ≥ infp≥0 f(xMp) = −∞
with probability 1, i.e.,

P

{
inf
p≥0

f(xMp) = −∞
∣∣∣ H1

}
= 1.(3.12)

Now assume that H2 occurred. The event H2 occurs if and only if, after finitely
many iterations, δp is decreased to the threshold value δ and remains at that value
for all subsequent iterations. Thus H2 occurs if and only if there is an index S such
that

δp = δ ∀ p ≥ S.(3.13)

Let S be the smallest integer with the above property, and note that we have H2 =
∪s≥0Bs, where Bs =

{
S = s

}
for all integers s ≥ 0.

Similar to the proof of Proposition 3.3 (cf. (3.8)), we have for all y ∈ X and p

E
{||xM(p+1) − y||2 | Gp, Bs

}
= E

{||xM(p+1) − y||2 | Gp
}

≤ ||xMp − y||2 − 2γp
f(xMp)− f lev

p

m2C2
0

(
f(xMp)− f(y)

)

+γ2
p

(
f(xMp)− f lev

p

)2
m2C2

0

,

(3.14)
where Gp = {x0, . . . , xMp−1}. Now, fix an N and let yN ∈ X be such that

f(yN ) = −N − δ,
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where N is a nonnegative integer. Consider a new process {x̂k} defined by

x̂k+1 =

{PX[x̂k − αkg(ωk, x̂k)] if f(x̂Mp) ≥ −N,
yN otherwise

for k =Mp, . . . ,M(p+1)−1, p = 0, 1, . . ., and x̂0 = x0. The process {x̂k} is identical
to {xk} up to the point when xMp enters the level set

LN = {x ∈ X | f(x) < −N} ,
in which case the process {x̂k} terminates at the point yN . Therefore, given Bs, the
process {x̂Mp} satisfies (3.14) for all p ≥ s and y = yN , i.e., we have

E
{||x̂M(p+1) − yN ||2 | Gp

} ≤ ||x̂Mp − yN ||2 − 2γp
f(x̂Mp)− f lev

p

m2C2
0

(
f(x̂Mp)− f(yN )

)

+ γ2
p

(
f(x̂Mp)− f lev

p

)2
m2C2

0

,

or equivalently

E
{||x̂M(p+1) − yN ||2 | Gp

} ≤ ||x̂Mp − yN ||2 − zp,
where

zp =


2γp

f(x̂Mp)− f lev
p

m2C2
0

(
f(x̂Mp)− f(yN )

)− γ2
p

(
f(x̂Mp)− f lev

p

)2
m2C2

0

if x̂Mp /∈ LN ,
0 if x̂Mp = yN .

By using the definition of f lev
p (cf. (3.10)) and the fact δp = δ for all p ≥ s (cf.

(3.13)), we have for p ≥ s and x̂Mp /∈ LN

f(yN ) ≤ min
0≤j≤p

f(x̂Mj)− δ = f lev
p ,

which, when substituted in the preceding relation, yields for p ≥ s and x̂Mp /∈ LN

zp ≥ γp
(
2− γp

)(f(x̂Mp)− f lev
p

)2
m2C2

0

≥ γ(2− γ) δ2

m2C2
0

.

The last inequality above follows from the facts γp ∈ [γ, γ] and f(x̂Mp) − f lev
p ≥ δ

for all p (cf. (3.10)–(3.11)). Hence zp ≥ 0 for all k, and by the supermartingale
convergence theorem, we obtain

∑∞
p=s zp < ∞ with probability 1. Thus, given Bs

we have x̂Mp ∈ LN for sufficiently large p, with probability 1, implying that in the
original process

P

{
inf
p≥0

f(xMp) ≤ −N
∣∣∣ Bs

}
= 1.

By letting N →∞ in the preceding relation, we obtain

P

{
inf
p≥0

f(xMp) = −∞
∣∣∣ Bs

}
= 1.
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Since H2 = ∪s≥0Bs, it follows that

P
{
infp≥0 f(xMp) = −∞

∣∣∣ H2

}
=
∑∞
s=0 P

{
infp≥0 f(xMp) = −∞

∣∣∣ Bs}P (Bs)
=
∑∞
s=0 P (Bs) = 1.

Combining (3.12) with the preceding relation, we have with probability 1

inf
p≥0

f(xMp) = −∞,

so that infk≥0 f(xk) = −∞ with probability 1.
(b) Using the proof of part (a), we see that if f∗ > −∞, then H2 occurs with

probability 1. Thus, as in part (a), we have H2 = ∪s≥0Bs, where Bs = {S = s} for
all integer s ≥ 0 and S is as in (3.13).

Fix an N and let yN ∈ X be such that

f(yN ) = f
∗ +

1

N
,

where N is a positive integer. Consider the process {x̂k} defined by

x̂k+1 =

{
PX
[
x̂k − αkg(ωk, x̂k)

]
if f(x̂Mp) ≥ f∗ + δ + 1

N ,

yN otherwise

for k = Mp, . . . ,M(p + 1) − 1, p = 0, 1, . . ., and x̂0 = x0. The process {x̂k} is the
same as the process {xk} up to the point where xMp enters the level set

LN =

{
x ∈ X

∣∣∣ f(x) < f∗ + δ + 1

N

}
,

in which case the process {x̂k} terminates at the point yN . The rest follows similarly
to the proof of part (a).

The target level f lev
p can also be updated according to the second adjustment

procedure discussed in section 2. In this case, it can be shown that the result of
Proposition 2.7 holds with probability 1. We omit the lengthy details.

4. Experimental results. In this section we report some of the numerical re-
sults with a certain type of test problem: the dual of a generalized assignment problem
(see Martello and Toth [MaT90, p. 189], and Bertsekas [Ber98, p. 362]. The problem
is to assign m jobs to n machines. If job i is performed at machine j, it costs aij and
requires pij time units. Given the total available time tj at machine j, we want to
find the minimum cost assignment of the jobs to the machines. Formally the problem
is

minimize

m∑
i=1

n∑
j=1

aijyij

subject to

n∑
j=1

yij = 1, i = 1, . . . ,m,

m∑
i=1

pijyij ≤ tj , j = 1, . . . , n,

yij = 0 or 1, for all i, j,
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where yij is the assignment variable, which is equal to 1 if the ith job is assigned to
the jth machine and is equal to 0 otherwise. In our experiments we chose n equal to
4 and m equal to the four values 500, 800, 4000, and 7000.

By relaxing the time constraints for the machines, we obtain the dual problem

maximize f(x) =
m∑
i=1

fi(x)

subject to x ≥ 0,

(4.1)

where

fi(x) = min∑n

j=1
yij=1, yij=0 or yij=1

n∑
j=1

(aij + xjpij)yij − 1

m

n∑
j=1

tjxj , i = 1, . . . ,m.

Since aij + xjpij ≥ 0 for all i, j, we can easily evaluate fi(x) for each x ≥ 0:

fi(x) = aij∗ + xj∗pij∗ − 1

m

n∑
j=1

tjxj ,

where j∗ is such that

aij∗ + xj∗pij∗ = min
1≤j≤n

{aij + xjpij}.

In the same time, at no additional cost, we obtain a subgradient g of fi at x:

g = (g1, . . . , gn)
′, gj =

{
− tj
m if j �= j∗,

pij∗ − tj∗
m if j = j∗.

The experiments are divided in two groups, each with a different goal. The first
group was designed to compare the performance of the ordinary subgradient method
(1.3) and the incremental subgradient method (1.4)–(1.6) for solving the test problem
(4.1) when using different stepsize choices while keeping fixed the order of processing
of the components fi. The second group of experiments was designed to evaluate
the incremental method when using different rules for the order of processing the
components fi, while keeping fixed the stepsize choice.

In the first group of experiments the data for the problems (i.e., the matrices
{aij}, {pij}) were generated randomly according to a uniform distribution over differ-
ent intervals. The values tj were calculated according to the formula

tj =
t

n

m∑
i=1

pij , j = 1, . . . , n,(4.2)

with t taking one of the three values 0.5, 0.7, or 0.9. We used two stepsize rules:
(1) A diminishing stepsize that has the form

αkN = · · · = α(k+1)N−1 =
D

k + 1
∀ k ≥ 0,

where D is some positive constant, and N is some positive integer that represents
the number of cycles during which the stepsize is kept at the same value. To guard
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Table 1
n = 4, m = 800, f∗ ≈ 1578.47, f̃ = 1578.

Ordinary subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.08/2/7/ > 500 0.03/0.97/12× 105/ > 500

(0,0,0,0) 0.1/2/7/ > 500 0.5/0.98/2× 104/ > 500

(0,0,0,0) 0.07/3/10/ > 500 0.5/0.95/3× 104/ > 500

(0,0,0,0) 0.01/10/7/ > 500 0.3/0.95/5× 104/ > 400

(0,0,0,0) 0.09/1/7/ > 500 0.1/0.9/106/ > 200

(0,0,0,0) 0.03/5/500/ > 500 0.2/0.93/5× 104/ > 300

(0,0,0,0) 0.08/4/7/ > 500 0.8/0.97/12× 103/ > 500

(0,0,0,0) 0.09/5/10/ > 500 0.03/0.95/106/ > 500

(1.2,1.1,2,1.04) 0.005/2/5/ > 500 0.4/0.975/2× 104/ > 200

(1.2,1.1,2,1.04) 0.009/1/5/ > 500 0.5/0.97/4× 103/ > 50

(0.4, 0.2, 1.4, 0.1) 0.009/2/5/ > 500 0.4/0.8/2700/ > 500

(0.4, 0.2, 1.4, 0.1) 0.005/5/500/ > 500 0.5/0.9/1300/ > 500

against an unduly large value of c we implemented an adaptive feature, whereby if
within some (heuristically chosen) number S of consecutive iterations the current best
cost function value is not improved, then the new iterate xk+1 is set equal to the point
at which the current best value is attained.

(2) The stepsize rule given by (2.9) and the path-based procedure. This is essen-
tially the target level method, in which the path bound is not fixed but rather the
current value for B is multiplied by a certain factor ξ ∈ (0, 1) whenever an oscillation
is detected (see the remark following Proposition 2.7). The initial value for the path
bound was B = r||x0 − x1|| for some (heuristically chosen) positive constant r.

We report in the following tables the number of iterations required for various
methods and parameter choices to achieve a given threshold cost f̃ . The notation
used in the tables is as follows:

> k× 100 for k = 1, 2, 3, 4 means that the value f̃ has been achieved or exceeded
after k × 100 iterations, but in less than (k + 1)× 100 iterations.

> 500 means that the value f̃ has not been achieved within 500 iterations.
D/N/S/iter gives the values of the parameters D, N , and S for the diminishing

stepsize rule, while iter is the number of iterations (or cycles) needed to achieve or
exceed f̃ .

r/ξ/δ0/iter describes the values of the parameters and number of iterations for
the target level stepsize rule.

Tables 1 and 2 show the results of applying the ordinary and incremental sub-
gradient methods to problem (4.1) with n = 4, m = 800, and t = 0.5 in (4.2). The
optimal value of the problem is f∗ ≈ 1578.47. The threshold value is f̃ = 1578. The
tables show when the value f̃ was attained or exceeded.

Tables 3 and 4 show the results of applying the ordinary and incremental sub-
gradient methods to problem (4.1) with n = 4, m = 4000, and t = 0.7 in (4.2). The
optimal value of the problem is f∗ ≈ 6832.3 and the threshold value is f̃ = 6831.5. The
tables show the number of iterations needed to attain or exceed the value f̃ = 6831.5.

Tables 1 and 2 demonstrate that the incremental subgradient method performs
substantially better than the ordinary subgradient method. As m increases, the per-
formance of the incremental method improves as indicated in Tables 3 and 4. The
results obtained for other problems that we tested are qualitatively similar and con-
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Table 2
n = 4, m = 800, f∗ ≈ 1578.47, f̃ = 1578.

Incremental subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.05/3/500/99 3/0.7/5× 106/97

(0,0,0,0) 0.09/2/500/ > 100 2/0.6/55× 105/ > 100

(0,0,0,0) 0.1/1/500/99 0.7/0.8/55× 105/ > 100

(0,0,0,0) 0.1/1/10/99 0.4/0.95/107/80

(0,0,0,0) 0.05/5/7/ > 100 0.3/0.93/107/ > 100

(0,0,0,0) 0.07/3/10/ > 100 0.5/0.9/107/ > 200

(0,0,0,0) 0.01/7/7/ > 500 0.3/0.93/15× 106/30

(0,0,0,0) 0.009/5/7/ > 500 2/0.8/5× 106/ > 100

(1.2,1.1,2,1.04) 0.05/1/500/40 0.4/0.97/12× 106/ > 100

(1.2,1.1,2,1.04) 0.04/3/500/35 0.3/0.975/107/27

(0.4,0.2,1.4,0.1) 0.07/1/500/48 0.4/0.975/12× 106/100

(0.4,0.2,1.4,0.1) 0.048/1/500/39 0.5/0.94/12× 106/ > 100

Table 3
n = 4, m = 4000, f∗ ≈ 6832.3, f̃ = 6831.5.

Ordinary subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.01/2/7/ > 500 1/0.9/5000/58

(0,0,0,0) 0.001/5/7/ > 300 2/0.99/5500/ > 100

(0,0,0,0) 0.0008/5/10/ > 300 1.3/0.98/4800/54

(0,0,0,0) 0.0005/5/7/ > 200 1.5/0.98/2000/88

(0,0,0,0) 0.0001/5/10/99 0.5/0.8/4000/99

(0,0,0,0) 0.0001/2/500/ > 100 0.4/0.9/4000/89

(0,0,0,0) 0.0001/5/10/ > 200 0.5/0.9/3000/88

(0,0,0,0) 0.00009/5/500/100 0.5/0.95/2000/98

(0.5,0.9,1.3,0.4) 0.0005/3/500/ > 100 0.5/0.98/2000/95

(0.5,0.9,1.3,0.4) 0.0002/7/7/ > 100 0.4/0.97/3000/98

(0.26,0.1,0.18,0.05) 0.0002/5/7/100 0.3/0.98/3000/90

(0.26,0.1,0.18,0.05) 0.00005/7/7/30 0.095/0.985/10/50

Table 4
n = 4, m = 4000, f∗ ≈ 6832.3, f̃ = 6831.5.

Incremental subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.005/2/500/46 5/0.99/106/7

(0,0,0,0) 0.007/1/500/37 8/0.97/11× 105/5

(0,0,0,0) 0.001/2/500/95 2/0.99/7× 105/ > 100

(0,0,0,0) 0.0008/1/500/30 0.8/0.4/9× 105/6

(0,0,0,0) 0.0002/2/500/21 0.7/0.4/106/7

(0,0,0,0) 0.0005/2/500/40 0.1/0.9/106/15

(0,0,0,0) 0.0002/2/7/21 0.08/0.9/15× 105/18

(0,0,0,0) 0.0003/1/500/21 0.25/0.9/2× 106/20
(0.5,0.9,1.3,0.4) 0.001/1/500/40 0.07/0.9/106/7
(0.5,0.9,1.3,0.4) 0.0004/1/500/30 0.04/0.9/106/26

(0.26,0.1,0.18,0.05) 0.00045/1/500/20 0.04/0.9/15× 105/10
(0.26,0.1,0.18,0.05) 0.00043/1/7/20 0.045/0.91/1.55× 106/10
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Table 5
n = 4, m = 800, f∗ ≈ 1672.44, f̃ = 1672.

Incremental subgradient method/Diminishing stepsize
Initial point Sorted order Sorted/Shifted order Random order

x0 D/N/iter D/N/K/iter D/N/iter

(0,0,0,0) 0.005/1/ > 500 0.007/1/9/ > 500 0.0095/4/5

(0,0,0,0) 0.0045/1/ > 500 0.0056/1/13/ > 500 0.08/1/21

(0,0,0,0) 0.003/2/ > 500 0.003/2/7/ > 500 0.085/1/7

(0,0,0,0) 0.002/3/ > 500 0.002/2/29/ > 500 0.091/1/17

(0,0,0,0) 0.001/5/ > 500 0.001/6/31/ > 500 0.066/1/18

(0,0,0,0) 0.006/1/ > 500 0.0053/1/3/ > 500 0.03/2/18

(0,0,0,0) 0.007/1/ > 500 0.00525/1/11/ > 500 0.07/1/18

(0,0,0,0) 0.0009/7/ > 500 0.005/1/17/ > 500 0.054/1/17

(0.2,0.4,0.8,3.6) 0.001/1/ > 500 0.001/1/17/ > 500 0.01/1/13

(0.2,0.4,0.8,3.6) 0.0008/3/ > 500 0.0008/3/7/ > 500 0.03/1/8

(0,0.05,0.5,2) 0.0033/1/ > 400 0.0037/1/7/ > 400 0.033/1/7

(0,0.05,0.5,2) 0.001/4/ > 500 0.0024/2/13/ > 500 0.017/1/8

sistently show substantially and often dramatically faster convergence for the incre-
mental method.

We suspected that the random generation of the problem data induced a behavior
of the (nonrandomized) incremental method that is similar to the one of the random-
ized version. Consequently, for the second group of experiments, the coefficients {aij}
and {pij} were generated as before and then were sorted in nonincreasing order, in
order to create a sequential dependence among the data. In all runs we used the
diminishing stepsize choice (as described earlier) with S = 500, while the order of
components fi was changed according to three rules:

(1) Sorted . After the data have been randomly generated and sorted, the com-
ponents are processed in the fixed order 1, 2, . . . ,m.

(2) Sorted/Shifted . After the data have been randomly generated and sorted,
they are cyclically shifted by some number K. The components are processed in the
fixed order 1, 2, . . . ,m.

(3) Random. The index of the component to be processed is chosen randomly,
with each component equally likely to be selected.

To compare fairly the randomized methods with the other methods, we count as
an “iteration” the processing of m consecutively and randomly chosen components
fi. In this way, an “iteration” of the randomized method is equally time-consuming
as a cycle or “iteration” of any of the nonrandomized methods.

Table 5 shows the results of applying the incremental subgradient method with
order rules (1)–(3) for solving the problem (4.1) with n = 4, m = 800, and t = 0.9 in
(4.2). The optimal value is f∗ ≈ 1672.44 and the threshold value is f̃ = 1672. The
table shows the number of iterations needed to attain or exceed f̃ .

Table 6 shows the results of applying the incremental subgradient method with
order rules (1)–(3) for solving the problem (4.1) with n = 4, m = 7000, and t = 0.5
in (4.2). The optimal value is f∗ ≈ 14601.38 and the threshold value is f̃ = 14600.
The tables show when the value f̃ was attained or exceeded.

Tables 5 and 6 show how an unfavorable fixed order can have a dramatic effect
on the performance of the incremental subgradient method. Note that shifting the
components at the beginning of every cycle did not improve the convergence rate
of the method. However, the randomization of the processing order resulted in fast
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Table 6
n = 4, m = 7000, f∗ ≈ 14601.38, f̃ = 14600.

Incremental subgradient method/Diminishing stepsize
Initial point Sorted order Sorted/Shifted order Random order

x0 D/N/iter D/N/K/iter D/N/iter

(0,0,0,0) 0.0007/1/ > 500 0.0007/1/3/ > 500 0.047/1/18

(0,0,0,0) 0.0006/1/ > 500 0.0006/1/59/ > 500 0.009/1/10

(0,0,0,0) 0.00052/1/ > 500 0.00052/1/47/ > 500 0.008/1/2

(0,0,0,0) 0.0008/1/ > 500 0.0005/1/37/ > 500 0.023/1/34

(0,0,0,0) 0.0004/2/ > 500 0.0004/2/61/ > 500 0.0028/1/10

(0,0,0,0) 0.0003/2/ > 500 0.0003/2/53/ > 500 0.06/1/22

(0,0,0,0) 0.00025/3/ > 500 0.00025/3/11/ > 500 0.05/1/18

(0,0,0,0) 0.0009/1/ > 500 0.00018/3/79/ > 500 0.007/1/10

(0,0.1,0.5,2.3) 0.0005/1/ > 500 0.0005/1/79/ > 500 0.004/1/10

(0,0.1,0.5,2.3) 0.0003/1/ > 500 0.0003/1/51/ > 500 0.0007/1/18

(0,0.2,0.6,3.4) 0.0002/1/ > 500 0.0002/1/51/ > 500 0.001/1/10

(0,0.2,0.6,3.4) 0.0004/1/ > 500 0.00007/2/93/ > 500 0.0006/1/10

convergence. The results for the other problems that we tested are qualitatively
similar and also demonstrated the superiority of the randomized method.

5. Conclusions. We have proposed several variants of incremental subgradient
methods, we have analyzed their convergence properties, and we have evaluated them
experimentally. The methods that employ the constant and the dynamic stepsize
rules are analyzed here for the first time. The subgradient methods of section 3 are
the first incremental methods that use randomization in the context of deterministic
nondifferentiable optimization, and their computational performance is particularly
interesting. A similar randomization in the context of deterministic differentiable
optimization, proposed by Bertsekas and Tsitsiklis [BeT96, p. 143], seems to have
a qualitatively different computational performance, as suggested by examples (see
Bertsekas [Ber99, p. 113 and p. 616].

Several of the ideas of this paper merit further investigation, some of which will
be presented in future publications. In particular, we will discuss in a separate paper
variants of the incremental subgradient method involving a momentum term, alter-
native stepsize rules, the use of ε-subgradients, and some other features.
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Abstract. We study second-order subdifferentials of nonsmooth functions that are particularly
important for applications to sensitivity analysis in optimization and related problems. First we
develop various calculus rules for these subdifferentials in rather general settings. Then we obtain
exact formulas for computing the second-order subdifferentials for a class of separable piecewise
smooth functions. Functions of this class arise, in particular, in equilibrium models related to some
practical problems of continuum mechanics. Finally we provide applications of the obtained results to
Lipschitzian stability of parametric variational and hemivariational inequalities and efficiently express
the derived conditions in terms of the initial data for selected problems of continuum mechanics.

Key words. variational analysis, Lipschitzian stability in optimization, second-order subdif-
ferentials, calculus rules, piecewise smooth functions, variational and hemivariational inequalities,
mechanical equilibrium

AMS subject classifications. 49J52, 49K40, 58C20

PII. S1052623400377153

1. Introduction. The paper is devoted to the theory and applications of second-
order subdifferentials in variational analysis. This rapidly growing area has drawn
much attention during recent years, motivated by applications to problems in opti-
mization, control, sensitivity, etc. There are several generalized second-order differen-
tial constructions for nonsmooth functions useful in variational analysis; see excellent
expositions and references in the recent books by Rockafellar and Wets [23] and Bon-
nans and Shapiro [2]. The variety of such objects is not surprising since even in the
classical analysis there are at least two approaches to second-order differentiation;
one of them is based on second-order expansions of a function and the other defines
a second-order derivative as a first-order derivative of a gradient mapping.
The primary object of this paper is the second-order subdifferential of extended-

real-valued functions introduced in Mordukhovich [11] as the coderivative of the first-
order subdifferential mapping; see section 2 for more details. This approach follows
the latter of the two classical developments in view of the fact that the coderivative
can be treated as a derivative-like concept for set-valued mappings (multifunctions).
The main motivation for introducing such a second-order subdifferential came from
applications to sensitivity analysis for optimization-related problems. In particular,
this construction was applied in [13] and [14] to the study of robust Lipschitzian stabil-
ity of solution maps to parametric variational inequalities in Robinson’s framework of
generalized equations (GEs) [21]. Let us mention more recent applications of this and
associated constructions to complete characterizations of strong regularity for varia-
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tional inequalities over convex polyhedra in [4], to second-order characterizations of
stable optimal solutions to nonsmooth optimization problems in [20] and [6], and to
necessary optimality conditions obtained in [17], [18], [19], [24], [25], [26], and [27] for
various problems of hierarchical optimization unified under the name of mathematical
programs with equilibrium constraints [7].
For further developments and implementations of these results and for their ex-

tensions to other classes of optimization-related problems, one needs to have calculus
rules for second-order subdifferentials and to be able to compute them efficiently for
important classes of nonsmooth functions. Both of these issues are addressed in this
paper. Moreover, we are doing this in parallel not only for the basic second-order
subdifferential discussed above but also for its “semiconvex” counterpart defined by
applying the coderivative to the convexified first-order subdifferential mapping; see
section 2. Finally we present applications of the results obtained to stability analy-
sis for parametric GEs with their specific implementations in equilibrium models for
some practical problems of continuum mechanics.
The rest of the paper is organized as follows. Section 2 contains basic definitions

and required preliminary material widely used in what follows. Section 3 is devoted to
calculus rules for both second-order subdifferentials under consideration. We obtain
several sum and chain rules for the second-order subdifferentials of rather general non-
smooth functions. Based on the corresponding calculus results for coderivatives and
first-order subdifferentials, we restrict ourselves to classes of functions for which the
first-order subdifferential rules hold as equalities. This seems to be natural for second-
order analysis and allows us to cover a variety of nonsmooth functions important for
applications.
In section 4 we efficiently compute the second-order subdifferentials for a class

of separable piecewise C2 functions. Functions of this class frequently appear in
the study of various equilibrium problems. They are particularly important for the
modeling of some mechanical equilibria considered in this paper. The concluding
section 5 presents applications of the main results to Lipschitzian stability of solutions
maps to parametric GEs and efficiently expresses the derived conditions in terms of
the initial data for selected problems of continuum mechanics.
Our notation is basically standard. Let us mention that Diag (a) denotes a

diagonal matrix with vector a at its diagonal; A∗ stands for the adjoint (transpose)
matrix to A; B is the closed unit ball of the space in question; xi is the ith component
of vector x ∈ R

n; x•y is the Hadamard product of x, y ∈ R
n, i. e., (x•y)i = xiyi; cl, co,

and cone signify the closure, the convex hull, and the conic hull of a set, respectively;

Lim supx→x̄ F (x) := {y ∈ R
m| ∃ sequences xk → x̄, yk → y

with yk ∈ F (xk), k = 1, 2, . . .}

connotes the Painlevé–Kuratowski upper (outer) limit for a multifunction F : Rn →→ R
m

as x→ x̄.

2. Basic definitions and preliminaries. Let us start with the definitions of
our basic first-order generalized differential constructions for sets, set-valued map-
pings, and extended-real-valued functions that appeared in [8] and [9]. We refer the
reader to [10], [12], and [23] for equivalent representations and comprehensive theories
of these objects.
Given a nonempty set Ω ⊂ R

n, we consider the Euclidean projector

Π(x; Ω) := {ω ∈ clΩ| ‖x− ω‖ = dist(x; Ω)}
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of x ∈ R
n on clΩ and define the normal cone to Ω at x̄ ∈ Ω by

N(x̄; Ω) := Lim sup
x→x̄

[cone(x−Π(x; Ω))].(2.1)

Given a multifunction F : R
n →→ R

m, we define its coderivative D∗F (x̄, ȳ) :
R
m →→ R

n at (x̄, ȳ) ∈ gphF by

D∗F (x̄, ȳ)(y∗) := {x∗| (x∗,−y∗) ∈ N((x̄, ȳ); gphF )},(2.2)

where ȳ is omitted if F is single-valued at x̄.
Given an extended-real-valued function ϕ : R

n → R := [−∞,∞] finite at x̄, we
consider the associated epigraphical multifunction

Eϕ(x) := {µ ∈ R
n| µ ≥ ϕ(x)}

and define the basic subdifferential and the singular subdifferential of ϕ at x̄ by, re-
spectively,

∂ϕ(x̄) := D∗Eϕ(x̄, ϕ(x̄))(1) and ∂∞ϕ(x̄) := D∗Eϕ(x̄, ϕ(x̄))(0).(2.3)

If ϕ is lower semicontinuous (l.s.c.) around x̄, then the basic subdifferential ∂ϕ(x̄)
admits the representation

∂ϕ(x̄) = Lim sup
x

ϕ→x̄

∂̂ϕ(x),(2.4)

where x
ϕ→ x̄ means that x→ x̄ with ϕ(x)→ ϕ(x̄) and

∂̂ϕ(x) := {x∗ ∈ R
n| lim inf

u→x

ϕ(u)− ϕ(x)− 〈x∗, u− x〉
‖u− x‖ ≥ 0}.

Note the relationship

D∗f(x̄)(y∗) = ∂〈y∗, f〉(x̄) ∀y∗ ∈ R
m(2.5)

between the coderivative (2.2) of a single-valued and locally Lipschitzian mapping
f : R

n → R
m and the basic subdifferential (2.3) of the scalarization 〈y∗, f〉(x) :=

〈y∗, f(x)〉. It follows from (2.5) that D∗f(x̄)(y∗) = {(∇f(x̄))∗y∗} if f is strictly
differentiable at x̄, where ∇f(x̄) stands for the Jacobian matrix.
We also consider the (Clarke) convexified subdifferential of ϕ at x̄ that can be

defined as

∂ϕ(x̄) := {x∗ ∈ R
n| (x∗,−1) ∈ clcoN((x̄, ϕ(x̄)); epiϕ)}

(cf. [3] and [23]) and admits the equivalent representation

∂ϕ(x̄) = clco [∂ϕ(x̄) + ∂∞ϕ(x̄)].(2.6)

If ϕ is Lipschitz continuous around x̄, then ∂∞ϕ(x̄) = {0} and ∂ϕ(x̄) is bounded,
which implies ∂ϕ(x̄) = co ∂ϕ(x̄) due to (2.6). Note the symmetry property

∂(−ϕ)(x̄) = −∂ϕ(x̄) if ϕ is locally Lipschitz.(2.7)
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It follows from (2.6) and (2.4) that

∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) ⊂ ∂ϕ(x̄).
The function ϕ is called subdifferentially regular at x̄ if ∂ϕ(x̄) = ∂̂ϕ(x̄); see [10] and
[12]. This is always implied by the Clarke regularity of ϕ at x̄ in the sense of [3]

and [23], which is equivalent to ∂ϕ(x̄) = ∂̂ϕ(x̄) and agrees with the subdifferential
regularity for locally Lipschitzian functions.
Now let us define the main objects of our study in this paper: second-order

subdifferentials of extended-real-valued functions. We adopt the scheme of [11], where
a second-order subdifferential was defined as the coderivative (2.2) of the basic first-
order subdifferential mapping ∂ϕ(·). Along with this construction, here we consider
another second-order subdifferential that is defined via the nonconvex coderivative
(2.2) of the convexified subdifferential ∂ϕ(·). The precise definitions follow.

Definition 2.1. Let ϕ : Rn → R and let x̄ be a point where ϕ is finite.
(i) Given ȳ ∈ ∂ϕ(x̄), we define the basic second-order subdifferential ∂2ϕ(x̄, ȳ) :

R
n →→ R

n of ϕ at x̄ relative to ȳ by

∂2ϕ(x̄, ȳ)(y∗) := (D∗∂ϕ)(x̄, ȳ)(y∗) = {x∗| (x∗,−y∗) ∈ N((x̄, ȳ); gph ∂ϕ).}(2.8)

(ii) Given ȳ ∈ ∂ϕ(x̄), we define the semiconvex second-order subdifferential

∂
2
ϕ(x̄, ȳ) : Rn →→ R

n of ϕ at x̄ relative to ȳ by

∂
2
ϕ(x̄, ȳ)(y∗) := (D∗∂ϕ)(x̄, ȳ)(y∗) = {x∗| (x∗,−y∗) ∈ N((x̄, ȳ); gph ∂ϕ)}.(2.9)

If ϕ ∈ C1 near x̄ and ∇ϕ is strictly differentiable at x̄ (in particular, ϕ ∈ C2),
then ȳ = ∇ϕ(x̄) and both second-order subdifferentials (2.8) and (2.9) reduce to the
singleton

∂2ϕ(x̄)(y∗) = ∂
2
ϕ(x̄)(y∗) = {(∇2ϕ(x̄))∗y∗},

where ∇2ϕ(x̄) stands for the classical Hessian matrix. Note that the sets (2.8) and
(2.9) coincide when ϕ is Clarke regular around x̄, in particular, when ϕ is either locally
smooth or convex. In general these sets may be different and neither one is included
in the other, in contrast to the first-order subdifferentials ∂ϕ(x̄) and ∂ϕ(x̄).
In what follows we use also the corresponding first-order and second-order su-

perdifferential sets for ϕ defined by

∂+ϕ(x̄) := −∂(−ϕ)(x̄) and ∂+2ϕ(x̄, ȳ)(y∗) := (D∗∂+ϕ)(x̄, ȳ)(y∗),(2.10)

where ȳ ∈ ∂+ϕ(x̄) and y∗ ∈ R
n; cf. [12].

One of the goals of this paper is to derive calculus rules for both second-order
subdifferentials (2.8) and (2.9). To establish such a calculus in the next section, we
use the sum and chain rules for the coderivative (2.2) of multifunctions that are stated
below for the reader’s convenience. Note that the original statements of these results
in [12] impose closed graph assumptions on input multifunctions, while the proofs
require merely a local closedness of the graphs. So we formulate the coderivative
results under local closedness assumptions needed in what follows. First we present
the sum rules corresponding to Theorem 4.1 and Corollary 4.4 in [12].

Theorem 2.2. Let F1 and F2 be given multifunctions from R
n into R

m, and let
ȳ ∈ F1(x̄) + F2(x̄). Assume that the graphs of F1 and F2 are closed whenever x is
near x̄, that the sets

S(x, y) := {(y1, y2) ∈ R
m × R

m | y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y}
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are uniformly bounded around (x̄, ȳ), and that the qualification condition

D∗F1(x̄, y1) (0) ∩ (−D∗F2(x̄, y2) (0)) = {0} ∀ (y1, y2) ∈ S(x̄, ȳ)(2.11)

is fulfilled. Then for all y∗ ∈ R
m one has

D∗(F1 + F2) (x̄, ȳ) (y
∗)(2.12)

⊂
⋃

(y1,y2)∈S(x̄,ȳ)

[D∗F1(x̄, y1) (y
∗) +D∗F2(x̄, y2) (y

∗)] .

Furthermore, if F1 = f1 : R
n → R

m happens to be single-valued and strictly differ-
entiable at x̄ while F2 : R

n →→ R
m has the closed graph around (x̄, ȳ − f1(x̄)), then

D∗(f1 + F2) (x̄, ȳ) (y
∗)(2.13)

= (∇f1(x̄))∗ y∗ +D∗F2(x̄, ȳ − f1(x̄)) (y∗) ∀y∗ ∈ R
m.

Next we present two special cases of the general coderivative chain rule proved in
[12, Theorem 5.1].

Theorem 2.3. (i) Let (f ◦ G) : R
n →→ R

q be the composition f(G(x)) of a
single-valued mapping f : Rm → R

q and a set-valued mapping G : Rn →→ R
m and let

(x̄, z̄) ∈ gph (f ◦G). Assume that the multifunction M : Rn × R
q →→ R

m defined by

M(x, z) := G(x) ∩ f−1(z)(2.14)

is single-valued at (x̄, z̄) with M(x̄, z̄) = {ȳ} and upper semicontinuous at this point.
Assume also that f is strictly differentiable at ȳ and that the graph of G is closed
around (x̄, ȳ). Then

D∗(f ◦G) (x̄, z̄) (z∗) ⊂ D∗G(x̄, ȳ) ((∇f(ȳ))∗ z∗) ∀z∗ ∈ R
q.(2.15)

(ii) Let (F ◦ g) : R
n →→ R

q be the composition F (g(x)) of a set-valued mapping
F : Rm →→ R

q and a single-valued mapping g : Rn → R
m strictly differentiable at x̄.

Take z̄ ∈ (F ◦ g)(x̄) and assume that the graph of F is closed around (g(x̄), z̄) and
that

D∗F (g(x̄), z̄) (0) ∩ ker(∇g(x̄))∗ = {0}.(2.16)

Then one has

D∗(F ◦ g) (x̄, z̄) (z∗) ⊂ (∇g(x̄))∗D∗(F (g(x̄), z̄)(z∗) ∀z∗ ∈ R
q.(2.17)

3. Calculus rules for second-order subdifferentials. In this section we de-
rive some calculus rules for both second-order subdifferentials defined in the previous
section. Our goal is to express the second-order subdifferentials of sums and com-
positions for certain classes of functions in terms of the corresponding constructions
involving their components. To furnish this, we are going to employ, based on def-
initions (2.8) and (2.9) of the second-order subdifferentials, calculus results for the
coderivative (2.2) and the first-order subdifferentials (2.3) and (2.6). In this way we
have to restrict ourselves to classes of functions for which the first-order subdifferential
sum and chain rules hold as equalities, since the coderivative (2.2) does not possess
any monotonicity properties. We begin with sum rules for the basic second-order
subdifferential (2.8).
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Theorem 3.1. Let ϕi : R
n → R, i = 1, 2, be finite at x̄ and let ȳ ∈ ∂(ϕ1+ϕ2)(x̄).

The following assertions hold.
(i) Assume that there is a neighborhood U of x̄ such that

∂∞ϕ1(x) ∩ (−∂∞ϕ2(x)) = {0} ∀x ∈ U ;(3.1)

both functions ϕ1 and ϕ2 are l.s.c. on U and subdifferentially regular at every x ∈ U .
Assume also that the graphs of ∂ϕ1 and ∂ϕ2 are closed whenever x is near x̄ and that
the sets

S(x, y) := {(y1, y2) ∈ R
n × R

n | y1 ∈ ∂ϕ1(x), y2 ∈ ∂ϕ2(x), y1 + y2 = y}(3.2)

are uniformly bounded around (x̄, ȳ). Finally we impose the basic second-order quali-
fication condition

∂2ϕ1(x̄, y1) (0) ∩
(−∂2ϕ2(x̄, y2) (0)

)
= {0} ∀(y1, y2) ∈ S(x̄, ȳ).(3.3)

Then for all y∗ ∈ R
n one has

∂2(ϕ1 + ϕ2)(x̄, ȳ)(y
∗) ⊂

⋃
(y1,y2)∈S(x̄,ȳ)

[
∂2ϕ1(x̄, y1)(y

∗) + ∂2ϕ2(x̄, y2)(y
∗)

]
.(3.4)

(ii) Assume that ϕ1 ∈ C1 around x̄ while ϕ2 is an arbitrary extended-real-valued
function such that the graph of ∂ϕ2 is closed around (x̄, ȳ2), where ȳ2 := ȳ − ȳ1 and
ȳ1 := ∇ϕ1(x̄). Assume also that the second-order qualification condition (3.3) holds
at (y1, y2) = (ȳ1, ȳ2). Then

∂2(ϕ1 + ϕ2)(x̄, ȳ)(y
∗) ⊂ ∂2ϕ1(x̄, ȳ1)(y

∗) + ∂2ϕ2(x̄, ȳ2)(y
∗) ∀y∗ ∈ R

n.(3.5)

Moreover, if ϕ1 ∈ C1,1 (i.e., ∇ϕ1 is Lipschitz continuous around x̄), then (3.3) holds
automatically and ∂2ϕ1(x̄, ȳ)(y

∗) = ∂〈y∗,∇ϕ1〉(x̄) in (3.5).
(iii) Assume in addition to (ii) that ∇ϕ1 is strictly differentiable at x̄ with ∇2ϕ1(x̄)

denoting this strict derivative (in particular, ϕ1 ∈ C2 around x̄). Then (3.3) holds
and

∂2(ϕ1 + ϕ2)(x̄, ȳ)(y
∗) = (∇2ϕ1(x̄))

∗y∗ + ∂2ϕ2(x̄, ȳ2)(y
∗) ∀y∗ ∈ R

n.

Proof. To justify (i), we first observe that under the first-order qualification
condition (3.1) and the subdifferential regularity assumption on both ϕ1 and ϕ2 one
has the equality

∂(ϕ1 + ϕ2)(x) = ∂ϕ1(x) + ∂ϕ2(x) ∀x ∈ U ;(3.6)

see [12, Corollary 4.6]. Now assertion (i) follows directly from the inclusion sum
rule (2.12) in Theorem 2.2 with Fi = ∂ϕi, i = 1, 2, and the definition of the basic
second-order subdifferential.
To establish assertion (ii) of the theorem, we observe that if ϕ1 is continuously

differentiable around x̄, then

∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) ∀x ∈ U(3.7)

without any other assumptions; see [10, Corollary 4.1.2]. Again applying Theorem 2.2
with F1 = ∇ϕ1 and F2 = ∂ϕ2, we arrive at (3.5). The mentioned refinement of (3.5)
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for ϕ1 ∈ C1,1 follows from the scalarization formula (2.5). Note that the assumptions
in (ii) do not require the subdifferential regularity of ϕ2.
The proof of (iii) is similar to (ii). The only difference is that, instead of (2.12),

we apply to (3.7) the equality sum rule (2.13) in Theorem 2.2.
Note that the first-order qualification condition (3.1) automatically holds and

the sets (3.2) are uniformly bounded around (x̄, ȳ) if one the functions ϕi is locally
Lipschitzian around x̄; cf. [12, Corollary 4.8].
Next let us derive sum rules for the semiconvex second-order subdifferential (2.9)

similarly to Theorem 3.1. Observe that the way of proving Theorem 3.1(i) does not
lead to new results in the case of (2.9) since then it would require the Clarke regularity
of ϕi around x̄, which implies that the second-order subdifferentials (2.9) and (2.8)
coincide for ϕ1, ϕ2, and ϕ1 + ϕ2. However, when ϕ1 ∈ C1 and ϕ2 is general, we can

obtain sum rules for ∂
2
that are parallel to assertions (ii) and (iii) of Theorem 3.1 but

are not implied by the latter.
Theorem 3.2. Let ϕ1 : R

n → R be continuously differentiable around x̄ and let
ϕ2 : R

n → R be finite at x̄ and l.s.c. around this point. Given ȳ ∈ ∂(ϕ1 + ϕ2)(x̄) and
(ȳ1, ȳ2) := (∇ϕ1(x̄), ȳ −∇ϕ1(x̄)), we assume that

∂
2
ϕ1(x̄, ȳ1) (0) ∩

(
−∂2

ϕ2(x̄, ȳ2) (0)
)
= {0}(3.8)

and that the graph of ∂ϕ2 is closed around (x̄, ȳ2). Then

∂
2
(ϕ1 + ϕ2)(x̄, ȳ)(y

∗) ⊂ ∂2
ϕ1(x̄, ȳ1)(y

∗) + ∂
2
ϕ2(x̄, ȳ2)(y

∗) ∀y∗ ∈ R
n,(3.9)

where ∂
2
ϕ1(x̄, ȳ)(y

∗) = ∂〈y∗,∇ϕ1〉(x̄) with (3.8) holding automatically if ϕ1 ∈ C1,1

around x̄. Moreover, if ∇ϕ1 has the strict derivative ∇2ϕ1(x̄) at x̄, then

∂
2
(ϕ1 + ϕ2)(x̄, ȳ)(y

∗) = (∇2ϕ1(x̄))
∗y∗ + ∂

2
ϕ2(x̄, ȳ2)(y

∗) ∀y∗ ∈ R
n.(3.10)

Proof. First let us show that

∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) ∀x ∈ U,(3.11)

where U is a neighborhood of x̄ in which ϕ1 is continuously differentiable and ϕ2 is
l.s.c. To furnish this, we use (3.7) and the equality

∂∞(ϕ1 + ϕ2)(x) = ∂
∞ϕ2(x) ∀x ∈ U

is valid in this setting; see [12, Corollary 4.6]. Employing these two properties and
representation (2.6), we get

∂(ϕ1 + ϕ2)(x) = clco [∂(ϕ1 + ϕ2)(x) + ∂
∞(ϕ1 + ϕ2)(x)]

= clco [∇ϕ1(x) + ∂ϕ2(x) + ∂
∞ϕ2(x)]

= ∇ϕ1(x) + clco [∂ϕ2(x) + ∂
∞ϕ2(x)]

= ∇ϕ1(x) + ∂ϕ2(x) ∀x ∈ U,

which gives (3.11). Now using definition (2.9) and applying to (3.11) the coderivative
sum rule (2.12) with the qualification condition (2.11), we obtain (3.9) under the
second-order qualification condition (3.8). The refinement of this result for ϕ1 ∈ C1,1

follows from the scalarization formula (2.5). If ∇ϕ1 is strictly differentiable at x̄, we
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employ in (3.11) the equality sum rule (2.13) of Theorem 2.2 and arrive at
(3.10).

Remark 3.3. (i) Let us discuss the local closedness assumptions on the graph of
the basic subdifferential imposed in Theorem 3.1 and used also in what follows. Given
ϕ : Rn → R finite at x̄, the closedness of ∂ϕ(x) for all x near x̄ means that there is a
neighborhood U of x̄ such that the set gph ∂ϕ is closed relative to U×R

n. Due to (2.4)
this always happens when ϕ is continuous around x̄. It also holds for every proper l.s.c.
convex function and for a more general class of amenable functions that are especially
important for the theory and applications of variational analysis; see [23], in particular,
Definition 10.23 and Exercise 10.25(b) therein. The less restrictive requirement on
the local closedness of gph ∂ϕ around (x̄, ȳ), imposed in Theorem 3.1(ii), means that
gph ∂ϕ is closed relative to a neighborhood of (x̄, ȳ) and holds for subdifferentially
continuous functions; see Definition 13.28 and the related discussion in [23]. The
local closedness of gph ∂ϕ may also be fulfilled in some other situations when the
subdifferential continuity is violated as, e.g., in [23, Figure 13-3].
(ii) The local closed graph assumption on the convexified subdifferential ∂ϕ im-

posed in Theorem 3.2 is more restrictive and does not hold, in particular, for a locally
continuous function unless it is assumed to be directionally Lipschitzian; see [22,
Proposition 4R and the counterexample on p. 23]. However, it holds for every func-
tion amenable at x̄ since such functions exhibit Clarke regularity at any point x in a
neighborhood of x̄, hence ∂ϕ(x) = ∂ϕ(x); see [23, Exercise 10.25(a) and (b)].
Next let us consider the composition

ϕ(x) = (ψ ◦ h)(x) := ψ(h(x))(3.12)

of functions h : Rn → R
m and ψ : Rm → R. Our goal is to derive parallel chain rules

for both second-order subdifferentials (2.8) and (2.9). First we examine the situation
when the inner mapping h is smooth around the point in question while the outer
function ψ is extended-real-valued.

Theorem 3.4. Given x̄ ∈ R
n, we suppose that ϕ is finite around x̄, that ψ is

l.s.c. around h(x̄), and that h is continuously differentiable around x̄ and its Jacobian
∇h(x̄) has full row rank m. Suppose also that the mapping ∇h : R

n → R
m×n is

strictly differentiable at x̄. Then the following assertions hold.
(i) Let ȳ ∈ ∂ϕ(x̄) for composition (3.12) and assume that the graph of ∂ψ is closed

around (h(x̄), v̄), where v̄ ∈ R
m is a unique vector satisfying the relations

ȳ = (∇h(x̄))∗ v̄ and v̄ ∈ ∂ψ (h(x̄)) .(3.13)

Then

∂2ϕ(x̄, ȳ)(y∗)(3.14)

⊂ (∇2〈v̄, h〉(x̄)) y∗ + (∇h(x̄))∗∂2ψ(h(x̄), v̄)(∇h(x̄) y∗) ∀y∗ ∈ R
n.

(ii) Let ȳ ∈ ∂ϕ(x̄) for composition (3.12) and assume that the graph of ∂ψ is
closed around (h(x̄), v̄), where v̄ is uniquely determined by

ȳ = (∇h(x̄))∗ v̄ and v̄ ∈ ∂ψ (h(x̄)) .
Then

∂
2
ϕ(x̄, ȳ)(y∗)(3.15)

⊂ (∇2〈v̄, h〉(x̄)) y∗ + (∇h(x̄))∗∂2
ψ(h(x̄), v̄)(∇h(x̄) y∗) ∀y∗ ∈ R

n.
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Proof. First let us prove assertion (i). Observe that the second-order chain rule
(3.14) can be equivalently rewritten as

∂2ϕ(x̄, ȳ) (y∗) ⊂ ∇x((∇h(x̄))∗v̄) y∗(3.16)

+
{
(∇h(x̄))∗w | (w,−∇h(x̄)y∗) ∈ N((h(x̄), v̄); gph ∂ψ)

}
.

To establish (3.16), we start with the first-order equality chain rule

∂ϕ(x) = (∇h(x))∗ ∂ψ(h(x))(3.17)

that holds for all x from a neighborhood U of x̄ under the assumptions made; see [23,
Exercise 10.7]. This allows us to represent the multifunction ∂ϕ as the composition

∂ϕ(x) = (f ◦G)(x), x ∈ U,(3.18)

with the single-valued mapping f : Rn × R
m → R

n defined by

f(u, v) := (∇h(u))∗v(3.19)

and the set-valued mapping G : Rn →→ R
n × R

m defined by

(u, v) ∈ G(x) iff u = x and v ∈ ∂ψ(h(x)).(3.20)

We are going to apply the coderivative chain rule of Theorem 2.3(i) to composition
(3.18). To furnish this, let us define the multifunction M : Rn × R

n →→ R
m × R

n by

M(x, y) := {(u, v) ∈ R
n × R

m |u = x, v ∈ ∂ψ(h(x)), y = (∇h(u))∗v} ,

which corresponds to (2.14) in Theorem 2.3. Since

M(x, y) ⊂ {(u, v) ∈ R
n × R

m |u = x, y = (∇h(u))∗v}

and M(x̄, ȳ) �= ∅ due to ȳ ∈ ∂ϕ(x̄), we get M(x̄, ȳ) = {(x̄, v̄)} with the vector v̄
uniquely determined by (3.13). It is easy to see that all the assumptions of Theo-
rem 2.3(i) are fulfilled for the above composition (3.18). Applying the coderivative
chain rule (2.15) to composition (3.18) and taking into account the structure of (3.19),
we obtain

D∗(f ◦G)(x̄, ȳ)(y∗) ⊂ D∗G(x̄, x̄, v̄) ((∇f(x̄, v̄))∗ y∗)

= D∗G(x̄, x̄, v̄)
([ ∇x((∇h(x̄))∗v̄)

(∇h(x̄))∗
]
y∗

)
.

(3.21)

To compute the coderivative of G in (3.21), we observe that

D∗G(x̄, x̄, v̄) (u∗, v∗) ⊂ u∗ +D∗(∂ψ ◦ h) (x̄, v̄) (v∗)(3.22)

for all (u∗, v∗) ∈ R
n × R

m. It follows from (3.20) and the inclusion

N((x̄, x̄, v̄); gphG) ⊂
{
(x∗, u∗, v∗) ∈ R

n × R
n × R

m
∣∣∣x∗ = x∗1 + x∗2, x∗1 = −u∗,

(x∗2, v
∗) ∈ N((x̄, v̄); gph (∂ψ ◦ h))

}
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that holds due to

gphG =
{
(x, u, v) ∈ R

n×R
n×R

m
∣∣∣u = x}∩{(x, u, v) ∈ R

n×R
n×R

m
∣∣∣ v ∈ ∂ψ(h(x))}

and the normal cone representation for set intersections; see [12, Corollary 4.7].
It remains to compute the second term at the right-hand side of (3.22), which

is the coderivative of a composition F ◦ g with F := ∂ψ and g := h. To do it,
we apply Theorem 2.3(ii) whose assumptions are fulfilled due the full rank condition
ker(∇h(x̄))∗ = {0} and the local closedness of ∂ψ. So we get

D∗(∂ψ ◦ h) (x̄, v̄) (v∗) ⊂ (∇h(x̄))∗D∗∂ψ(h(x̄), v̄) (v∗) ∀v∗ ∈ R
m(3.23)

from the coderivative chain rule (2.17). Now combining (3.21), (3.22), and (3.23),
we arrive at the required inclusion (3.16) and finish the proof of assertion (i) in the
theorem.
To prove (ii), we use the same procedure starting with the property

∂ϕ(x) = (∇h(x))∗ ∂ψ(h(x))
that follows, due to (2.6), from (3.17) and its counterpart for singular subgrad-
ients.

Remark 3.5. If n = m in Theorem 3.4, then the full rank condition means that
the Jacobian matrix ∇h(x̄) is quadratic and nonsingular. According to the classical
inverse mapping theorem, there is a single-valued local inverse h−1 that is strictly
differentiable at the point h(x̄). So applying Theorem 3.4 to ψ = ϕ ◦h−1 in this case,
one can get the opposite inclusions in (3.14) and (3.15), i.e., they hold as equalities.
It was pointed out by Terry Rockafellar that the general case of Theorem 3.4 with
the full rank condition could be reduced to the quadratic nonsingular case. It can
be done similarly to the procedure in [23, Exercise 6.7]. Thus the second-order chain
rules (3.14) and (3.15) in fact hold as equalities under the assumptions made.
Next let us consider compositions (3.12) involving nonsmooth inner mappings

h : R
n → R

n while outer functions ψ : R
n → R are smooth. Suppose that each

component hi of h depends only on the ith component of the variable x ∈ R
n. Given

x̄ ∈ R
n, we assume that ψ is continuously differentiable around h(x̄) and introduce

the index sets

I+(x̄) := {i ∈ {1, 2, . . . , n} | (∇ψ(h(x̄)))i ≥ 0} and I−(x̄) := {1, 2, . . . , n} \ I+(x̄).
Theorem 3.6. In addition to the assumptions above, we suppose that all the

functions hi, i = 1, 2, . . . , n, are Lipschitz continuous around x̄i and that ∇ψ is strictly
differentiable at h(x̄) with the strict derivative denoted by ∇2ψ(h(x̄)). Assume also
that

(∇ψ(h(x̄)))i �= 0 for all i = 1, 2, . . . , n.(3.24)

Then the following assertions hold.
(i) Let ȳ ∈ ∂ϕ(x̄). Then

∂2ϕ(x̄, ȳ) (y∗) ⊂ D∗h(x̄)
(∇2ψ(h(x̄)) (v̄ • y∗))+ Λ(y∗)(3.25)

for all y∗ ∈ R
n, where

Λ(y∗) :=

{
λ ∈ R

n
∣∣∣λi ∈

〈
∂2hi(x̄i, v̄i) ((∇ψ(h(x̄)))i y∗i ) if i ∈ I+(x̄)
∂+2hi(x̄i, v̄i) ((∇ψ(h(x̄)))i y∗i ) if i ∈ I−(x̄)

}
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and v̄ ∈ R
n is a unique vector satisfying the relations

ȳ = (∇ψ(h(x̄))) • v̄, v̄i ∈
〈
∂hi(x̄i) if i ∈ I+(x̄),
∂+hi(x̄i) if i ∈ I−(x̄),

i = 1, 2, . . . , n.

(ii) Let ȳ ∈ ∂ϕ(x̄). Then

∂
2
ϕ(x̄, ȳ) (y∗) ⊂ D∗h(x̄) (∇2ψ(h(x̄)) (v̄ • y∗)) + Λ(y∗)(3.26)

for all y∗ ∈ R
n, where

Λ(y∗) :=
{
λ ∈ R

n |λi = ∂2
hi(x̄i, v̄i) ((∇ψ(h(x̄)))i y∗i )

}
and v̄ ∈ R

n is a unique vector satisfying

ȳ = (∇ψ(h(x̄))) • v̄, v̄i ∈ ∂hi(x̄i), i = 1, 2, . . . , n.

Proof. First let us prove (i). We begin with the following first-order chain rule
proved in [10, Theorem 4.7] (see also [12, Corollary 5.8]):

∂ϕ(x) =
n∑
i=1

∂(αihi) (x̄) ∀ x close to x̄,(3.27)

where αi := (∇ψ(h(x̄)))i, i = 1, 2 . . . , n. Due to (3.27) and the definitions of ∂ and
∂+ in section 2 we get

∂ϕ(x̄) =

{
y ∈ R

n
∣∣∣ yi ∈

〈
(∇ψ(h(x̄)))i ∂hi(x̄i) if i ∈ I+(x̄)
(∇ψ(h(x̄)))i ∂+hi(x̄i) if i ∈ I−(x̄)

}
.(3.28)

Given ȳ ∈ ∂ϕ(x̄), we now proceed similarly to the proof of Theorem 3.4 and represent
∂ϕ in the composition form (3.18) with the single-valued mapping f : R

2n → R
n

defined by

f(u, v) := ∇ψ(u) • v(3.29)

and the set-valued mapping G : Rn →→ R
2n defined by

(u, v) ∈ G(x) iff u = h(x) and vi ∈
〈
∂hi(x̄i) if i ∈ I+(x̄),
∂+hi(x̄i) if i ∈ I−(x̄).

(3.30)

For this composition, the corresponding mapping (2.14) is given by

M(x, y):=


(u, v) ∈ R

n × R
n | y = ∇ψ(u) • v, u = h(x), vi ∈

〈
∂hi(xi) if i ∈ I+(x)
∂+hi(xi) if i ∈ I−(x)




=

{
(h(x), v) ∈ R

n × R
n | y = ∇ψ(h(x)) • v, vi ∈

〈
∂hi(xi) if i ∈ I+(x)
∂+hi(xi) if i ∈ I−(x)

}
.

Due to condition (3.24) the set M(x̄, ȳ) reduces to the singleton {h(x̄, v̄)}, where v̄ is
defined above. It is easy to see that the other assumptions of Theorem 2.3(i) hold as



150 BORIS S. MORDUKHOVICH AND JIŘÍ V. OUTRATA

well for composition (3.18) under consideration. Using this result and the structure
of (3.29), we obtain the inclusion

D∗(f ◦G) (x̄, ȳ) (y∗) ⊂ D∗G(x̄, h(x̄), v̄) ((∇f(h(x̄), v̄)))∗ y∗) ,(3.31)

where the Jacobian of f is computed by

(∇f(h(x̄), v̄))∗ y∗ =
[ ∇2ψ(h(x̄))Diag(v̄)

Diag(∇ψ(h(x̄)))

]
y∗.

It remains to compute the coderivative of the mappingG in (3.31). Using the structure
of (3.30) and the definition of ∂+2 in (2.10), we get

D∗G(x̄, h(x̄), v̄) (u∗, v∗) ⊂ D∗h(x̄)(u∗)

+

{
λ ∈ R

n

∣∣∣∣∣λi ∈
〈
∂2hi(x̄i, v̄i) (v

∗
i ) if i ∈ I+(x̄)

∂+2hi(x̄i, v̄i) (v
∗
i ) if i ∈ I−(x̄)

}

for all (u∗, v∗) ∈ R
n × R

n. Finally we arrive at (3.25) and finish the proof of asser-
tion (i).
To prove assertion (ii), we proceed similarly to (i) starting with the equality

∂ϕ(x) =

n∑
i=1

∂(αihi) (x̄) ∀ x close to x̄,

which immediately follows from (3.27) due to (2.6) and the Lipschitz continuity of ϕ
around x̄. Using the symmetry property (2.7) of the convexified subdifferential, we
have

∂ϕ(x̄) =
{
y ∈ R

n| yi ∈ (∇ψ(h(x̄)))i∂hi(x̄i), i = 1, 2, . . . , n
}

instead of (3.28), which leads to the difference between the sets Λ(y∗) and Λ(y∗) in
the second-order chain rules (3.25) and (3.26).
In some applications (see, e.g., section 5) one needs to compute the coderivative

of multifunctions given by

Q(x, y) := {q ∈ R
m | q = h(x) • v, v ∈ ∂ϕ(y)} and(3.32)

Q(x, y) :=
{
q ∈ R

m | q = h(x) • v, v ∈ ∂ϕ(y)} ,
where h : R

n → R
m and ϕ : R

m → R. In these cases we do not compute the
second-order subdifferentials of a function while the resulting formulas contain the
corresponding second-order subdifferentials of ϕ, and thus they can be viewed as a
part of the second-order calculus.

Theorem 3.7. Given (x̄, ȳ) ∈ R
n×R

m, we assume that ϕ is l.s.c. around ȳ and
that h is strictly differentiable at x̄ with hi(x̄) �= 0 for all i = 1, 2, . . . ,m. Then the
following hold.
(i) Let q̄ ∈ Q(x̄, ȳ) and let v̄ be a (unique) vector satisfying the relations

q̄ = h(x̄) • v̄, v̄ ∈ ∂ϕ(ȳ).(3.33)
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Assume that the graph of ∂ϕ is closed around (ȳ, v̄). Then

D∗Q(x̄, ȳ, q̄) (q∗) ⊂
[
(∇h(x̄))∗(v̄ • q∗)

∂2ϕ(ȳ, v̄) (h(x̄) • q∗)
]
∀ q∗ ∈ R

m.(3.34)

(ii) Let q̄ ∈ Q(x̄, ȳ) and let v̄ be a (unique) vector satisfying the relations

q̄ = h(x̄) • v̄, v̄ ∈ ∂ϕ(ȳ).

Assume that the graph of ∂ϕ is closed around (ȳ, v̄). Then

D∗Q(x̄, ȳ, q̄) (q∗) ⊂
[
(∇h(x̄))∗(v̄ • q∗)

∂
2
ϕ(ȳ, v̄) (h(x̄) • q∗)

]
∀ q∗ ∈ R

m.

Proof. The proof of this theorem is similar to the case of Theorem 3.6, so we
present only the main points in proving assertion (i).
Clearly, multifunction (3.32) is represented as the composition

Q(x, y) = (f ◦G)(x, y),(3.35)

where f : Rn × R
m → R

m is a smooth function defined by

f(u, v) := h(u) • v

and where G maps R
n × R

m into subsets of R
n × R

m so that

(u, v) ∈ G(x, y) iff u = x and v ∈ ∂ϕ(y).

By the assumptions made on h, the vector v̄ is indeed uniquely determined in (3.33).
Applying Theorem 2.3(i) to composition (3.35) and taking into account the structure
of the mappings involved, we get

D∗(f ◦G) (x̄, ȳ, q̄) (q∗) ⊂ D∗G(x̄, ȳ, x̄, v̄)
([
(Diag(v̄)∇h(x̄))∗
Diag(h(x̄))

]
q∗

)
and

D∗G(x̄, ȳ, x̄, v̄) (u∗, v∗) =
[

u∗

∂2ϕ(ȳ, v̄) (v∗)

]
,

which implies (3.34).

4. Computation of second-order subdifferentials. The value of the sec-
ond-order subdifferential theory depends on the possibility to compute efficiently the
second-order subdifferentials (2.8) and (2.9) for attractive classes of nonsmooth func-
tions important for applications. In [4], it was done for the class of indicator functions
of polyhedral convex sets that naturally appear in many important applications of
variational analysis and optimization; see, in particular, [4], [20], and [23]. Note that
all the functions of this class are fully amenable [23] and do not distinguish between
constructions (2.8) and (2.9).
In this section we efficiently compute the second-order subdifferentials (2.8) and

(2.9) for a new class of functions that are especially important for the study of mathe-
matical programs with equilibrium constraints (cf., in particular, [18]) and frequently
arise, e.g., in the modeling of some mechanical equilibria; see section 5. Functions of
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this class do not generally exhibit subdifferential regularity and have different second-
order subdifferentials (2.8) and (2.9), both of which are computed in what follows.
Using the calculus results of section 3, we can compute the second-order subdifferen-
tials for more general classes of functions via various compositions.
The attention is paid first to an extended-real-valued function ϕ : R→ R having

the form

ϕ(·) = ϑ(·) + δ(·; Γ).(4.1)

In (4.1), δ(·; Γ) is the indicator function of the closed interval Γ := [α, β] ⊂ R with α
possibly equal to −∞ and β possibly equal to +∞; the function ϑ is piecewise C2 in
the following sense:

(i) ϑ is continuous on an open set O containing Γ;
(ii) there exist points κ1, κ2, . . . , κk in Γ with

α < κ1 < κ2 < · · · < κk < β

and twice continuously differentiable functions ϑj : O → R, j = 0, 1, . . . , k,
such that

ϑ(ξ) =



ϑ0(ξ) for ξ ∈ [α, κ1],

ϑj(ξ) for ξ ∈ [κj , κj+1], j = 1, 2, . . . , k − 1,
ϑk(ξ) for ξ ∈ [κk, β].

Example 4.1. Consider the functions

ϕ(p) = |p|+ µ(max{0, p})2 + ν(max{0,−p})2 + δ(p; Γ),
ϕ̃(p) = −|p|+ µ(max{0, p})2 + ν(max{0,−p})2 + δ(p; Γ),

where µ, ν are given parameters and Γ = [−1, 1]. Both these functions can be easily
converted to form (4.1). In particular, for the function ϕ we have k = 1, α = −1, κ1 =
0, β = 1, and the corresponding function ϑ attains the form

ϑ(p) =

{ −p+ νp2 for p ∈ [−1, 0],
p+ µp2 for p ∈ [0, 1].

The graphs of ϕ and ∂ϕ are depicted on Figure 4.1(a) (gph ∂ϕ = gph ∂ϕ) while the
graphs of ϕ̃, ∂ϕ̃, and ∂ϕ̃ are depicted on Figure 4.1(b) (for µ = 0.5, ν = −0.5).
It is easy to see that for ϕ given by (4.1) the normal cones to gph ∂ϕ and gph ∂ϕ at

any point can be computed directly from definition (2.1). Consequently, the respective
second-order subdifferentials can be expressed in terms of the function data. It doesn’t
seem to be possible to have one universal formula that describes all the situations
occurring at kink points of the subdifferential graphs. The general case of functions
(4.1) is covered by formulas (4.4)–(4.10). For the reader’s convenience, we mention in
(4.4)–(4.10) some characteristic points at Figure 4.1, which illustrate the application
of these general formulas to the case of simple functions considered in Example 4.1.
In the computation of the basic second-order subdifferential of functions ϕ in form

(4.1) we use the following auxiliary statement, where

M :=
{
j ∈ {1, 2, . . . , k}

∣∣∣∇ϑj−1(κj) ≤ ∇ϑj(κj)
}
.
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Fig. 4.1(b). gph φ̃, gph ∂φ̃, and gph ∂φ̃.

Proposition 4.2. Assume that α < β and both these numbers are finite. Denote

A : =
{
(ξ, η) ∈ R

2 | ξ = α, η ∈ (−∞, ∇ϑ0(α)]
}
,

B : =
{
(ξ, η) ∈ R

2 | ξ = β, η ∈ [∇ϑk(β), +∞)} .
Then one has

gph ∂ϕ =
{
(ξ, η) ∈ R

2 |α ≤ ξ ≤ κ1, η = ∇ϑ0(ξ)
}

∪
k−1⋃
j=1

{
(ξ, η) ∈ R

2 |κj ≤ ξ ≤ κj+1, η = ∇ϑj(ξ)}
∪ {

(ξ, η) ∈ R
2 |κk ≤ ξ ≤ β, η = ∇ϑk(ξ)} ∪A ∪B

∪
⋃
j∈M

{
(ξ, η) ∈ R

2 | ξ = κj , η ∈ [∇ϑj−1(κj), ∇ϑj(κj)]} .
(4.2)

If α = −∞ or β = +∞, then (4.2) holds true with A = ∅ or B = ∅, respectively.
Proof. Since ϑ is continuously differentiable around α and β, we get

∂ϕ(α) = ∇ϑ0(α) + R− and ∂ϕ(β) = ∇ϑk(β) + R+
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due to (3.7) with ∂ϕ(ξ) = ∂ϑj(ξ) for ξ ∈ int Γ and the appropriate j from above. Thus
ϕ is continuously differentiable on the intervals (α, κ1), (κj , κj+1), j = 1, 2, . . . , k− 1,
and (κk, β). Moreover, its gradient equals to the gradient of the appropriate func-
tion ϑj . It remains to analyze the points κj , j = 1, 2, . . . , k. One can easily observe
from the definitions of ϕ and the basic subdifferential that

∂ϕ(κj) =

{ [∇ϑj−1(κj), ∇ϑj(κj)] if j ∈M,{∇ϑj−1(κj), ∇ϑj(κj)} otherwise.
(4.3)

This completes the proof.
Using the structure of each set of gph ∂ϕ ⊂ R

2 in (4.2), we are able to compute
the normal cone (2.1) to these sets at any pair (p̄, v̄) ∈ gph ∂ϕ. To facilitate the
notation, let us put

Aj(ξ) :=
{
(w, z) ∈ R

2 | z = − 1

∇2ϑj(ξ)
w if ∇2ϑj(ξ) �= 0 and w = 0 otherwise

}

for all ξ ∈ O, j = 0, 1, . . . , k. Based on the construction of the normal cone (2.1) and
Proposition 4.2, we get

N((p̄, v̄); gph ∂ϕ) =



A0(p̄) if p̄ ∈ (α, κ1),

Aj(p̄) if p̄ ∈ (κj , κj+1),
Ak(p̄) if p̄ ∈ (κk, β).

j = 1, 2, . . . , k − 1.(4.4)

For p̄ = α and p̄ = β one has, respectively,

N((α, v̄); gph ∂ϕ) =




{(w, z) ∈ R
2 | z = 0} if v̄ < ∇ϑ0(α) (cf. points A),

{(w, z) ∈ R
2 | z = 0} ∪ A0(α)

∪{(w, z) ∈ R
2 |w +∇2ϑ0(α) z ≤ 0, z ≥ 0}

if v̄ = ∇ϑ0(α) (cf. points B);

(4.5)

N((β, v̄); gph ∂ϕ) =




{(w, z) ∈ R
2 | z = 0} if v̄ > ∇ϑk(β) (cf. points C),

{(w, z) ∈ R
2 | z = 0} ∪ Ak(β)

∪{(w, z) ∈ R
2 |w +∇2ϑk(β) z ≥ 0, z ≤ 0}

if v̄ = ∇ϑk(β) (cf. points D).

(4.6)

Finally taking p̄ = κj with j ∈ {1, 2, . . . , k}, we have to distinguish between the
following two situations.
(a) Let j ∈M . Then
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N((κj , v̄); gph ∂ϕ) =




{(w, z) ∈ R
2 | z = 0} if ∇ϑj−1(κj) < v̄ < ∇ϑj(κj)

(cf. point E),

{(w, z) ∈ R
2 | z = 0} ∪ Aj−1(κj)

∪{(w, z)∈R
2 |w +∇2ϑj−1(κj) z ≥ 0, z ≤ 0}

if v̄ = ∇ϑj−1(κj) (cf. point F ),

{(w, z) ∈ R
2 | z = 0} ∪ Aj(κj)

∪{(w, z)∈R
2 |w +∇2ϑj(κj) z ≤ 0, z ≥ 0}

if v̄ = ∇ϑj(κj) (cf. point G),

(4.7)

provided that ∇ϑj−1(κj) < ∇ϑj(κj), and
N((κj , v̄); gph ∂ϕ) = Aj−1(κj) ∪ Aj(κj)

∪ {
(w, z) ∈ R

2| − ∇2ϑj−1(κj) z ≤ w ≤ −∇2ϑj(κj) z
}
,

(4.8)

provided that v̄ = ∇ϑj−1(κj) = ∇ϑj(κj).
(b) Let j /∈ M . Then v̄ cannot lie between ∇ϑj−1(κj) and ∇ϑj(κj), and hence
one has

N((κj , v̄); gph ∂ϕ)(4.9)

=

{ {(w, z) ∈ R
2 |w +∇2ϑj−1(κj) z ≥ 0} if v̄ = ∇ϑj−1(κj) (cf. point H),

{(w, z) ∈ R
2 |w +∇2ϑj(κj) z ≤ 0} if v̄ = ∇ϑj(κj) (cf. point K).

Next let us observe from (2.6) and Proposition 4.2 that N((p̄, v̄); gph ∂ϕ) =
N((p̄, v̄); gph ∂ϕ) whenever formulas (4.4)–(4.8) apply. The only difference between
these cones occurs in the case of p̄ = κj and j ∈ {1, 2, . . . , k} \M . In this case

N((κj , v̄); gph ∂ϕ) =




{(w, z) ∈ R
2 | z = 0} if ∇ϑj−1(κj) > v̄ > ∇ϑj(κj)

(cf. point L),

{(w, z) ∈ R
2 | z = 0} ∪ Aj−1(κj)

∪{(w, z)∈R
2 |w +∇2ϑj−1(κj) z ≥ 0, z ≥ 0}

if v̄ = ∇ϑj−1(κj) (cf. point M),

{(w, z) ∈ R
2 | z = 0} ∪ Aj(κj)

∪{(w, z)∈R
2 |w +∇2ϑj(κj) z ≤ 0, z ≤ 0}

if v̄ = ∇ϑj(κj) (cf. point N).

(4.10)

Taking into account the above calculations, we establish the main result of this
section that concerns separable extended-real-valued functions of many variables ψ :
R
� → R given by

ψ(p) =

�∑
i=1

ϕi(pi),(4.11)

where each ϕi : R → R has structure (4.1) and satisfies all the assumptions posed
at the beginning of this section. Correspondingly, we associate with each function ϕi
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the respective interval Γi = [αi, βi], the piecewise C
2 function ϑi, the junction points

κji , j = 1, 2, . . . , ki, and the index set Mi defined above. In the next statement we
provide the exact formulas for computing both second-order subdifferentials (2.8) and
(2.9) for functions ψ of class (4.11) in terms of their initial data.

Theorem 4.3. Let ψ : R
� → R be a function of type (4.11), where all the

summands ϕi have structure (4.1) and satisfy the respective assumptions. Then the
following assertions hold.
(i) Given (p̄, v̄) ∈ R

� × R
� with v̄ ∈ ∂ψ(p̄), one has

∂2ψ(p̄, v̄) (z) =
{
w ∈ R

� | (wi,−zi) ∈ N((p̄i, v̄i); gph ∂ϕi), i = 1, 2, . . . , 6
}

(4.12)

for any z ∈ R
�, where the cones N((p̄i, v̄i); gph ∂ϕi), i = 1, 2, . . . , 6, are computed in

(4.4)–(4.9).
(ii) Given (p̄, v̄) ∈ R

� × R
� with v̄ ∈ ∂ψ(p̄), one has

∂
2
ψ(p̄, v̄) (z) =

{
w ∈ R

� | (wi,−zi) ∈ N((p̄i, v̄i); gph ∂ϕi), i = 1, 2, . . . , 6
}

(4.13)

for any z ∈ R
�, where N((p̄i, v̄i); gph ∂ϕi) = N((p̄i, v̄i); gph ∂ϕi) when (p̄i, v̄i) ∈

gph ∂ϕi and formulas (4.4)–(4.8) apply, and where N((κji , v̄i); gph ∂ϕi) are computed
by formula (4.10) when j ∈ {1, 2, . . . , ki} \Mi.

Proof. First let us justify (i). Using the separable structure of l.s.c. functions
(4.11), we get, due to [23, Proposition 10.5], that

∂ψ(p̄) =

�

X
i=1

∂ϕi(p̄i),(4.14)

which implies that

v̄ = (v̄1, v̄2, . . . , v̄�) with v̄i ∈ ∂ϕi(p̄i).
Employing the projection rule for the normal cones in (4.14), we arrive at

N((p̄, v̄); gph ∂ψ) =

�

X
i=1

N((p̄i, v̄i); gph ∂ϕi).

Now the second-order subdifferential formula (4.12) follows directly from definition
(2.8).
Next let us justify assertion (ii). Taking into account the discussion before The-

orem 4.3, it remains to prove that

∂ψ(p̄) =

�

X
i=1

∂ϕi(p̄i)(4.15)

for the functions ψ and ϕi in (4.11) and (4.1). To see it, we observe that (4.15) can
be violated only if for some i ∈ {1, 2, . . . , 6} one has ∂ϕi(p̄i) �= ∂ϕi(p̄i), i.e., if p̄i = κji
for some j ∈ {1, 2, . . . , ki} \Mi. Let L denote the collection of indices i ∈ {1, 2, . . . , 6}
for which this happens. It follows from the definitions that

∂ψ(p̄) ⊂ X
i/∈L

∂ϕi(p̄i)× X
i∈L
[∇ϑj−1

i (κji ), ∇ϑji (κji )].(4.16)

On the other hand, we have

∂ψ(p̄) ⊃ clco ∂ψ(p̄) = X
i/∈L

∂ϕi(p̄i)× X
i∈L
[∇ϑj−1

i (κji ), ∇ϑji (κji )]
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Fig. 4.2. gph ∂ψ.

due to (2.6) and (4.3). Thus we establish the equality in (4.16) and justify (4.15) in
the general case under consideration. This finishes the proof of the theorem.
Using the calculus results of the previous section and the formulas of Theorem 4.3,

we can substantially extend the class of functions for which the second-order subdif-
ferentials (2.8) and (2.9) can be efficiently computed. Let us consider several examples
that illustrate the application of the chain rules in Theorems 3.4, 3.6, and 3.7 com-
bined with the calculations presented above. Note that for functions ψ given by (4.11)
and (4.1), the graphs of ∂ψ and ∂ψ are closed (see Proposition 4.2 and the proof of
Theorem 4.3); thus for such functions the results of section 3 can be readily applied.
For brevity we present calculations only for the basic second-order subdifferential
(2.8).

Example 4.4. Let

ψ(p) :=



5p− 2.5p2 for p ∈ [0, 1],
−4p− 2p2 for p ∈ [−1, 0],
+∞ otherwise,

(4.17)

which corresponds to (4.11), (4.1) with 6 = 1, k1 = 1, α1 = −1, κ1
1 = 0, and

β1 = 1. The graph of the subdifferential mapping ∂ψ for (4.17) is shown in Figure 4.2.
Consider the composition ϕ(x) = (ψ ◦ h)(x) of the function ψ : R→ R in (4.17) and
a smooth mapping h : R2 → R given by

h(x1, x2) := (x1)
2 + x1 + 2x2.

Using Theorem 3.4 for this composition with x̄ = (0, 0) and ȳ = (−4,−8) ∈ ∂ϕ(x̄),
we get v̄ = −4 from (3.13) and obtain the inclusion

∂2ϕ(x̄, ȳ) (y∗) ⊂
[
2 0
0 0

]
(−4)

[
y∗1
y∗2

]

+

{[
w
2w

]∣∣∣∣ (w,−y∗1 − 2y∗2) ∈ N((0,−4); gph ∂ψ)

}
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Fig. 4.3. N((0,−4); gph ∂ψ).

for all y∗ = (y∗1 , y
∗
2) ∈ R

2, where the normal cone N((0,−4); gph ∂ψ) is computed by

N((0,−4); gph ∂ψ) =
{
(w, z) ∈ R

2 | z = 0} ∪{
(w, z) ∈ R

2 | z = 1
4
w

}
∪ {
(w, z) ∈ R

2 |w − 4z ≥ 0, z ≤ 0}
due to (4.7) and is depicted in Figure 4.3. Note that the above formula for ∂2ϕ
actually holds as equality; see Remark 3.5.

Example 4.5. Consider the composition ϕ = ψ ◦ h in Theorem 3.6, where
ψ(p) :=

1

2
(p1)

2 + p1p2 + (p2)
2 + 2p1 + p2, p = (p1, p2) ∈ R

2,

and h = (h1, h2) : R
2 → R

2 is given by

h1(x1) := −|x1|, h2(x2) = |x2|.
Taking x̄ = (0, 0) and ȳ = (−2,−1), we check the assumption (3.24) and compute

∇2ψ(h(x̄)) =

[
1 1
1 2

]
, v̄ =

[ −1
−1

]
, v̄ • y∗ =

[ −y∗1
−y∗2

]

in (3.25) for any y∗ = (y∗1 , y
∗
2) ∈ R

2. Thus (3.25) gives the inclusion

∂2ϕ(x̄, ȳ) (y∗) ⊂ D∗h(x̄)
[ −y∗1 − y∗2
−y∗1 − 2y∗2

]
(4.18)

+
{
λ ∈ R

2
∣∣∣λ1 ∈ ∂2h1(0,−1) (2y∗1), λ2 ∈ ∂2h2(0,−1) (y∗2)

}
.

Applying Theorem 4.3(i) to the above functions h1 and h2, we get

∂2 h1(0,−1) (2y∗1) = R−

∂2 h2(0,−1) (y∗2) =

w ∈ R

∣∣∣∣∣ w ∈


{0} if y∗2 < 0
R if y∗2 = 0
R+ if y∗2 > 0


 .
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Fig. 4.4. N((0, 0); gphh).

So inclusion (4.18) reduces to

∂2ϕ(x̄, ȳ) (y∗) ⊂ D∗h(x̄)
[ −y∗1 − y∗2
−y∗1 − 2y∗2

]

+


w ∈ R

2

∣∣∣∣∣w1 ≤ 0, w2 ∈


{0} if y∗2 < 0
R if y∗2 = 0
R+ if y∗2 > 0


 .

It remains to compute the coderivative of h at x̄ = (0, 0), which requires the compu-
tation of the normal cone (2.1) to the graph of h at (0, 0). Employing the definition,
we obtain

N((0, 0); gphh) =
({
(w1, z1) ∈ R

2 | z1 = w1

}
∪

{
(w1, z1) ∈ R

2 | z1 = −w1

}
∪ epi| · |

)
×

({
(w2, z2) ∈ R

2 | z2 = w2

}
∪

{
(w2, z2) ∈ R

2 | z2 = −w2

}
∪ hypo(−| · |)

)
that is depicted in Figure 4.4. Combining these results, we arrive at an efficient upper
approximation of ∂2ϕ(x̄, ȳ) (y∗) for any y∗ ∈ R

2 on the basis of Theorem 3.6. In
particular, for y∗ = (2, −0.5) we get

∂2ϕ(x̄, ȳ) (y∗) ⊂
[
[−1.5, 1.5]
{−1, 1}

]
+

[
R−
0

]
=

[
(−∞, 1.5]
{−1, 1}

]
.

Example 4.6. Consider a multifunction Q : R3×R
2 →→ R

2 of the form (3.32) and
compute its coderivative using Theorems 3.7 and 4.3. Let

h(x) :=

[
2x1 + x2

x2 + x3

]
, ϕ(y) := |y1|+ |y2|

in (3.32) and take x̄ = (1, 1, 1), ȳ = (0, 0), and q̄ = (−3, 2). All the assumptions of
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Theorem 3.7(i) hold, and we have

D∗Q(x̄, ȳ, q̄) (q∗) ⊂



−2q∗1
−q∗1 + q∗2
q∗2

∂2ϕ(0, v̄)

[
3q∗1
2q∗2

]

 with v̄ =

[ −1
1

]

for each q∗ ∈ R
2. Using Theorem 4.3(i), we can easily compute the basic second-order

subdifferential for the function ϕ under consideration:

∂2ϕ(0, v̄)

[
3q∗1
2q∗2

]
=


w ∈ R

2

∣∣∣∣∣∣w1 ∈


{0} if q∗1 < 0,
R if q∗1 = 0,
R+ if q∗1 > 0,

w2 ∈


{0} if q∗2 > 0
R if q∗2 = 0
R− if q∗2 < 0


 .

Thus we get an efficient upper approximation for the coderivative D∗Q(x̄, ȳ, q̄) (q∗).

5. Applications. In the final section of the paper we present some applications
of the second-order subdifferential theory to stability (sensitivity) analysis of para-
metric variational systems described by GEs in the form

0 ∈ f(x, y) +Q(x, y),(5.1)

where y ∈ R
m is the so-called decision variable, x ∈ R

n is a perturbation vector
(parameter), f : R

n × R
m → R

m is a continuously differentiable vector function,
and Q : R

n × R
m →→ R

m is a multifunction. Note that, in contrast to the classical
framework of Robinson [21] and subsequent publications, the perturbation parameter
x enters not only the single-valued term f but also the set-valued operator Q in
(5.1). It has been well recognized that parametric generalized equations provide a
convenient ground for the study of sensitivity and stability questions in many areas
of nonlinear programming, complementarity, equilibrium theory, economic models,
etc. In particular, (5.1) reduces to the standard form of variational inequalities when
Q(y) = N(y; Ω) is the classical normal cone operator for a convex set Ω.
In what follows we consider more general structures of Q in (5.1) given in one of

the forms

Q(x, y) =

〈
∂ϕ(g(x, y)) if g(x, y) ∈ domϕ,
∅ otherwise,

(5.2)

Q(x, y) =

〈
∂ϕ(g(x, y)) if g(x, y) ∈ domϕ,
∅ otherwise

(5.3)

by using the basic and convexified subdifferentials of the outer function. We always
assume that the extended-real-valued function ϕ : R

m → R is proper and that the
vector function g : R

n × R
m → R

m is continuously differentiable at the points in
question. Note that generalized equations (5.1) with structures (5.2) and (5.3) contain
various types of variational and hemivariational inequalities being particularly useful
in some mechanical applications; see the examples below.
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Let us define the (multivalued) solution map S : Rn →→ R
m to (5.1) by

S(x) := {y ∈ R
m | 0 ∈ f(x, y) +Q(x, y)}(5.4)

and extend the results of [13] on robust Lipschitzian stability of (5.4) to the class of
generalized equations with structures (5.2) and (5.3). Given a reference point (x̄, ȳ) ∈
gphS, we obtain efficient conditions ensuring the so-called pseudo-Lipschitzian prop-
erty of S around (x̄, ȳ) in the sense of Aubin [1], which means that there are neigh-
borhoods U of x̄ and V of ȳ and a modulus L ≥ 0 satisfying

S(x1) ∩ V ⊂ S(x2) + L‖x1 − x2‖B ∀ x1, x2 ∈ U .(5.5)

Property (5.5) reduces to the classical local Lipschitz continuity if S is single-valued
around x̄; in general it is equivalent to the fundamental properties of metric regularity
and openness at a linear rate for the inverse mapping S−1 (see [13] and [23] for more
discussions and references).

Theorem 5.1. (i) Let (x̄, ȳ) satisfy the GE (5.1) with Q given by (5.2). Assume
that gph ∂ϕ is closed around (g(x̄, ȳ),−f(x̄, ȳ)) and that the conditions
(A) the adjoint GE

0 ∈ (∇yf(x̄, ȳ))∗ u+ (∇yg(x̄, ȳ))∗ ∂2ϕ (g(x̄, ȳ), −f(x̄, ȳ)) (u)
possesses only the trivial solution u = 0;

(B)

ker (∇yg(x̄, ȳ))∗ ∩ ∂2ϕ (g(x̄, ȳ), −f(x̄, ȳ)) (0) = {0}
are fulfilled. Then the corresponding solution map S is pseudo-Lipschitzian around
(x̄, ȳ).
(ii) Let (x̄, ȳ) satisfy the GE (5.1) with Q given by (5.3). Assume that gph ∂ϕ is

closed around (g(x̄, ȳ),−f(x̄, ȳ)) and that the conditions
(A) the adjoint GE

0 ∈ (∇yf(x̄, ȳ))∗ u+ (∇yg(x̄, ȳ))∗ ∂2
ϕ (g(x̄, ȳ), −f(x̄, ȳ)) (u)

possesses only the trivial solution u = 0;
(B)

ker (∇yg(x̄, ȳ))∗ ∩ ∂2
ϕ (g(x̄, ȳ), −f(x̄, ȳ)) (0) = {0}

are fulfilled. Then the corresponding solution map S is pseudo-Lipschitzian around
(x̄, ȳ).

Proof. It is sufficient to prove only assertion (i) since the proof of (ii) is similar.
Let us observe that

S(x) = {y ∈ R
m | s(x, y) ∈ Λ}(5.6)

for S defined by (5.4) and (5.2), where

s(x, y) :=

[
g(x, y)
−f(x, y)

]
and Λ := gph ∂ϕ.

To ensure the pseudo-Lipschitzian property of the multifunction S, we are going
to employ the coderivative criterion from [13, Theorem 3.2]. In order to furnish
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this, we need to obtain an efficient upper approximation of the coderivative of S at
the reference point (x̄, ȳ). Let us do it by applying Theorem 6.10 from [12] to the
multifunction S in form (5.6). One can easily check that our assumptions (A) and (B)
guarantee the satisfaction of both qualification conditions in the latter theorem. So,
using that result and the structure of s(·) and Λ in (5.6), we arrive at the coderivative
estimate

D∗S(x̄, ȳ) (y∗) ⊂
{
x∗ ∈ R

n |x∗ ∈ (∇xf(x̄, ȳ))∗v
+(∇xg(x̄, ȳ))∗∂2ϕ(g(x̄, ȳ), −f(x̄, ȳ)) (v),

−y∗ ∈ (∇yf(x̄, ȳ))∗v + (∇yg(x̄, ȳ))∗∂2ϕ(g(x̄, ȳ), −f(x̄, ȳ)) (v)
}
.

Now we check that the assumptions (A) and (B) imply that D∗S(x̄, ȳ) (0) = {0},
which ensures the pseudo-Lipschitzian property of S around (x̄, ȳ) due to [13, Theorem
3.2].

Remark 5.2. To verify both conditions (A) and (B) of Theorem 5.1, one has to be
able to evaluate the second-order subdifferentials of ϕ. It has been done in [17] and
[19] in connection with necessary optimality conditions for mathematical programs
where a nonlinear or a mixed complementarity problem arises among constraints.
This corresponds to g(x, y) = y and ϕ given in form (4.11), (4.1) with ϑi(·) ≡ 0 and
either Γi = R+ or Γi equal to a bounded closed interval, respectively.
Using the theory and computations presented above, we can enlarge a class of

mathematical programs with equilibrium constraints where optimality and stability
conditions can be efficiently derived. In particular, Theorem 5.1 directly leads to
verifiable conditions ensuring robust Lipschitzian stability of solution maps to the
following class of perturbed implicit complementarity problems: given x ∈ R

n, find
y ∈ R

m such that

f(x, y) ≥ 0, y ≥ b(x, y), 〈f(x, y), y − b(x, y)〉 = 0,(5.7)

where b : R
n × R

m → R
m is continuously differentiable. One can easily see that

(5.7) reduces to (5.1) and (5.2) with g(x, y) = y − b(x, y) and the same ϕ as in the
nonlinear complementarity problem mentioned above. Note that form (5.7) is useful
in equilibrium models corresponding to filtration through porous media [15] as well
as to contact problems with compliant obstacles.
Next let us consider generalized equations (5.1) with multifunctions Q given in

one of the following forms:

Q(x, y) = {q ∈ R
m | q = h(x) • v, v ∈ ∂ϕ(y)} ,(5.8)

Q(x, y) =
{
q ∈ R

m | q = h(x) • v, v ∈ ∂ϕ(y)} ,(5.9)

where h : R
n → R

m is continuously differentiable and ϕ : R
m → R is l.s.c. around

reference points. Using a procedure similar to the proof of Theorem 5.1 and applying
the second-order calculus rule of Theorem 3.7, we arrive at the following stability
conditions.

Theorem 5.3. (i) Let (x̄, ȳ) satisfy the GE (5.1) with Q given by (5.8). Assume
that hi(x̄) �= 0 for all i = 1, 2, . . . ,m and that v̄ is a unique vector satisfying the
relations

f(x̄, ȳ) + h(x̄) • v̄ = 0, v̄ ∈ ∂ϕ(ȳ).
Assume also that gph ∂ϕ is closed around (ȳ, v̄) and that
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(C) the adjoint GE

0 ∈ (∇yf(x̄, ȳ))∗ u+ ∂2ϕ(ȳ, v̄) (h(x̄) • u)

possesses only the trivial solution u = 0.
Then the corresponding solution map S is pseudo-Lipschitzian around (x̄, ȳ).
(ii) Let (x̄, ȳ) satisfy the GE (5.1) with Q given by (5.9). Assume that hi(x̄) �= 0

for all i = 1, 2, . . . ,m and v̄ is a unique vector satisfying

f(x̄, ȳ) + h(x̄) • v̄ = 0, v̄ ∈ ∂ϕ(ȳ).

Assume also that gph ∂ϕ is closed around (ȳ, v̄) and that
(C) the adjoint GE

0 ∈ (∇yf(x̄, ȳ))∗ u+ ∂2
ϕ(ȳ, v̄) (h(x̄) • u)

possesses only the trivial solution u = 0.
Then the corresponding solution map S is pseudo-Lipschitzian around (x̄, ȳ).

Proof. Let us sketch the main points in proving (i), which works also for (ii) in
the same way. Clearly, the solution map S to (5.1) is represented as

S(x) = {y ∈ R
m| (x, y,−f(x, y)) ∈ gphQ}.(5.10)

To compute the coderivative of the above mapping, we use [12, Theorem 6.10]. Taking
into account the structure of Q in (5.8) and employing Theorem 3.7(i), we compute
an efficient upper approximation of the coderivative of Q and thus the corresponding
upper approximation of the coderivative of S in (5.10) due to [12, Theorem 6.10]. Note
that the condition (C) alone ensures the fulfillment of all the qualification conditions in
the latter theorem by virtue of (3.34). Moreover, it implies thatD∗S(x̄, ȳ)(0) = {0} for
the multifunction S in (5.10). Due to the coderivative criterion in [13, Theorem 3.2],
we justify the pseudo-Lipschitzian property of the solution map to the GE (5.1) with
Q given by (5.8).
In the concluding part of this paper we present applications of the results obtained

to some problems of continuum mechanics. For these problems, our results lead to
efficient conditions ensuring robust solution stability with respect to perturbations
that are expressed in terms of problem data.
First let us consider a discretized hemivariational inequality corresponding to a

contact problem with nonmonotone friction taken from [5]. The underlying mechani-
cal problem (see Figure 5.1) can be described as follows. There is an elastic body Ω
supported from below by a rigid obstacle and exposed to external forces that repre-
sent our perturbation vector x. Vectors yt, yn represent, respectively, tangential and
normal displacements of the discretization nodes lying on the contact boundary Γc.
In many situations it is possible to replace the “nonpenetrability condition” yn ≥ 0
with the equality yn = 0. Then we put y := yt ∈ R

m and describe the equilibrium in
this mechanical problem by the following generalized equation of type (5.1):

0 ∈ Ay + p(x) + ∂ψ(Dy),(5.11)

where m is the number of nodes on Γc, n is the dimension of external forces x ∈ R
n,

A is an m ×m positively definite “stiffness” matrix, p : Rn → R
m is a continuously

differentiable vector function related to external forces, andD is anm×m nonsingular
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Fig. 5.1. Contact problem with nonmonotone friction.
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Fig. 5.2. A nonmonotone friction law.

matrix defined by a quadrature formula that is used for the boundary integral along Γc.
The function ψ in (5.11) is given in the form

ψ(z) =
m∑
i=1

ϕi(zi) with z ∈ R
m,(5.12)

where ϕi : R→ R represents the nonmonotone friction law depicted in Figure 5.2.
In [5] we can find the following analytic formula for ϕi:

ϕi(zi) =




(−k1 + k2z0) zi +
k2
2 (z0)

2 if zi < −z0,
−k1zi − k2

2 (zi)
2 if zi ∈ [−z0, 0),

k1zi − k2
2 (zi)

2 if zi ∈ [0, z0),
(k1 − k2z0) zi +

k2
2 (z0)

2 if zi ≥ z0,

(5.13)

where z0 > 0, k1 > 0, and k2 > 0 are given parameters. Since the function ϕ
defined by (5.12) and (5.13) is obviously of form (4.11) and (4.1), its second-order
subdifferentials can be computed by the formulas of Theorem 4.3. It is easy to observe
that the subdifferentials (2.8) and (2.9) coincide for this function.
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Let us explicitly express the stability conditions of Theorem 5.1 for the mechan-
ical system under consideration using the above calculations. Note that condition
(B) of Theorem 5.1 automatically holds for (5.11) due to the nonsingularity of the
matrix D. To efficiently express condition (A), let us employ the following nine index
sets assigned to the reference pair (x̄, ȳ):

I1(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i < −z0},
I2(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i = −z0},
I3(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i ∈ (−z0, 0)},
I4(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i = 0, (−Aȳ − p(x̄))i = −k1},
I5(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i = 0, (−Aȳ − p(x̄))i ∈ (−k1, k1)},
I6(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i = 0, (−Aȳ − p(x̄))i = k1},
I7(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i ∈ (0, z0)},
I8(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i = z0},
I9(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|(Dȳ)i > z0}.

(5.14)

They completely describe the position of (Dȳ,−Aȳ − p(x̄)) on gph ∂ψ and, clearly,⋃9
j=1 Ij(x̄, ȳ) = {1, 2, . . . ,m}. With these index sets we associate by formulas (4.4)–
(4.9) the following nine normal cones to gph ∂ϕi computed at the points ((Dȳ)i,
(−Aȳ − p(x̄))i). To simplify the notation, we give (as a subscript) only the number
of the index set to which the respective component of (Dȳ,−Aȳ − p(x̄)) belongs:

N1 = N9 = {0} × R,

N2 = N1 ∪
{
(w, u) ∈ R

2|u = 1
k2
w
}
∪ {
(w, u) ∈ R

2|0 ≤ w ≤ k2u
}
,

N3 = N7 =
{
(w, u) ∈ R

2|u = 1
k2
w
}
,

N4 = N3 ∪
{
(w, u) ∈ R2|u = 0} ∪ {

(w, u) ∈ R2|w − k2u ≥ 0, u ≤ 0
}
,

N5 =
{
(w, u) ∈ R2|u = 0} ,

N6 = N3 ∪N5 ∪
{
(w, u) ∈ R2|w − k2u ≤ 0, u ≥ 0

}
,

N8 = N1 ∪N3 ∪
{
(w, u) ∈ R2|k2u ≤ w ≤ 0

}
.

(5.15)

On the basis of these calculations and Theorem 5.1, we arrive at verifiable conditions
for robust Lipschitzian stability of the solution map to the nonmonotone friction
problem described by (5.11).

Proposition 5.4. Let (x̄, ȳ) satisfy the GE (5.11) with ψ given in (5.12) and
(5.13). Consider the adjoint GE

0 ∈ A∗u+ Ξ(x̄, ȳ, u),(5.16)

where the set
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Fig. 5.3. Shape design problem with nonmonotone friction.

Ξ(x̄, ȳ) =

m

X
i=1
Ξi(x̄, ȳ, ui)

is generated by

Ξi(x̄, ȳ, ui) = {wi ∈ R|(wi,−ui) ∈ Nj}

with Nj computed in (5.15) and where j is a uniquely determined index from {1, 2, . . . ,
m} for which i ∈ Ij(x̄, ȳ) in (5.14). Then the solution map to (5.11) is pseudo-
Lipschitzian around (x̄, ȳ) if the adjoint GE (5.16) possesses only the trivial solution
u = 0.
Next let us consider the following shape design problem with nonmonotone friction

that can be examined by using Theorem 5.3. The elastic body Ω in Figure 5.3 is now
fixed at the upper part of the boundary. Furthermore, the outer forces act only on the
right-hand side of the boundary Γd whose shape is described by the design variable
x ∈ R

n. As in the previous problem, y = yt is the vector of tangential displacements
of m discretization nodes lying on the contact boundary Γc. Positions of these nodes
depend now on the design variable. Imposing the nonpenetrability condition yn = 0,
we get the model described by the discretized hemivariational inequality (cf. [5])

0 ∈ A(x) y + b(x) + h(x) • ∂ψ(Dy),(5.17)

where A is an m × m matrix depending on the design variable, b : R
n → R

m is a
continuously differentiable vector function representing the outer forces, and h : Rn →
R
m is a continuously differentiable vector function that reflects the influence of the
variable boundary Γd on the discretization nodes lying on Γc. The friction function
ψ and the nonsingular matrix D are the same as in the previous problem (5.11). For
simplicity we suppose that D is the unit m×m matrix.
Model (5.17) is represented in the GE form (5.1) with Q of the composite struc-

ture (5.8). So we apply Theorem 5.3 to derive efficient conditions ensuring robust
Lipschitzian stability of the solution map at the reference point (x̄, ȳ). These condi-
tions can be given in a verifiable form using the second-order subdifferential formulas
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of Theorem 4.3. To furnish this, let us define the index sets

J1(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi < −z0},
J2(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi = −z0},
J3(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi ∈ (−z0, 0)},
J4(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi = 0, v̄i = −k1},
J5(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi = 0, v̄i ∈ (−k1, k1)},
J6(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi = 0, v̄i = k1},
J7(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi ∈ (0, z0)},
J8(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi = z0},
J9(x̄, ȳ) := {i ∈ {1, 2, . . . ,m}|ȳi > z0},

(5.18)

where v̄ is a unique vector satisfying the relations

0 ∈ A(x̄) ȳ + b(x̄) + h(x̄) • v̄, v̄ ∈ ∂ψ(ȳ).(5.19)

The corresponding normal cones are computed in (5.15).
Proposition 5.5. Let (x̄, ȳ) satisfy the GE (5.17) with the unit matrix D and

with ψ given by (5.12) and (5.13). Assume that hi(x̄) �= 0 for all i = 1, 2, . . . ,m and
that v̄ is a unique vector satisfying relations (5.19). Consider the adjoint GE

0 ∈ (A(x̄))∗u+Θ(x̄, ȳ, u),(5.20)

where the set

Θ(x̄, ȳ, u) =

m

X
i=1
Θi(x̄, ȳ, ui)

is generated by

Θi(x̄, ȳ, ui) = {wi ∈ R|(wi,−ui) ∈ Nj}
with Nj computed in (5.15) and where j is a uniquely determined index from {1, 2, . . . ,
m} for which i ∈ Ij(x̄, ȳ) in (5.18). Then the solution map to (5.17) is pseudo-
Lipschitzian around (x̄, ȳ) if the adjoint GE (5.20) possesses only the trivial solution
u = 0.
Note that both mechanical models considered above rely on the classical concept

of given friction [16]. They are mechanically justified provided that yn = 0 at all
equilibrium pairs (x, y) for x from a neighborhood of x̄. Otherwise the equality yn = 0
has to be replaced by the inequality yn ≥ 0, and the models become more complicated.
Finally let us present a simple two-dimensional example illustrating the usage of

Proposition 5.4.

Example 5.6. Consider the GE (5.11) with n = 2, m = 2, A =
[

5 4
4 5

]
,

p(x) =
[
x1

x2

]
, D =

[
1 0
0 1

]
, and ψ given by (5.12) and (5.13) with k1 = 1, k2 =

1
2 ,

and z0 = 1. As the reference point we take (x̄1, x̄2, ȳ1, ȳ2) =
(
3, 13

4 , 0,− 1
2

)
and clearly

get from (5.14) that I3(x̄, ȳ) = {2} and I4(x̄, ȳ) = {1}; all the other index sets are
empty. The adjoint GE (5.16) attains the form

0 ∈ 5u1 + 4u2 + {w1 ∈ R|(w1,−u1) ∈ N4},
0 ∈ 4u1 + 5u2 + {w2 ∈ R|u2 = −2w2},

(5.21)
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where the corresponding cone N4 is computed in (5.15). The second relation in (5.21)
is a linear equation from which we obtain u2 = − 8

9 u1. By inserting this into the first
relation of (5.21), one gets

0 ∈ 13
9
u1 + {w1 ∈ R|(w1,−u1) ∈ N4}.

It follows from (5.15) that the above GE has a unique solution u1 = 0. This implies
that u2 = 0, which ensures the pseudo-Lipschitzian property of the corresponding
solution map S around the reference point (x̄, ȳ) by virtue of Proposition 5.4.
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Abstract. For a general category of variational inclusions in finite dimensions, a class of pa-
rameterizations, called “ample” parameterizations, is identified that is rich enough to provide a full
theory of Lipschitz-type properties of solution mappings without the need to resort to the auxiliary
introduction of canonical parameters. Ample parameterizations also support a detailed description
of the graphical geometry that underlies generalized differentiation of solutions mappings. A theorem
on proto-derivatives is thereby obtained. The case of a variational inequality over a polyhedral con-
vex set is given special treatment along with an application to minimizing a parameterized function
over such a set.

Key words. variational inequalities, calmness, Aubin continuity, Lipschitzian localizations,
graphical derivatives, sensitivity of minimizers, variational analysis
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1. Introduction. This paper is concerned with implicit function type results
for parameterized variational inclusions (generalized equations) of the broad form

f(w, x) + F (x) � 0,(1.1)

where w ∈ R
d is the parameter, x ∈ R

n is the solution, f : R
d×R

n → R
m is a smooth

(i.e., C1) function, and F : R
n →→ R

m is a set-valued mapping with closed graph. The
focus is on local properties of the solution mapping

S : w �→ S(w) =
{
x
∣∣ f(w, x) + F (x) � 0

}
(1.2)

at a pair (w∗, x∗) with x∗ ∈ S(w∗). We investigate Lipschitz-type properties such
as calmness, Aubin continuity, and Lipschitzian localization, as well as graphical
properties connected with generalized differentiation.

It is well understood that in order to make progress in this area the parameter-
ization has to be “rich enough.” A standard technique for ensuring such richness
is to introduce explicitly, alongside of w, the so-called canonical parameter y that
corresponds to perturbing the right side in (1.1) to

f(w, x) + F (x) � y,(1.3)

and then to work with extended mapping S̃ : R
d × R

m → R
n given by

S̃ : (w, y) �→ S̃(w, y) =
{
x
∣∣ f(w, x) + F (x) � y

}
.(1.4)

Results obtained for S̃ can be specialized to S by taking y = 0. That approach seems
inefficient, though, since the extended inclusion in (1.3) could also be written like
(1.1):

f̃(w̃, x) + F (x) � 0, where w̃ = (w, y) and f̃(w̃, x) = f(w, x)− y.(1.5)
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It would be preferable to capture the needed richness of the parameterization through
an assumption on (1.1) itself, moreover in a manner that provides more flexibility by
being merely local. We accomplish that here through the following concept.

Definition 1.1 (ample parameterization). The variational inclusion (1.1) will
be called amply parameterized at a pair (w∗, x∗) ∈ gphS if the partial Jacobian matrix
∇wf(w∗, x∗) for f with respect to w at (w∗, x∗) has full rank:

rank∇wf(w∗, x∗) = m, ∇wf(w∗, x∗) ∈ R
m×d.(1.6)

Obviously this condition is fulfilled at every point (w̃∗, x∗) = (w∗, y∗, x∗) in the
graph of the extended mapping S̃ in (1.4), viewed as in (1.5). Hence ample param-

eterization can always be enforced by passing from S to S̃, in confirmation of the
standard technique.

Supplied with this concept, we begin by studying the relationship between S and
an auxiliary mapping S∗ at (w∗, x∗) of the general type

S∗ : y �→ S∗(y) =
{
x
∣∣ f∗(x) + F (x) � y

}
,(1.7)

where f∗ denotes any (smooth) first-order approximation to f(w∗, ·) at x∗ in the sense
that

f∗(x∗) = f(w∗, x∗) and ∇f∗(x∗) = ∇xf(w∗, x∗).(1.8)

Among the prime candidates for f∗ are the simple restriction f∗(x) = f(w∗, x) or its
linearization f∗(x) = f(w∗, x∗) +∇xf(w∗, x∗)(x− x∗). Our results, however, depend
only on the assumption in (1.7) that (1.8) holds, so in stating them in terms of S∗ we
achieve a more efficient presentation which emphasizes what is truly essential.

Note that S∗ can itself be viewed as a solution mapping in this context, namely
one in which there is only a canonical parameterization. Indeed, the choice f∗(x) =

f(w∗, x) corresponds to S∗(y) = S̃(w∗, y). In comparing properties of S and S∗ we
continue a long tradition coming from the classical implicit function theorem, where
F = 0 and the mapping w �→ {

x
∣∣ f(w, x) = 0

}
is compared to the mapping y �→{

x
∣∣ f(w∗, x) = y

}
or its linearization. Our contribution is to develop the comparison

definitively not just for one, but for several key properties in our general setting, while
employing the concept of ample parameterization to achieve statements that are more
succinct and convenient.

Sections 2, 3, and 4 follow this pattern for the properties of calmness, Aubin
continuity, and Lipschitzian localization, respectively. In each case, under ample
parameterization, the property in question holds for S if and only if it holds for S∗.
Even without ample parameterization, if the property holds for S∗ it must hold for S
as well.

In section 5 we show, again under ample parameterization, that S is graphically
Lipschitzian if and only if F is graphically Lipschitzian. Furthermore, we demonstrate
in section 6 that such equivalence carries over to proto-differentiability of S versus
that of F , and we obtain a corresponding formula for the proto-derivatives, which
reveals that they are given as solutions to an auxiliary variational inclusion.

In section 7 we specialize to the case of F being the normal cone mapping NC

to a convex set C; that is, the case where (1.1) is a variational inequality. We take
advantage of the fact that NC is then graphically Lipschitzian, and when C is poly-
hedral, NC is proto-differentiable. From the resulting formula for proto-derivatives,
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we show that when the derivative mapping is convex-valued the proto-differentiability
turns into the stronger property of semidifferentiability.

Finally, in section 8 we apply our results to an optimization problem with pertur-
bations only in the cost function. We show that the standard second-order sufficient
optimality condition is equivalent to the combination of optimality at the reference
point and calmness of the stationary point mapping. Moreover the strong second-
order sufficient condition is equivalent to the Lipschitzian localization property of the
mapping that gives local minimizers. A formula for semiderivatives of this mapping
is also provided.

A separate paper [6] is devoted to applications of these results to the perturbation
of saddle points in convex optimization.

Throughout, any norm is denoted by ‖ · ‖ and Ba(x) is the closed ball of radius
a centered at x. The graph of a set-valued mapping Γ : R

p →→ R
n is the set gph Γ ={

(z, x) ∈ R
p × R

n
∣∣x ∈ Γ(z)

}
and the inverse of Γ is Γ−1 : x �→ {

z ∈ R
p
∣∣x ∈ Γ(z)

}
.

2. Calmness. To start, we consider a graphically localized version of the “upper-
Lipschitz continuity” property introduced for set-valued mappings by Robinson [21].
For functions, the property goes back earlier to Clarke [1], who called it “calmness,”
and that is the term we prefer here in line with the recent book [23].

Definition 2.1 (calmness). A mapping Γ : R
p →→ R

n is said to be calm at z∗ for
isolated x∗ when (z∗, x∗) ∈ gph Γ and there exist neighborhoods U of x∗ and V of z∗
along with a constant γ such that

‖x− x∗‖ ≤ γ‖z − z∗‖ for all z ∈ V and x ∈ Γ(z) ∩ U.
This condition implies that Γ(z∗)∩U = {x∗}, so x∗ is an isolated point of Γ(z∗),

hence the terminology; but calmness can also be defined in a broader sense which
reduces to the present one when x∗ is an isolated point, yet has meaning even when
x∗ is not isolated (cf. [23, p. 399]). The broader concept will not enter here. For
single-valued mappings, there is no difference.

The calmness in Definition 2.1 was formally introduced by Dontchev [3] as the “lo-
cal upper-Lipschitz property at a point in the graph” of a mapping. Earlier, without
giving it a name, Rockafellar [22] characterized it in terms of the graphical derivatives
of the set-valued mapping. That result will be applied in section 6. For recent studies
of calmness in the context of mathematical programming, see Klatte [9] and Levy [12].
Note that in the latter paper the term “calmness” is used for a different property.

The following theorem for variational inclusions furnishes a general result of im-
plicit function type for the calmness property.

Theorem 2.2 (criterion for calmness). The mapping S is calm at w∗ for isolated
x∗ when the mapping S∗ is calm at 0 for isolated x∗. Under the ample parameterization
condition (1.6), moreover, the two assertions are equivalent.

We will deduce Theorem 2.2 from another result which we state next.
Theorem 2.3 (calmness in composition). Consider a mapping N : R

d →→ R
n

of the form N(w) =
{
x
∣∣x ∈ M(h(w, x))

}
, where M : R

p →→ R
n is set-valued and

h : R
d × R

n → R
p is C1. Let (w∗, x∗) be such that ∇xh(w∗, x∗) = 0. If M is calm at

z∗ = h(w∗, x∗) for isolated x∗, then N is calm at w∗ for isolated x∗.
Proof. First, since ∇xh(w∗, x∗) = 0, we know that for any real λ > 0 and

neighborhoods W of w∗, U of x∗ and V of z∗ there exist positive reals a, b, and c such
that the balls Ba(w∗), Bb(x∗), and Bc(z∗) are contained in W , U , and V , respectively,
and for any fixed w ∈ Ba(w∗) the function x �→ h(w, x) is Lipschitz continuous on
Bb(x∗) with a Lipschitz constant λ. Of course, the radii a and b can be chosen
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arbitrarily small, and then c can be made arbitrary small as well, independently of
the initial choice of λ. Let κ be an associated Lipschitz constant of the function
w �→ h(w, x) on Ba(w∗), independent of x ∈ Bb(x∗).

Suppose M is calm at z∗ for isolated x∗ with neighborhoods V ′ of z∗ and U ′ of
x∗ and constant γ. Choose

0 < λ < 1/γ.(2.1)

By the property of h just mentioned, there exist a, b, and c such that Bb(x∗) ⊂ U ′ and
Bc(z∗) ⊂ V ′, and moreover with the property that for any w ∈ Ba(w∗) the function
h(w, ·) is Lipschitz continuous on Bb(x∗) with a Lipschitz constant λ. Choose a and
b smaller if necessary so that

λa + κb ≤ c.(2.2)

Let w ∈ Ba(w∗) and x ∈ N(w)∩Bb(x∗). Then x ∈M(h(w, x))∩Bb(x∗). Using (2.2)
we have ‖h(w, x)− z∗‖ = ‖h(w, x)− h(w∗, x∗)‖ ≤ λa + κb ≤ c. From the calmness of
M we then have ‖x− x∗‖ ≤ γ‖h(w, x)− z∗‖ ≤ γλ‖x− x∗‖+ γκ‖w − w∗‖; hence

‖x− x∗‖ ≤ γκ

1− λκ
‖w − w∗‖.

Therefore the mapping N is calm at w∗ for x∗ with constant γκ/(1− λκ).
Theorem 2.3 is a purely metric result and can be formulated in terms only of the

constants involved. Accordingly, there is no real need to have ∇xh(w∗, x∗) = 0 or
even to have h be differentiable. All that is required, as seen through the proof, is for
h to be Lipschitz continuous in x with a “sufficiently small” Lipschitz constant. In
fact the result can be stated in a context of metric spaces.

In the proof of Theorem 2.2, still ahead, we will also employ the following lemma,
where the classical implicit function theorem comes in.

Lemma 2.4 (reparameterization). Under the ample parameterization condition
(1.6), and for a function f∗ satisfying the condition (1.8), there exist neighborhoods
U , V , and W of x∗, y = 0 and w∗, respectively, and a C1 function ω : U × V → W
such that

(i) y + f(ω(x, y), x) = f∗(x) for every y ∈ V and x ∈ U ,
(ii) ω(x∗, 0) = w∗ and ∇xω(x∗, 0) = 0.
Proof. Let B := ∇wf(w∗, x∗); by assumption, this matrix in R

m×d has full row
rank m. In terms of the transpose B�, consider the system of equations

w − w∗ + B�z = 0,

y + f(w, x)− f∗(x) = 0,
(2.3)

where (w, z) is the variable and (x, y) is the parameter. Clearly, (w∗, 0) is a solution of
(2.3) for the parameter choice (x∗, 0). The Jacobian J at (w∗, 0, x∗, 0) of the function
of (w, z) on left side of (2.3) has the form

J =

[
I B�

B 0

]
,

where I is the identity. It is well known that when B has full row rank the matrix J
is nonsingular. Hence, from the classical implicit function theorem, we conclude that,
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locally around (w∗, 0, x∗, 0), there exists a C1 function Ω : (x, y) �→ (ω(x, y), ζ(x, y))
such that

ω(x, y)− w∗ + B�ζ(x, y) = 0,

y + f(ω(x, y), x)− f∗(x) = 0
(2.4)

with Ω(x∗, 0) = (w∗, 0). This yields (i) and the first condition in (ii). By differ-
entiating the system we see further that J∇xΩ(x, y) must vanish locally, and since
J is nonsingular this implies that ∇xΩ(x, y) vanishes locally. In particular, then,
∇xω(x∗, 0) = 0.

Proof of Theorem 2.2. From the definitions of S and S∗ in (1.2) and (1.7) we have
x ∈ S(w) if and only if x ∈ S∗(y) for y = f∗(x)− f(w, x). Thus, we can write

S(w) =
{
x
∣∣x ∈ S∗

(
f∗(x)− f(w, x)

)}
.(2.5)

By taking h(w, x) = f∗(x) − f(w, x), which has ∇xh(w∗, x∗) = 0 by virtue of (1.8),
we can put this in the framework of Theorem 2.3 with M = S∗. This lets us conclude
that calmness of S∗ implies calmness of S.

Assume now that the ample parameterization condition (1.6) holds and consider
a mapping ω as guaranteed in Lemma 2.4 with respect to certain neighborhoods U ,
V , and W . Fix y ∈ V . If x ∈ S∗(y) ∩ U and w = ω(x, y), then w ∈ W and
y + f(w, x) = f∗(x); hence x ∈ S(w) ∩ U . Conversely, if x ∈ S(w(x, y)) ∩ U , then
clearly x ∈ S∗(y) ∩ U . Thus,

S∗(y) ∩ U =
{
x
∣∣x ∈ S(ω(x, y)) ∩ U}.(2.6)

Since calmness of S at w∗ for isolated x∗ is local property of the graph of S relative to
the point (w∗, x∗), this holds if and only if the same holds for the truncated mapping
SU : w �→ S(w) ∩ U . That equivalence is valid for S∗ as well. Applying Theorem 2.3
now in the context of (2.6) with h = ω, we get the desired equivalence for S versus
S∗.

3. Aubin property. The idea behind the Aubin property, which Aubin called
“pseudo-Lipschitz continuity,” can be traced back to the original proofs of the Lyusternik
and Graves theorems; see [2], [4], [7], [11], and [23] for discussions. This property is
known to correspond, with respect to taking inverses of mappings, to “metric regu-
larity,” a condition which plays a major role in optimization.

Definition 3.1 (Aubin property). A mapping Γ : R
p →→ R

n is said to have
the Aubin continuity property at z∗ for x∗ when (z∗, x∗) ∈ gph Γ and there exist
neighborhoods U of x∗ and V of z∗ along with a constant γ such that

z′, z′′ ∈ V, x′ ∈ Γ(z′) ∩ U =⇒ ∃x′′ ∈ Γ(z′′) with ‖x′ − x′′‖ ≤ γ‖z′ − z′′‖.
Keeping the pattern of the preceding section, we establish a result about the

Aubin property that is completely parallel to the one about calmness in the preceding
section.

Theorem 3.2 (criterion for Aubin property). The mapping S has the Aubin
property at w∗ for x∗ when the mapping S∗ has the Aubin property at 0 for x∗.
Under the ample parameterization condition (1.6), moreover, the two assertions are
equivalent.

Not only is the statement of Theorem 3.2 completely parallel to that of Theorem
2.2, the proofs are parallel as well. The key is a composition rule that can be regarded
as a version of the Lyusternik–Graves theorem.
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Theorem 3.3 (Aubin property in composition). Consider a mapping N : R
d →→ R

n

of the form N(w) =
{
x
∣∣x ∈ M(h(w, x))

}
, where M : R

p →→ R
n is set-valued with

closed graph and h : R
d ×R

n → R
p is C1. Let (w∗, x∗) be such that ∇xh(w∗, x∗) = 0.

If M has the Aubin property at z∗ = h(w∗, x∗) for x∗, then N has the Aubin property
at w∗ for x∗.

Proof. Let the mapping M have the Aubin property at z∗ for x∗ with neighbor-
hoods V ′ of z∗ and U ′ of x∗ and a constant γ. Let λ satisfy (2.1) and choose the
constants a, b, and c as in the proof of Theorem 2.3. Choose a smaller if necessary so
that

4γκa

1− γλ
≤ b.(3.1)

Let w′, w′′ ∈ Ba(w∗) and let x′ ∈ N(w′)∩Bb/2(x∗). Then x′ ∈M(h(w′, x′))∩Bb/2(x∗).
We get from the Aubin property of M the existence of x1 ∈ M(h(w′′, x′)) such that
‖x1 − x′‖ ≤ γ‖h(w′, x′)− h(w′′, x′)‖ ≤ γκ‖w′ − w′′‖. Also, through (3.1),

‖x1 − x∗‖ ≤ ‖x1 − x′‖+ ‖x′ − x∗‖ ≤ γκ‖w′ − w′′‖+ ‖x′ − x∗‖ ≤ γκ(2a) +
b

2
≤ b,

and consequently ‖h(w′′, x1)− z∗‖ ≤ λa+ κb ≤ c, from (2.2). Hence, from the Aubin
property of M there exists x2 ∈M(h(w′′, x1)) such that

‖x2 − x1‖ ≤ γ‖h(w′′, x1)− h(w′′, x′)‖ ≤ γλ‖x1 − x′‖ ≤ (γλ)γκ‖w′ − w′′‖.

By induction, we obtain a sequence x1, x2, . . . , xk, . . . with xk ∈M(h(w′′, xk−1)) and
‖xk − xk−1‖ ≤ (γλ)k−1γκ‖w′ − w′′‖. Setting x0 = x′ and using (3.1), we get

‖xk − x∗‖ ≤ ‖x0 − x∗‖+

k∑
j=1

‖xj − xj−1‖

≤ b

2
+
k−1∑
j=0

(γλ)jγκ‖w′ − w′′‖ ≤ b

2
+

2aγκ

1− γλ
≤ b;

hence ‖h(w′′, xk) − z∗‖ ≤ λa + κb ≤ c. Then there exists xk+1 ∈ M(h(w′′, xk)) such
that ‖xk+1−xk‖ ≤ γ‖h(w′′, xk)−h(w′′, xk−1)‖ ≤ γλ‖xk−xk−1‖ ≤ (γλ)kγκ‖w′−w′′‖,
and the induction step is complete.

The sequence {xk} is Cauchy and hence convergent to some x′′ ∈ Ba(x∗) ⊂ U ′.
From the closedness of gphM that has been assumed and the continuity of h we
deduce that x′′ ∈ M(h(w′′, x′′)) ∩ U ′; hence, x′′ ∈ N(w′′). Furthermore, using the
estimate

‖xk − x′‖ ≤
k∑
j=1

‖xj − xj−1‖ ≤
k−1∑
j=0

(γλ)jγκ‖w′ − w′′‖ ≤ γκ

1− γλ
‖w′ − w′′‖

we obtain, on passing to the limit with respect to k →∞, that ‖x′′−x′‖ ≤ γ′‖w′−w′′‖.
Thus, N has the Aubin property at 0 for x∗ with constant γ′ = (γκ)/(1− γλ).

Proof of Theorem 3.2. Repeat the argument in the proof of Theorem 2.2, simply
replacing the composition rule in Theorem 2.3 by the one in Theorem 3.3.
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4. Lipschitzian localization. The Lipschitzian localization property is a looser
form of the smooth localization property that appears in the classical implicit function
theorem. In the context of variational inequalities, Lipschitzian localization is the
property in Robinson’s “strong regularity” theorem [20]; see [10], [11], [17], and [23]
for more on this subject.

Definition 4.1 (Lipschitzian localization). A mapping Γ : R
p →→ R

n is said to
have a single-valued Lipschitzian localization at z∗ for x∗ when (z∗, x∗) ∈ gph Γ and
there exist neighborhoods U of x∗ and V of z∗ such that the mapping V � z �→ Γ(z)∩U
is single-valued and Lipschitz continuous.

For this property we have an analog of Theorems 2.2 and 3.2 in the following
mode.

Theorem 4.2 (criterion for Lipschitzian localization). The mapping S has a
single-valued Lipschitzian localization at w∗ for x∗ when the mapping S∗ has a single-
valued Lipschitzian localization at 0 for x∗. Under the ample parameterization condi-
tion (1.6), moreover, the two assertions are equivalent.

Again we establish this by way of a composition rule.
Theorem 4.3 (Lipschitzian localization in composition). Consider N : R

d →→ R
n

of the form N(w) =
{
x
∣∣x ∈M(h(w, x))

}
where M : R

p →→ R
n is set-valued mapping

with closed graph and h : R
d×R

n → R
p is C1. Let (w∗, x∗) be such that ∇xh(w∗, x∗) =

0. If M has a single-valued Lipschitzian localization at z∗ = h(w∗, x∗) for x∗, then N
has a single-valued Lipschitzian localization at w∗ for x∗.

Proof. Suppose M has a single-valued Lipschitzian localization at z∗ for x∗ with
neighborhoods U and V and a constant γ. In particular then, M has the Aubin
property at z∗ for x∗ with the same constant γ and consequently, as already proved,
N has the Aubin property at w∗ for x∗. It is sufficient therefore to verify that there
exist neighborhoods U ′ of x∗ and W ′ of w∗ such that N(w) ∩ U ′ is a singleton for
every w ∈W ′.

Observe that we can choose a neighborhood W of w∗ and shrink U if necessary
so that the Lipschitz constant λ of the function h(w, ·) on U works for any w ∈ W .
Suppose that there exist two sequences, x1

k and x2
k, converging to x∗ and a sequence

wk converging to w∗, such that xik ∈ N(wk), i = 1, 2, and x1
k �= x2

k for a sufficiently
large k so that xik ∈ U , wk ∈ W , and h(wk, x

i
k) ∈ V . Since M(h(wk, x

i
k)) ∩ U is a

singleton for large k, we have xik = M(h(wk, x
i
k)) ∩ U , i = 1, 2. From the Lipschitz

continuity of both M(·) ∩ U and h(wk, ·) we finally obtain

0 �= ‖x1
k − x2

k‖ ≤ γ‖h(wk, x
1
k)− h(wk, x

2
k)‖ ≤ γλ‖x1

k − x2
k‖ < ‖x1

k − x2
k‖.

This contradiction demonstrates that N has the property claimed.
Proof of Theorem 4.2. Repeat the argument in the proof of Theorem 2.2, simply

replacing the composition rule in Theorem 2.3 by the one in Theorem 4.3.

5. Lipschitzian graphical geometry. Beyond the property of Lipschitzian lo-
calization treated in section 4, there is a more subtle kind of Lipschitzian behav-
ior which is especially common for solution mappings without single-valuedness but
which, unlike the Aubin property of section 3 or even the calmness property of section
2, does not revolve around comparing values of the mapping at two different points.
Instead, this property centers on Lipschitzian geometry of the graph of the mapping.
It has strong implications for generalized differentiability.

Definition 5.1 (graphically Lipschitzian mappings). A mapping Γ : R
p →→ R

n

is said to be graphically Lipschitzian at z∗ for x∗, and of dimension k in this respect,
when (z∗, x∗) ∈ gph Γ and there is a change of coordinates in R

p×R
n around (z∗, x∗)
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that is C1 in both directions, under which gph Γ can be identified locally with the graph
in R

k ×R
p+n−k of a Lipschitz continuous mapping defined around a point u∗ ∈ R

k.
Background on graphically Lipschitzian mappings can be found in [23]. As a

special case, of course, if Γ has a single-valued Lipschitzian localization around z∗ ∈
R
p, then Γ is graphically Lipschitzian of dimension p at z∗ for x∗ = Γ(z∗). The point of

Definition 5.1, however, is that many mappings of fundamental interest in variational
analysis and optimization can fail to be single-valued and Lipschitz continuous and
yet possess hidden properties of Lipschitzian character which deserve to be recognized
and placed in service.

An important class of graphically Lipschitzian mappings which by no means need
to be single-valued and Lipschitz continuous is furnished by the maximal monotone
mappings F : R

n →→ R
n; the theory of maximal monotonicity is available in detail in

Chapter 12 of [23]. Within this category are the normal cone mappings NC associated
with the nonempty, closed, convex sets C in R

n and more generally the subgradient
mappings ∂ϕ associated with the lower semicontinuous, proper, convex functions ϕ on
R
n. A normal cone mapping will be the focus in the next section. When F : R

n →→ R
n

is maximal monotone, gphF is in fact an n-dimensional Lipschitzian manifold in a
global sense.

Maximal monotonicity is not the only source of examples. A broad class of normal
cone mappings NC and subgradient mappings ∂ϕ for which the graphical Lipschitzian
property prevails without C or ϕ having to be convex has been developed by Poliquin
and Rockafellar [16] under the heading of “prox-regularity” and more specially “strong
amenability” (see also 10.24 and 13.46 of [23]). Such sets C and functions ϕ arise
very commonly in optimization. For instance, a set C given by finitely many C2
equality and inequality constraints is strongly amenable at any point satisfying the
Mangasarian–Fromovitz constraint qualification; a function ϕ is sure to be strongly
amenable when it is the sum of the indicator of a strongly amenable set and a function
that is C2 or the maximum of finitely many C2 functions. The associated mappings
NC and ∂ϕ then likewise furnish choices of F that are graphically Lipschitzian.

The next theorem shows that, under ample parameterization, graphically Lip-
schitzian properties of the solution mapping S can be derived from those of F by way
of the natural correspondence between the graphs of these mappings:

(x,−f(w, x)) ∈ gphF ⇐⇒ (w, x) ∈ gphS.(5.1)

Theorem 5.2 (criterion for Lipschitzian geometry). Under the ample parame-
terization condition (1.6), the mapping S is graphically Lipschitzian of dimension q
at w∗ for x∗ if and only if the mapping F is graphically Lipschitzian of dimension k
at x∗ for y∗, where

y∗ = −f(w∗, x∗), q = k + d−m.

Proof. Define Q : R
d × R

n → R
n × R

m by

Q(w, x) = (x,−f(w, x)).(5.2)

Then from (5.1), gphS = Q−1(gphF ). Under the ample parameterization condition
the Jacobian ∇Q(w∗, x∗) of Q at (w∗, x∗) has full rank n + m; in particular this
requires d+ n ≥ n+m, i.e., d−m ≥ 0. Therefore, with respect to a neighborhood O
of (w∗, x∗), Q−1 has the effect of transforming any graphically Lipschitzian manifold
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of dimension k in R
n × R

m into one of dimension k + (d − m) in R
d × R

n. The
equivalence is now immediate.

Corollary 5.3 (maximal monotonicity). Under the ample parameterization
condition, if F is a maximal monotone mapping, F : R

n →→ R
n, then S is graphically

Lipschitzian of dimension d at w∗ for x∗.
Proof. When F is maximal monotone, it is everywhere graphically Lipschitzian

of dimension n (cf. [23, 12.15]). Then, by virtue of Theorem 5.2, S is graphically
Lipschitzian of dimension n + d− n = d at w∗ for x∗.

Corollary 5.4 (strong amenability). Under the ample parameterization con-
dition, if F is a normal cone mapping NC or subgradient mapping ∂ϕ for a set C
or function ϕ that is strongly amenable at x∗, then S is graphically Lipschitzian of
dimension d at w∗ for x∗.

Proof. Here we rely on the graphically Lipschitzian behavior of such normal
cone mappings and subgradient mappings as noted prior to the statement of Theorem
5.2.

In order to tie Theorem 5.2 in with the patterns of equivalence in the preceding
sections, it is also worth stating the following elementary consequence.

Corollary 5.5 (equivalent geometries in approximation). The mapping S∗ is
graphically Lipschitzian of dimension k at 0 for x∗ if and only if F is graphically
Lipschitzian of dimension k at x∗ for y∗, where y∗ = −f∗(x∗). Thus, under the ample
parameterization condition (1.6), S is graphically Lipschitzian of dimension q at w∗
for x∗ if and only if S∗ is graphically Lipschitzian of dimension k at 0 for x∗, where
q = k + d−m.

Proof. Theorem 5.2 can be applied to S∗ as a special kind of solution mapping,
which corresponds to replacing f(w, x) by g(y, x) = f∗(x) − y with y as the new
parameter, in R

m instead of R
d. For g, the condition of ample parameterization is

satisfied trivially at (0, x∗). Moreover, −g(0, x∗) = −f(w∗, x∗) = y∗. Therefore, S∗
is graphically Lipschitzian of dimension q∗ at 0 for x∗ if and only if F is graphically
Lipschitzian of dimension k at x∗ for y∗, the relation between q∗ and k being like
that between q and k in Theorem 5.2, except that d is replaced by m. Then q∗ =
k + m−m = k.

In combination now with the statement about S and F in Theorem 5.2, this
observation yields the claimed relationship between S and S∗.

6. Generalized differentiation. In the graphical context of Theorem 5.2, there
is a powerful geometric notion of generalized differentiation which can be used even
though S may only be set-valued. One says that S is proto-differentiable at w∗ for x∗
when x∗ ∈ S(w∗) and the difference quotient mappings

∆τS(w∗ |x∗) : w′ �→ τ−1[S(w∗ + τw′)− x∗], τ > 0,

converge graphically as τ ↘0; in other words, there is a mapping D : R
d → R

n × R
m

such that gph ∆τS(w∗ |x∗) converges to gphD as τ → 0. Proto-differentiability was
introduced in [22], and much about it can be found now also in [23]; see [13] and [14]
as well, where special properties in the case of a graphically Lipschitzian mapping are
laid out.

Proto-differentiability is closely involved with the tangent cone TgphS(w∗, x∗) to

gphS at (w∗, x∗). This cone is the graph of the mapping DS(w∗ |x∗) : R
d →→ R

n that
in general is called the graphical derivative of S at w∗ for x∗; by definition,

x′ ∈ DS(w∗ |x∗)(w′) ⇐⇒ (w′, x′) ∈ TgphS(w∗, x∗).(6.1)
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The graphs of the mappings ∆τS(w∗ |x∗) are the sets τ−1[gphS − (w∗, x∗)], which
have TgphS(w∗, x∗) as their outer set limit (“lim sup”) as τ ↘0. What makes the
property of proto-differentiability special is that the outer limit is required to equal
the inner set limit (“lim inf”) and thus be a true set limit. As translated to the
language of tangent cones, proto-differentiability of S at w∗ for x∗ means that gphS
is geometrically derivable at (w∗, x∗). See [23] for more on this subject. It is clear
that when the graphical limit D in the definition of proto-differentiability exists it has
to be DS(w∗ |x∗), although the latter has meaning (and uses) even in the absence of
proto-differentiability.

The power of proto-differentiability in the presence of Lipschitzian graphical ge-
ometry comes from the tight mode of local approximation it affords, in a manner
reminiscent of classical differentiability. To appreciate this, consider first the case
where S happens to be single-valued and Lipschitz continuous around w∗, with x∗
the unique element of S(w∗). Proto-differentiability implies then that the mapping
DS(w∗ |x∗) (which in this case could simply be denoted by DS(w∗)) is likewise single-
valued and Lipschitz continuous and

S(w) = S(w∗) + DS(w∗ |x∗)(w − w∗) + o(|w − w∗|),(6.2)

where o(t) denotes a term such that o(t)/t → 0 as t↘0. This is ordinary differenti-
ability precisely when the mapping DS(w∗ |x∗) is, in addition, linear.

In general, when S and DS(w∗ |x∗) are single-valued (but DS(w∗ |x∗) might not
be linear), we speak of the property in (6.2) as the semidifferentiability of S at w∗ for
x∗ = S(w∗). For more discussion of semidifferentiability, see [23].

In moving next to the case where S is not necessarily single-valued and Lipschitz
continuous but merely graphically Lipschitzian at (w∗, x∗), it is crucial to observe
that although the type of approximation in (6.2) depends strongly on the particular
coordinate system on the graph, specifically the decomposition into components w and
x, the notion of proto-differentiability does not. Because it is based on set convergence
in the graph space, proto-differentiability is preserved under changes of coordinates.
Therefore, proto-differentiability of a graphically Lipschitzian mapping S corresponds
to the tight mode of local approximation to gphS as in (6.2), but applied obliquely, to
a different coordinate system than the (w, x) system.

Note that the mapping DS(w∗ |x∗) is always positively homogeneous, since its
graph is a cone; one has DS(w∗ |x∗)(0) � 0 and DS(w∗ |x∗)(λw′) = λDS(w∗ |x∗)(w′)
for all w′ when λ > 0.

Proto-differentiability has only been described so far in terms of S, but of course
the concept also applies to F , and this now comes on stage as well. For a pair
(x∗, y∗) ∈ gphF we have

y′ ∈ DF (x∗, y∗)(x′) ⇐⇒ (x′, y′) ∈ TgphF (x∗, y∗).(6.3)

If F happens, for example, to be single-valued and, at x∗, is differentiable in the usual
sense, then F is proto-differentiable at x∗ for y∗ = F (x∗) with DF (x∗ |y∗) being the
usual derivative mapping (for which DF (x∗) is then a simpler notation).

Theorem 6.1 (proto-derivative formula). Under the ample parameterization
condition (1.6), the mapping S is proto-differentiable at w∗ for x∗ if and only if the
mapping F is proto-differentiable at x∗ for y∗ = −f(w∗, x∗). Then

DS(w∗ |x∗)(w′) =
{
x′ ∣∣ g(w′, x′) + G(x′) � 0

}
, where

g(w′, x′) = ∇wf(w∗, x∗)w′ +∇xf(w∗, x∗)x′ and G(x′) = DF (x∗ |y∗)(x′).

(6.4)
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Proof. We appeal again to the setup in the proof of Theorem 5.2, where gphS =
Q−1(gphF ) for the mapping Q in (5.2). Because the Jacobian of Q has full rank
under ample parameterization, we can determine the tangent cone TgphS(w∗, x∗) by
the general rule of variational analysis given in 6.7 of [23], obtaining

TgphS(w∗, x∗) =
{

(w′, x′)
∣∣∇Q(w∗, x∗)(w′, x′) ∈ TgphF (x∗, y∗)

}
.(6.5)

This furnishes, through the formulas for DS(w∗, x∗) and DF (x∗, y∗) in (6.1) and
(6.3), the formula in (6.4). A parallel formula holds for the corresponding “derivable
cones” to gphS and gphF , which are defined with outer set limits replaced by inner
set limits. The geometric derivability of gphF at (x∗, y∗) thus corresponds to the
geometric derivability of gphS at (w∗, x∗). Hence we have the equivalence between
proto-differentiability of S and that of F .

Corollary 6.2 (derivative criterion for calmness). Under the ample parame-
terization condition (1.6) and the assumption that F is proto-differentiable at x∗ for
y∗ = −f(w∗, x∗), the mapping S is calm at w∗ for isolated x∗ if and only if

∇xf(w∗, x∗)x′ + DF (x∗ |y∗)(x′) � 0 =⇒ x′ = 0.(6.6)

Proof. According to the characterization of calmness of set-valued mappings de-
veloped in [22, Theorem 4.1] in terms of graphical derivatives, S is calm at w∗ for
isolated x∗ if and only if DS(w∗ |x∗)(0) = {0}. This criterion translates to (6.6)
through the derivative formula in Theorem 6.1.

The especially attractive feature of Theorem 6.1 is that the graphical derivative
of the solution mapping S turns out itself to be a solution mapping in our framework,
namely one that corresponds to g and G in place of f and F , with w′ as the parameter
and x′ as the solution. A derivative formula in this pattern was originally exhibited
in [22] for a variational inequality with canonical perturbations. That case will be
elaborated below.

To make the best use of Theorem 6.1 and Corollary 6.2, one needs to recognize
situations where F is proto-differentiable. The example of F single-valued and differ-
entiable has already been mentioned. Other examples emerge from the second-order
variational analysis of sets and functions that are fully amenable, this being a refine-
ment of the strong amenability in [16] that had a role in the preceding section. For
the theory of full amenability and the graphical derivative formulas it provides, along
with examples, we refer to [23] and restrict ourselves here to recording the following
consequence of Theorem 6.1.

Corollary 6.3 (full amenability). Under the ample parameterization condition
(1.6), if F = NC or F = ∂ϕ for a set C or function ϕ that is fully amenable at x∗,
then S is not only graphically Lipschitzian at w∗ for x∗ but also proto-differentiable
there.

Proof. The graphically Lipschitzian property is implied by Corollary 5.4, inas-
much as full amenability is a special case of strong amenability. The rest comes out of
Theorem 6.1 and the fact, just cited, that F is proto-differentiable at x∗ for y∗ ∈ F (x∗)
when F is of the form described.

7. Application to variational inequalities. We concentrate now on the spe-
cial case where S is the solution mapping for a parameterized variational inequality,

S(w) =
{
x
∣∣ f(w, x) + NC(x) � 0

}
(7.1)

with respect to a nonempty convex set C ⊂ R
n that is polyhedral. This choice allows

us to obtain a quite detailed picture of the geometry of proto-derivatives of S and to
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provide a basis for their actual computation. Because of convexity, the vectors y in
the normal cone NC(x) at any x ∈ C are the ones that satisfy

〈y, x′ − x〉 ≤ 0 for all x′ ∈ C.

Typically in the literature on variational inequalities this condition, with y = −f(w, x),
is written in place of the condition f(w, x) +NC(x) � 0, but the normal cone version
helps to put things into the right framework of set-valued mappings. When x /∈ C,
NC(x) is interpreted as ∅.

Our goal is to apply the theory of the preceding sections to F = NC and make
the most of the special properties that follow from C being polyhedral. We say that a
mapping is piecewise polyhedral when its graph is the union of a collection of finitely
many polyhedral (convex) sets. If the mapping is single-valued, this is the same as it
being piecewise linear (see [23, 2.48]). For a vector y, we let y⊥ =

{
u
∣∣ 〈y, u〉 = 0

}
.

This notation is used in the next theorem in defining the cone K∗ that is known as
the critical cone associated with the variational inequality in (7.1) for w = w∗ and
x = x∗.

Theorem 7.1 (proto-derivatives for variational inequalities). Let F = NC for
a polyhedral convex set C ⊂ R

n and assume that the ample parameterization condi-
tion (1.6) holds. Then S is both graphically Lipschitzian of dimension d and proto-
differentiable at w∗ for x∗, with its proto-derivatives given by an auxiliary variational
inequality, namely

DS(w∗ |x∗)(w′) =
{
x′ ∣∣ g(w′, x′) + NK∗(x′) � 0

}
, where

g(w′, x′) = ∇wf(w∗, x∗)w′ +∇xf(w∗, x∗)x′ and K∗ = TC(x∗) ∩ f(w∗, x∗)⊥.
(7.2)

Furthermore, the mapping DS(w∗ |x∗) is itself graphically Lipschitzian of dimension
d everywhere and is piecewise polyhedral.

Proof. This mainly constitutes a further specialization of Theorems 5.2 and 6.1
along the lines of Corollaries 5.4 and 6.3. When F = NC with C polyhedral (and
nonempty since by blanket assumption we are working with a pair (w∗, x∗) ∈ gphS),
we have F maximal monotone and everywhere proto-differentiable, with the proto-
derivative mapping being itself a normal cone mapping; specifically, DF (x∗ |y∗) =
NK∗ for K∗ = TC(x∗)∩ y⊥∗ , which we apply here to y∗ = −f(w∗, x∗). (This reduction
of DF (x∗ |y∗) to a normal cone mapping depends crucially on C being polyhedral;
for details see [21] or the reduction lemma in [5].)

Because the tangent cones to a polyhedral set C are themselves polyhedral, the
cone K∗ is polyhedral and the mapping NK∗ is therefore piecewise polyhedral (see
[18] or [23, 12.31]). Recall now the general way that the graph of S corresponded to
that of F through a mapping Q as in (5.1) and (5.2). In the context of the auxiliary
variational inequality in (7.2), the same holds for gphDS(w∗ |x∗) versus gphNK∗ ,
and furthermore with a replacement for Q that is a linear mapping. From this it is
apparent that gphDS(w∗ |x∗) inherits the piecewise polyhedrality of gphNK∗ .

A proto-derivative formula akin to the one in Theorem 7.1 was originally estab-
lished in [22], but in terms of canonical parameters. Here we have extended it in terms
of ample parameterization as well as provided new information about the graph of
the derivative mapping, its piecewise polyhedrality.

Corollary 7.2 (piecewise linear geometry). In the setting of Theorem 7.1, the
graph of DS(w∗ |x∗) is a piecewise linear manifold of dimension d in the sense of being
a Lipschitzian manifold formed as the union of a finite collection of d-dimensional
polyhedral sets.



182 A. L. DONTCHEV AND R. T. ROCKAFELLAR

Proof. Theorem 7.1 reveals that DS(w∗ |x∗) is a mapping of the sort to which
Corollary 5.2 applies. Hence gphDS(w∗ |x∗) is a d-dimensional Lipschitzian mani-
fold, in fact “globally” because this graph is a cone and therefore determined by its
properties around the origin. On the other hand, DS(w∗ |x∗) is piecewise polyhedral
by Theorem 6.1. That supplies the piecewise linearity of the Lipschitzian mapping un-
derlying the definition of the graphically Lipschitzian property (cf. [23, 12.31] again).
In expressing the graph as the union of a finite collection of polyhedral sets, it can be
arranged that none of these sets is included in any of the others, and they must then
all be of dimension d.

Corollary 7.3 (calmness of variational inequalities). In the setting of Theorem
7.1, the mapping S is calm at w∗ for isolated x∗ if and only if

∇xf(w∗, x∗)x′ + NK∗(x′) � 0 =⇒ x′ = 0.

Proof. We get this immediately from Corollary 6.2.
Especially of interest for proto-differentiability is the case of Theorem 7.1 where

S is locally single-valued and Lipschitz continuous. When that holds, the proto-
differentiability turns into a stronger property. A critical role in reaching that con-
clusion can be played by the result in Theorem 4.2, this being an extended version
of Robinson’s strong regularity theorem [19]. In other work which is closely related,
King and Rockafellar [8] obtained a graphical-derivative characterization of single-
valuedness for set-valued mappings with a “subinvertibility” property which in par-
ticular can be guaranteed through monotonicity. The next theorem could largely be
derived as a specialization of that work, but because of a difference in contexts we
find it more expedient and illuminating to proceed directly.

Recall here the concept of semidifferentiability that was described for single-valued
S and DS(w∗ |x∗) in terms of the approximation in (6.2).

Theorem 7.4 (single-valuedness relations). Let F = NC for a polyhedral convex
set C ⊂ R

n and assume that the ample parameterization condition (1.6) holds. Sup-
pose further that S is convex-valued around w∗, in the sense that S(w) is a convex set
for all w in some neighborhood of w∗. Then the following properties are equivalent:

(a) S is single-valued and Lipschitz continuous on some neighborhood of w∗;
(b) DS(w∗ |x∗) is single-valued on some neighborhood of 0 (hence everywhere).

Moreover, then S is semi-differentiable at w∗ for x∗, and DS(w∗ |x∗) is not only
Lipschitz continuous and positively homogeneous but also piecewise linear.

Proof. Since S is convex-valued, it is single-valued and Lipschitz continuous
around w∗ if and only it has a single-valued Lipschitzian localization at w∗ for x∗.
This is critical because this localization property is all that we are able to relate
to DS(w∗ |x∗), inasmuch as DS(w∗ |x∗) depends only on the geometry of gphS at
(w∗, x∗).

The proto-differentiability of S at w∗ for x∗, which we know from Theorem 7.1,
reduces to the semidifferentiability in (6.2) when S is locally single-valued and Lip-
schitz continuous, as noted earlier (see [23]). Furthermore, from Theorem 7.1 (and
Corollary 7.2), the mapping DS(w∗ |x∗), being piecewise polyhedral, must be piece-
wise linear when it is single-valued (cf. 2.48 and 9.57 of [23]). Thus, (a) implies (b)
along with piecewise linear semidifferentiability.

To complete the proof of the theorem, we must show that if (b) holds, then S has
a single-valued Lipschitzian localization at w∗ for x∗. For this purpose we can invoke
Theorem 4.2 in order to transform the task into one of showing that an auxiliary
mapping S∗ has a single-valued Lipschitzian localization at 0 for x∗, where S∗ has the
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form (1.7)–(1.8), as in the earlier parts of this paper, except that now F = NC . We
specifically choose the function f∗ in (1.8) by f∗(x) = f(w∗, x∗)+∇xf(w∗, x∗)(x−x∗),
so that

S∗(y) =
{
x
∣∣h(y, x) + NC(x) � 0

}
, where

h(y, x) = f(w∗, x∗) +∇xf(w∗, x∗)(x− x∗)− y.
(7.3)

Because C is polyhedral, the mapping NC is piecewise polyhedral (cf. [23, 12.31]),
and it follows then, because h is linear, that S∗ is piecewise polyhedral. Theorem 7.1
is applicable to S∗ in place of S, with minor adjustments of notation. It yields the
formula

DS∗(0 |x∗)(y′) =
{
x′ ∣∣ − y′ +∇xf(w∗, x∗)x′ + NK∗(x′) � 0

}
(7.4)

for the same critical cone K∗ as in (7.2), along with the information that DS∗(0 |x∗)
is piecewise polyhedral.

Crucial now will be the general fact that when a set G is polyhedral its tangent
cone TG(z) at a point z ∈ G coincides in some neighborhood of the origin with the
translated set G − z. This obviously carries over to piecewise polyhedral sets G as
well. Applying it to G = gphS∗ at z = (0, x∗), and remembering that DS∗(0 |x∗)
is the mapping which has TgphS∗(0, x∗) as its graph, we see that gphS∗ − (0, x∗)
coincides with gphDS∗(0 |x∗) in a neighborhood of the origin.

In light of this, it will suffice for us to demonstrate that DS∗(0 |x∗) is single-valued
when DS(w∗ |x∗) is single-valued, inasmuch as the single-valuedness of DS∗(0 |x∗) in
combination with its piecewise polyhedrality will imply its Lipschitz continuity (again
cf. [23, 2.48 and 9.57]). For arbitrary y′, is there one and only one x′ satisfying in (7.4)
the condition −y′ +∇xf(w∗, x∗)x′ +NK∗(x′) � 0? Under the ample parameterization
condition (1.6), it is possible to write −y′ = ∇wf(w∗, x∗)w′ for some w′. The question
then is whether there is one and only one x′ satisfying

∇wf(w∗, x∗)w′ +∇xf(w∗, x∗)x′ + NK∗(x′) � 0.

Through our assumption that DS(w∗ |x∗) is single-valued, the answer from formula
(7.2) is yes, and we are done.

Proposition 7.5 (example of convex-valuedness). In particular, the solution
mapping S in (7.1) is convex-valued, as postulated in Theorem 7.4, when f(w, x) is
monotone with respect to x ∈ C, in the sense that

〈f(w, x′)− f(w, x′′), x′ − x′′〉 ≥ 0 for x′, x′′ ∈ C.

Proof. Under this assumption the variational inequality is of monotone type, in
which case its set of solutions is convex, as is well known.

8. Application to minimization over a polyhedral set. In this section we
specialize further to the case of a parameterized variational inequality coming out of
a minimization problem with fixed linear constraints. This will provide an illustration
also of our results on calmness and show how they are related to second-order condi-
tions for optimality. Applications to primal-dual aspects of convex optimization in a
format allowing for constraint perturbations will be found in our forthcoming paper
[6].

The basic problem we consider here has the form

minimize ϕ(w, x) over x ∈ C,(8.1)
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where C is a nonempty polyhedral (convex) subset of R
n and the function ϕ : R

d×R
n is

of class C2. For this problem, parameterized by w, the first-order optimality condition
is

−∇xϕ(w, x) ∈ NC(x),(8.2)

and the points x satisfying it are the “quasi-optimal” solutions called stationary points.
The mapping from w to such points x has the form

S : w �→ {
x
∣∣∇xϕ(w, x) + NC(x) � 0

}
(8.3)

and fits our framework as the case of the general mapping S in (1.2) where m = n
and

f(w, x) = ∇xϕ(w, x), F (x) = NC(x).(8.4)

The specialization of F to the normal cone mapping NC for a polyhedral set C
was already the topic in the preceding section, so what is new here is merely the
specialization of f to ∇xϕ. The assumption that ϕ ∈ C2 gives us f ∈ C1 as required,
with

∇wf(w, x) = ∇2
xwϕ(w, x) ∈ R

n×d, ∇xf(w, x) = ∇2
xxϕ(w, x) ∈ R

n×n,(8.5)

and the ample parameterization condition (1.6) for a pair (w∗, x∗) ∈ gphS coming
out as

rank∇2
xwϕ(w∗, x∗) = n.(8.6)

Furnished with this information, it is easy to apply to the stationary point mapping
in (8.3) all the results obtained so far in this paper, in particular the ones in section
7, in which the critical cone becomes

K∗ = TC(x∗) ∩∇xϕ(w∗, x∗)⊥.(8.7)

Rather than recording the details of that, we aim here at exploring certain connections
between second-order optimality and our results on calmness and Aubin property.

Recall that, in partnership with the first-order condition for optimality that we
are now placing on our reference element (w∗, x∗) in taking it to belong to the graph
of the mapping S in (8.3), the standard second-order necessary condition for local
optimality is

〈u,∇2
xxϕ(w∗, x∗)u〉 ≥ 0 for all u ∈ K∗(8.8)

for the critical cone K∗ in (8.7), whereas the standard second-order sufficient condition
is

〈u,∇2
xxϕ(w∗, x∗)u〉 > 0 for all nonzero u ∈ K∗.(8.9)

The strong second-order sufficient condition for local optimality is

〈u,∇2
xxϕ(w∗, x∗)u〉 > 0 for all nonzero u ∈ K∗ −K∗.(8.10)

Because K∗ is convex, K∗ −K∗ is the smallest subspace of R
n that includes K∗; it is

called the critical subspace associated with w∗ and x∗.
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Theorem 8.1 (calmness of optimal solution mappings). Under the ample param-
eterization condition (8.6), the following properties of the stationary point mapping S
in (8.3) are equivalent at the reference pair (w∗, x∗) ∈ gphS:

(i) The standard second-order sufficient condition (8.9) holds;
(ii) x∗ is a local minimizer in problem (8.1) for w∗, and S is calm at w∗ for

isolated x∗.
Proof. According to Corollary 7.3 as applied to f = ∇xϕ, we have calmness at

w∗ for isolated x∗ if and only if

∇2
xxϕ(w∗, x∗)x′ + NK∗(x∗ |y∗)(x′) � 0 =⇒ x′ = 0.(8.11)

On the other hand, we have available the following description of normal vectors to a
closed convex cone K in terms of the polar cone K∗, as applied to K = K∗:

v ∈ NK∗(u) ⇐⇒ u ∈ K∗, v ∈ K∗
∗ , u ⊥ v(8.12)

(cf. 11.4(b) of [23]). Therefore, S is calm at w∗ for isolated x∗ if and only if

u ∈ K∗, −∇2
xxϕ(w∗, x∗)u ∈ K∗

∗ , 〈u,∇2
xxϕ(w∗, x∗)u〉 = 0 =⇒ u = 0.(8.13)

Let (i) hold. Then of course x∗ is a local minimizer as described, but is S calm at
w∗ for x∗? If this were not true, there would exist by (8.11) some u �= 0 satisfying the
conditions in (8.13), and that would contradict the inequality 〈u,∇xxϕ(w∗, x∗)u〉 > 0
known from the supposition in (i) that (8.9) is satisfied.

Conversely now, let (ii) hold. Because x∗ is a local minimizer, the second-order
necessary condition (8.8) must be fulfilled; this can be written as

u ∈ K∗ =⇒ −∇2
xxg(w∗, x∗)u ∈ K∗

∗ .

The calmness of S, as identified with (8.13), eliminates the possibility of there being a
nonzero u ∈ K∗ such that the inequality in (8.8) fails to be strict. Thus, the necessary
condition (8.8) turns into the sufficient condition (8.9), and (i) is satisfied.

We investigate next, in association with the stationary point mapping S in (8.3),
the mapping

S∗ : y �→ {
x
∣∣∇xϕ(w∗, x) + NC(x) � y

}
,(8.14)

which has the form in the general theory of the earlier parts of this paper with
f∗(x) = f(w∗, x) = ∇xϕ(w∗, x). From Theorem 3.2 we know that, under the ample
parameterization condition (8.6), S has the Aubin property at w∗ for x∗ if and only if
this mapping S∗ has that property at 0 for x∗. From Theorem 4.2, likewise under the
ample parameterization condition (8.6), S has a single-valued Lipschitzian localization
at w∗ for x∗ if and only if this S∗ has such a localization at 0 for x∗.

Something else can be brought into this picture. In [5, Theorem 3] we proved
that in a variational inequality like the current one, in which C is polyhedral, the
Aubin property and the Lipschitzian localization property are equivalent for S and
also for S∗. On the other hand, by a result of Poliquin and Rockafellar [17, Theorem
4.5], the strong second-order sufficient condition (8.10) holds if and only if S∗ has
the Lipschitzian localization property. By combining these results we arrive at the
following characterization.

Theorem 8.2 (Lipschitzian localization of optimal solution mappings). Under
the ample parameterization condition (8.6), the following properties of the stationary
point mapping S in (8.3) are equivalent at the reference pair (w∗, x∗) ∈ gphS:
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(i) The strong second-order sufficient condition (8.10) holds at (w∗, x∗);
(ii) S has a single-valued Lipschitzian localization at w∗ for x∗ such that, for all

(w, x) ∈ gphS near (w∗, x∗), x is not only a stationary point but a local minimizer in
problem (8.1).

This can be supplemented by a description of the resulting semiderivatives of the
mapping S.

Theorem 8.3 (perturbations of local minimizers). In the context of the properties
in Theorem 8.2, the mapping S is semidifferentiable at w∗; thus (6.2) holds. Moreover,
in this case DS(w∗ |x∗) is a piecewise linear mapping such that DS(w∗ |x∗)(w′) is the
unique solution x′ to the variational inequality

∇2
xwϕ(w∗, x∗)w′ +∇2

xxϕ(w∗, x∗)x′ + NK∗(x′) � 0,(8.15)

or, equivalently, the unique optimal solution to the quadratic programming subproblem

minimize 〈x′,∇2
xwϕ(w∗, x∗)w′〉+

1

2
〈x′,∇2

xxϕ(w∗, x∗)x′〉 over x′ ∈ K∗.(8.16)

Proof. We apply Theorem 7.4 and then get the description of DS(w∗ |x∗)(w′)
through (8.15) by specializing formula (7.2) of Theorem 7.1. Next, we observe that
(8.15) is the first-order optimality condition for the problem in (8.16), and, because
of the second-order sufficiency we have at hand, it gives local minimizers.
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1. Introduction. In this paper we consider the following problem of minimizing
a quadratic over a sphere:

minimize xTAx− 2bTx subject to ‖x‖ ≤ r,(1.1)

where A is a symmetric n × n matrix, b ∈ Rn, T denotes transpose, and ‖ · ‖
is the Euclidean norm. This minimization problem is often called the trust region
subproblem since it must be solved in each step of a trust region algorithm [1, 2, 3,
15, 19]. Problems of this form arise in many other applications including regularization
methods for ill-posed problems [14, 26] and graph partitioning problems [10].

Although the solution to (1.1) can be expressed in terms of a diagonalization of
A, this representation is practical only when n is small. In this paper, we focus on
the large-scale case. One approach to the large-scale case, developed by Golub and
von Matt in [5] (also see [4]), is to (partially) tridiagonalize A using the Lanczos
process and then solve tridiagonal problems to obtain an approximate solution to
(1.1). For further developments of this approach, including preconditioning and a
Fortran 90 implementation HSL VF05 in the Harwell subroutine library, see Gould
et al. [7]. For the method developed in this paper, we use an approach in the spirit
of the Golub/von Matt/Gould et al. scheme to obtain a starting guess.

Parametric eigenvalue approaches to the sphere constrained problem (1.1) are de-
veloped by Sorensen [24] and by Rendl and Wolkowicz [20]. The relationship between
these two approaches is discussed in detail in [20]. Roughly, Sorensen’s approach
involves constructing an approximation to the solution of (1.1) from the solution to
a related eigenvalue problem. Since this approximation may not satisfy the bound
on the norm of the solution, a series of eigenvalue problems are solved, and in the
limit, the bound on the norm of the solution is fulfilled. In the approach of Rendl
and Wolkowicz, the same eigenvalue problem is solved in each iteration; however, the
bound on the norm of the solution is satisfied by maximizing a related dual func-
tion. The eigenvalue problems arising in either approach can be solved using Arnoldi
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techniques such as those developed in [13]. In the “hard case” (see [16]), where b is
orthogonal to the eigenvectors associated with the smallest eigenvalue ofA, Sorensen’s
approach needs to be modified. An efficient algorithm for the hard case is developed
by Rojas in her thesis [21]. She also uses this algorithm to solve some difficult ill-
posed problems of Hansen [11, 12]. The approach of Rendl and Wolkowicz does not
need modification in the hard case; however, the convergence of algorithms for the
eigenvalue problem may be slower when the computed eigenvalue is not simple.

The approach in this paper, which we call the sequential subspace method (SSM),
involves solving (1.1) with the additional constraint that x is contained in a subspace.
We show that convergence is locally quadratic (locally cubic when b = 0) if the
subspace contains the iterate generated by one step of the sequential quadratic pro-
gramming (SQP) algorithm applied to (1.1). The convergence is quadratic even when
the original problem is degenerate with multiple solutions and with a singular Jaco-
bian for the first-order optimality system. Descent of the cost at a nonoptimal point
can be ensured by including in the subspace either the cost gradient or an eigenvector
associated with the smallest eigenvalue of A. We observe in numerical experiments
that appropriate small dimensional subspaces are generated by preconditioned Krylov
space and minimum residual techniques. Comparisons with the algorithms of Sorensen
[24], Rendl and Wolkowicz [20], and Gould et al. [7] are given in section 5.

A solution of the problem

minimize xTAx subject to ‖x‖ = r(1.2)

is any eigenvector associated with the smallest eigenvalue ofA. In comparing the SSM
approach to algorithms for solving the eigenproblem, it follows from the discussion of
Sleijpen and Van der Vorst in [22] that an SQP iterate for (1.2) is closely connected
to the Rayleigh quotient iteration [18, p. 70], which is cubically convergent [18, p.
73]. In [22] approximate solutions to the SQP system are used to build up subspaces
containing the approximation to the eigenvector. In this paper, we solve the SQP
system relatively precisely, and we form a small dimensional subspace containing the
SQP iterate. After computing the new approximation in the subspace, the previous
information is discarded; hence, the computer memory requirements are relatively
small.

2. Complete diagonalization. If there exists a solution y of (1.1) with
‖y‖ < r, then A is positive semidefinite and y is the global minimizer of the quadratic
xTAx−2bTx. Thus, when a minimizer of (1.1) lies in the interior of the constraining
sphere, the constraint can be ignored and the optimization problem can be approached
using techniques for unconstrained optimization. Consequently, we restrict our atten-
tion to the following equality constrained problem:

minimize xTAx− 2bTx subject to ‖x‖ = r.(2.1)

The solutions to (2.1) are characterized by the following result (see [23, Lemmas 2.4
and 2.8]).
Lemma 2.1. The vector x is a solution of (2.1) if and only if ‖x‖ = r and there

exists µ such that A+ µI is positive semidefinite and (A+ µI)x = b.
The solution to (2.1) can be expressed in terms of the eigenpairs of A. Let

A = ΦΛΦT be a diagonalization of A, where Λ is a diagonal matrix with diagonal
elements λ1 ≤ λ2 ≤ · · · ≤ λn and Φ is the matrix whose columns φ1, φ2, . . . , φn
are orthonormal eigenvectors of A. Defining βi = bTφi, E1 = {i : λi = λ1}, and
E+ = {i : λi > λ1}, Lemma 2.1 yields the following.
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Lemma 2.2. The vector φ =
∑n
i=1 ciφi is a solution of (2.1) if and only if c is

chosen in the following way:
(a) Degenerate case: If βi = 0 for all i ∈ E1 and

∑
i∈E+

β2
i

(λi − λ1)2
≤ r2,(2.2)

then µ = −λ1 in Lemma 2.1 and ci = βi/(λi − λ1) for i ∈ E+; the ci for
i ∈ E1 are arbitrary scalars satisfying the condition

∑
i∈E1

c2i = r2 −
∑
i∈E+

β2
i

(λi − λ1)2
.

(b) Nondegenerate case: If (a) does not hold, then ci = βi/(λi + µ), 1 ≤ i ≤ n,
where µ > −λ1 is chosen so that

n∑
i=1

β2
i

(λi + µ)2
= r2.(2.3)

Proof. Simply check that the sufficient optimality conditions of Lemma 2.1 are
satisfied. The degenerate case, where the Jacobian of the first-order optimality system
may be singular, coincides with the “hard case” of Moré and Sorensen [16], where b
is orthogonal to the eigenspace associated with the smallest eigenvalue of A and the
multiplier µ is equal to −λ1. In the nondegenerate case, the multiplier µ is chosen so
that A+ µI is positive definite and the solution x = x(µ) to (A+ µI)x = b satisfies
the constraint xTx = r2.

In the nondegenerate case, (2.3) leads to upper and lower bounds for the multiplier
µ. Since λi + µ ≥ λ1 + µ > 0, 1 ≤ i ≤ n, we have

r2 =

n∑
i=1

β2
i

(λi + µ)2
≤

n∑
i=1

β2
i

(λ1 + µ)2
=

‖b‖2
(λ1 + µ)2

.

Since λ1 + µ > 0, it follows that

µ ≤ ‖b‖
r
− λ1 := µu.(2.4)

To obtain a lower bound, observe that

r2 =

n∑
i=1

β2
i

(λi + µ)2
≥ 1

(λ1 + µ)2

∑
i∈E1

β2
i ,

which yields the relation

µ ≥ −λ1 +
1

r

(∑
i∈E1

β2
i

)1/2

:= µl.(2.5)

Utilizing the upper and lower bounds µu and µl and the strict convexity of the left
side of (2.3) on the interval (µl, µu], it is easy to devise efficient algorithms to compute
a solution µ of (2.3).
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3. Incomplete diagonalization; local convergence. At iteration k in the
SSM for (2.1), we impose the additional constraint that x lies in a subspace Sk of Rn.
Hence, the new iterate xk+1 is a solution of the problem

minimize xTAx− 2bTx subject to ‖x‖ = r, x ∈ Sk.(3.1)

We show that the convergence is locally quadratic, even when the original problem
(2.1) is degenerate, if we include an SQP iterate associated with xk in Sk.

If V is an n × l matrix with orthonormal columns that span Sk, then (3.1) is
equivalent to the problem

minimize xTAx− 2bTx subject to ‖x‖ = r, x = Vy.(3.2)

After substituting for x, (3.2) reduces to the following problem in Rl:

minimize yTBy − 2cTy subject to ‖y‖ = r,(3.3)

where B = VTAV and c = VTb. If l is small, then (3.3) can be solved by complete
diagonalization as in section 2 or, if B has a sparse factorization, then (3.3) can be
solved quickly using the Newton approach developed in [16].

In theory, a tridiagonalB is generated using the Lanczos process [6]. In particular,
if v1 is a unit vector and vi is the ith column of V, then the Lanczos process can be
expressed as follows.

Algorithm 1 (Lanczos).
u0 = 0
for j = 1 : l − 1

s← Avj
dj ← sTvj
s← s− djvj − uj−1vj−1

uj ← ‖s‖
vj+1 ← s/uj

end
end Algorithm 1

Here d is the diagonal and u is the superdiagonal of the tridiagonal matrix B. If
uj = 0 for some j, then the Lanczos process is terminated and the column spaces of
V and AV coincide.

It is well known that the columns of V generated by this process may deviate
significantly from orthogonality due to the propagation of rounding errors. When this
happens, (3.2) is no longer equivalent to (3.3). Nonetheless, Gould et al. observe in [7]
that the solution to (3.3) often provides a good approximation to the solution of (3.2)
despite the loss of orthogonality. The Lanczos process can be repaired, in order to
restore orthogonality, by using a Householder process to generate the columns of V.
This process, however, requires products between a vector and each of the previously
computed columns of V. Thus, the overhead needed to maintain orthogonality grows
as nl2 in the number of flops and as nl in storage. This overhead can be significant
when n or l is large. On the other hand, to compute a high accuracy solution, we
need to maintain orthogonality in order to obtain an equivalent problem (3.3). This
leads us to focus on approaches that involve subspaces where l is much smaller than
n. In particular, for an implementation (Algorithm 4) of the SSM proposed later, l is
either 4 or 5.
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Since SQP techniques often converge rapidly, with a good starting guess, we
always include the SQP approximation in the subspace Sk. The SQP method is
equivalent to Newton’s method applied to the nonlinear system

(A+ µI)x− b = 0,
1

2
xTx− 1

2
r2 = 0.(3.4)

If xk is the current iterate, which we assume satisfies the constraint ‖x‖ = r, and
µk is the current approximation to the multiplier associated with the constraint,
then the Newton iterate can be expressed in the following way: xSQP = z + xk and
µSQP = µk + ν, where z and ν are solutions of the linear system

(A+ µkI)z+ xkν = b− (A+ µkI)xk,(3.5)

xT
kz = 0.(3.6)

When the coefficient matrix in (3.5)–(3.6) is singular, we let (z, ν) be the minimum
residual/minimum norm solution; that is, (z, ν) is obtained (in theory) by multiplying
the right side by the pseudoinverse of the coefficient matrix (see [8]).

A solution xk+1 to the subspace problem (3.1) is an approximation to the solution
of (2.1). To obtain an estimate for the multiplier of Lemma 2.1, we minimize the
Euclidean norm of the residual b−Axk+1−µxk+1 over the scalar µ. This works out
to give

µk+1 = ρ(xk+1), where ρ(x) =
(b−Ax)Tx

‖x‖2 .(3.7)

This is the standard least squares approximation to the solution of the overdetermined
linear system µxk+1 = b−Axk+1.

We now examine the local convergence of a solution xk+1 of (3.1) and the mul-
tiplier estimate (3.7) under the assumption that Sk contains xSQP = z + xk, where
(z, ν) is a solution to (3.5). Let S∗ denote the set of minimizers of (2.1), and let µ∗ be
the multiplier given by Lemma 2.1. In the nondegenerate setting, where A + µ∗I is
positive definite, we show that the iteration is locally, quadratically convergent to the
unique solution of (2.1). In the degenerate case µ∗ = −λ1, where S∗ has more than
one element, we obtain local quadratic convergence to S∗, where distance is measured
in the usual way:

dist(x,S∗) = inf{‖x− x∗‖ : x∗ ∈ S∗}.
In the nondegenerate-degenerate case, where µ∗ = −λ1 but S∗ contains a single
element, we obtain local quadratic convergence for a “safe-guarded” choice of µk.
Our convergence result in the special nondegenerate-degenerate case is given later in
Lemma 3.4, while our local convergence result in either the nondegenerate case or the
degenerate case with multiple solutions is as follows.
Theorem 3.1. Let µ∗ be the multiplier of Lemma 2.1 associated with the set of

solutions S∗ of (2.1), and suppose that either A+µ∗I is positive definite or µ∗ = −λ1

with (2.2) a strict inequality. Then there exist positive constants η and C with the
property that for any (xk, µk) such that

|µk − µ∗|+ dist(xk,S∗) ≤ η, ‖xk‖ = r,

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), any solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
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the estimate

dist(xk+1,S∗) + |µk+1 − µ∗| ≤ C(dist(xk,S∗)2 + |µk − µ∗|2).
The eigenvalue problem (1.2), corresponding to b = 0, is always degenerate (with

multiple solution) and the error has the special form

dist(xk+1,S∗) ≤ C|µk + λ1|dist(xk,S∗).
When the multiplier is estimated using (3.7), it can be shown, when b = 0, that the
error in the multiplier is bounded by a constant times the error in the solution vector
squared (see the remark at the end of section 3.1). It follows that for some constant
C,

dist(xk+1,S∗) ≤ Cdist(xk,S∗)3 and |µk+1 + λ1| ≤ Cdist(xk,S∗)6,(3.8)

which is the same as the convergence result for the Rayleigh quotient iteration.

3.1. Nondegenerate problems. We begin the derivation of Theorem 3.1 with
the nondegenerate case.
Lemma 3.2. If (2.1) has a solution x∗ and an associated multiplier µ∗ with

µ∗ > −λ1, then there exist a neighborhood N of (x∗, µ∗) and a constant C with the
property that for any (xk, µk) ∈ N with ‖xk‖ = r, and for any subspace Sk that
contains the SQP iterate xSQP associated with (3.5)–(3.6), any solution xk+1 of (3.1)
and associated multiplier µk+1 given by (3.7) satisfy the estimate

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C(‖xk − x∗‖2 + |µk − µ∗|2).
Proof. Since µ∗ > −λ1, the matrix A+ µ∗I is positive definite, and the Jacobian

of the nonlinear system (3.4) is nonsingular at (x∗, µ∗). By the standard convergence
theorem for Newton’s method applied to a smooth system of equations, there exist a
neighborhood N of (xk, µk) and a constant c such that

‖xSQP − x∗‖+ |µSQP − µ∗| ≤ c(‖xk − x∗‖2 + |µk − µ∗|2)
whenever (xk, µk) ∈ N .

Let α and β be positive scalars chosen so that

α‖x‖2 ≤ xT(A+ µ∗I)x ≤ β‖x‖2(3.9)

for all x ∈ Rn, let f be the cost function in (2.1), f(x) = xTAx − 2bTx, and let L
be the Lagrangian defined by

L(x, µ) = f(x) + µ(xTx− r2).

A Taylor expansion around x∗ yields the relation

f(x) = L(x, µ∗) = f(x∗) + (x− x∗)T(A+ µ∗I)(x− x∗)

for any x ∈ Br = {x ∈ Rn : ‖x‖ = r}. Combining this with (3.9) gives

α‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ β‖x− x∗‖2(3.10)

for any x ∈ Br.
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If p is the projection of xSQP onto Br, then

‖xSQP − p‖ ≤ ‖xSQP − x∗‖ ≤ c(‖xk − x∗‖2 + |µk − µ∗|2).(3.11)

Hence, we have

‖p− x∗‖ ≤ ‖p− xSQP‖+ ‖xSQP − x∗‖ ≤ 2c(‖xk − x∗‖2 + |µk − µ∗|2).

Since p = γxSQP for some γ, it follows that p ∈ Sk and f(xk+1) ≤ f(p). Combining
this inequality with (3.10) and (3.11) gives

α‖xk+1 − x∗‖2 ≤ f(xk+1)− f(x∗)
≤ f(p)− f(x∗)
≤ β‖p− x∗‖2
≤ 4c2β(‖xk − x∗‖2 + |µk − µ∗|2)2,

which implies that

‖xk+1 − x∗‖ ≤ 2c
√
β/α(‖xk − x∗‖2 + |µk − µ∗|2).(3.12)

Since b = (A+ µ∗I)x∗, we have, for any x ∈ Br,

r2ρ(x) = (b−Ax)Tx = ((A+ µ∗I)x∗ −Ax)Tx

= xT(A+ µ∗I)(x∗ − x) + µ∗r2.(3.13)

Making this substitution gives

|µk+1 − µ∗| = |ρ(xk+1)− µ∗| ≤ λn + µ∗

r
‖xk+1 − x∗‖.(3.14)

Combining (3.14) with (3.12), the proof is complete.
Remark. For the eigenvalue problem (1.2), we have x∗ = rφ1, µ

∗ = −λ1, and
φT

1 (A− λ1I) = 0. In this case, (3.13) yields

r2ρ(x) = (x− x∗)T(A− λ1I)(x
∗ − x)− λ1r

2,

and (3.14) becomes

|µk+1 − µ∗| ≤ λn − λ1

r2
‖xk+1 − x∗‖2.

3.2. Degenerate problems. Now consider local convergence in the degenerate
case where µ∗ = −λ1. Referring to Lemma 2.2, the degenerate case can happen only
when βi = bTφi = 0 for all i ∈ E1. Any solution to (2.1) in the degenerate case can
be expressed as x∗ = Φ1 +Φ+, where

Φ+ =
∑
i∈E+

ciφi, ci = βi/(λi − λ1),(3.15)

and Φ1 is any linear combination of the vectors φi, i ∈ E1, satisfying the relation

‖Φ1‖2 + ‖Φ+‖2 = r2.
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Initially, we suppose that ‖Φ1‖ = δ > 0, in which case the projection of S∗ on the
eigenspace associated with E1 contains a sphere of radius δ. Our convergence result
is the following.

Lemma 3.3. Suppose that the multiplier µ∗ of Lemma 2.1 associated with the set
of solutions S∗ of (2.1) is given by µ∗ = −λ1 and that ‖Φ1‖ = δ > 0, where Φ1 is the
component of an element of S∗ in the eigenspace associated with E1. Then there exist
positive constants η and C with the property that for any (xk, µk) such that

|µk + λ1|+ dist(xk,S∗) ≤ η, ‖xk‖ = r,

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), any solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
the estimate

dist(xk+1,S∗) + |µk+1 + λ1| ≤ C(dist(xk,S∗)2 + |µk + λ1|2).
Proof. Initially, let us assume that µk is near −λ1, but µk �= −λ1. In this case,

the linear system (3.5)–(3.6) is nonsingular, and there exists a unique solution (z, ν).
We expand z and xk in terms of the eigenvectors of A writing z =

∑n
i=1 ζiφi and

xk =
∑n
i=1 χiφi. Utilizing (3.5), we obtain

ζi =
−χiν
λi + µk

+
βi − (λi + µk)χi

λi + µk
.(3.16)

Substituting this in (3.6) gives

ν =

∑n
i=1 χi(βi − (λi + µk)χi)/(λi + µk)∑n

i=1 χ
2
i /(λi + µk)

.(3.17)

Let us define R = b− (A+ µkI)xk and ρi = RTφi. For i ∈ E1, βi = 0 and

ν =
−(λ1 + µk)

(∑
i∈E1

χ2
i +

∑
i∈E+

χiρi
λi+µk

)
∑
i∈E1

χ2
i + (λ1 + µk)

∑
i∈E+

χ2
i

λi+µk

.(3.18)

If x∗ ∈ S∗, then since b = (A− λ1I)x
∗ and ‖xk‖ = r, we have

‖R‖ = ‖b− (A+ µkI)xk‖ ≤ r|λ1 + µk|+ ‖A− λ1I‖‖xk − x∗‖
≤ max{r, ‖A− λ1I‖}(|λ1 + µk|+ ‖xk − x∗‖).(3.19)

Let εk be the error at step k defined by

εk = |λ1 + µk|+ dist(xk,S∗).
By (3.19), we have ‖R‖ = O(εk), while (3.18) gives

ν = −(λ1 + µk)(1 +O(εk))(3.20)

= −(λ1 + µk) +O(ε2k)(3.21)

since
∑
i∈E1

χ2
i is near δ

2 > 0 when xk is near S∗. From (3.16), we have

ζi + χi =
βi − χiν

λi + µk
.(3.22)
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Since βi = 0 and λi = λ1 for i ∈ E1, (3.20) and (3.22) give

ζi + χi = χi +O(εk) for i ∈ E1.(3.23)

Let x∗ be the closest element of S∗ to xk and define χ∗
i = φTx∗. Then we have

|χi − χ∗
i | = |(xk − x∗)Tφi| ≤ ‖xk − x∗‖ ≤ εk.(3.24)

By (3.23) the φi component of xSQP = z+xk for i ∈ E1 is in error by O(εk) since χi,
the φi component of xk, is in error by O(εk) by (3.24).

Lemma 2.2 implies that βi = χ∗
i (λi − λ1) for i ∈ E+. Combining this with (3.21)

and (3.22) gives

ζi + χi =
βi − χiν

λi + µk
=

βi + χi(λ1 + µk)

λi + µk
+O(ε2k)

=
χ∗
i (λi − λ1) + χi(λ1 + µk)

λi + µk
+O(ε2k)

=
χ∗
i (λi − λ1) + χ∗

i (λ1 + µk)

λi + µk
+O(ε2k) = χ∗

i +O(ε2k).(3.25)

Hence, for i ∈ E+ the φi component of xSQP is in error by O(ε2k).
Let ‖ · ‖+ be the seminorm associated with projection into the eigenspace associ-

ated with E+:

‖x‖2+ =
∑
i∈E+

(xTφi)
2.

Then we have

(λ+ − λ1)‖x‖2+ ≤ xT(A− λ1I)x ≤ (λn − λ1)‖x‖2+(3.26)

for all x ∈ Rn, where λ+ = min{λi : λi > λ1, 1 ≤ i ≤ n}. Proceeding as we did
earlier, but replacing norms with seminorms,

α‖xk+1 − x∗‖2+ ≤ f(xk+1)− f(x∗)
≤ f(p)− f(x∗)
≤ β‖p− x∗‖2+,(3.27)

where p is the projection of xSQP onto the ball Br, and p = γxSQP for some γ ≥ 0.
Since ‖z‖ = O(εk) by (3.23) and (3.25), and z is perpendicular to xk by (3.6), we
have

‖xSQP‖2 = ‖z+ xk‖2 = ‖z‖2 + ‖xk‖2 = r2 +O(ε2k).

This implies that ‖xSQP‖ = r +O(ε2k), and γ = 1 +O(ε2k). For i ∈ E+,

pTφi = γxT
SQPφi = (1 +O(ε2k))(ζi + χi) = (1 +O(ε2k))(χ

∗
i +O(ε2k)) = χ∗

i +O(ε2k).

Consequently, ‖p− x∗‖+ = O(ε2k), which combines with (3.27) to give

‖xk+1 − x∗‖+ = O(ε2k).(3.28)
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By the triangle inequality,

‖x∗‖+ −O(ε2k) ≤ ‖xk+1‖+ ≤ ‖x∗‖+ +O(ε2k).

Let ‖ · ‖1 be the seminorm defined by

‖x‖21 =
∑
i∈E1

(xTφi)
2,(3.29)

and recall that ‖x∗‖1 = δ for any x∗ ∈ S∗. By the Pythagorean theorem and the fact
that xk+1 has length r, we have

‖xk+1‖21 = r2 − ‖xk+1‖2+ = r2 − ‖x∗‖2+ +O(ε2k) = ‖x∗‖21 +O(ε2k) = δ2 +O(ε2k),

which implies that

‖xk+1‖1 = δ +O(ε2k).(3.30)

The distance from xk+1 to S∗ is given by

dist(xk+1,S∗)2 = ‖xk+1 − x∗‖2+ + (δ − ‖xk+1‖1)2,(3.31)

where x∗ is any element of S∗. Relations (3.28)–(3.31) yield dist(xk+1,S∗) = O(ε2k),
while (3.14) gives |µk+1 − µ∗| = O(ε2k). Combining these estimates, we have εk+1 =
O(ε2k).

This analysis was given under the assumption that µk �= −λ1. In the special
case µk = −λ1, we now show how the analysis should be modified. With the change
of variables z =

∑n
i=1 ζiφi and the substitution xk =

∑n
i=1 χiφi, the SQP system

(3.5)–(3.6) is equivalent, by orthogonal transformation, to[
D χ
χT 0

] [
ζ
ν

]
=

[
β −Dχ

0

]
,(3.32)

whereD is a diagonal matrix with diagonal elements dii = λi−λ1. If E1 has s elements,
then the first s diagonal elements of D and the first s components of β−Dχ vanish.
Hence, the first s equations in (3.32) imply that ν = 0. The next n− s equations give

ζi = −χi + βi/(λi − λ1) = −χi + χ∗
i , i ∈ E+,(3.33)

while the last equation in (3.32) gives∑
i∈E1

χiζi = −
∑
i∈E+

χiζi.

The minimum norm solution to this last equation is

ζi = −
(∑

i∈E+
ζiχi∑

i∈E1
χ2
i

)
χi for i ∈ E1.(3.34)

By (3.33), ζi + χi = χ∗
i and |ζi| ≤ εk for i ∈ E+. By (3.34), |ζi| = O(εk) for i ∈ E1.

Combining these bounds, we have ‖z‖ = O(εk). With these relations, all the analysis
from (3.26) onward can be applied, leading us to the estimate εk+1 = O(ε2k).

Lemmas 3.2 and 3.3 yield Theorem 3.1.
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3.3. Nondegenerate-degenerate problems. Finally, let us consider the
nondegenerate-degenerate case, where µ∗ = −λ1, x

∗ = Φ1 + Φ+, and the Φ1 com-
ponent of x∗ in the eigenspace associated with the smallest eigenvalue of A vanishes.
Our convergence result is the following.
Lemma 3.4. If (2.1) has a solution x∗ = Φ+, where Φ+ is given by (3.15), then

there exist a neighborhood N of (x∗,−λ1) and a constant C with the property that for
any (xk, µk) ∈ N with

µk ≥ −λ1 + ‖b− (A+ ρ(xk)I)xk‖, ‖xk‖ = r,(3.35)

and for any subspace Sk that contains the SQP iterate xSQP associated with (3.5)–
(3.6), the solution xk+1 of (3.1) and associated multiplier µk+1 given by (3.7) satisfy
the estimate

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C(‖xk − x∗‖2 + |µk − µ∗|2).
In the case that µk = −λ1 + ‖b− (A+ ρ(xk)I)xk‖, C can be chosen so that

‖xk+1 − x∗‖+ |µk+1 − µ∗| ≤ C‖xk − x∗‖2.
Proof. Focusing on the numerator in (3.17), and substituting βi = (λi − λ1)χ

∗
i ,

we have
n∑
i=1

χi(βi − (λi + µk)χi)

λi + µk

=

n∑
i=1

χi((λi − λ1)(χ
∗
i − χi + χi)− (λi + µk)χi)

λi + µk

= −(λ1 + µk)

n∑
i=1

χ2
i

λi + µk
+
∑
i∈E+

χi(λi − λ1)(χ
∗
i − χi)

λi + µk

= −(λ1 + µk)

n∑
i=1

χ2
i

λi + µk
+
∑
i∈E+

χi(χ
∗
i − χi)− (λ1 + µk)

∑
i∈E+

χi(χ
∗
i − χi)

λi + µk
.

With this substitution for the numerator of ν in (3.17), we obtain

ν = −(λ1 + µk) +

∑
i∈E+

χi(χ
∗
i − χi)∑n

i=1 χ
2
i /(λi + µk)

−
(λ1 + µk)

∑
i∈E+

χi(χ
∗
i −χi)

λi+µk∑n
i=1 χ

2
i /(λi + µk)

.(3.36)

Since µk > −λ1, the denominator terms in (3.36) have the lower bound

n∑
i=1

χ2
i

λi + µk
≥

n∑
i=1

χ2
i

λn + µk
=

r2

λn + µk
.(3.37)

Another lower bound is gotten by neglecting terms corresponding to indices i ∈ E+:
n∑
i=1

χ2
i

λi + µk
≥
∑
i∈E1

χ2
i

λi + µk
=
‖xk‖21
λ1 + µk

,(3.38)

where the seminorm ‖ · ‖1 is defined in (3.29). Combining (3.36)–(3.38) yields

ν = −(λ1 + µk)(1 +O(‖xk − x∗‖+)) + O(‖x∗ − xk‖+)
max{1, ‖xk‖21/(λ1 + µk)} .(3.39)
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Returning to our previous analysis of the degenerate case, it follows from (3.22)
and (3.39) that for i ∈ E1, we have

ζi + χi =
βi − χiν

λi + µk
=
−χiν
λ1 + µk

= χi +O(εk)

(
1 +

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

)
.(3.40)

Here we exploit the fact that for i ∈ E1, |χi| ≤ ‖xk‖1 ≤ εk. In order to analyze (3.40),
we consider two separate cases: (i) ‖xk‖21 ≥ σ‖xk−x∗‖+ and (ii) ‖xk‖21 < σ‖xk−x∗‖+,
where σ is any fixed constant satisfying

0 < σ <
r(λ+ − λ1)

λn − λ1
, λ+ = min{λi : λi > λ1, 1 ≤ i ≤ n}.(3.41)

In case (i),

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

≤ ‖xk − x∗‖+
max{λ1 + µk, σ‖xk − x∗‖+} ≤

1

σ
.(3.42)

We now derive a similar bound for the left side of (3.42) in case (ii). In this case,
it follows from (3.35) that

‖xk − x∗‖+
max{λ1 + µk, ‖xk‖21}

≤ ‖x∗ − xk‖+
‖b− (A+ ρ(xk)I)xk‖ .

Since b = (A− λ1I)x
∗, we have

b− (A+ ρ(x)I)x = (A− λ1I)x
∗ − (A+ ρ(x)I)x

= (A− λ1I)(x
∗ − x)− (ρ(x) + λ1)x

= (A− λ1I)(x
∗ − x)+ − (ρ(x) + λ1)x

for any x ∈ Rn, where a + subscript on a vector is used to denote its projection on
the eigenspace associated with E+. After substituting for ρ using (3.13), we obtain

b− (A+ ρ(x)I)x = (A− λ1I)(x
∗ − x)− r−2(xT(A− λ1I)(x

∗ − x)+)x(3.43)

for any x ∈ Br. Assuming xk �= x∗, it follows that

‖x∗ − xk‖+
‖b− (A+ ρ(xk)I)xk‖ =

1

‖(A− λ1I)y − r−2(xT
k (A− λ1I)y)xk‖

,(3.44)

where y = (x∗ − xk)+/‖x∗ − xk‖+ is a unit vector (note that when ‖xk‖ = r,
‖x∗ − xk‖+ = 0 if and only if xk = x∗ since ‖x∗‖1 = 0).

We will establish a uniform bound for the expression (3.44) when xk is near x∗,
‖xk‖21 ≤ σ‖xk − x∗‖+, and ‖xk‖ = r. To facilitate this analysis, we first consider
whether the equation

(A− λ1I)y = r−2(yT(A− λ1I)x
∗)x∗(3.45)

has a solution of the form y = (x∗ − x)+/‖x∗ − x‖+ with x near x∗, ‖x‖ = r, and
‖x‖21 ≤ σ‖x− x∗‖+. Since ‖y‖ = 1 for y of this form, the Schwarz inequality gives

|yT(A− λ1I)x
∗| ≤ (λn − λ1)‖y‖‖x∗‖ = r(λn − λ1).(3.46)
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Since the unit vector y is orthogonal to the eigenspace associated with λ1,

yT(A− λ1I)y ≥ λ+ − λ1.(3.47)

Multiplying (3.45) by yT and using both (3.46) and (3.47) gives

|yTx∗| ≥ r(λ+ − λ1)

λn − λ1
> σ.(3.48)

For any x ∈ Br, we have
r2 = ‖x‖2 = r2 + 2(x− x∗)Tx∗ + ‖x− x∗‖2

= r2 − 2‖x∗ − x‖+yTx∗ + ‖x− x∗‖2,
which implies that

yTx∗ =
‖x− x∗‖2
2‖x− x∗‖+ =

‖x− x∗‖2+ + ‖x− x∗‖21
2‖x− x∗‖+

=
1

2

(
‖x− x∗‖+ +

‖x‖21
‖x− x∗‖+

)
(3.49)

since ‖x− x∗‖1 = ‖x‖1. If ‖x‖21 ≤ σ‖x− x∗‖+, then (3.49) yields the relation

0 ≤ yTx∗ ≤ 1

2
(‖x− x∗‖+ + σ).(3.50)

Referring to (3.48), we have a contradiction when ‖x− x∗‖+ ≤ σ.
In summary, (3.45) has no solution over the set Y consisting of those y that satisfy

the conditions y = (x∗−x)+/‖x∗−x‖+, x �= x∗, ‖x‖21 ≤ σ‖x−x∗‖+, ‖x−x∗‖+ ≤ σ,
and ‖x‖ = r. If y lies in the closure of Y, then by (3.50), yTx∗ ≤ σ; since any solution
of (3.45) satisfies (3.48), y cannot be a solution of (3.45). Since (3.45) has no solution
over the closure of Y, the following constant δ is strictly positive:

δ = min
y∈Y
‖(A− λ1I)y − r−2(yT(A− λ1I)x

∗)x∗‖.

Since

lim
xk→x∗ min

y∈Y
‖(A− λ1I)y − r−2(yT(A− λ1I)xk)xk‖ = δ,

(3.44) is bounded uniformly over all xk near x∗ with ‖xk‖ = r and ‖xk‖21 < σ‖xk −
x∗‖+. Thus in either case (i) or (ii), the left side of (3.42) is bounded and, by (3.40),
we have

ζi + χi = χi +O(εk) for i ∈ E1,
which is the same as relation (3.23) in the degenerate case.

To establish the analogue of (3.25) for indices i ∈ E+, we need a different bound
for the next to last term in (3.36). From the identity

∑n
i=1 χ

2
i =

∑n
i=1 χ

∗
i
2 = r2, we

obtain

n∑
i=1

(χ∗
i + χi)(χ

∗
i − χi) = 0.(3.51)
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Hence, we have

−
n∑
i=1

χi(χ
∗
i − χi) = −

n∑
i=1

χi(χ
∗
i − χi) +

1

2
(χ∗
i + χi)(χ

∗
i − χi)

=
1

2

n∑
i=1

(χ∗
i − χi)

2.(3.52)

Since χ∗
i = 0 for i ∈ E1, (3.52) implies that

−
∑
i∈E+

χi(χ
∗
i − χi) =

1

2

∑
i∈E+

(χ∗
i − χi)

2 − 1

2

∑
i∈E1

χ2
i

=
1

2

∑
i∈E+

(χ∗
i − χi)

2 − 1

2

∑
i∈E1

(χ∗
i − χi)

2.

It follows that ∣∣∣∣∣∣
∑
i∈E+

χi(χ
∗
i − χi)

∣∣∣∣∣∣ ≤ ‖x∗ − xk‖2.

This estimate, along with the lower bound (3.37) for the denominator in (3.36), yields
the relation

ν = −(λ1 + µk) +O(ε2k).

The remainder of the analysis is identical to that given for the degenerate case (Lemma
3.3), starting with (3.25). Since S∗ = {x∗}, it follows from the analysis of Lemma 3.3
that

‖xk+1 − x∗‖+ |µk+1 + λ1| ≤ C(‖xk − x∗‖2 + |µk + λ1|2).(3.53)

In the special case µk = −λ1 + ‖b− (A+ ρ(xk)I)xk‖, (3.43) gives
|µk + λ1| = ‖b− (A+ ρ(xk)I)xk‖ = O(‖xk − x∗‖).

Hence, the |µk + λ1|2 term in (3.53) can be absorbed in the ‖xk − x∗‖2 term. This
completes the proof.

4. Implementation. In our experimentation with the SSM, we put the follow-
ing four vectors in Sk in each iteration: xSQP, xk, b − Axk, and an estimate for
an eigenvector of A associated with the smallest eigenvalue. By including xk in Sk,
the value of the cost function can only decrease in consecutive iterations. The multi-
ple b −Axk of the cost function gradient ensures descent if the current iterate does
not satisfy the first-order optimality conditions. The eigenvector associated with the
smallest eigenvalue will dislodge the iterates from a nonoptimal stationary point. We
also use this vector in a “safe-guard” strategy designed to keep A + µkI positive
definite.

4.1. The SQP system. Now consider the SQP system (3.5)–(3.6). According
to (3.6), z is orthogonal to the prior iterate xk. Let P be the matrix that projects a
vector into the space perpendicular to xk:

P = I− xkx
T
k

xT
kxk

.
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Fig. 4.1. Convergence of the tridiagonalization approach (solid) and SSM (dashed) for the
second test problem from [24].

Multiplying (3.5) by P yields

P(A+ µkI)z = P(b−Axk).

Since Pz = z, according to (3.6), we have

P(A+ µkI)Pz = P(b−Axk).(4.1)

We have found that preconditioned Krylov space methods, such as the Gauss–
Seidel scheme in [9], converge very quickly when applied to (4.1). As a small illustra-
tion, let us consider the second test problem from [24] with r = 100 and A = Q∆Q,
where ∆ is a 1000× 1000 diagonal matrix with diagonal elements selected randomly
from a uniform distribution on (−.5, .5) and Q = I − 2qqT, where q is obtained by
first generating random numbers on (−.5, .5) and then scaling the resulting vector
to have unit length. The vector b is generated in the same way as q. The solid
curve in Figure 4.1 gives the convergence when a Lanczos type process (Algorithm 1,
with starting vector v1 = Pb) is used to generate the matrix V used in (3.2). The
Lanczos process was modified to ensure orthogonality of the columns of V. For each
value of l in Algorithm 1, we solve the l × l tridiagonal problem (3.3) to obtain an
approximate solution x and associated multiplier µ = ρ(x) for the original problem
(2.1). In the solid curve of Figure 4.1, we plot the base 10 logarithm of the norm of
the residual ‖b − (A + µI)x‖. According to Lemma 2.1, the residual vanishes at an
optimal solution.

The dashed curve of Figure 4.1, based on the SSM approach, is obtained in the
following way: Taking l = 40 in Algorithm 1, we generate a V with 40 orthonormal
columns. Solving (3.3), we obtain a starting guess of x0. In iteration k of the SSM
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phase, we start with the vector v1 = P(b−Axk) and we use the Gauss–Seidel/Krylov
space approach of [9] to generate a matrixV, with orthonormal columns, that approx-
imately contains a solution of (4.1) in its range. Using the V generated in this way,
we solve (3.2) to obtain the next iterate xk+1. The associated multiplier is estimated
using (3.7). Each kink in the dashed curve of Figure 4.1 corresponds to the num-
ber of iterations needed to obtain an approximate solution of (4.1). In this example,
roughly 15 multiplications by the elements of the matrix A are used to solve (4.1).
The quadratic convergence of SSM is reflected in the rapid decay of the residual norm.

This approach for generating V, using a nonsymmetric Gauss–Seidel matrix,
Krylov spaces, and orthogonalization, can become expensive when n is really large
since each of the columns of V should be stored in memory. Hence, in the remainder
of this paper, we focus on low-storage symmetric techniques for solving (4.1), which
we compare to other approaches.

We solve (4.1) using a preconditioned version of Paige and Saunders’ MINRES
algorithm [17]. More precisely, we use Algorithms 3 and 3a in [9] and three dif-
ferent choices for the symmetrizing preconditioner W in that paper: (i) W = I,
corresponding to unconditioned iterations; (ii) W = D1/2, where D is the diagonal
matrix whose diagonal matches that of C = P(A + µkI)P (Jacobi symmetrization);
(iii) W = D−1/2(L+D), where L is the strictly lower triangular matrix whose lower
triangle matches that of C (SSOR symmetrization). The implementations of SSM
associated with the latter two preconditioners are denoted SSMd and SSMl, respec-
tively.

Typically, the L matrix associated with C = P(A+µkI)P is dense, even when A
is sparse, since P is often dense. Nonetheless, linear systems of the form (L+D)y = g
can be solved in time proportional to the number of nonzero elements in the lower
triangle of A, due to the special structure of C. In terms of the vectors w, q, and p
defined by

w = xk/‖xk‖, q = (A+ µkI)w, and p = q− (qTw)w,

the diagonal d of C can be expressed

di = aii + µk − (pi + qi)wi,

while the off-diagonal elements of C are

cij = aij − wiqj − piwj , i �= j.

Exploiting this structure, it can be shown that the solution to (L+D)y = g can
be computed in the following way.

Algorithm 2 (y = (L+D)−1g, L+D+ LT = P(A+ µkI)P, P = I−wwT).
y = g, s = 0, t = 0
for i = 1 : n− 1

yi = (yi + swi + tpi)/di
s = s+ qiyi
t = t+ wiyi
yi+1:n = yi+1:n − yiai+1:n,i

end
yn = (yn + swn + tpn)/dn
end Algorithm 2



204 WILLIAM W. HAGER

The statement yi+1:n = yi+1:n−yiai+1:n,i of Algorithm 2 requires only the nonzero
elements in column i of A beneath the diagonal. Hence, the number of floating point
operations for Algorithm 2 is O(n) plus the number of nonzero elements in the lower
triangle of A.

The analogous procedure for the transposed system is the following.
Algorithm 3 (y = (L+D)−Tg, L+D+ LT = P(A+ µkI)P, P = I−wwT).
y = g, s = 0, t = 0
for i = n : −1 : 2

yi = (yi + swi + tqi)/di
s = s+ piyi
t = t+ wiyi
y1:i−1 = y1:i−1 − yia1:i−1,i

end
y1 = (y1 + sw1 + tq1)/d1

end Algorithm 3

4.2. Positive definiteness. In theory, the MINRES algorithm we use to solve
(4.1) can be applied to any symmetric matrix. In practice, convergence can be ex-
tremely slow when C is indefinite. For this reason, we try to choose µk so thatA+µkI
is positive definite. If e is an eigenvector of the matrix B in (3.3) associated with
the smallest eigenvalue σ, then the pair (v, σ), where v = Ve/‖Ve‖, approximates
an eigenpair of A corresponding to the smallest eigenvalue. The error in σ can be
estimated in the following way: If σ is closer to λ1 than the other eigenvalues of A,
then after substituting

v =
n∑
i=1

νiφi, νi = vTφi,

in the residual r = Av − σv, we have

‖r‖2 =
n∑
i=1

|σ − λi|2ν2
i ≥

n∑
i=1

|σ − λ1|2ν2
i = |σ − λ1|2,

since
∑n
i=1 ν

2
i = 1. Thus |σ − λ1| ≤ ‖r‖, which implies that

λ1 ≥ σ − ‖r‖.

With this insight, we replace the least squares estimate (3.7) by the safe-guarded
estimate

µk = max{‖r‖ − σ, ρ(xk)}.(4.2)

This choice for µk helps to ensure that A + µkI is positive definite, often leading to
faster convergence of iterative methods applied to (4.1).

When the approximate eigenpair (v, σ) is not very accurate, then the safe-guarded
step (4.2) is a safe, but poor, approximation to µ∗. Hence, whenever µk = ‖r‖ − σ,
we apply one iteration of SSM to the quadratic eigenvalue problem (1.2) in order to
compute a more accurate eigenpair. Due to the third- and sixth-order estimates in
(3.8), simply one iteration of SSM for the eigenproblem often yields a highly accurate
eigenpair.
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4.3. The algorithm. We now collect our observations and present the algorithm
that was used to generate the numerical results of the next section. To simplify the
presentation, we introduce the following subroutines:

• V = Lanczos(A,v1, l): This routine applies Algorithm 1 to the matrix A,
starting from the vector v1, to generate a matrix V with columns
v1, v2, . . . , vl.

• (x, µ,v, σ) = SSM(A,b,Sk): This routine solves the problem (3.1), gener-
ating a solution denoted x and an associated multiplier µ = ρ(x). If V is
a matrix whose columns are an orthonormal basis for Sk, then an estimate
(v, σ) for the smallest eigenvalue of A and an associated eigenvector is ob-
tained by computing the smallest eigenvalue σ and an associated eigenvector
e for B = VTAV and setting v = Ve.

• z = SQP(A, µ,b,x): This routine computes a (minimum residual, minimum
norm) solution (z, ν) of the linear system[

A+ µI x
xT 0

] [
z
ν

]
=

[
b− (A+ µI)x

0

]
.

Our implementation of the sequential subspace method combines these three
routines and the safe-guarded step (4.2).
Algorithm 4 (safe-guarded SSM with Lanczos startup).
it = ν = µ = 0, v = x = 0, c = rand(n, 1)− .5
u = c/(100‖c‖) + b/(r‖A‖)
while ( ν == µ & it = it+ 1 ≤ īt )

V = Lanczos(A,u, l)
(x, µ,v, σ) = SSM(A,b, span(x,v,v1, . . . ,vl))
ν = ‖(A− σI)v‖ − σ
if (ν > µ) µ = ν
u = b− (A+ µI)x

end
while ( ‖b− (A+ µI)x‖ > tol )

z = SQP(A, µ,b,x)
S = span(x, z,v,b−Ax)
(x, µ,v, σ) = SSM(A,b,S)
ν = ‖(A− σI)v‖ − σ
ε = ‖b− (A+ µI)x‖
if (ν > µ & ν + σ > ε/r)

z = SQP(A, ν,0,v)
(x, µ,v, σ) = SSM(A,b, span(S, z))
ν = ‖(A− σI)v‖ − σ

end
if (ν > µ) µ = ν

end
end Algorithm 4
For the computational results reported in the next section, we took īt = 3 and

l = max{10, .01n}. The “rand” function appearing at the start of Algorithm 4 gener-
ates a vector with components uniformly distributed on [0, 1].

5. Computational results. In this section we compare the performance of SSM
to the performance of the algorithms in [7, 20, 24], denoted GLRT, RW, and S,
respectively, using the three test problems presented in [24]. The results that we
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Table 5.1
Problem 1, average number of matrix-vector products versus tolerance.

Tolerance S RW GLRT SSM SSMd SSMl

10−4 249.0 (04.2) 383.6 (3) 51.0 78.0 51.2 44.2
10−6 824.0 (08.4) 460.7 (4) 65.7 107.1 65.5 54.3
10−8 1633.4 (12.3) 465.7 (4) 86.7 124.3 86.7 70.7

Table 5.2
Problem 2, average number of matrix-vector products versus radius.

Radius S RW GLRT SSM SSMd SSMl

10 240 (08) 1437.9 (5.5) 27.0 88.3 42.3 54.1
100 579 (13) 2567.7 (7.8) 188.8 353.7 88.4 136.2

report for S were extracted from [24], while the results reported for GLRT and RW
were obtained using codes provided by the authors. Each of these codes used different
stopping criteria. GLRT stopped when ‖b− (A+µI)x‖/‖b‖ was bounded by a given
tolerance, while RW stopped when the gap between the value of the primal and dual
problem, and hence the error in the primal cost function, was smaller than a given
tolerance. In order to ensure that each code computed a solution with the same
accuracy, we adjusted the error tolerance parameter of each code until the value of
‖b−(A+µI)x‖ for the computed solution was smaller than a given tolerance (specified
below).

In the first test problem of [24], A = A0 − 5I, where A0 is the standard 2-D
discrete Laplacian on the unit square based on a 5-point stencil with equally spaced
mesh points. Taking n = 322 = 1024 and r = 100, a series of 20 problems was gen-
erated, where b was a vector with elements uniformly distributed on [0, 1]. Each of
these problems was solved using three different tolerances, 10−4, 10−6, and 10−8. In
Table 5.1 we give the average number of matrix-vector products involving A for each
algorithm. Each iteration of the preconditioned MINRES algorithm with lower trian-
gular preconditioner involves roughly twice as many flops as an iteration of either the
identity or the diagonal preconditioned schemes. Hence, in doing the bookkeeping,
we charged for two matrix-vector products in each iteration of the triangular precon-
ditioned scheme. As seen in Table 5.1, SSMl converges more than twice as fast as
the identity and diagonal preconditioned schemes and, overall, SSMl uses the smallest
number of matrix-vector products for this test problem. Since the parametric eigen-
value algorithms S and RW compute an extreme eigenvalue for a series of matrices,
we also list in parentheses in Table 5.1 the number of these eigenproblems that are
solved. Hence, RW is very economical in terms of the number of these eigenproblems
that are solved.

The second suite of test problems in [24] utilizes the matrix described earlier in
section 3. In these problems, the radius of the sphere is varied and the number of
matrix-vector products is tabulated. For radii of one or smaller, solutions can be
computed extremely quickly, so we focused on r = 10 and r = 100 and an error
tolerance of 10−7. In Table 5.2 we see that for r = 100, SSMd had the fewest matrix-
vector products, while GLRT had the fewest for r = 10.

The final problem of [24] again employed the discrete Laplacian matrix, but with
n = 162 and r = 100. The vector b was designed to make the problem degenerate;
first a random b was generated, then its φ1 component was removed. Table 5.3 gives
the results for the various algorithms.
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Table 5.3
Problem 3, average number of matrix-vector products.

S RW GLRT SSM SSMd SSMl

291 (11) 441.0 (5.4) 134.0∗ 179.3 179.2 161.5

We placed an asterisk by the result in Table 5.3 for GLRT since this routine re-
duced the error to 10−4, not the 10−7 tolerance used by the other routines. Among
the routines that achieved the error tolerance, SSMl performed the best relative to
the number of matrix-vector products. Note that the number of matrix-vector prod-
ucts given in Table 5.3 for S was taken from [24] while Rojas, in her recent thesis
[21], developed a more efficient implementation of Sorensen’s approach for degenerate
problems.

In summary, a Lanczos type process seems to be very effective when the problem
is very nondegenerate (µ∗ >> −λ1). As the problem becomes more degenerate,
preconditioned schemes such as SSMd or SSMl appear more effective. The number of
times that RW computes an extreme eigenpair is often around 5. For the numerical
experiments reported in this paper, Matlab’s eigs routine was used to compute this
extreme eigenpair. If this routine for computing an extreme eigenpair could be sped
up, possibly using the Jacobi type methods of Sleijpen and Van der Vorst [22] or
the truncated RQ iteration of Sorensen and Yang [25], the number of matrix-vector
operations used in the parametric eigenvalue approach would be reduced.

Acknowledgments. The author gratefully acknowledges the comments and sug-
gestions of the referees. He also thanks Henry Wolkowicz for pointing out the related
paper [7] and for his comments and suggestions, and the authors of [24] for providing
access to their codes.
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Abstract. Quasi-Newton methods are reliable and efficient on a wide range of problems, but
they can require many iterations if the problem is ill-conditioned or if a poor initial estimate of the
Hessian is used. In this paper, we discuss methods designed to be more efficient in these situations.
All the methods to be considered exploit the fact that quasi-Newton methods accumulate approx-
imate second-derivative information in a sequence of expanding subspaces. Associated with each
of these subspaces is a certain reduced approximate Hessian that provides a complete but compact
representation of the second derivative information approximated up to that point. Algorithms that
compute an explicit reduced-Hessian approximation have two important advantages over conven-
tional quasi-Newton methods. First, the amount of computation for each iteration is significantly
less during the early stages. This advantage is increased by forcing the iterates to linger on a manifold
whose dimension can be significantly smaller than the subspace in which curvature has been accumu-
lated. Second, approximate curvature along directions that lie off the manifold can be reinitialized as
the iterations proceed, thereby reducing the influence of a poor initial estimate of the Hessian. These
advantages are illustrated by extensive numerical results from problems in the CUTE test set. Our
experiments provide strong evidence that reduced-Hessian quasi-Newton methods are more efficient
and robust than conventional BFGS methods and some recently proposed extensions.
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1. Introduction. Quasi-Newton methods are arguably the most effective meth-
ods for finding a minimizer of a smooth nonlinear function f : R

n → R when sec-
ond derivatives are either unavailable or too expensive to calculate. Quasi-Newton
methods build up second-derivative information by estimating the curvature along a
sequence of search directions. Each curvature estimate is installed in an approximate
Hessian by applying a rank-one or rank-two update. One of the most successful up-
dates is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula, which is a member
of the wider Broyden class of rank-two updates (see section 2 for details).

Despite the success of these methods on a wide range of problems, it is well
known that conventional quasi-Newton methods can require a disproportionately large
number of iterations and function evaluations on some problems. This inefficiency
may be caused by a poor choice of initial approximate Hessian or may result from
the search direction’s being poorly defined when the Hessian is ill-conditioned. This
paper is concerned with the formulation of methods that are less susceptible to these
difficulties.

All the methods to be discussed are based on exploiting an important property
of quasi-Newton methods in which second-derivative information is accumulated in a
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sequence of expanding subspaces. At the kth iteration (k < n) curvature is known
along vectors that lie in a certain gradient subspace whose dimension is no greater
than k+1. This property is well documented in the context of solving positive-definite
symmetric systems Ax = b. In particular, the iterates lie on an expanding sequence of
manifolds characterized by the Krylov subspace associated with A (see, e.g., Freund,
Golub, and Nachtigal [7] and Kelley [14, p. 12]). These manifolds are identical to
those associated with the BFGS method applied to minimizing the quadratic c −
bTx + 1

2x
TAx. (For further details of the equivalence of quasi-Newton methods and

conjugate-gradient methods, see Nazareth [22].)

In the quasi-Newton context, the availability of an explicit basis for the gradi-
ent subspace makes it possible to represent the approximate curvature in terms of a
reduced approximate Hessian matrix with order at most k + 1. Quasi-Newton algo-
rithms that explicitly calculate a reduced Hessian have been proposed by Fenelon [4]
and Nazareth [21], who also considered modified Newton methods in the same con-
text. Siegel [27] has proposed methods that work with a reduced inverse approximate
Hessian. In practical terms, the reduced-Hessian formulation can require significantly
less work per iteration when k is small relative to n. This property can be exploited
by forcing iterates to linger on a manifold while the objective function is minimized
to greater accuracy. While iterates linger, the search direction is calculated from a
system that is generally smaller than the reduced Hessian. In many practical situ-
ations convergence occurs before the dimension of the lingering subspace reaches n,
resulting in substantial savings in computing time (see section 7).

More recently, Siegel [28] has proposed the conjugate-direction scaling algorithm,
which is a quasi-Newton method based on a conjugate-direction factorization of the
inverse approximate Hessian. Although no explicit reduced Hessian is updated, the
method maintains a basis for the expanding subspaces and allows iterates to linger on
a manifold. The method also has the benefit of finite termination on a quadratic (see
Leonard [16, p. 77]). More importantly, Siegel’s method includes a feature that can
considerably enhance the benefits of lingering. Siegel notes that the search direction
is the sum of two vectors: one with the scale of the estimated derivatives and the
other with the scale of the initial approximate Hessian. Siegel suggests rescaling
the second vector using newly computed approximate curvature. Algorithms that
combine lingering and rescaling have the potential for giving significant improvements
over conventional quasi-Newton methods. Lingering forces the iterates to remain on
a manifold until the curvature has been sufficiently established; rescaling ensures
that the initial curvature in the unexplored manifold is commensurate with curvature
already found.

In this paper we propose several algorithms based on maintaining the triangular
factors of an explicit reduced Hessian. We demonstrate how these factors can be used
to force the iterates to linger while curvature information continues to be accumulated
along directions lying off the manifold. With the BFGS method, it is shown that while
lingering takes place, the new curvature is restricted to an upper-trapezoidal portion
of the factor of the reduced Hessian and the remaining portion retains the diagonal
structure of the initial approximate Hessian. It follows that conjugate-direction scaling
is equivalent to simply reinitializing the diagonal part of the reduced Hessian with
freshly computed curvature information.

Despite the similarities between reduced-Hessian reinitialization and conjugate-
direction scaling, it must be emphasized that these methods are not the same, in the
sense that they involve very different storage and computational overheads. More-
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over, the reduced-Hessian factorization has both practical and theoretical advantages
over Siegel’s conjugate-direction factorization. On the practical side, the early search
directions can be calculated with significantly less work. This can result in a sig-
nificantly faster minimization when the dimension of the manifold grows relatively
slowly, as it does on many problems (see sections 6 and 7). On the theoretical side,
the simple structure exhibited by the reduced-Hessian factor allows the benefits of
reinitialization to be extended to the large-scale case (see Gill and Leonard [9]).

A reduced-Hessian method allows expansion of the manifold on which curvature
information is known. Thus, when implementing software, it is necessary either to
allocate new memory dynamically as the reduced Hessian grows or to reserve sufficient
storage space in advance. In practice, however, the order of the reduced Hessian
often remains much less than n, i.e., the problem is solved without needing room
for an n× n matrix. Notwithstanding this benefit, on very large problems it may be
necessary to explicitly limit the amount of storage used, by placing a limit on the order
of the reduced Hessian. Such limited-memory reduced-Hessian methods discard old
curvature information whenever the addition of new information causes a predefined
storage limit to be exceeded. Methods of this type have been considered by Fenelon [4]
and Siegel [27]. Limited-memory methods directly related to the methods considered
in this paper are discussed by Gill and Leonard [9].

The paper is organized as follows. Section 2 contains a discussion of various
theoretical aspects of reduced-Hessian quasi-Newton methods, concluding with the
statement of Algorithm RH, a reduced-Hessian formulation of a conventional quasi-
Newton method. Algorithm RH is the starting point for the improved algorithms
presented in sections 3 and 4. Section 3 is concerned with the effects of lingering on
the form of the factorization of the reduced Hessian. In section 4, Siegel’s conjugate-
direction scaling algorithm is reformulated as an explicit reduced-Hessian method. In
section 4.1 we present a reduced-Hessian method that combines lingering with reini-
tialization. The convergence properties of this algorithm are discussed in sections 4.2
and 4.3. To simplify the discussion, the algorithms of sections 2–4 are given with the
assumption that all computations are performed in exact arithmetic. The effects of
rounding error are discussed in section 5. Finally, sections 6 and 7 include some nu-
merical results when various reduced-Hessian algorithms are applied to test problems
taken from the CUTE test collection (see Bongartz et al. [1]). Section 6 also includes
comparisons with Siegel’s method and with Lalee and Nocedal’s automatic column-
scaling method [15], which is another extension of the BFGS method. Results from
the package NPSOL [10] are provided to illustrate how the reduced-Hessian approach
compares to a conventional quasi-Newton method. Our experiments demonstrate that
reduced-Hessian methods can require substantially less computer time than these al-
ternatives. Part of the reduction in computer time corresponds to the smaller number
of iterations and function evaluations required when using the reinitialization strat-
egy. However, much of this reduction comes from the fact that the average cost of an
iteration is less than for competing methods.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its
subordinate matrix norm. The vector ei is used to denote the ith unit vector of the
appropriate dimension. A floating-point operation, or flop, refers to a calculation of
the form αx+ y, i.e., a multiplication and an addition.

2. Background. Given a twice-continuously differentiable function f : R
n → R

with gradient vector ∇f and Hessian matrix ∇2f , the kth iteration of a quasi-Newton
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method is given by

Hkpk = −∇f(xk), xk+1 = xk + αkpk,(2.1)

where Hk is a symmetric, positive-definite matrix, pk is the search direction, and αk
is a scalar step length. If Hk is interpreted as an approximation to ∇2f(xk), then
xk + pk can be viewed as minimizing a quadratic model of f with Hessian Hk. The
matrix Hk+1 is obtained from Hk by adding a low-rank matrix defined in terms of
δk = xk+1 − xk and γk = gk+1 − gk, where gk = ∇f(xk). Updates from the Broyden
class give a matrix Hk+1 such that

Hk+1 = Hk − 1

δTkHkδk
Hkδkδ

T
kHk +

1

γTkδk
γkγ

T
k + φk(δ

T
kHkδk)wkw

T
k ,(2.2)

where wk = γk/γ
T
kδk − Hkδk/δTkHkδk, and φk is a scalar parameter. It is generally

accepted that the most effective update corresponds to φk = 0, which defines the
well-known BFGS update

Hk+1 = Hk − 1

δTkHkδk
Hkδkδ

T
kHk +

1

γTk δk
γkγ

T
k .(2.3)

For brevity, the term “Broyden’s method” refers to a method based on iteration
(2.1) when used with an update from the Broyden class. Similarly, the term “BFGS
method” refers to iteration (2.1) with the BFGS update.

The scalar γTkδk, known as the approximate curvature, is a difference estimate of
the (unknown) curvature δTk∇2f(xk)δk. Each Broyden update gives an approximate
Hessian satisfying δTkHk+1δk = γ

T
k δk, which implies that the approximate curvature

γTk δk is installed as the exact curvature of the new quadratic model in the direction δk.
It follows that a positive value for the approximate curvature is a necessary condition
for Hk+1 to be positive definite.

We follow common practice and restrict our attention to Broyden updates with
the property that if Hk is positive definite, then Hk+1 is positive definite if and only
if γTkδk > 0. This restriction allows Hk+1 to be kept positive definite by using a step
length algorithm that ensures a positive value of the approximate curvature. Practical
step length algorithms also include a criterion for sufficient descent. Two criteria often
used are the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + µαkgTkpk and gTk+1pk ≥ ηgTkpk,(2.4)

where the constants µ and η are chosen so that 0 ≤ µ ≤ η < 1 and µ < 1
2 .

If n is sufficiently small that an n × n dense matrix can be stored explicitly,
two alternative methods have emerged for implementing quasi-Newton methods. The
first is based on using the upper-triangular matrix Ck such that Hk = C

T
k Ck (see Gill

et al. [10]). The second uses a matrix Vk satisfying the conjugate-direction identity
V Tk HkVk = I (see Powell [25], Siegel [28]). Neither of these methods store Hk (or
its inverse) as an explicit matrix. Instead, Ck or Vk is updated directly by exploiting
the fact that every update from the Broyden class defines a rank-one update to Ck
or Vk (see Goldfarb [12] and Dennis and Schnabel [3]). The rank-one update to Ck
generally destroys the upper-triangular form of Ck. However, the updated Ck can be
restored to upper-triangular form in O(n2) operations.
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2.1. Reduced-Hessian quasi-Newton methods. In this section, we review
the formulation of conventional quasi-Newton methods as reduced-Hessian methods.
The next key result is proved by Siegel [27] (see Fletcher and Powell [6], and Fenelon
[4] for similar results in terms of the DFP and BFGS updates). Let Gk denote the
subspace Gk = span{g0, g1, . . . , gk}, and let G⊥k denote the orthogonal complement of
Gk in R

n.
Lemma 2.1. Consider the Broyden method applied to a general nonlinear func-

tion. If H0 = σI (σ > 0), then pk ∈ Gk for all k. Moreover, if z ∈ Gk and w ∈ G⊥k ,
then Hkz ∈ Gk and Hkw = σw.

Let rk denote dim(Gk), and let Bk (B for “basis”) denote an n× rk matrix whose
columns form a basis for Gk. An orthonormal basis matrix Zk can be defined from the
QR decomposition Bk = ZkTk, where Tk is a nonsingular upper-triangular matrix.

1

Let the n − rk columns of Wk define an orthonormal basis for G⊥k . If Qk is the
orthogonal matrix Qk =

(
Zk Wk

)
, then the transformation x = QkxQ defines

a transformed approximate Hessian QTkHkQk and a transformed gradient Q
T
kgk. If

H0 = σI (σ > 0), it follows from (2.2) and Lemma 2.1 that the transformation
induces a block-diagonal structure, with

QTkHkQk =

(
ZTkHkZk 0

0 σIn−rk

)
and QTkgk =

(
ZTkgk

0

)
.(2.5)

The positive-definite matrix ZTkHkZk is known as a reduced approximate Hessian (or
just reduced Hessian). The vector ZTkgk is known as a reduced gradient.

If we write the equation for the search direction as (QTkHkQk)Q
T
k pk = −QTk gk, it

follows from (2.5) that

pk = Zkqk, where qk satisfies Z
T
k HkZkqk = −ZTkgk.(2.6)

If the Cholesky factorization ZTk HkZk = R
T
kRk is known, qk can be computed from

the forward substitution RTk dk = −ZTk gk and back-substitution Rkqk = dk. A benefit
of this approach is that Zk and Rk require less storage than Hk when k � n (see
Gill and Leonard [9]). In addition, the computation of pk when k � n requires less
work than it does for methods that store Ck or Vk. A benefit of using an orthonormal
Zk is that cond(Z

T
k HkZk) ≤ cond(Hk), where cond(·) denotes the spectral condition

number (see, e.g., Gill, Murray, and Wright [11, p. 162]).
There are a number of alternative choices for the basis Bk. Both Fenelon and

Siegel propose thatBk be formed from a linearly independent subset of {g0, g1, . . . , gk}.
With this choice, the orthonormal basis can be accumulated columnwise as the itera-
tions proceed using Gram–Schmidt orthogonalization (see, e.g., Golub and Van Loan
[13, pp. 218–220]). During iteration k, the number of columns of Zk either remains
unchanged or increases by one, depending on the value of the scalar ρk+1, such that
ρk+1 = ‖(I − ZkZTk )gk+1‖. If ρk+1 = 0, the new gradient has no component outside
range(Zk) and gk+1 is said to be rejected . Thus, if ρk+1 = 0, then Zk already provides
a basis for Gk+1 with rk+1 = rk and Zk+1 = Zk. Otherwise, rk+1 = rk + 1 and the
gradient gk+1 is said to be accepted . In this case, Zk gains a new column zk+1 defined
by the identity ρk+1zk+1 = (I − ZkZTk )gk+1. The calculation of zk+1 also provides
the rk-vector uk = Z

T
k gk+1 and the scalar z

T
k+1gk+1 (= ρk+1), which are the compo-

nents of the reduced gradient ZTk+1gk+1 for the next iteration. This orthogonalization
procedure requires approximately 2nrk flops.

1The matrix Tk appears only in the theoretical discussion—it is not needed for computation.
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Definition (2.6) of each search direction implies that pj ∈ Gk for all 0 ≤ j ≤ k.
This leads naturally to another basis for Gk based on orthogonalizing the search
directions p0, p1, . . . , pk. The next lemma implies that Zk can be defined not only by
the accepted gradients, but also by the corresponding search directions.

Lemma 2.2. At the start of iteration k, let Zk denote the matrix obtained by
orthogonalizing the gradients g0, g1, . . . , gk of Broyden’s method. Let Pk and Gk denote
the matrices of search directions and gradients associated with iterations at which a
gradient is accepted. Then there are nonsingular upper-triangular matrices Tk and T̂k
such that Gk = ZkTk and Pk = ZkT̂k.

Proof. Without loss of generality, it is assumed that every gradient is accepted.
The proof is by induction on the iteration number k.

The result is true for k = 0 because the single column g0/‖g0‖ of Z0 is identical
to the normalized version of the search direction p0 = −g0/σ.

If the result is true at the start of iteration k − 1, there exist nonsingular Tk−1

and T̂k−1 with Gk−1 = Zk−1Tk−1 and Pk−1 = Zk−1T̂k−1. At the start of iteration k,
the last column of Zk satisfies ρkzk = gk − Zk−1Z

T
k−1gk, and

Gk =
(
Gk−1 gk

)
=
(
Zk−1 zk

)( Tk−1 ZTk−1gk

0 ρk

)
= ZkTk.(2.7)

The last equality defines Tk, which is nonsingular since ρk �= 0. Since pk = ZkZ
T
kpk,

we find

Pk =
(
Pk−1 pk

)
=
(
Zk−1 zk

)( T̂k−1 ZTk−1pk

0 zTk pk

)
= ZkT̂k,

where the last equality defines T̂k. The scalar z
T
k pk is nonzero (see Leonard [16, pp. 94–

99]2), which implies that T̂k is nonsingular, and thus the induction is
complete.

Lemma 2.2 can be used to show that Zk provides an orthonormal basis for the
span Pk of all search directions {p0, p1, . . . , pk}.

Theorem 2.3. The subspaces Gk and Pk generated by the gradients and search
directions of the conventional Broyden method are identical.

Proof. The definition of each pj (0 ≤ j ≤ k) implies that Pk ⊆ Gk. Lemma 2.2
implies that Gk = range(Pk). Since range(Pk) ⊆ Pk, it follows that Gk ⊆ Pk.

Given Zk+1 andHk+1, the calculation of the search direction for the next iteration
requires the Cholesky factor of ZTk+1Hk+1Zk+1. This factor can be obtained from Rk
in a two-step process that does not require knowledge of Hk. The first step, which
is not needed if gk+1 is rejected, is to compute the factor R

′′
k of Z

T
k+1HkZk+1 (the

symbol R′
k is reserved for use in section 3). This step involves adding a row and

column to Rk to account for the new last column of Zk+1. It follows from Lemma 2.1
and (2.5) that

ZTk+1HkZk+1 =

(
ZTk HkZk ZTk Hkzk+1

zTk+1HkZk zTk+1Hkzk+1

)
=

(
ZTk HkZk 0

0 σ

)
,

2The proof is nontrivial and is omitted for brevity.
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giving an expanded block-diagonal factor R′′
k defined by

R′′
k =




Rk, if rk+1 = rk,(
Rk 0

0 σ1/2

)
, if rk+1 = rk + 1.

(2.8)

This expansion procedure involves the vectors vk = ZTk gk, uk = ZTk gk+1, and qk =
ZTk pk, which are stored and updated for efficiency. As both pk and gk lie in Range(Zk),
if gk+1 is accepted, the vectors v

′′
k = ZTk+1gk and q

′′
k = ZTk+1pk are trivially defined

from vk and qk by appending a zero component (cf. (2.5)). Similarly, the vector
u′′k = ZTk+1gk+1 is formed from uk and ρk+1. If gk+1 is rejected, then v′′k = vk,
u′′k = uk and q

′′
k = qk. In either case, vk+1 is equal to u

′′
k and need not be calculated

at the start of iteration k + 1 (see Algorithm 2.1 below).
The second step of the modification alters R′′

k to reflect the rank-two quasi-Newton
update to Hk. This update gives a modified factor Rk+1 = Broyden(R′′

k , sk, yk),
where sk = Z

T
k+1(xk+1 − xk) = αkq′′k and yk = ZTk+1(gk+1 − gk) = u′′k − v′′k . The work

required to compute Rk+1 depends on the choice of Broyden update and the numerical
method used to calculate Broyden(R′′

k , sk, yk). For the BFGS update, Rk+1 is the
triangular factor associated with the QR factorization of R′′

k + w1w
T
2 , where w1 and

w2 are given by

w1 =
1

‖R′′
ksk‖

R′′
ksk and w2 =

1

(yTksk)
1/2

yk − 1

‖R′′
ksk‖

R′′T
k R′′

ksk(2.9)

(see Goldfarb [12] and Dennis and Schnabel [3]). Rk+1 can be computed from R′′
k

in 4r2k + O(rk) flops using conventional plane rotations, or in 3r2k + O(rk) flops us-
ing a modified rotation3 (see Gill et al. [8]). These estimates exclude the cost of
forming w1 and w2. The vector w1 is computed in O(rk) operations from the vector
dk/‖dk‖, where dk = −R−T

k vk is the intermediate quantity used in the calculation of
qk (see section 2.1). Similarly, w2 is obtained in O(rk) operations using the identity
R′′T
k R′′

ksk = −αkv′′k implied by (2.6) and the definition of ZTk+1gk.

2.2. A reduced-Hessian method. We conclude this section by giving a com-
plete reduced-Hessian formulation of a quasi-Newton method from the Broyden class.
This method involves two main procedures: an expand , which determines Zk+1 us-
ing the Gram–Schmidt QR process and possibly increases the order of the reduced
Hessian by one; and an update, which applies a Broyden update directly to the
reduced Hessian. For brevity, we use the expression (Zk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k , rk+1) =

expand(Zk, Rk, uk, vk, qk, gk+1, rk, σ) to signify the input and output quantities as-
sociated with the expand procedure. This statement should be interpreted as the
following: Given values of the quantities Zk, Rk, uk, vk, qk, gk+1, rk, and σ, the
expand procedure computes values of Zk+1, R

′′
k , u

′′
k , v

′′
k , q

′′
k , rk+1. (Unfortunately, the

need to associate quantities used in the algorithm with quantities used in its derivation
leads to an algorithm that is more complicated than its computer implementation. In
practice, almost all most quantities are updated in situ.)

3Certain special techniques can be used to reduce this flop count further; see Goldfarb [12].
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Algorithm 2.1. Reduced-Hessian quasi-Newton method (RH).

Choose x0 and σ (σ > 0);
k = 0; r0 = 1; g0 = ∇f(x0);
Z0 = g0/‖g0‖; R0 = σ

1/2; v0 = ‖g0‖;
while not converged do

Solve RTk dk = −vk; Rkqk = dk;
pk = Zkqk;
Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = Z

T
k gk+1;

(Zk+1, rk+1, R
′′
k , u

′′
k , v

′′
k , q

′′
k ) = expand(Zk, rk, Rk, uk, vk, qk, gk+1, σ);

sk = αkq
′′
k ; yk = u

′′
k − v′′k ; Rk+1 = Broyden(R′′

k , sk, yk);

vk+1 = u
′′
k ; k ← k + 1;

end do

In exact arithmetic, Algorithm RH generates the same iterates as its conven-
tional Broyden counterpart, and the methods differ only in the storage needed and
the number of operations per iteration. Since vk is defined as a by-product of the or-
thogonalization, the computation of pk involves the solution of two triangular systems
and a matrix-vector product, requiring a total of approximately nrk + r

2
k flops. For

the BFGS update, 3r2k +O(rk) flops are required to update Rk, with the result that
Algorithm RH requires approximately (3rk + 1)n+ 4r

2
k +O(rk) flops for each BFGS

iteration. As rk increases, the flop count approaches 7n
2 + O(n). When rk reaches

n, Zk is full and no more gradients are accepted; only Z
T
kgk+1 is computed during

the orthogonalization, and the work drops to 6n2 +O(n). Although Hk is not stored
explicitly, it is always implicitly defined by reversing (2.5), i.e.,

Hk = QkR
T
QRQQ

T
k , where RQ =

(
Rk 0

0 σ1/2In−rk

)
(2.10)

and Qk =
(
Zk Wk

)
.

2.3. Geometric considerations. Next we consider the application of Algo-
rithm RH to the strictly convex quadratic

f(x) = c− bTx+ 1
2x

TAx,(2.11)

where c is a scalar, b is an n-vector, and A is an n× n constant symmetric positive-
definite matrix. Suppose that the BFGS update is used, and that each αk is computed
from an exact line search (i.e., αk minimizes f(xk + αpk) with respect to α). Under
these circumstances, it can be shown that the k+1 columns of Zk are the normalized
gradients {gi/‖gi‖}, and that Rk is upper bidiagonal with nonzero components rii =
‖gi−1‖/(yTi−1si−1)

1/2 and ri,i+1 = −‖gi‖/(yTi−1si−1)
1/2 for 1 ≤ i ≤ k, and rk+1,k+1 =

σ1/2 (see Fenelon [4]). These relations imply that the search directions satisfy

p0 = − 1
σ
g0, pk = − 1

σ
gk + βk−1pk−1, k ≥ 1,

with βk−1 = ‖gk‖2/‖gk−1‖2. These vectors are parallel to the well-known conjugate-
gradient search directions (cf. Corollary 4.2). When used with an exact line search,
the search directions and gradients satisfy the relations (i) pTiApj = 0, i �= j; (ii)
gTi gj = 0, i �= j; and (iii) gTi pi = −‖gi‖2/σ (see, e.g., Fletcher [5, p. 81] for a proof for



REDUCED-HESSIAN METHODS 217

the case σ = 1). The identities (i), (ii), and (iii) can be used to show that if the search
directions are independent, then the local quadratic model ϕ(p) = gTkp +

1
2p
THkp is

exact at the start of iteration n+ 1, i.e., Hn+1 = A.
Since the columns of Zk are the normalized gradients, the BFGS orthogonality

relations (ii) imply that a new gradient gk+1 can be rejected only if gk+1 = 0, at which
point the algorithm terminates. It follows that the reduced Hessian steadily expands
as the iterations proceed. The curvature of the local quadratic model ϕ(p) along any
unit vector in Range(Wk) depends only on the choice of H0 and has no effect on the
definition of pk. Only curvature along directions in Range(Zk) affects the definition
of pk, and this curvature is completely determined by Z

T
k HkZk.

The next lemma implies that f(x) is minimized on a sequence of expanding linear
manifolds and that, at the start of iteration k, the curvature of the quadratic model
is exact on a certain subspace of dimension k. LetM(Gk) denote the linear manifold
M(Gk) = {x0 + z | z ∈ Gk} determined by x0 and Gk.

Lemma 2.4. Suppose that the BFGS method with an exact line search is applied to
the strictly convex quadratic f(x) (2.11). If H0 = σI, then at the start of iteration k,
(a) xk minimizes f(x) on the linear manifoldM(Gk−1), and (b) the curvature of the
quadratic model is exact on the k-dimensional subspace Gk−1. Thus, z

THkz = z
TAz

for all z ∈ Gk−1.
Proof. Part (a) follows directly from the identity ZTk−1gk = 0 implied by the

orthogonality of the gradients and the special form of Zk−1.
To verify part (b), we write the normalized gradients in terms of the search

directions. With Fenelon’s form of Zk and Rk, we find that Zk = −PkDkRk, where
Pk =

(
p0 p1 · · · pk

)
and Dk is the nonnegative diagonal matrix such that

D2
k = σ

2 diag

(
yT0s0
‖g0‖4 ,

yT1s1
‖g1‖4 , . . . ,

yTk−1sk−1

‖gk−1‖4 ,
1

σ‖gk‖2
)
.

A simple computation using the conjugacy condition (i) above gives the reduced

Hessian as ZTk AZk = R
T
kDkP

T
k APkDkRk = R

T
k D̂Rk, where

D̂k = σ
2 diag

(
yT0s0
‖g0‖4 p

T
0 Ap0,

yT1s1
‖g1‖4 p

T
1 Ap1, . . . ,

yTk−1sk−1

‖gk−1‖4 p
T
k−1Apk−1,

pTkApk
σ‖gk‖2

)
.

The definition of αi as the minimizer of f(xi+αpi) implies that αi = −gTi pi/(pTi Api)
and gTi+1pi = 0. Hence, for all i such that 0 ≤ i ≤ k − 1, it follows that

yTi si = αiy
T
i pi = −αigTi pi = (gTi pi)

2/pTi Api.

Using these identities with gTi pi = −‖gi‖2/σ from (iii) above, the expression for D̂k
simplifies, with D̂k = diag(Ik, 1/αk).

Finally, if Zk is partitioned so that Zk =
(
Zk−1 gk/‖gk‖

)
, where Zk−1 has k

columns, then comparison of the leading k×k principal minors of the matrices RTkRk
(= ZTk HkZk) and R

T
k D̂kRk (= ZTk AZk) gives the required identity Z

T
k−1HkZk−1 =

ZTk−1AZk−1.
Part (a) of this result allows us to interpret each new iterate xk+1 as “stepping

onto” a larger manifold M(Gk) such that M(Gk−1) ⊂ M(Gk). This interpretation
also applies when minimizing a general nonlinear function, as long as gk is accepted
for the definition of Gk. (Recall from the proof of Lemma 2.2 that zTkpk �= 0 in this
case.)
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We say that the curvature along z is established if zTHkz = zT∇2f(xk)z. In
particular, under the conditions of Lemma 2.4, the curvature is established at iteration
k on all of Range(Gk−1).

3. Lingering on a manifold. Up to this point we have considered reduced-
Hessian methods that generate the same iterates as their Broyden counterparts. Now
we expand our discussion to include methods that are not necessarily equivalent to
a conventional quasi-Newton method. Our aim is to derive methods with better
robustness and efficiency.

When f is a general nonlinear function, the step from xk to xk+1 is unlikely to
minimize f on the manifoldM(Gk). However, in a sequence of iterations in which the
gradient is rejected, Zk remains constant, and the algorithm proceeds to minimize f
on the manifold M(Gk). In this section, we propose an algorithm in which iterates
can remain, or “linger,” on a manifold even though new gradients are being accepted.
The idea is to linger on a manifold as long as a good reduction in f is being achieved.
Lingering has the advantage that the order of the relevant submatrix of the reduced
Hessian can be significantly smaller than that of the reduced Hessian itself.

An algorithm that can linger uses one of two alternative search directions: an RH

direction or a lingering direction. An RH direction is defined as in Algorithm RH, i.e.,
an RH direction lies in Gk and is computed using the reduced Hessian associated with
Zk. As discussed above, an RH direction defines an xk+1 on the manifoldM(Gk). By
contrast, a lingering direction forces xk+1 to remain on a manifoldM(Uk), such that
Uk ⊂ Gk. Given a point xk ∈M(Uk), the next iterate xk+1 will also lie onM(Uk) as
long as pk ∈ Uk. Accordingly, an algorithm is said to “linger onM(Uk)” if the search
direction satisfies pk ∈ Range(Uk), where the columns of Uk form a basis for Uk. As
long as Uk remains constant and pk has the form pk = UkpU for some pU , the iterates
xk+1, xk+2, . . . will continue to linger onM(Uk).

The subspace Uk and an appropriate basis Uk are defined as follows. At the start
of iteration k, an orthonormal basis for Gk is known such that

Zk =
(
Uk Yk

)
,(3.1)

where Uk is an n× lk matrix whose columns span the subspace Uk of all RH directions
computed so far, and Yk corresponds to a certain subset of the accepted gradients
defined below. The integer lk (0 ≤ lk ≤ rk) is known as the partition parameter
for Zk. It must be emphasized that the partition (3.1) is defined at every iteration,
regardless of whether or not lingering occurs. The partition is necessary because
quantities computed from Uk and Yk are used to decide between an RH direction and
a lingering direction.

The matrix Zk is an orthonormal factor of a particular basis for Gk consisting
of both gradients and search directions. Let Pk denote the n × lk matrix of RH

search directions computed so far, and let Gk denote an n × (rk − lk) matrix whose
columns are a subset of the accepted gradients. (Note that the definitions of Pk
and Gk are different from those of Lemma 2.2.) The matrix Zk is the orthonormal
factor corresponding to the QR factorization of the basis matrix Bk = (Pk Gk ),
i.e., (Pk Gk ) = ZkTk for some nonsingular upper-triangular matrix Tk. If Tk is
partitioned appropriately, we have

Bk =
(
Pk Gk

)
= ZkTk =

(
Uk Yk

)( TU TUY

0 TY

)
,(3.2)



REDUCED-HESSIAN METHODS 219

where TU is an lk× lk upper-triangular matrix. Note that the definition of Bk implies
that Range(Pk) = Range(UkTU) = Range(Uk), as required.

Although the dimension of Uk remains fixed while iterates linger, the column di-
mension of Yk increases as new gradients are accepted into the basis for Gk. While it-
erates linger, the (as yet) unused approximate curvature along directions in Range(Yk)
continues to be updated.

Lingering on a manifold ends when an RH direction is chosen and xk+1 steps
“off”M(Uk). Once an RH step is taken, the requirement that Uk+1 be a basis for the
subspace of all previously computed RH directions implies that Uk+1 must be made to
include the component of pk in Range(Yk). This update necessitates a corresponding
update to Rk. These updates are discussed in sections 3.3–3.4.

3.1. Definition of the basis. At the start of the first iteration, r0 = 1 and
Z0 is just the normalized gradient g0/‖g0‖, as in Algorithm RH. The initial partition
parameter l0 is zero, which implies that U0 is void and Y0 (= Z0) is g0/‖g0‖. Since
U0 is empty, it follows that p0 �∈ Range(U0), and an RH step is always taken on the
first iteration. At the start of the second iteration, if g1 is rejected, then Z1 = Z0,
Y1 is void, U1 = Z1, r1 = 1, and l1 = 1. On the other hand, if g1 is accepted,
then Z1 = ( z0 z1 ), where z0 = g0/‖g0‖ and z1 is the normalized component of g1
orthogonal to z0. In this case r1 = 2 and l1 = 1, which implies that U1 = z0 and
Y1 = z2. Using the definitions of z0 and z1 it can be verified that

B1 =
(
p0 g1

)
=
(
z0 z1

)( ρ0 zT0 g1

0 ρ1

)
= Z1T1,

where ρ0 = ‖p0‖.
At the start of the kth iteration, the composition of Bk depends on what has

occurred in previous iterations. More precisely, we show that Bk is determined by
Bk−1 = (Pk−1 Gk−1 ) and two decisions made during iteration k − 1: (i) the choice
of pk−1 (i.e., whether it defines an RH or a lingering step), and (ii) the result of the
orthogonalization procedure (i.e., whether or not gk is accepted at the end of iteration
k − 1).

Next, we consider the choice of search direction. Suppose pk−1 is an RH direction.
Given Bk−1, the definition of the new basis Bk involves a two-stage procedure in which
an intermediate basis B′

k−1 is defined from matrices P ′
k−1 and G

′
k−1. The matrix

P ′
k−1 is defined by appending pk−1 to the right of Pk−1 to give P

′
k−1 = (Pk−1 pk ).

The RH direction pk−1 must, by definition, satisfy pk−1 ∈ Range(Pk−1 Gk−1 ), and
hence (Pk Gk−1 ) = (Pk−1 pk−1 Gk−1 ) will always have dependent columns. To
maintain a linearly independent set of basis vectors, it is therefore necessary to define
G′
k−1 as Gk−1 with one of its columns removed. When a column is removed from

Gk−1, the matrices Zk−1 and Rk−1 must be updated. The work needed for this
is least if the last column is deleted from Gk−1 (see section 3.3). This procedure
corresponds to discarding the most recently computed gradient remaining in Gk−1,
say gk−j (k ≥ j > 0). Note that this deletion procedure is always well defined since
Gk−1 cannot be void when pk−1 is an RH direction. Now assume that pk−1 is a
lingering direction. In this case, we define P ′

k−1 = Pk−1 and G
′
k−1 = Gk−1.

The second stage in the calculation of Bk is the definition of Pk and Gk from
P ′
k−1 and G

′
k−1 after the orthogonalization procedure of iteration k − 1. Under the

assumption that gk is accepted, we define Pk = P
′
k−1 and Gk = (G′

k−1 gk ). If gk is
not accepted, then Pk = P

′
k−1 and Gk = G

′
k−1.
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Table 3.1
Example of the composition of Pk and Gk.

k Pk Gk pk gk+1

0 void (g0) RH accepted
1 (p0) (g1) RH rejected
2 (p0 p1) void lingering accepted
3 (p0 p1) (g3) lingering accepted
4 (p0 p1) (g3 g4) lingering accepted
5 (p0 p1) (g3 g4 g5) lingering accepted
6 (p0 p1) (g3 g4 g5 g6) RH accepted
7 (p0 p1 p6) (g3 g4 g5 g7) RH rejected
8 (p0 p1 p6 p7) (g3 g4 g5) RH rejected
9 (p0 p1 p6 p7 p8) (g3 g4) lingering rejected
10 (p0 p1 p6 p7 p8) (g3 g4) – –

These updating rules provide the basis for an algorithm in which Pk can grow at
a rate that is commensurate with the rate at which curvature is being established on
the manifoldM(Uk). To illustrate how Pk can change from one iteration to the next,
consider the composition of Pk and Gk for the first ten iterations for a function f
with at least seven variables. The iterations are summarized in Table 3.1. Each row
of the table depicts quantities computed during a given iteration. The first column
gives the iteration number, the next two columns give the composition of Pk and Gk,
the fourth column indicates the type of direction used, and the last column states
whether or not gk+1 is accepted after the line search.

If Gk has one more column than Gk−1, then pk−1 must be a lingering direction
and gk must be accepted (as is the case for k = 3, 4, 5, and 6). Similarly, if Gk has one
less column than Gk−1, then pk−1 must be an RH direction and gk must be rejected
(k = 2, 8, 9). The matrix Gk will have the same number of columns as Gk−1 if pk−1

is a lingering direction and gk is rejected (k = 10), or if pk−1 is an RH direction and
gk is accepted (k = 1, 7).

The column dimension of Gk is the number of accepted gradients with indices
between 0 and k less the number of RH directions with indices between 0 and k − 1.
In our example, only g3 and g4 remain in G10, although every other gradient lies in
Range

(
P10 G10

)
.

To simplify the notation for the remainder of this section, the index k is omitted
and overbars indicate quantities associated with iteration k + 1.

3.2. Definition of the search direction. Next we consider the definition of
the lingering and RH search directions, and give a method for choosing between them.

If the rows and columns of R are partitioned to match the partition Z = (U Y ),
we obtain

R =

(
RU RUY

0 RY

)
,(3.3)

where RU is an l× l upper-triangular matrix. In terms of this partition, the interme-
diate system RTd = −v of Algorithm RH is equivalent to two smaller systems

RTU dU = −vU and RTY dY = −(RTUY dU + vY ),

where vU , vY , dU , and dY denote subvectors of v and d corresponding to the U - and
Y -parts of Z. Note that the vector vU = U

T g is the reduced gradient associated with
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the subspace Range(U). The RH direction minimizes the quadratic model ϕ(p) in
the r-dimensional subspace Range(Z), which includes Range(Y ). The RH direction
is denoted by pr to distinguish it from the lingering direction pl defined below.

If the new iterate x̄ is to lie onM(U), the search direction must lie in Range(U).
The obvious choice for pl is the unique minimizer of the local quadratic model ϕ(p) =
gT p + 1

2p
THp in Range(U). This minimizer is given by −U(UTHU)−1UT g, from

which it follows that pl can be computed as pl = UR−1
U dU .

The choice between pr and pl is based on comparing ϕ(pr) with ϕ(pl), where the
quadratic model ϕ(p) estimates f(x + p) − f(x), the change in the objective. From
the definitions of pr and pl, we have

ϕ(pr) = − 1
2‖d‖2 and ϕ(pl) = − 1

2‖dU‖2.

These predictions are attained if f is a convex quadratic and an exact line search is
used. In this case the gradients are mutually orthogonal (see section 2.3), both vU
and dU are zero, and the only way to decrease f is to step offM(U) using pr.

On the other hand, when minimizing a general nonlinear function with an inexact
line search, it is possible that ‖dU‖ ≈ ‖d‖, and nearly all of the reduction in the
quadratic model is obtained on M(U). In this event, little is lost by forcing the
iterates to remain on M(U). In addition, lingering can be used to ensure that the
reduced gradient vU is “sufficiently small,” and may help to further establish the
curvature on U . In this sense, lingering is a way of forcing Broyden’s method to
perform on a general nonlinear function as it does on a quadratic.

As noted by Fenelon [4, p. 72], it can be inefficient to remain onM(U) until the
reduced gradient vU is zero. Instead, iterates are allowed to linger until the predicted
reduction corresponding to a step moving off ofM(U) is significantly better than the
predicted reduction for a step that lingers. In particular, a step off ofM(U) is taken
if ‖dU‖2 ≤ τ‖d‖2, where τ is a preassigned constant such that 1

2 < τ < 1.

The following simple argument shows that if p = pr is selected when the condition
‖dU‖2 ≤ τ‖d‖2 is satisfied, then the next iterate steps off of M(U). If the U - and
Y -parts of q are denoted by qU and qY , respectively, the partitioned form of Rq = d
is given by

RY qY = dY and RUqU = dU −RUY qY .(3.4)

Written in terms of pU and pY , the search direction satisfies p = UqU + Y qY . The
inequality (1 − τ)‖dU‖2 ≤ τ‖dY ‖2 implies that both d and dY are nonzero, and it
follows from (3.4) and the nonsingularity of RY that qY is nonzero. Hence, Y qY is
also nonzero and x̄ = x+ αpr steps off ofM(U).

3.3. Updating Z. Let P , G, T , and Z denote matrices associated with the
orthogonal factorization (3.2) at the start of an iteration. In section 3.1 it was shown
that the basis undergoes two (possibly trivial) changes during an iteration, i.e., B =
(P G )→ B′ = (P ′ G′ )→ B̄ = ( P̄ Ḡ ).

The first change to Z involves updating the orthogonal factorization (P G ) =
ZT = (U Y )T to obtain (P ′ G′ ) = Z ′T ′ = (U ′ Y ′ )T ′, associated with the
intermediate basis B′. The update depends on the choice of p. If p is the lingering
direction pl, we have the trivial case T ′ = T , U ′ = U , and Y ′ = Y . If p is the RH

direction pr, then P ′ = (P p ) and the resulting effect on U and Y must be calculated.
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Introducing p on both sides of the decomposition
(
P G

)
= ZT yields

(
P p G

)
=
(
U Y

)( TU qU TUY

0 qY TY

)
,

where q = ZT p and qU and qY denote the components of q corresponding to the U -
and Y -parts of Z. The left-hand side can be repartitioned as (P ′ G′ g ), where

P ′ =
(
P p

)
and g is the most recently accepted gradient remaining in the basis.

Let S denote an r × r orthogonal upper-Hessenberg matrix constructed such that

S =

(
Il 0

0 SY

)
and Sq =

(
qU

‖qY ‖e1

)
.

It follows that

(
P ′ G′ g

)
=
(
U Y STY

)
TS, where TS =

(
TU qU TUY

0 SY qY SY TY

)
.(3.5)

The shape of S implies that the (r − l) × (r − l + 1) matrix
(
SY qY SY TY

)
is

upper-Hessenberg, and the r × (r + 1) matrix TS is upper-trapezoidal. Deleting the
last column from each side of the identity (3.5) gives the required factorization. In
particular, U ′ = (U Y STY e1 ), Y

′ = (Y STY e2 Y STY e3 · · · Y STY er−l ), Z ′ = (U ′ Y ′ ),
and T ′ = TSEr, where Er denotes the matrix of first r columns of Ir+1.

The matrix S is defined as a product of plane rotations and need not be stored
explicitly. One choice of S that uses symmetric Givens matrices instead of plane
rotations is given by Daniel et al. [2] in the context of inserting a column into a QR
factorization. As S can be generated entirely from qY , the matrix T need not be
stored.

If l < r−1, then the modification of U and Y requires approximately 3(r− l−1)n
flops (see Daniel et al. [2]). If l = r − 1, then no work is required since the columns
of Z =

(
U Y

)
are already an orthonormal basis for

(
P p

)
. (The argument

is similar to that given in Lemma 2.2, although here qY is nonzero according to the
reasoning given at the end of section 3.2.)

The second stage in updating Z is to compensate for the change from B′ to the
final basis B̄. After the line search, if the new gradient ḡ is rejected, then we have
the trivial case T̄ = T ′, Ū = U ′, and Ȳ = Y ′. If ḡ is accepted, then ρ̄z̄ = ḡ − Z ′Z ′T ḡ
defines the normalized component of ḡ outside Range(Z ′) (see section 2.1). In this
case, the identity

(
P ′ G′ ḡ

)
=
(
Z ′ z̄

)( T ′ Z ′T ḡ
0 ρ̄

)

implies that P̄ = P ′, Ḡ =
(
G′ ḡ

)
, Ū = U ′, Ȳ = (Y ′ z̄ ), and T̄ is T ′ augmented

by the column Z̄T ḡ. In both cases, we define Z̄ = ( Ū Ȳ ).

3.4. Updating R. When Z is updated to include the new RH direction, the
new reduced Hessian is Z ′THZ ′ = SZTHZST = SRTRST , where H is given by
(2.10). The (2, 2) block of RST is RY S

T
Y , which can be restored to upper-triangular

form using a suitable sequence of plane rotations S′ applied on the left of R. This
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results in RY S
T
Y being premultiplied by an orthogonal matrix S′

Y such that S′
YRY S

T
Y

is upper-triangular. The Cholesky factor of Z ′THZ ′ is then

R′ = S′RST =

(
RU RUY S

T
Y

0 S′
YRY S

T
Y

)
=

(
R′

U′ R′
U′Y ′

0 R′
Y ′

)
,

where R′
U′ and R′

Y ′ are upper-triangular matrices of order l + 1 and r − l − 1. For
more details, see Leonard [16, p. 40]. The calculation of R′ simplifies considerably if
the BFGS update is used (see section 3.7).

It remains to update R′ to reflect the second stage of the basis change: B′ =
(P ′ G′ ) → B̄ = ( P̄ Ḡ ), which corresponds to the orthogonalization of the new
gradient. If R′′ denotes the updated factor, then R′′ is obtained from R′ by adding a
scaled unit row and column, as in (2.8).

3.5. Updating related quantities. After the new gradient has been orthog-
onalized, the vectors u′′ = Z̄T ḡ, v′′ = Z̄T g, and q′′ = Z̄T p are used to define the
quasi-Newton update R̄ = Broyden(R′′, s, y) with s = αq′′ and y = u′′ − v′′. The
vector u′′ is computed as a by-product of the orthogonalization, as in Algorithm RH.
The vectors v′′ and q′′ can be computed from v and q using intermediate vectors
v′ = Z ′T g and q′ = Z ′T p in conjunction with the two-stage update to B. If p is a
lingering direction, then v′ = v and q′ = q. Otherwise, the definition of Z ′ implies
that

v′ = Z ′T g = SZT g = Sv =

(
vU

SY vY

)
,

which can be computed efficiently by applying the plane rotations of S as they are
generated. Similarly, the U ′- and Y ′-portions of q′ are q′

U′ = (qU , ‖qY ‖)T and q′Y ′ = 0,
since SY qY = ‖qY ‖e1. These expressions provide a cheaper alternative to computing
the RH search direction as p = UqU + Y qY . With this alternative, U is modified as
soon as qU and qY are known, and p is computed from the expression p = U ′q′

U′ .
Once v′ and q′ are known, v′′ and q′′ are found from v′ and q′ during the orthog-

onalization procedure as in Algorithm RH.

3.6. A reduced-Hessian method with lingering. We summarize the results
of this section by describing a complete reduced-Hessian method with lingering. As
in Algorithm RH of section 2.2, certain calculations are represented schematically as
functions with input and output arguments. The first stage of the basis update can be
viewed as swapping the new RH direction with the most recently accepted gradient
remaining in Bk. Accordingly, the modification of Zk (and hence Uk and Yk) and
related quantities is represented by (Z ′

k, R
′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk).

Algorithm 3.1. Reduced-Hessian method with lingering (RHL).

Choose x0 and σ (σ > 0);
k = 0; r0 = 1; l0 = 0; g0 = ∇f(x0);
Z0 = g0/‖g0‖; R0 = σ

1/2; v0 = ‖g0‖;
while not converged do

Partition Rk as RU , RY , and RUY ; Partition vk as vU and vY ;
Solve RTU dU = −vU ; RTY dY = −(RTUY dU + vY );
if ‖dU‖2 > τ‖d‖2 then

Solve RUqU = dU ; qY = 0;
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Z ′
k = Zk; R′

k = Rk; q′k = qk; v′k = vk;
l′k = lk;

else
Solve RY qY = dY ; RUqU = dU −RUY qY ;
(Z ′

k, R
′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk);

l′k = lk + 1;
end if
pk = U

′
kq

′
U′ ; lk+1 = l

′
k;

Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = Z

T
k gk+1;

(Zk+1, rk+1, R
′′
k , u

′′
k , v

′′
k , q

′′
k ) = expand(Z ′

k, rk, R
′
k, uk, v

′
k, q

′
k, gk+1, σ);

sk = αkq
′′
k ; yk = u

′′
k − v′′k ; Rk+1 = Broyden(R′′

k , sk, yk);

vk+1 = u
′′
k ; k ← k + 1;

end do

As in Algorithm RH, no new gradients are accepted once rk reaches n. If the
test ‖dU‖2 ≤ τ‖d‖2 is satisfied every iteration, Algorithm RHL generates the same
sequence of iterates as Algorithm RH. In this case, every iteration starts with lk = rk
or lk = rk − 1. If lk = rk, the previous gradient gk was rejected and both algorithms
compute a lingering direction. Otherwise, if lk = rk− 1, then gk was accepted and Yk
must have just one column. Once the RH direction is computed, the swap procedure
amounts to moving the partition of Zk so that the Y -part becomes void. It follows
that if only RH directions are chosen, the partition of Zk is used only to decide if pk
is an RH or lingering direction.

3.7. The BFGS update. If the BFGS update is used, the block structure (3.3)
of R simplifies to the extent that RY is always σ

1/2Ir−l. This can be shown using two
results. The first describes the effect of the BFGS update on R when s ∈ Range(U).

Lemma 3.1. Let R denote an r × r nonsingular upper-triangular matrix parti-
tioned as in (3.3). Let y and s be r-vectors such that yT s > 0. If the Y -components
of s are zero, then the update R̄ = BFGS(R, s, y) does not alter the (2, 2) block of R
(i.e., R̄Y = RY ). Moreover, R̄U and R̄UY are independent of RY .

Proof. The result follows from the definition (2.9) of the rank-one BFGS update
to R (see Leonard [16, pp. 13–15] for the first part).

The next lemma considers the cumulative effect of Algorithm RHL on the block
structure of R.

Lemma 3.2. Assume that Algorithm RHRL is used with the BFGS update, and
that Z is partitioned as Z =

(
U Y

)
. Then there exist orthogonal matrices S and

S′ for the basis update such that, at the start of every iteration, R has the form(
RU RUY

0 RY

)
with RY = σ

1/2Ir−l.(3.6)

Proof. The proof is by induction. The result holds at the start of the first iteration
since r0 = 1, l0 = 0, and RY = σ1/2. Assume that the result holds at the start of
iteration k.

If the partition parameter is increased, the columns of Y are modified and the
(2, 2) block of R′ satisfies R′

Y = S′
YRY S

T
Y = σS′

Y S
T
Y . If S

′ = S, then R′
Y = σIr−l. If

the partition parameter does not change, then R′ = R and R′
Y = σIr−l trivially.
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The repartition resulting from the change in l gives σ1/2Ir−l̄ in the (2, 2) block,
and it follows that R′

Y ′ has the required form prior to the line search. Note that R′
Y ′

is void if either RY is void (i.e., l = r) or l was increased to r (giving l̄ = r).
The expansion procedure may add a scaled unit row and column to R′. In either

case, R′′ can be partitioned to match Ū and Ȳ as

R′′ =

(
R′′̄

U R′′̄
UȲ

0 R′′̄
Y

)
.

It follows that R′′̄
Y = σ

1/2Ir̄−l̄.
Whatever the choice of search direction, q′′ is of the form q′′ = (q′′̄U , 0)

T , where
q′′̄U is an l̄-vector. Thus, R′′ and s satisfy the conditions of Lemma 3.1, and R̄ =
BFGS(R′′, s, y) has the required structure.

If, in the BFGS case, instead of defining S′ = S, we update RY according to the
procedure of section 3.3, then the updated matrix will be of the form RY = σ

1/2Ĩr−l,
where Ĩr−l is a diagonal matrix of plus or minus ones. The purpose of Lemma 3.2 is
to show that it is unnecessary to apply ST and S′ to RY when RHL is used with the
BFGS update. Instead, STY need only be applied to RUY , at a cost of 3(r − l − 1)l
flops.

3.8. Operation count for RHL with the BFGS update. The number of
operations for an iteration of the BFGS version of Algorithm RHL will depend on the
type of search direction selected. If a lingering direction is used, the vector RTRq will
be different from −v, and the vector v cannot be substituted for the matrix-vector
product in (2.9). However, in this case we have

RTRq =

(
RTURUqU

RTUYRUqU

)
=

(
−vU

RTUYRUqU

)
,

which requires only RTUYRUqU to be computed explicitly.
Whichever search direction is used, the vector s has r̄− l̄ trailing zeros (see (2.9)),

and the cost of applying the BFGS update drops to 6r̄l̄ − 3l̄2 flops. It follows that
iterations involving a lingering direction require (2r+ l+1)n+ 1

2r
2+7rl− 7

2 l
2+O(r)+

O(l) flops. If l = r, the work is commensurate with that of Algorithm RH. If an RH

step is taken, an additional n flops are required because p is a linear combination of
l+1 n-vectors instead of l n-vectors. In this case, 3(r− l−1)(l+n) flops are required
to update Z and R using the method of sections 3.3–3.4.

4. Modifying approximate curvature. The choice ofH0 can greatly influence
the practical performance of quasi-Newton methods. The usual choice H0 = σI
(σ > 0) can result in many iterations and function evaluations—especially if ∇2f(x∗)
is ill-conditioned (see, e.g., Powell [25] and Siegel [28]). This is sometimes associated
with “stalling” of the iterates, a phenomenon that can greatly increase the overall cpu
time for solution (or termination).

To date, the principal modifications of conventional quasi-Newton methods have
involved scaling all or part of the approximate Hessian. Several scaling methods have
appeared in the literature. In the self-scaling variable metric (SSVM) method of
Oren and Luenberger [24], Hk is multiplied by a positive scalar prior to application
of the Broyden update. The conjugate-direction scaling method of Siegel [28] scales
columns of a certain conjugate-direction factorization of H−1

k . This scheme, which
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is a refinement of a method of Powell [25], has been shown to be globally and q-
superlinearly convergent. In what follows, Siegel’s method will be referred to as
Algorithm CDS. Finally, Lalee and Nocedal [15] have proposed an algorithm that
scales columns of a lower-Hessenberg factor of Hk. This method will be referred to as
Algorithm ACS, which stands for automatic column scaling .

Here, scaling takes the form of resetting certain diagonal elements of the Cholesky
factor of the reduced-Hessian. The structure of the transformed Hessian QTkHkQk
(2.5) reveals the influence of H0 on the approximate Hessian. For example, the initial
Hessian scale factor σ represents the approximate curvature along all unit directions
in G⊥k (see Lemma 2.1). Inefficiencies resulting from poor choices of H0 may be
alleviated by maintaining a current estimate σk of the approximate curvature in G⊥k .
At the end of each iteration, the new estimate σk+1 replaces σk in the transformed
Hessian wherever this can be done without endangering its positive definiteness. This
replacement has the effect of reinitializing approximate curvature along all directions
in G⊥k , and along certain directions in Gk. In the next section, an algorithm of this
type is introduced as a generalization of Algorithm RHL.

4.1. Reinitialization combined with lingering. In this section we extend
the BFGS version of Algorithm RHL so that approximate curvature is modified in
a subspace of dimension n − l̄ immediately following the BFGS update. We choose
to emphasize the BFGS method because the diagonal structure R̄Ȳ = σ1/2Ir̄−l̄ of
the (2, 2) block of the BFGS Cholesky factor reveals the main influence of H0 on
the approximate Hessian. In this case, the initial approximate curvature along unit
directions in Range(Ȳ ) is explicit and easily reinitialized. The approximate curvature
along directions in Range(Ū) is considered to be sufficiently established (in the sense
of Lemma 2.4) and hence the corresponding part of the reduced Hessian is unaltered.

Reinitialization is not hard to achieve in comparison to some scaling procedures
previously proposed. Reinitialization simply involves replacing the factor

R′′′ =

(
R′′′

Ū R′′′
ŪȲ

0 σ1/2Ir̄−l̄

)
by R̄ =

(
R′′′

Ū R′′′
ŪȲ

0 σ̄1/2Ir̄−l̄

)
,

where the matrix R′′′ is the final factor obtained in an iteration of Algorithm RHL.
The corresponding effect on the (2, 2) block of the reduced Hessian is to replace the
term σIr̄−l̄ by σ̄Ir̄−l̄.

This reinitialization exploits the special structure of R′′′ resulting from the lin-
gering scheme. The resulting method may be compared to Liu and Nocedal’s limited-
memory L-BFGS method [17]. In this case, the BFGS inverse Hessian is defined as
the last of a sequence of auxiliary inverse Hessians generated implicitly from σI and a
set of vector pairs (δk, γk) (see (2.3)). This form allows σI to be reinitialized at every
iteration (in which case, every auxiliary inverse Hessian is changed). The fact that
the rank-two terms are not summed explicitly is crucial. If the inverse Hessian were
to be stored elementwise, then any reinitialization that adds a (possibly negative-
definite) diagonal (σ̄ − σ)I would leave all the auxiliary approximations unchanged
except the first, and thereby define a potentially indefinite approximation. In the
reduced-Hessian formulation, it is possible to maintain an elementwise approximation
and reinitialize unestablished curvature without risk of indefiniteness. The diagonal
form of R̄Ȳ means that σ occurs as an explicit modifiable term in the expression for
the curvature along directions in Range(Ȳ ). This term can be safely reset to any
positive number σ̄.
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It remains to define an appropriate value for σ̄. We consider four alternatives
that have been effective in practice. The first two are the simple choices:

σR0
k+1 = 1 and σR1

k+1 =
yT0 y0
yT0 s0

(4.1)

(see Shanno and Phua [26] for a discussion of σR1
k+1). The third alternative is related

to the scaling parameters used in Algorithm CDS (see Siegel [28]). It is defined in
terms of a scalar γi and satisfies

σR2
k+1 = min

0≤i≤k
{γi}, where γi =

yTi si
‖si‖2 .(4.2)

The fourth alternative is the inverse of the value suggested by Liu and Nocedal [17]
for use in the limited-memory BFGS method (see Nocedal [23]). For this option, we
define

σR3
k+1 =

yTk yk
yTk sk

.(4.3)

Reinitialization is represented schematically as R̄ = reinitialize(R′′′, σ̄) in the algo-
rithm below.

Algorithm 4.1. Reduced-Hessian method with reinitialization and
lingering (RHRL).

Choose x0 and σ0 (σ0 > 0);
k = 0; r0 = 1; l0 = 0; g0 = ∇f(x0);

Z0 = g0/‖g0‖; R0 = σ
1/2
0 ; v0 = ‖g0‖;

while not converged do
Partition Rk as RU , RY and RUY ; Partition vk as vU and vY ;
Solve RTU dU = −vU ; RTY dY = −(RTUY dU + vY );
if ‖dU‖2 > τ‖d‖2 then

Solve RUqU = dU ; qY = 0;
Z ′
k = Zk; R′

k = Rk; q′k = qk; v′k = vk;
l′k = lk;

else
Solve RY qY = dY ; RUqU = dU −RUY qY ;
(Z ′

k, R
′
k, q

′
k, v

′
k) = swap(Zk, Rk, qk, vk);

l′k = lk + 1;
end if
pk = U

′
kq

′
U′ ; lk+1 = l

′
k;

Find αk satisfying the Wolfe conditions (2.4);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk); uk = Z

T
k gk+1;

(Zk+1, rk+1, R
′′
k , u

′′
k , v

′′
k , q

′′
k ) = expand(Z ′

k, rk, R
′
k, uk, v

′
k, q

′
k, gk+1, σk);

sk = αkq
′′
k ; yk = u

′′
k − v′′k ; R′′′

k = BFGS(R′′
k , sk, yk);

Compute σk+1; Rk+1 = reinitialize(R′′′
k , σk+1);

vk+1 = u
′′
k ; k ← k + 1;

end do

Other than the addition of the reinitialize procedure, Algorithm RHRL differs
from RHL only in the specific use of the BFGS update.
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Reinitialization can be applied directly to Algorithm RH by redefining σ before
the expand and Broyden procedures. When the BFGS update is used and Rk
expands, the last diagonal of R′′

k is unaltered and is independent of the remainder of
R̄ (see section 3.7). In this case, the last diagonal can be redefined either before or
after the update. This option is also available for RHRL, but reinitialization is done
after the BFGS update to simplify the proof of Theorem 4.3. (The trailing columns of
the conjugate-direction matrix are scaled after the BFGS update in Algorithm CDS

[28].)

4.2. Algorithm RHRL applied to a quadratic. Consider the strictly convex
quadratic function f(x) = c − bTx + 1

2x
TAx of (2.11). The next theorem extends

Fenelon’s quadratic termination results for Algorithm RH to Algorithm RHRL (see
section 2.3). In the statement of the theorem, rij denotes the (i, j)th component of
Rk. For details of the proof, see Leonard [16, pp. 58–61].

Theorem 4.1. Consider Algorithm RHRL applied with an exact line search and
σ0 = 1 to minimize the quadratic f(x) of (2.11). Then, at the start of iteration k,
the rank of Rk is rk = k + 1, the partition parameter is lk = k, and Zk satisfies
Zk = (Uk Yk ), where the columns of Uk are the normalized gradients {gi/‖gi‖}, 1 ≤
i ≤ k − 1, and Yk = gk/‖gk‖. Moreover, the upper-triangular matrix Rk is upper bi-
diagonal with RkUY = −‖gk‖/(yTk−1sk−1)ek and R

k
Y = σ

1/2
k . The nonzero components

of Rk in R
k
U satisfy rii = ‖gi−1‖/(yTi−1si−1)

1/2 and ri,i+1 = −‖gi‖/(yTi−1si−1)
1/2 for

1 ≤ i ≤ k. Furthermore, the search directions satisfy

p0 = −g0; pk = − 1

σk
gk + βk−1pk−1, βk−1 =

σk−1

σk

‖gk‖2
‖gk−1‖2 , k ≥ 1.

Corollary 4.2. If Algorithm RHRL is applied with an exact line search to
minimize the quadratic f(x) of (2.11), and σ0 = 1, then the minimizer will be found
in at most n iterations.

Proof. We show by induction that the search directions are parallel to the
conjugate-gradient directions {dk}. Specifically, σkpk = dk for all k. This is true
for k = 0 since σ0p0 = −g0 = d0. Assume that σk−1pk−1 = dk−1. Using Theorem 4.1
and the inductive hypothesis, we find

σkpk = −gk + σk−1
‖gk‖2
‖gk−1‖2 pk−1 = −gk + ‖gk‖2

‖gk−1‖2 dk−1 = dk,

which completes the induction. Since the conjugate-gradient method has quadratic
termination under the assumptions of the theorem, Algorithm RHRL must also have
this property.

4.3. An equivalence with conjugate-direction scaling. The next theo-
rem, proved by Leonard [16, pp. 62–77], states that under certain conditions, Al-
gorithm RHRL generates the same iterates as the CDS algorithm of Siegel [28].

Theorem 4.3. Suppose that Algorithm RHRL and Algorithm CDS are used to
find a local minimizer of a twice-continuously differentiable function f : R

n → R. If
both algorithms start from the same point and use the same line search, and if RHRL

uses σ0 = 1, σk = σR2
k , τ =

10
11 , then the algorithms generate the same sequence of

iterates.
Despite this equivalence, we emphasize that RHRL and CDS are not the same

method . First, the stated equivalence concerns CDS and one instance of RHRL, so
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RHRL may be considered as a generalization of CDS. Second, the dimensions of the
matrices required and the computation times differ substantially for the two methods.
CDS has a 33% advantage with respect to storage, since RHRL requires 3

2n
2 elements

for Zk and Rk, assuming that they grow to full size. However, RHRL requires substan-
tially lower cpu times in practice—principally because of the more efficient calculation
of pk when k is small relative to n (see section 6.5).

The last result of this section gives convergence properties of Algorithm RHRL

when applied to strictly convex functions.
Corollary 4.4. Let f : R

n → R denote a strictly convex, twice-continuously
differentiable function. Moreover, assume that ∇2f(x) is Lipschitz continuous with
‖∇2f(x)−1‖ bounded above for all x in the level set of f(x0). If Algorithm RHRL with
σ0 = 1, σk = σR2

k , τ =
10
11 , and a Wolfe line search is used to minimize f , then

convergence is global and q-superlinear.
Proof. Since the conjugate-direction scaling algorithm has these convergence prop-

erties (see Siegel [28]), the proof is immediate from Theorem 4.3.

5. Implementation details. In this section, we discuss the implementation of
Algorithm RHRL. Numerical results are given in section 6.

5.1. Reorthogonalization. In exact arithmetic, a gradient is accepted into the
basis B′

k =
(
P ′
k G′

k

)
if ρk+1 > 0, where ρk+1 is the two-norm of (I − Z ′

kZ
′T
k )gk+1.

This ensures that the basis vectors are linearly independent, and that the implicitly
defined matrix T ′

k (3.2) is nonsingular. When ρk+1 is computed in finite precision,
gradients with small (but nonzero) ρk+1 are rejected to discourage {Tk} from becoming
too ill-conditioned. In practice, an accepted gradient must satisfy ρk+1 ≥ ε‖gk+1‖,
where ε is a preassigned positive constant. In the numerical results presented in
section 6, ε was set at 10−4.

Even when ε is large relative to the machine precision, Gram–Schmidt orthogo-
nalization is unstable (see Golub and Van Loan [13, p. 218]). Two of the best known
algorithms for stabilizing the process are modified Gram–Schmidt and Gram–Schmidt
with reorthogonalization (see Golub and Van Loan [13, p. 218] and Daniel et al. [2]).
We have used Gram–Schmidt with reorthogonalization in our implementation. Each
reorthogonalization requires an additional 2nrk flops.

5.2. The line search, BFGS update, and termination criterion. The line
search for the reduced-Hessian methods is a slightly modified version of that used in
the package NPSOL [10]. It is designed to ensure that αk satisfies the strong Wolfe
conditions:

f(xk + αkpk) ≤ f(xk) + µαkgTkpk and |gTk+1pk| ≤ η|gTkpk|
with 0 ≤ µ ≤ η < 1 and µ < 1

2 . (For more details concerning algorithms designed
to meet these criteria, see, e.g., Gill, Murray, and Wright [11], Fletcher [5], and Moré
and Thuente [20].) The step length parameters are µ = 10−4 and η = 0.9. The line
search is based on using a safeguarded polynomial interpolation to find an approximate
minimizer of the univariate function ψ(α) = f(xk+αpk)− f(xk)−µαgTkpk (see Moré
and Sorensen [19]). The step αk is the first member of a minimizing sequence {αik}
satisfying the Wolfe conditions. The sequence is always started with α0

k = 1.
If αk satisfies the Wolfe conditions, it holds that y

T
k sk ≥ −(1−η)αkgTkpk > 0, and

hence the BFGS update can be applied without difficulty. On very difficult problems,
however, the combination of a poor search direction and a rounding error in f may
prevent the line search from satisfying the line search conditions within 20 function
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Table 6.1
Comparison of RHRL with four reinitialization values on 64 CUTE problems.

Option Itn Fcn Cpu

R0 26553 45476 22:26

R1 34815 41327 21:50

R2 25808 39856 20:56

R3 23356 30684 18:01

evaluations. In this case, the search terminates with αk corresponding to the best
value of f found so far. If this αk defines a strict decrease in f , the minimization
continues and the BFGS update is skipped unless yTksk ≥ εMαk|gTkpk|, where εM is
the machine precision. If a strict decrease in f is not obtained after 20 function
evaluations, then the algorithm is terminated (no restarts are allowed).

Every run was terminated when ‖gk‖ < 10−6 or ‖gk‖ < ε0.8M (1 + |f(xk)|). Our
intent is to compare methods when they succeed , and identify the cases where methods
fail.

6. Numerical results. The methods are implemented in double precision For-
tran 77 on an SGI O2 with R5000 processor and 64MB of RAM. The test problems
are taken from the CUTE collection (see Bongartz et al. [1]).

The test set was constructed using the CUTE interactive select tool, which allows
identification of groups of problems with certain features:

Objective function type : *

Constraints type : U

Regularity : R

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : v

Number of constraints : 0.

Of the 73 problems selected with this specification, indef was omitted from the tri-
als because the iterates became unbounded for all the methods. For the remaining
problems, the smallest allowable value of n satisfying n ≥ 300 was chosen, with the
following exceptions: Smaller values of n were used for penalty3, mancino, and sensors
because they otherwise took too much memory to “decode” using the SIF decoder
(compiled with the option “tobig”); a smaller n was used for penalty2 because the
initial steepest-descent direction for n = 300 was unusable by the optimizers; n = 50
was used for chnrosnb and errinros since this was the largest value admitted; and the
value n = 31 was used for watson for the same reason.

Four more problems were identified using the select tool with input:

Number of variables : in [ 50, 300 ].

This resulted in problems tointgor , tointpsp, tointqor , and hydc20ls being added to
the test set. All of these problems have 50 variables except hydc20ls, which has 99
variables.

We begin our discussion by identifying the “best” implementation of the various
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Table 6.2
Final nonoptimal gradients for RHRL reinitialization schemes on 5 CUTE problems.

Reinitialization option

Problem R0 R1 R2 R3

bdqrtic – 1.0E-4 – 1.3E-5

cragglvy – 9.5E-6 – –
engval1 2.0E-6 3.0E-6 – –
fletcbv3 3.8E-1 1.0E-1 – –
vardim – 2.1E-5 2.1E-5 2.1E-5

Table 6.3
RHRL vs. RHR on 62 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 19453 20949 16:35

RHR (R0) 25898 43676 22:19

RHR (R1) 31609 35722 19:30

RHR (R2) 25575 35994 21:00

RHR (R3) 25445 27411 18:30

reduced-Hessian methods presented earlier. There follows a numerical comparison
between this method and several leading optimization codes, including NPSOL [10],
the CDS method [28], and the ACS method [15].

6.1. The benefits of reinitializing curvature. First, we compare an imple-
mentation of RHRL using four alternative values of σk+1 (see (4.1)–(4.3)), labeled
R0–R3. Table 6.1 gives the total number function evaluations and total cpu time
(in minutes and seconds) required for a subset of 64 of the 76 problems. The subset
contains the 64 problems for which RHRL succeeded with every choice of σk+1.

The results clearly indicate that some form of approximate curvature reinitializa-
tion is beneficial in terms of the overall number of function evaluations. This point is
reinforced when RHRL is compared with NPSOL, which has no provision for altering
the initial approximate curvature. However, on the CUTE problems, the decrease in
function evaluations does not necessarily translate into a large advantage in terms
of cpu time. The reason for this is that on the problems where a large difference
in function evaluations occurs, the required cpu time is small. For example, on the
problem extrosnb, the function evaluations/cpu seconds required using R0–R3 are, re-
spectively, 5398/39.6, 4914/20.6, 6764/27.1, and 3418/14.6. Although R3 (i.e., RHRL

implemented with reinitialization option R3) offers a large advantage in terms of func-
tion evaluations, it gains little advantage in cpu time relative to the overall cpu time
required for all 64 problems. This is partly because the CUTE problems tend to have
objective functions that are cheap to evaluate. (On problem extrosnb, RHRL with R0
takes longer than R2 because the final rk is roughly twice the R2 value. With R0,
rk reaches 67 at iteration 81 and remains at that value until convergence at iteration
3862. With R2, however, rk reaches only 17 by iteration 81 and is never greater than
35, converging after 4976 iterations.)

None of R0–R3 succeed on problems arglinb, arglinc, freuroth, hydc20ls, mancino,
nonmsqrt , and penalty3. The problems for which at least one of R0–R3 fail are bdqrtic,
cragglvy , engval1 , fletcbv3, and vardim. Table 6.2 shows which of R0–R3 failed on
these five problems by giving the corresponding values for ‖gk‖ at the final iterate. It
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Table 6.4
Final nonoptimal gradients for RHRL and RHR on 7 CUTE problems.

Problem RHRL (R3) RHR (R0) RHR (R1) RHR (R2) RHR (R3)

bdqrtic 1.3E-5 – 8.3E-5 – –
cragglvy – – 1.2E-5 – –
engval1 – – 1.9E-6 – –
fletcbv3 – 3.3E-01 1.4E-1 1.3E-1 6.7E-2

fletchbv – – 6.4E+3 – 1.4E+6

penalty2 – 1.1E+11 – – –
vardim 2.1E-5 – 2.1E-5 2.1E-5 2.1E-5

Table 6.5
RHRL vs. NPSOL on 64 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 22362 27458 17:05

NPSOL 29204 49420 23:55

should be noted that R2 has no real advantage over R3 in this table because R3 nearly
meets the termination criteria on bdqrtic (the final objective value is 1.20× 10−3 for
both methods) and because 74 function evaluations are required by R2, compared to
53 for R3. The cpu seconds required by R2 and R3 on bdqrtic are 0.38 and 0.28.

6.2. The benefits of lingering. Now we illustrate the benefits of lingering by
comparing RHRL with an algorithm, designated RHR, that reinitializes the curvature
when a gradient is accepted, but does not linger. Five algorithms were tested: RHR

with all four resetting options R0–R3, and RHRL with option R3. The termination
criteria were satisfied on 62 of the 76 problems. Table 6.3 gives the total number of
iterations, function evaluations, and cpu time required. All five algorithms failed on
problems arglinb, arglinc, freuroth, hydc20ls, mancino, nonmsqrt and penalty3. This
leaves seven other problems on which at least one of the five methods failed. The
two-norms of the final nonoptimal gradients for these problems are given in Table 6.4.

6.3. RHRL compared with NPSOL. Here we make a numerical comparison
between RHRL and the general-purpose constrained solver NPSOL (see Gill et al.
[10]). NPSOL uses a Cholesky factor of the approximate Hessian. The code requires
approximately n2 +O(n) storage locations for unconstrained optimization. The flop
count for the method is 4n2 +O(n) per iteration, with approximately 3n2 operations
being required for the BFGS update to the Cholesky factor.

In our comparison, both methods meet the termination criteria on 64 of the 76
problems. Table 6.5 gives the total number of iterations, function evaluations and cpu
time for RHRL with R3 and for NPSOL. Both methods failed on problems arglinb,
arglinc, hydc20ls, mancino, nonmsqrt , and penalty3. This leaves six other problems
on which at least one of the methods failed (see Table 6.6).

6.4. RHRL compared with automatic column scaling. Next we compare
RHRL and Algorithm ACS proposed by Lalee and Nocedal [15]. ACS requires storage
for an n × n lower-Hessenberg matrix plus O(n) additional locations; however, the
implementation uses n2 +O(n) elements, as does NPSOL. The flop count for ACS is
not given by Lalee and Nocedal, but we estimate it to be 4n2 +O(n). This number
is obtained as follows. A total of 3

2n
2 +O(n) flops are required to restore the lower-
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Table 6.6
Final nonoptimal gradients for RHRL and NPSOL on 6 CUTE problems.

Problem RHRL (R3) NPSOL

bdqrtic 1.3e-5 –
engval1 – 1.8e-6

fletchbv – 1.1E+6

freuroth 3.6e-6 –
penalty2 – 2.6E+4

vardim 2.1e-5 –

Table 6.7
RHRL vs. ACS on 57 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 24667 34947 20:19

ACS (23) 32828 39725 29:38

Hessenberg matrix to a lower-triangular matrix Lk prior to solving for the search
direction. Another n2 flops are required to compute the search direction pk. After
some additional O(n) operations, 3

2n
2+O(n) flops are required for the BFGS update,

assuming that LTkpk is saved while computing pk. Note that the work is essentially the
same as that needed for NPSOL because both methods require two sweeps of rotations
to maintain a triangular factor of the approximate Hessian. We have neglected any
computations required for scaling since the version of ACS we tested scales very con-
servatively. In particular, the ACS code has six built-in rescaling strategies numbered
21–26. The last two only rescale during the first iteration. Option 23 appears to be
the one preferred by Lalee and Nocedal since it performs the best on the problems
of Moré, Garbow, and Hillstrom [18] (see Lalee and Nocedal [15, p. 20]). This is the
option used in the tests below.

In our comparison, both RHRL and ACS meet the termination criteria on 57 of
the 76 problems. In Table 6.7, we show the total numbers of iterations, function
evaluations and cpu time for RHRL with R3 and for ACS with scaling option 23.
Both methods fail on problems arglinb, arglinc, bdqrtic, freuroth, hydc20ls, mancino,
nonmsqrt , and penalty3. This leaves nine other problems on which at least one of the
methods fails (see Table 6.8).

6.5. RHRL compared with conjugate-direction scaling. In this section,
we provide a comparison between RHRL and Algorithm CDS proposed by Siegel [28].
CDS requires n2+O(n) storage locations, making it comparable with the implemented
versions of both NPSOL and ACS. An iteration of the algorithm presented by Siegel
[28, p. 9] requires 7n2 + n(n− lc) +O(n) flops when a “full” step is taken, where the
parameter lc is analogous to the partition parameter of RHRL. Otherwise the count
is 4n2 + 3nlc +O(n) flops (see [28, p. 23]). However, Siegel gives a more complicated
formulation that requires only 3n2 + O(n) flops per iteration (see [28, pp. 23–26]).
For our comparison, the faster version of CDS was emulated by using the simpler
formulation while counting the cpu time for only 3n2+O(n) flops per iteration. This
was done as follows. In order to isolate the 3n2 flops, the flop count for the simpler
CDS method was divided into five parts. The first part is the calculation of V Tk gk,
which requires n2 flops for both the full and partial step. The second part is the
start of the Goldfarb–Powell BFGS update to Vk and the calculation of the search
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Table 6.8
Final nonoptimal gradients for RHRL and ACS on 11 CUTE problems.

Problem RHRL(R3) ACS(23)

chainwoo – 1.8e-6

cragglvy – 2.7e-5

edensch – 3.1e-6

engval1 – 2.7e-6

errinros – 5.2e-6

ncb20 – 2.2e-6

ncb20b – 4.5e-6

noncvxun – 3.1e-6

penalty2 – 3.3e+1

tointgor – 2.7e-6

vardim 2.1e-5 –

Table 6.9
RHRL (R2) vs. CDS on 68 CUTE problems.

Method Itn Fcn Cpu

RHRL (R2) 27190 43577 22:20

CDS 26974 44003 27:10

direction. This part involves postmultiplying Vk by an orthogonal lower-Hessenberg
matrix, Ωk say, and requires 3n

2 flops for the full step. (Powell [25, p. 42] suggests a
way to reduce this cost.) In the case of the partial step, 3nlc flops are required. In
both cases, the search direction can be provided as a by-product at the same cost (see
Powell [25, pp. 41–42]), but Siegel prefers to list this calculation separately. Hence,
the third part of CDS is the calculation of the search direction, which requires n2 and
nlc additional flops for the full and partial steps, respectively. The fourth part of CDS

is the completion of the BFGS update, which requires an additional 2n2 flops for both
steps (see Powell [25, p. 33]). The last part of CDS scales trailing columns of Vk and
requires n(n− lc) flops (multiplications). Hence, in order to count only 3n2 flops per
iteration for both types of step, we omit the cpu time for the three tasks of calculating
VkΩk, computing the search direction, and scaling Vk.

The CDS code was implemented with the same line search used for RHR and
RHRL. This allows a fair comparison of CDS with RHRL (R2), which is the reduced-
Hessian variant satisfying the conditions of Theorem 4.3.

Table 6.9 illustrates the connection between RHRL and CDS (see Theorem 4.3)
as well as the advantage of using the reduced-Hessian method. A direct comparison
can be made because both methods meet the termination criteria on the same 68
problems. The problems on which both methods fail are arglinb, arglinc, freuroth,
hydc20ls, mancino, nonmsqrt, penalty3, and vardim. Note that despite the similarity
in the number of iterations and function evaluations, RHRL is roughly 21% faster than
CDS. The improvement in cpu time is gained primarily because the reduced-Hessian
approach allows the search direction to be computed more cheaply during iterations
when r is much less than n.

To further illustrate the connection between RHRL (R2) and CDS, Table 6.10
compares data obtained for the two methods at particular iterations. This comparison
is only for illustration and no statistical argument is being made. The three problems
were chosen because the iterates match quite closely. Table 6.9 illustrates that the
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Table 6.10
Iteration data for RHRL (R2) and CDS on 3 CUTE problems.

Problem Method k αk f(xk) ‖gk‖ |gTkpk|
broydn7d RHRL 144 0.12E+00 0.12069659E+03 0.35E-05 0.19E-11

CDS 144 0.12E+00 0.12069659E+03 0.35E-05 0.19E-11

dixmaanl RHRL 322 0.10E+01 0.10000001E+01 0.57E-04 0.12E-06

CDS 322 0.10E+01 0.10000001E+01 0.57E-04 0.12E-06

morebv RHRL 300 0.10E+01 0.15708889E-07 0.71E-05 0.72E-08

CDS 300 0.10E+01 0.15708889E-07 0.71E-05 0.72E-08

Table 6.11
RHRL (R3) vs. CDS on 67 CUTE problems.

Method Itn Fcn Cpu

RHRL (R3) 26255 37082 21:10

CDS 26921 43900 27:07

iterates are not always identical.

When RHRL is used with R3, a further improvement in cpu time is gained relative
to CDS. In this case, RHRL fails on one additional problem, bdqrtic, with final gradient
norm 1.3 × 10−5. Table 6.11 compares the iterations, function evaluations, and cpu
time for the two methods on the set of 67/76 mutually successful test problems. Here,
RHRL has a 28% advantage in cpu time.

7. Conclusions. Algorithms that compute an explicit reduced-Hessian approx-
imation have two important advantages over conventional quasi-Newton methods.
First, the amount of computation for each iteration is significantly less during the
early stages. Second, approximate curvature along directions that lie off the manifold
can be reinitialized as the iterations proceed, thereby reducing the influence of a poor
initial estimate of the Hessian.

The results of section 6 indicate that reduced-Hessian methods can require sub-
stantially less computer time than a conventional BFGS method and some recently
proposed extensions. Part of the reduction in computer time corresponds to the
smaller number of iterations and function evaluations required when using the reini-
tialization strategy (see Tables 6.5, 6.7, 6.9, and 6.11). However, much of the reduction
in computer time is the result of the average cost of an iteration being less than for
competing methods. This result may seem surprising when it is considered that a
reduced-Hessian iteration generally requires more work as the number of iterations
approaches n. For example, if an RH direction is always used on a problem with
dimension n = 300, an iteration of RHRL is more expensive than an iteration of CDS

when rk ≥ 170. However, on 83% of the problems tested with dimension 300, the
average value of rk remains below this value. In most cases, the maximum value of
rk remained small relative to 170. Table 7.1 gives the average and maximum values
of rk for 54 CUTE problems with n = 300. The maximum value of rk exceeds 170
on only 20 of the 54 problems listed, while the average value exceeds 170 on only 9
problems. (Remarkably, there are several cases where rk does not exceed 50.) It is
this feature that gives RHRL a significant advantage over the other algorithms tested
in terms of the cost of the linear algebra per iteration.
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Table 7.1
Final and average values of rk on 54 CUTE problems with dimension n = 300.

Problem Mean r Final r Problem Mean r Final r

arglina 2 2 fletchbv 288 300
arwhead 2 2 fletchcr 26 50
brownal 3 3 genrose 225 300
broydn7d 78 154 hilberta 9 12
brybnd 27 52 hilbertb 4 6
chainwoo 101 193 liarwhd 2 2
cosine 6 11 morebv 159 296
cragglvy 54 106 ncb20 87 173
dixmaana 3 3 ncb20b 166 300
dixmaanb 6 11 noncvxu2 164 298
dixmaanc 7 13 noncvxun 150 290
dixmaand 8 14 nondia 2 2
dixmaane 48 93 nondquar 217 300
dixmaanf 47 90 penalty1 2 2
dixmaang 46 91 powellsg 4 4
dixmaanh 45 88 power 86 98
dixmaani 170 300 quartc 274 298
dixmaank 173 300 schmvett 22 43
dixmaanl 169 300 sinquad 3 3
dixon3dq 158 300 sparsine 216 300
dqdrtic 5 5 sparsqur 174 300
dqrtic 274 298 srosenbr 2 2
edensch 14 29 testquad 104 161
engval1 12 23 tointgss 2 2
extrosnb 28 32 tridia 85 166
fletcbv2 149 297 vareigvl 104 204
fletcbv3 284 300 woods 4 4
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Abstract. This paper presents a convergence proof technique for a broad class of proximal
algorithms in which the perturbation term is separable and may contain barriers enforcing interval
constraints. There are two key ingredients in the analysis: a mild regularity condition on the dif-
ferential behavior of the barrier as one approaches an interval boundary and a lower stepsize limit
that takes into account the curvature of the proximal term. We give two applications of our ap-
proach. First, we prove subsequential convergence of a very broad class of proximal minimization
algorithms for convex optimization, where different stepsizes can be used for each coordinate. Ap-
plying these methods to the dual of a convex program, we obtain a wide class of multiplier methods
with subsequential convergence of both primal and dual iterates and independent adjustment of the
penalty parameter for each constraint. The adjustment rules for the penalty parameters generalize
a well-established scheme for the exponential method of multipliers. The results may also be viewed
as a generalization of recent work by Ben-Tal and Zibulevsky [SIAM J. Optim, 7 (1997), pp. 347–
366] and Auslender, Teboulle, and Ben-Tiba [Comput. Optim. Appl., 12 (1999), pp. 31–40; Math.
Oper. Res., 24 (1999), pp. 645–668] on methods derived from ϕ-divergences. The second application
established full convergence, under a novel stepsize condition, of Bregman-function-based proximal
methods for general monotone operator problems over a box. Prior results in this area required
strong restrictive assumptions on the monotone operator.
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1. Introduction. Let B ⊆ R
n denote the possibly unbounded n-dimensional

“box” ([a1, b1]× · · · × [an, bn]) ∩ R
n, where −∞ ≤ ai < bi ≤ +∞ for all i = 1, . . . , n.

This paper considers two closely related problems: the minimization problem

min
x∈B

f(x),(1.1)

where f : R
n → (−∞,+∞] is a closed proper convex function, and the variational

inequality

0 ∈ T (x) + NB(x),(1.2)

where T is a (possibly set-valued) maximal monotone operator and NB(x) denotes the
cone of vectors normal to the set B at x. It is well known that, under mild regularity
conditions, (1.1) is the special case of (1.2) for which T = ∂f , the subgradient mapping
of f .
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The last decade has seen considerable progress in the theory of proximal point
methods based on generalized distances [11, 13, 19, 5, 21, 31, 14, 2, 3, 17]. Such
methods use a scalar-valued regularization function to derive better-behaved versions
of problems (1.1) and (1.2). In this article, we consider separable regularization terms
of the form

D(x, y) =

n∑
i=1

di(xi, yi),

where d1, . . . , dn are scalar functions conforming to very general assumptions (see
Assumption 2.1 below). In particular, we assume that as x ∈ intB approaches the
boundary of B, ‖∇1D(x, y)‖ → ∞, where ∇1 denotes the gradient with respect to the
first vector argument. The distance-like measure D can be, for example, the squared
Euclidean distance, a Bregman distance [8], or a ϕ-divergence [19] (see section 2.2
below).

Using these regularization terms, proximal methods for (1.1) take the form

xk+1 = arg min
x

{
f(x) +

n∑
i=1

1

αki
di(xi, x

k
i )

}
,(1.3)

where αk is a positive n-dimensional vector whose elements are called stepsizes. Note
that we allow different stepsizes for each coordinate, as suggested by a variety of
computational and theoretical studies [32, 5, 2, 3]. Moreover, since ‖∇1D(x, xk)‖ →
∞ as x approaches the boundary of B, the regularization acts not only as a stabilizing
proximal term but also as a kind of barrier function keeping the iterates within intB.

In the case of the variational inequality (1.2), (1.3) generalizes to finding xk+1

satisfying the recursion

0 ∈ T (xk+1) + diag(αk)
−1∇1D(xk+1, xk).(1.4)

We derive some general results for these types of algorithms in section 2, assuming
that the stepsizes conform to a special rule that takes into account the curvature of
the proximal term. This rule, although restrictive, appears to cover cases of the
greatest practical interest; as we shall see, it covers the stepsize/penalty selection
rules proposed in [32, 5, 2, 3].

Section 3 uses the results of section 2 to obtain subsequential convergence results
for the generalized proximal minimization algorithm (1.3).

A critical application of (1.3), considered in section 3.2, is when f is minus the
dual function of a convex program such as

min g0(y)
such that (s.t.) gi(y) ≤ 0, i = 1, . . . , n,

(1.5)

where g0, . . . , gn : R
m → R are differentiable convex functions.1 We also assume

that this problem is feasible; i.e., there is a ȳ ∈ R
m such that gi(ȳ) ≤ 0, i = 1, . . . , n.

Choosing B to be any box containing the nonnegative orthant and f to be the negative
of the dual function of (1.5), we may implement (1.3) via a multiplier method in

1Actually, the results of section 3.2 continue to hold [28] if one supposes only that g0, . . . , gn :
R
m → (−∞,∞] are closed proper convex and assumes appropriate conditions on the effective do-

mains of the objective and constraints, as in [24, Chapter 28]. However, this further generality makes
the proofs more convoluted and is dropped for the sake of simplicity in the exposition.
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which a sequence of unconstrained penalized versions of (1.5) must be solved. This
construction leads to a class of multiplier methods that is extremely broad, subsuming
both the classical quadratic augmented Lagrangian and the exponential method of
multipliers [32, 6].

For these multiplier methods, our stepsize choice ensures that for indices i with
xki → 0 the corresponding penalty term is augmented so that it does not become
so “flat” as to permit infeasibility of primal limit points. Empirically, the technique
speeds convergence, and it also appears in a convergence rate analysis in [32] for the
exponential method of multipliers case. Ben-Tal and Zibulevsky [5] have proved the
optimality of the accumulation points of the exponential method, together with a class
of proximal terms closely related to ϕ-divergences, and their results are extended in [3].
Section 3 places such results in a broader context that includes Bregman distances.

In section 4, we restrict our attention to Bregman distances. It has been known
for the better part of a decade that, when D(·, ·) is any Bregman distance and the
stepsizes do not vary by coordinate, the recursion (1.4) converges to a solution of the
variational inequality (1.2) in various special cases: when T = ∂f , the subdifferen-
tial of a closed proper convex function f , or when domT ⊆ intB, meaning that all
constraints must already be embedded in the operator T . In [9], these results were
extended to “paramonotone” operators T , a category which includes T = ∂f as a spe-
cial case. Unfortunately, many interesting practical cases, such as the subdifferential
maps of saddle functions, are not paramonotone. More recently, Auslender, Teboulle,
and Ben-Tiba [2] have obtained strong results for general maximal monotone T , but
only for a specific ϕ-divergence choice of D(·, ·). As noted in [4], these results can be
extended to the (generally non-Bregman) case in which D(·, ·) is obtained by adding
a quadratic to any member of the class Φ2 of [3].

Section 4 shows convergence, for general maximal monotone T , of the proximal
method (1.4), where D(·, ·) is a Bregman distance, to a solution of (1.2). We do impose
some additional assumptions, derived from those of section 2. First, we assume that
the Bregman function used to construct the distance is twice-differentiable, which
is not part of the standard Bregman function setup. Second, in addition to our
general stepsize rule, we also require that the stepsizes do not vary by coordinate,
that is, αk1 = · · · = αkn for all k. The resulting condition is stronger than the usual
requirement that the stepsize is simply bounded away from zero, but is crucial to the
analysis, which blends the techniques of section 2 with traditional Fejér monotonicity
arguments. Still, we have managed to substitute conditions on D(·, ·) and αk, which
are parts of the algorithm, for conditions on T , which is part of the problem to be
solved.

Finally, we allow the calculations required for the recursions (1.3) and (1.4) to
be performed approximately, as is likely to be necessary in practice. For the rescal-
ing minimization case of section 3, we adopt a constructive approximation criterion
inspired by [17] and [29]. However, our criterion, which is tailored to the proximal
minimization case, appears to be new. In the variational inequality analysis of sec-
tion 4, we use the simple, verifiable criterion of [14], although extension to the more
sophisticated criterion of [29] may well be possible.

In summary, the primary contributions of this paper are

• a novel convergence proof framework for a broad class of proximal algorithms;
• using this framework to establish subsequential convergence of a wide range

of proximal minimization algorithms (1.3) with differing stepsize parameters
for each coordinate—this result in turn leads to subsequential convergence



RESCALING GENERALIZED PROXIMAL METHODS 241

of a broad class of multiplier methods with differing penalty parameters for
each constraint;
• using the framework to show convergence of “interior” Bregman proximal

point algorithms for maximal monotone operators, with a novel stepsize con-
dition, but without the usual restrictive assumptions on the operator T .

The new proximal minimization approximation criterion of section 3 constitutes
an additional contribution.

2. Fundamental analysis. This section develops the fundamental analysis nec-
essary for our results. We concentrate our attention on the variational problem (1.2),
since it subsumes the minimization problem (1.1) under mild assumptions.

In order to simplify the notation, we denote, for i = 1, . . . , n,

d′i(xi, yi)
def
=

∂di
∂xi

(xi, yi),

d′′i (xi, yi)
def
=

∂2di
∂x2

i

(xi, yi).

We are now able to present the necessary assumptions on the functions di.
Assumption 2.1. For i = 1, . . . , n, the function di : R× (ai, bi)→ (−∞,∞] has

the following properties:
2.1.1. For all yi ∈ (ai, bi), di(·, yi) is closed and strictly convex, with its minimum

at yi. Moreover, int dom di(·, yi) = (ai, bi).
2.1.2. di is continuously differentiable over (ai, bi)×(ai, bi), and, for all yi ∈ (ai, bi),

d′′i (yi, yi) exists and is strictly positive.
2.1.3. For all yi ∈ (ai, bi), di(·, yi) is essentially smooth [24, Chapter 26].
2.1.4. There exist ρ, ε > 0 such that if either −∞ < ai < yi ≤ xi < ai + ε or

bi − ε < xi ≤ yi < bi < +∞, then ρ |d′i(xi, yi)| ≤ d′′i (yi, yi) |xi − yi|.
The assumption of strict convexity is standard in generalized proximal methods.

The assumption of twice-differentiability is also quite common, although many exist-
ing results require only a once-differentiable di. The essential smoothness assumption
makes the distance D act like a barrier function, forcing the iterates defined by the
recursion (1.4), and hence its approximate version (2.1) below, to remain in the in-
terior of the box B. In section 2.2, we specialize these assumptions to the case of
Bregman distances and ϕ-divergences, where similar comments can be made.

Finally, the fourth part of the assumption is new to the theory of generalized
proximal methods, but is not very restrictive in practice. In particular, we show
in section 2.2 that, for Bregman distances and ϕ-divergences, this condition can be
written in terms of the kernels used to obtain the regularizations, and that it holds
for most of the examples of which we are aware.

In addition, we make the following standard regularity assumption which, in view
of the barrier function properties of di, is required for any sensible application of (1.4).

Assumption 2.2. domT ∩ intB �= ∅.
We are now able to present the proximal minimization algorithm.
Rescaling Proximal Method for Variational Inequality (RPMVI).
1. Initialization: Let k = 0. Choose a scalar c > 0 and an initial iterate

x0 ∈ intB.
2. Iteration:

(a) Choose αk ∈ R
n
++ such that αki ≥ cmax

{
1, d′′i (xki , x

k
i )
}
for i = 1, . . . , n.

(b) Find xk+1 and ek+1 such that

ek+1 ∈ T (xk+1) + diag(αk)
−1∇1D(xk+1, xk).(2.1)
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(c) Let k = k + 1, and repeat the iteration.
To guarantee the convergence of the RPMVI, we need additional assumptions on

the stepsizes {αki } and the error sequence {ek}; see Assumption 2.3 below.
We define

γk
def
= ek − diag(αk−1)

−1∇1D(xk, xk−1),(2.2)

whence it is clear from (2.1) that γk ∈ T (xk) for all k ≥ 1.
Assumption 2.3. Let {βk} be a real sequence converging to zero. The error

sequence {ek}, the regularization functions d1, . . . , dn, and the stepsizes {αki }, i =
1, . . . , n, must be chosen in order to guarantee the following:

2.3.1.
∣∣eki ∣∣ ≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk.

2.3.2. If x̄ is an accumulation point of {xk}, i.e., there is an infinite set K ⊆ N

such that xk →K x̄, then, for each i = 1, . . . , n, either γki →K 0 or there is an
infinite set K′ ⊆ K such that xk−1

i →K′ x̄i.
Assumption 2.3 may seem artificial at this point, but sections 3 and 4 will describe

settings in which it is easily verifiable.

2.1. Convergence analysis. We assume throughout this section that Assump-
tions 2.1 and 2.2 hold and that sequences {αk}, {xk}, and {ek} conforming to the
recursions of the RPMVI algorithm and Assumption 2.3 exist. In sections 3 and 4
we will present conditions which, in more specific settings, guarantee the existence of
such sequences.

Lemma 2.4. Let x̄ ∈ R
n be a limit point of {xk}, i.e., xk →K x̄ for some infinite

set K ⊆ N. Then for i = 1, . . . , n,

lim
k→K∞

γki = 0 if x̄i ∈ (ai, bi),

lim inf
k→K∞

γki ≥ 0 if x̄i = ai,

lim sup
k→K∞

γki ≤ 0 if x̄i = bi.

(2.3)

Proof. For each i, we consider the three possible cases.
First, suppose i is such that x̄i ∈ (ai, bi). For the sake of a contradiction, assume

that γki �→K 0. Then, using Assumption 2.3.2, there is an infinite set K′ ⊆ K and a
ζ > 0 such that for all k ∈ K′, |γki | ≥ ζ and xk−1

i →K′ x̄i. Therefore

∣∣γki ∣∣ =

∣∣∣∣∣eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

∣∣∣∣∣
≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+
∣∣eki ∣∣

≤ 2

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk (Assumption 2.3.1)

≤ (2/c)
∣∣d′i(xki , xk−1

i )
∣∣+ βk (choice of αki )

→
K′

(2/c) |d′i(x̄i, x̄i)|+ 0

= 0 (the minimum of di(·, x̄i) is x̄i).

This result contradicts
∣∣γki ∣∣ > ζ, k ∈ K′.
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Next, consider the case x̄i = ai, and suppose that lim infk→K∞ γki < 0. Then,
using Assumption 2.3.2, there must be a ζ > 0 and an infinite set K′ ⊆ K such that
for all k ∈ K′, γki ≤ −ζ and xk−1

i →K′ x̄i. Then

ζ ≤ ∣∣γki ∣∣
=

∣∣∣∣∣eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

∣∣∣∣∣
≤ 2

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk

≤ 2

cd′′i (xk−1
i , xk−1

i )

∣∣d′i(xki , xk−1
i )

∣∣+ βk.

Let ε be as in Assumption 2.1.4. If there is an infinite set K′′ ⊆ K′ such that xk−1
i ≤

xki ≤ ai + ε for all k ∈ K′′, we can conclude from the assumption that

ζ ≤ 2

cd′′i (xk−1
i , xk−1

i )

∣∣d′i(xki , xk−1
i )

∣∣+ βk

≤ 2d′′i (xk−1
i , xk−1

i )

ρcd′′i (xk−1
i , xk−1

i )

∣∣xki − xk−1
i

∣∣+ βk

=
2

ρc

∣∣xki − xk−1
i

∣∣+ βk

→
K′′

0,

since xk−1 →K′ x̄i and βk → 0; but this conclusion contradicts ζ > 0. Therefore,
xki ≤ xk−1

i for sufficiently large k ∈ K′.
As di(·, xk−1

i ) achieves its minimum at xk−1
i , having xki ≤ xk−1

i implies that
d′i(x

k
i , x

k−1
i ) ≤ 0. Hence

γki = eki −
1

αk−1
i

d′i(x
k
i , x

k−1
i )

≥ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣− ∣∣eki ∣∣
≥ −βk
> −ζ

for sufficiently large k ∈ K′, a contradiction with γki ≤ −ζ < 0, k ∈ K′.
Finally, the case of x̄i = bi is analogous to the case of x̄i = ai.
Lemma 2.5. Let x̄ be a limit point of {xk}, i.e., xk →K x̄ for some infinite set

K ⊆ N. Then, {γk}K is bounded.
Proof. By Assumption 2.2, there must exist some x̃ ∈ domT ∩ intB. Let γ̃ ∈

T (x̃). The monotonicity of T implies that, for all k ≥ 0,

0 ≤ 〈xk − x̃, γk − γ̃〉 =

n∑
i=1

(xki − x̃i)(γ
k
i − γ̃i).(2.4)

We will show that unboundedness of {γk}K would contradict this inequality for some
sufficiently large k.
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If {γk}K is unbounded, there must exist an infinite K′ ⊆ K such that {γk}K′

converges in [−∞,∞]
n
, with at least one {γki }K′ unbounded. Lemma 2.4 implies that

for each unbounded coordinate i, either

γki →K′ +∞ and x̄i = ai

or

γki →K′ −∞ and x̄i = bi.

Therefore, for each unbounded coordinate of {γk}K′ , we have

(xki − x̃i)(γ
k
i − γ̃i)→K′ (ai − x̃i)(+∞) = −∞

or

(xki − x̃i)(γ
k
i − γ̃i)→K′ (bi − x̃i)(−∞) = −∞.

On the other hand, for coordinates such that {γki }K′ is bounded, (xki −x̃i)(γki −γ̃i)
is also bounded. Thus, for sufficiently large k ∈ K′ ⊆ K, 〈xk − x̃, γk − γ̃〉 must be
negative, contradicting (2.4).

Finally, the main convergence theorem for the RPMVI follows.
Theorem 2.6. If {xk} is a sequence generated by the RPMVI algorithm with

Assumptions 2.1, 2.2, and 2.3 holding, then all the limit points of {xk} are solutions
to the variational inequality problem (1.2).

Proof. Let x̄ be any limit point of {xk}, i.e., xk →K x̄, for some infinite set K ⊆ N.
From Lemma 2.5, we know that the corresponding sequence γk ∈ T (xk) is bounded.
Then, there must exist some K′ ⊆ K with γk →K′ γ̄ ∈ R

n. Since T must be outer
semicontinuous [27, Exercise 12.8(b)], it follows that γ̄ ∈ T (x̄). Lemma 2.4 implies
that

γ̄i = 0 if x̄i ∈ (ai, bi),
γ̄i ≥ 0 if x̄i = ai,
γ̄i ≤ 0 if x̄i = bi,

and these conditions are equivalent to 0 ∈ T (x̄) + NB(x̄).
Incidentally, it is possible to eliminate the requirement of twice-differentiability of

di(·, yi), at the cost of some additional complexity in the description of the method.
Specifically, consider replacing Assumption 2.1.4 with the condition that there exist
δ, ε > 0 and functions Li : (ai, bi)→ (δ,+∞) such that if either −∞ < ai < yi ≤ xi <
ai + ε or bi − ε < xi ≤ yi < bi < +∞, then

|d′i(xi, yi)| ≤ Li(yi) |xi − yi| .

If the stepsizes are now selected so that for some scalar c > 0, we have for all i =
1, . . . , n and k ≥ 0 that αki ≥ cLi(x

k
i ), then the conclusions of Theorem 2.6 continue

to hold. We may examine this variation of the analysis in subsequent research. The
present approach is equivalent to taking Li(yi) = (1/ρ)d′′(yi, yi), a natural choice
since d′′(yi, yi) measures the rate of change of d′(·, yi) around yi.

2.2. Some examples of di functions. We present some examples of di func-
tions that conform with Assumption 2.1. In particular, we show that two classes
of regularizations widely studied in the literature, Bregman distances [11, 13] and
ϕ-divergences [19], conform to the assumption under very mild restrictions.
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2.2.1. Bregman distances. Bregman distances were introduced in [8] and have
been studied in the context of proximal methods in [11, 12, 13], as well as many sub-
sequent works. To construct each regularization di(·, ·), one uses an auxiliary convex
function hi and defines di(xi, yi) = hi(xi) − hi(yi) − h′i(yi)(xi − yi). Nonseparable
distances can also be constructed in a similar way, but the separable case is the most
common.

The following properties guarantee that Assumption 2.1 holds for such di.
Assumption 2.7. For i = 1, . . . , n, the function hi : R → (−∞,∞] has the

following properties:
2.7.1. hi is closed, int domh = (ai, bi), and hi is twice continuously differentiable,

with a strictly positive second derivative throughout (ai, bi).
2.7.2. hi is essentially smooth.
2.7.3. There exist ρ > 0 and ε > 0 such that if either −∞ < ai < yi ≤ xi < ai + ε

or bi − ε < xi ≤ yi < bi < +∞, then ρ |h′i(xi)− h′i(yi)| ≤ h′′i (yi) |xi − yi|.
Note that Assumption 2.7.1 implies that each hi is strictly convex. Assump-

tion 2.7.3 corresponds to Assumption 2.1.4, since d′′i (xi, yi) = h′′i (xi). Fortunately, it
is not very restrictive. Consider the case of finite ai. Since limxi↘ai h

′
i(xi) = −∞, we

know that h′′i (xi) must be unbounded above as xi ↘ ai. To violate the assumption,
h′′i (xi) would have to oscillate unboundedly as xi ↘ ai. As far as we are aware, every
separable Bregman function proposed so far conforms not only to Assumption 2.7.3
but to a more stringent, easier-to-verify condition, as follows.

Lemma 2.8. If there is an ε > 0 such that for all xi ∈ (ai, ai + ε)∩R, h′′i is non-
increasing, and for all x ∈ (bi− ε, bi)∩R, h′′i is nondecreasing, then Assumption 2.7.3
holds.

Proof. Suppose that ai > −∞ and let xi, yi ∈ (ai, ai + ε) and yi < xi. Then

|h′i(xi)− h′i(yi)| =

∫ xi

yi

h′′i (z) dz ≤ h′′(yi) |xi − yi| .

Therefore, Assumption 2.7.3 holds with ρ = 1. The case bi <∞ is analogous.
Examples of functions hi for which all of these assumptions hold are
• hi(x) = 1

2x
2, with ai = −∞, bi = +∞,

• hi(x) = − log x, with ai = 0, bi = +∞,
• hi(x) = x log x, with ai = 0, bi = +∞,
• hi(x) = x log(ex − 1), with ai = 0, bi = +∞,
• hi(x) = xα − xβ , for α ∈ [1, 2] and β ∈ (0, 1), with ai = 0, bi = +∞.

Finally, we note that for finite ai we do not yet assume that hi(xi) must approach
a finite limit as xi ↘ ai, nor similarly for xi ↗ bi < +∞. Such an assumption is quite
common in the theory of Bregman distances [11, 13, 9, 29], but, similarly to [21],
it is not needed for the results of section 3 below. We will use it, however, in the
variational inequality analysis of section 4.

2.2.2. ϕ-divergences. The ϕ-divergence regularizations have been studied in
the context of proximal methods, for example, in [19], and more recently in [5, 3]. In
these works, the box considered is the positive orthant, i.e., B = R

n
+. An auxiliary

strictly convex scalar function ϕ is used to define the distance di, but this time by

di(xi, yi) = yiϕ

(
xi
yi

)
.(2.5)

The following hypotheses can be used to guarantee Assumption 2.1 when B = R
n
+.

Assumption 2.9. The function ϕ : R→ (−∞,+∞] is such that
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2.9.1. ϕ is closed and convex, with int domϕ = (0,+∞);
2.9.2. ϕ is twice differentiable on (0,+∞), with ϕ′′(t) > 0 for all t > 0;
2.9.3. ϕ(1) = ϕ′(1) = 0;
2.9.4. ϕ is essentially smooth;
2.9.5. There exists a ρ > 0 such that ρϕ′(t) ≤ ϕ′′(1)(t− 1) for all t ≥ 1.

Slight variations on these assumptions appear, for example, in [5, 3], together
with the following examples:

• ϕ(t) = t log t− t + 1;
• ϕ(t) = − log t + t− 1;
• ϕ(t) = 2(

√
t− 1)2.

The next lemma states that Assumption 2.9.5 above implies Assumption 2.1.4.
Lemma 2.10. Let (ai, bi) = (0,+∞) and di be defined as in (2.5). Then Assump-

tion 2.1.4 is equivalent to the existence of a ρ > 0 such that ρϕ′(t) ≤ ϕ′′(1)(t− 1) for
all t ≥ 1.

Proof. First we observe that

d′i(xi, yi) = ϕ′
(
xi
yi

)
,

d′′i (xi, yi) =
1

yi
ϕ′′
(
xi
yi

)
,

and thus

d′′i (yi, yi) =
1

yi
ϕ′′(1).

Therefore, Assumption 2.1.4 reduces to

∃ρ, ε > 0 : 0 < yi ≤ xi < ε ⇒ ρϕ′
(
xi
yi

)
≤ 1

yi
ϕ′′(1)(xi − yi).(2.6)

Taking xi ∈ (0, ε), letting yi range over (0, xi], and setting t = xi/yi, we obtain

∃ρ > 0 : ρϕ′(t) ≤ ϕ′′(1)(t− 1) ∀t ≥ 1.(2.7)

Conversely, if (2.7) is true, then (2.6) holds for an arbitrary choice of ε > 0.
We note that in [5], one assumes that the iterations are of the form

0 ∈ ∂f(xk+1) + diag(αk)−1∇1D(xk+1, xk),

for which each αki is greater than c/xki , c being a positive constant. In [2, 3], this
property is guaranteed by redefining the distance measure to be

d̃i(xi, yi) = yidi(xi, yi) = y2
i ϕ

(
xi
yi

)
, D̃(x, y) =

n∑
i=1

d̃i(xi, yi)

and assuming stepsizes bounded away from zero. In this case, the iteration is

0 ∈ ∂f(xk+1) + diag(α̃k)−1∇1D̃(xk+1, xk),

with lim infk→∞ α̃ki > 0 for all i. Defining αki = α̃ki /x
k
i and rewriting the iteration

with respect to D instead of D̃, we recover the rule from [5].
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It turns out that these techniques are a special case of our stepsize choice rule,
which gives in the case of a ϕ-divergence that

αki ≥ cd′′i (xki , x
k
i ) =

cϕ′′(1)

xki
,

which is identical if one redefines the constant factor c.
Thus, the reader should note that the class of ϕ-divergences described by As-

sumption 2.9 encompasses the regularizations studied in [5, 2, 3]. In particular, it
includes the classes Φ1 and Φ2 described in [3].

However, the stepsize rule in the RPMVI is more stringent than the one in [5, 2, 3],
as it also assumes that the stepsize is bounded away from zero. To overcome this slight
restriction, we point out that the assumption αki > c is used here only in the first part
of the proof of Lemma 2.4, and it can be replaced by the assumption that d′′i (yi, yi) is
continuous and strictly positive over (ai, bi). This condition holds for ϕ-divergences,
since d′′i (yi, yi) = (1/yi)ϕ

′′(1) > 0 for all yi > 0.
In this sense, the results here can be seen as extensions of those in [5, 2, 3].

3. Proximal minimization methods with rescaling. This section applies
the analysis of the RPMVI method to the minimization problem (1.1). We leave
Assumption 2.1 as a standing assumption; we also make the following standard reg-
ularity assumption, which in view of the barrier function properties of D, is required
for any sensible application of (1.3).

Assumption 3.1. dom f ∩ intB �= ∅.
Note that, since intB is open, this assumption implies that ri dom f ∩ intB �= ∅,

which implies that dom ∂f ∩ intB �= ∅. Then, using [24, Theorem 23.8], one can
show that the minimization problem (1.1) is equivalent to the variational inequality
problem (1.2) with T = ∂f . Moreover, Assumption 2.2 holds.

Then, we specialize the RPMVI to the following algorithm.
Rescaling Proximal Minimization Method (RPMM).
1. Initialization: Choose c > 0 and σ ∈ [0, 1]. Choose nonnegative scalar
sequences {sk} and {zk} with

∑∞
k=1 sk < ∞ and zk → 0. Let k = 0 and

x0 ∈ intB.
2. Iteration:

(a) Choose αk ∈ R
n
++ such that αki ≥ cmax

{
1, d′′i (xki , x

k
i )
}
for i = 1, . . . , n.

(b) Find xk+1, ek+1 ∈ R
n such that

ek+1 ∈ ∂f(xk+1) + diag(αk)−1∇1D(xk+1, xk),(3.1) ∣∣ek+1
i

∣∣ ≤ σ

αki

∣∣d′i(xk+1
i , xki )

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}
, i = 1, . . . , n,(3.2)

with the standing convention that min
{
sk+1/‖xk+1 − xk‖, zk+1

}
is zk+1

whenever xk+1 = xk.
(c) Let k = k + 1, and repeat the iteration.

Note that if one chooses sk, zk = 0 for all k, then (3.2) reduces to the “construc-
tive” criterion ∣∣ek+1

i

∣∣ ≤ σ

αki

∣∣d′i(xk+1
i , xki )

∣∣ ,
reminiscent of [29].
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3.1. Convergence analysis. We start by showing that the iteration step is well
defined if f is bounded below on B.

Lemma 3.2. If f is bounded below on B, then there is a unique point that solves
the iteration step of the RPMM with ek+1 = 0. Thus, a solution to (3.1)–(3.2) exists
if f is bounded below on B.

Proof. Let % be a lower bound of f on B. Given ζ ∈ R, the level set

{
x ∈ B

∣∣∣∣∣ f(x) +
n∑
i=1

1

αki
di(xi, x

k
i ) ≤ ζ

}
⊆
{
x ∈ B

∣∣∣∣∣
n∑
i=1

1

αki
di(xi, x

k
i ) ≤ ζ − %

}
.

This last set is a level set of
∑n
i=1(1/αki )di(·, xki ) on B, which must be bounded, since

by Assumption 2.1.1 this function attains its minimum at the unique point xk [24,
Corollary 8.7.1]. Therefore, f(·) +

∑n
i=1(1/αki )di(·, xki ) attains a minimum on B. The

uniqueness of the minimum follows from the strict convexity of D(·, xk).

To apply the convergence analysis of the previous section to the sequence {xk}
computed by the RPMM, it suffices to show that Assumption 2.3 holds. Verification
of Assumption 2.3.1 is straightforward.

Lemma 3.3. With the definition

βk
def
= min

{
sk

‖xk − xk−1‖ , zk
}

for all k ≥ 1, Assumption 2.3.1 holds for the RPMM.

Proof. From the nonnegativity of {sk} and {zk}, it follows that {βk} is also
nonnegative. Since zk → 0, one also has βk → 0. Moreover, since σ ∈ [0, 1],

∣∣eki ∣∣ ≤ σ

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk ≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk

for all k, so Assumption 2.3.1 holds.

As in (2.2), we define for all k ≥ 0 and i = 1, . . . , n,

γki = eki −
1

αk−1
i

d′i(x
k
i , x

k−1
i ),

and let γk ∈ R
n be the vector with elements γki .

Lemma 3.4. γk ∈ ∂f(xk) and γki (xk−1
i − xki ) ≥ −sk for all k ≥ 0 and i =

1, . . . , n.

Proof. The claim that γk ∈ ∂f(xk) follows from the definition of γk. For the
second claim, we have, using the convexity of di(·, xk−1

i ),

γki (xk−1
i − xki ) =

(
eki −

1

αk−1
i

d′i(x
k
i , x

k−1
i )

)
(xk−1
i − xki )

≥ − 1

αk−1
i

d′i(x
k
i , x

k−1
i )(xk−1

i − xki )︸ ︷︷ ︸
≤0

− ∣∣eki ∣∣ ∣∣xk−1
i − xki

∣∣

=

(
1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣− ∣∣eki ∣∣
) ∣∣xk−1

i − xki
∣∣ .
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Using (3.2), it then follows that

γki (xk−1
i − xki ) ≥

(
1− σ

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣−min

{
sk

‖xk − xk−1‖ , zk
}) ∣∣xk−1

i − xki
∣∣

≥ −min

{
sk

‖xk − xk−1‖ , zk
} ∣∣xk−1

i − xki
∣∣

≥ −min

{
sk

‖xk − xk−1‖ , zk
}∥∥xk−1 − xk

∥∥
≥ −sk.

Before proving the next result, we state a helpful technical lemma.

Lemma 3.5 (see [22, section 2.2]). Suppose that {ak}, {γk} ⊂ R are sequences
such that {ak} is bounded below,∑∞

i=1 γk exists and is finite, and the recursion ak+1 ≤
ak + γk holds for all k. Then, {ak} is convergent.

It is now possible to establish that Assumption 2.3.2 also holds.

Lemma 3.6. If f is bounded below on B, then {f(xk)} is convergent and∣∣γki ∣∣ ∣∣xk−1
i − xki

∣∣→ 0 ∀i = 1, . . . , n.

Hence Assumption 2.3.2 holds for the RPMM.

Proof. Using Lemma 3.4,

f(xk−1) ≥ f(xk) + 〈γk, xk−1 − xk〉
≥ f(xk)− nsk.

Then, recalling that {sk} is summable, Lemma 3.5 implies that {f(xk)} is a convergent
sequence. For i = 1, . . . , n, we also have

f(xk−1) ≥ f(xk) + 〈γk, xk−1 − xk〉
≥ f(xk)− (n− 1)sk + γki (xk−1

i − xki ).

Using Lemma 3.4 once again, it follows that

f(xk−1)− f(xk) + (n− 1)sk ≥ γki (xk−1
i − xki ) ≥ −sk.

Taking limits, we conclude that γki (xk−1
i − xki )→ 0.

Thus, Theorem 2.6 implies the optimality of all accumulation points of the se-
quence {xk}. We strengthen this observation below.

Theorem 3.7. Suppose that Assumptions 2.1 and 3.1 hold and that f is bounded
below on B. If {xk} has a limit point, then {f(xk)} converges to the infimum of f
on B, and all limit points of {xk} will be minimizers of f on B. A condition that
guarantees the existence of limit points of {xk} is the boundedness of the solution set,
or any other level set of f .

Proof. As just noted, Lemma 3.6 implies that Assumption 2.3.2 holds, and so As-
sumption 2.3 holds in its entirety. Assumption 2.1 holds by hypothesis, and, setting
T = ∂f , Assumption 3.1 implies Assumption 2.2. Thus, the conclusions of Theo-
rem 2.6 apply. Let x̄ be a limit point of {xk}, i.e., xk →K x̄, for some infinite set
K ⊆ N. Theorem 2.6 asserts that 0 ∈ ∂f(x̄) + NB(x̄); by Assumption 3.1, x̄ is a
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minimizer of f on B. Moreover, since Lemma 2.5 states that {γk}K is bounded, and
since {f(xk)} is convergent by Lemma 3.6,

min
x∈B

f(x) = f(x̄) ≥ f(xk) +

n∑
i=1

γki (x̄i − xki )→
K

lim
k→∞

f(xk) ≥ f(x̄).

Therefore, limk→∞ f(xk) = f(x̄).
Finally, the boundedness of any level set of a proper closed convex function implies

boundedness of all level sets [24, Corollary 8.7.1], and Lemma 3.6 states that {f(xk)}
is convergent; consequently it is bounded. Thus, {xk} is also bounded and has limit
points.

3.2. Multiplier methods. We now discuss applying the RPMM to the dual of
the convex program (1.5) to obtain multiplier methods. The use of proximal methods
to derive multiplier methods for constrained convex optimization is a now-classical
subject and may be traced to the seminal paper [26]. In the context of generalized
proximal methods, applications can be found, for example, in [30, 13, 19, 21, 31, 3, 17].
In this section, we consider only the case in which the proximal step is done exactly,
i.e., we will let ek = 0 for all k, as in [30, 13, 19, 17]. Unfortunately, our approximate-
step acceptance rule for the RPMM does not translate directly to an easily verifiable
acceptance criterion for an approximate solution of the penalized problem (3.5) below.
However, partial results in this direction may be obtained under stringent assumptions
on the original problem (1.5); see Appendix B. A criterion in the spirit of (3.2)
that does not depend on such assumptions is the subject of ongoing research [15].
We further observe that the approximation criteria of [17, 29] also do not translate
readily to a multiplier method setting. On the other hand, under the assumption that
the primal objective function g0 is strongly convex, [26, 21, 3] present some inexact
multiplier methods based on a rather different acceptance rule involving optimizing
the augmented Lagrangian function to within some tolerance ε of its minimum value.

Consider the convex problem (1.5), and let δC denote the indicator function of a
convex set C. Then we define f to be minus the dual function associated with (1.5),
plus δR

n
+

:

f(x)
def
= − inf

y∈Rm

{
g0(y) +

n∑
i=1

xigi(y)

}
+ δR

n
+

(x).(3.3)

The dual problem to (1.5) is then equivalent to the minimization of f . Furthermore,
we assume the following.

Assumption 3.8.
3.8.1. The primal problem (1.5) has a finite optimal value, and it conforms to the

Slater condition.
3.8.2. For all i = 1, . . . , n, the generalized distances di conform to Assumption 2.1

for ai ≤ 0, bi = +∞.2
3.8.3. There is an x̄ > 0 such that x̄ ∈ dom f , where f is as defined in (3.3).

This assumption has the following consequences: Assumption 3.8.1 implies that
the dual solution set is nonempty and bounded [16] and that there is no duality gap.
Assumption 3.8.3 implies that Assumption 3.1 holds for f as defined by (3.3).

2The case ai = −∞ is of interest because it includes the classical method of multipliers for
problems with inequality constraints [26], along with various extensions described in [13, 20].
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Under Assumption 3.8, if we fix ek = 0 for all k, then each iterate xk+1 of the
RPMM applied to the negative dual functional f may be calculated by the following
multiplier method whenever the unconstrained problems (3.5) have solutions:

αki ≥ cmax
{

1, d′′i (xki , x
k
i )
}
, i = 1, . . . , n,(3.4)

yk+1 ∈ Arg min
y∈Rm

{
g0(y) +

n∑
i=1

1

αki
d⊕i
(
αki gi(y), xki

)}
,(3.5)

xk+1
i = ∇1d

⊕
i

(
αki gi(y

k+1), xki
)
, i = 1, . . . , n.(3.6)

Here, “⊕” denotes the monotone conjugate [24, p. 111] with respect to the first ar-
gument, that is, d⊕i (ui, wi) = supxi≥0{uixi − di(xi, wi)}.3 Theorem 3.10 below gives

conditions guaranteeing that a yk+1 satisfying (3.5) exists.
We relegate to Appendix A the technical aspects of the proof of the equivalence of

(3.4)–(3.6) to the RPMM applied to the f defined in (3.3), since they are very similar
to earlier proofs for various special cases of (3.5)–(3.6), for example in [30, 13, 19, 21,
17]. In particular, Corollary A.4 establishes the equivalence of the two calculations.

Given this equivalence, Theorem 3.7 asserts the subsequential convergence of
the sequence {xk} to a dual solution of (1.5). For the primal sequence, however,
it has historically been harder to prove good behavior. For example, in the case of
Bregman distances, a guarantee of feasibility of primal accumulation points has relied
on stringent assumptions like R

n
+ ⊂ intB, as in [13], or strict complementarity [18].

In the case of the RPMM, with its strong stepsize restrictions, the feasibility, and
therefore optimality, of accumulation points of {yk} is easily demonstrated.

Theorem 3.9. Suppose that Assumption 3.8 holds. Pick a scalar c > 0, let
x0 ∈ R

n
++, and suppose that it is possible to obtain a sequence {(αk, xk, yk)} that

obeys the recursions (3.4)–(3.6). Then, {xk} is bounded and all its accumulation
points are solutions of the dual of (1.5). Moreover,

lim sup
k→∞

gi(y
k) ≤ 0, i = 1, . . . , n,(3.7)

lim
k→∞

n∑
i=1

xki gi(y
k) = 0,(3.8)

and {g0(yk)} converges to the optimal value of the primal problem (1.5). Therefore,
any accumulation point of {yk} solves the primal problem.

Proof. As shown in Corollary A.4, the sequence {xk} is the same as would be
computed by using the RPMM to solve the dual problem, that is, to minimize f . In
particular, {xk} and all its limit points must be nonnegative. Moreover, the Slater
condition implies that the dual function has bounded level sets. Then, the bounded-
ness of {xk} and the optimality of its limit points follow from Theorem 3.7.

Let us analyze the primal sequence. For each i = 1, . . . , n, (3.6) implies that

gi(y
k) =

1

αk−1
i

d′i(x
k
i , x

k−1
i ) + ζki ,

where ζki ∈ ∂δR+
(xki ). Hence, ζki − gi(y

k) plays the same role as γki in (2.2), with
eki = 0.

3The classical conjugate ψ∗ of a function ψ is defined [24, Chapter 12] via ψ∗(y) =
supx∈Rn {〈x, y〉 − ψ(x)} for any ψ : R

n → (∞,+∞]. The monotone conjugate of ψ is then the
classical conjugate of ψ + δR

n
+
, that is, ψ⊕(y) = supx≥0 {〈x, y〉 − ψ(x)}.
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Let {xk}K be any convergent subsequence of {xk}, and x̄ the respective accumu-
lation point, xk →K x̄. Lemma 2.4 implies that

0 = lim
k→K∞

gi(y
k)− ζki = lim

k→K∞
gi(y

k) if x̄i > 0,

0 ≥ lim sup
k→K∞

gi(y
k)− ζki ≥ lim sup

k→K∞
gi(y

k) if x̄i = 0.
(3.9)

As {xk} is bounded, the above relations imply that

0 ≥ lim sup
k→∞

gi(y
k), i = 1, . . . , n.(3.10)

Now, suppose for the purposes of contradiction that (3.8) does not hold. Then, for
some i = 1, . . . , n, there must be an infinite set K ⊂ N and an ε > 0 such that

∀k ∈ K, ∣∣xki gi(yk)
∣∣ ≥ ε.(3.11)

Since {xk} is bounded, there exists a refined subsequence K′ ⊆ K such that {xk}K′

is convergent, with limit x̄ ≥ 0. If x̄i > 0, then (3.11) contradicts (3.9). If x̄i = 0,
then (3.11) and (3.9) imply that gi(y

k) →K′ −∞. Since Lemma 2.5 asserts that
{ζki −gi(yk)} is bounded, we can conclude that ζki →K′ −∞. However, this divergence
would imply that xki should be 0 for infinitely many k ∈ K′ ⊆ K, once again a
contradiction of (3.11). Therefore,

lim
k→∞

xki gi(y
k) = 0, i = 1, . . . , n,(3.12)

and (3.8) holds.
Finally, we prove that {g0(yk)} converges to the optimal value. We may use (3.5),

(3.6), and the chain rule to see that yk minimizes the Lagrangian corresponding to
the primal problem with the fixed multiplier xk. Hence,

g0(yk) +

n∑
i=1

xki gi(y
k) = −f(xk).(3.13)

Let −f∗ denote the dual optimal value, which is equal to the primal optimal value
since there is no duality gap. Theorem 3.7 states that f(xk) → f∗. Taking limits in
(3.13) and using (3.12), it follows that

lim
k→∞

g0(yk) = −f∗.(3.14)

The feasibility and optimality of the accumulation points of {yk} are then conse-
quences of the continuity of gi, i = 0, . . . , n, (3.10), and (3.14).

Finally, it is natural to seek conditions under which the penalized subprob-
lems (3.5) must have solutions and the primal sequence {yk} is bounded. The following
result addresses these questions under the standard assumption of a bounded solution
set.

Theorem 3.10. Suppose that the primal solution set is bounded. Given any
αk > 0 and (xk, yk), there exist (xk+1, yk+1) satisfying the recursions (3.5)–(3.6).
Moreover, the primal sequence {yk} is bounded.

Proof. For the first assertion, it suffices to show that the penalized problems (3.5)
have solutions. Given any closed proper convex function ψ, we define its recession
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function ψ∞ via ψ∞(d) = limλ→∞ (ψ(z + λd)− ψ(z)) /λ, where z ∈ domψ may be
chosen arbitrarily [24, Theorem 8.5]. The boundedness of the primal solution set is
equivalent [7, section 5.3] to

(gi)∞(d) ≤ 0 ∀ i = 1, . . . , n ⇒ (g0)∞(d) > 0.(3.15)

Thus, the existence of a solution to (3.5) is a corollary of Lemma A.5 in the appendix,
along with the sum rule for recession functions [24, Theorem 9.3].

We now prove that {yk} is bounded. Theorem 3.9 shows that the sequences
{gi(yk)}, i = 1, . . . , n, are bounded above. From (3.15), unboundedness of {yk}
would imply that g0(yk) →K ∞ for some infinite K ⊆ N . But such unboundedness
would contradict g0(yk)’s convergence to the optimal value.

We remark that the penalty parameter adjustment rule (3.4), as discussed in
section 2.2.2, essentially subsumes, in a context broader than ϕ-divergences, the
corresponding rules described in [32] for the exponential method of multipliers and
in [5, 3, 4] for a general ϕ-divergence setting.

We end this section by giving some examples of d⊕i functions that may be de-
rived from separable Bregman distances (see section 2.2.1). Further examples may
be obtained from [21, 18, 28]. For a Bregman-derived distance, we have di(xi, wi) =
hi(xi)− hi(wi)− h′(wi)(xi − wi), whence

d⊕i (ui, wi) = sup
xi≥0
{uixi − (hi(xi)− hi(wi)− h′(wi)(xi − wi))}

= sup
xi≥0
{(ui + h′(wi))xi − hi(xi)}+ hi(wi)− wih

′(wi)

= h⊕(h′(wi) + ui) + hi(wi)− wih
′(wi),

where h⊕ denotes the standard monotone conjugate of h. Note that when such a
d⊕i (ui, wi) is used in the minimization operation in (3.5), the additive terms hi(wi)−
wih

′(wi) are constant and may be discarded. The following examples may now be
easily verified:

• If hi(xi) = 1
2x

2
i , then d⊕i (ui, wi) = 1

2 (max{ui + wi, 0}2−w2
i ), where the −w2

i

term may be disregarded; this choice gives the classical quadratic method of
multipliers for inequality constraints.
• If hi(xi) = xi log xi − xi, then d⊕i (ui, wi) = wie

ui − wi, where the −wi term
may be disregarded, yielding the exponentional method of multipliers.
• If hi(xi) = − log xi, then d⊕i (ui, wi) = − log(1− wiui).

4. Bregman interior point proximal methods for variational inequali-
ties. We now turn our attention to the box-constrained variational inequality problem
(1.2), where T : R

n ⇒ R
n is a (possibly set-valued) maximal monotone operator. In

this section, we confine ourselves to Bregman distances, as defined in section 2.2.
We augment Assumption 2.2 as follows.
Assumption 4.1. T is maximal monotone, the solution set of (1.2) is nonempty,

and there exists some x̃ ∈ domT ∩ intB.
Our goal is to show convergence of an approximate version of the iteration (1.4),

without further conditions on T . We modify and extend Assumption 2.7 as follows.
Assumption 4.2. For i = 1, . . . , n, the functions hi : R → (−∞,∞] have the

same properties specified in Assumption 2.7, and furthermore, hi is continuous on
[ai, bi] ∩ R. Moreover, defining h(x) =

∑n
i=1 hi(xi) and Dh(x, y) =

∑n
i=1 hi(xi) −

hi(yi) + h′i(yi)(xi − yi),
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4.2.1. for all x ∈ B and α ∈ R, the level set {y ∈ intB | Dh(x, y) ≤ α} is bounded;
4.2.2. if {xk} ⊂ intB converges to x ∈ R

n, then limk→∞Dh(x, xk) = 0;
4.2.3. rgeh′ = R.

Note that at finite ai’s and bi’s, the corresponding hi is now required to take a
finite value. The algorithm can now be stated.

Box Interior Proximal Point Algorithm (BIPPA).
1. Initialization: Let k = 0, and fix some scalar c > 0. Let x0 ∈ intB.
2. Iteration: Choose αk such that αk ≥ cmax{1, h′′1(xk1), . . . , h′′n(xkn)}. Find
vectors xk+1, ek+1 ∈ R

n such that

ek+1 ∈ T (xk+1) +
1

αk
∇1Dh(xk+1, xk)(4.1)

= T (xk+1) +
1

αk

(∇h(xk+1)−∇h(xk)
)
.

Let k = k + 1 and repeat the iteration.

4.1. Convergence analysis. First, we cite a result showing that the iteration
step of BIPPA is well defined.

Lemma 4.3 (See [13, Theorem 4(i)]). Under Assumption 4.2, there is a unique
point xk+1 that solves the iteration step (4.1) of the BIPPA with ek+1 = 0.

We note that it is shown in the unpublished dissertation [28] that (4.1) has a
unique exact solution even if Assumption 4.2.3 does not hold. This result permits one
to dispense completely with Assumption 4.2.3. However, the proof, while essentially
a minor modificiation of that of [1, Theorem A.1], is quite involved, so we do not
include it here.

To guarantee the convergence of the BIPPA, we must assume some vanishing
behavior for {ek}; we will use the assumptions of [14]. Although not as general as
the criterion used in RPMM, these conditions are better suited to our analysis, since
they will permit us to use properties associated with Fejér monotonicity, and are still
feasible to enforce computationally.

Assumption 4.4 (See [14]). The error sequence {ek} conforms to
∞∑
k=0

αk
∥∥ek+1

∥∥ < +∞;

∞∑
k=0

αk〈ek+1, xk+1〉 exists and is finite.

Note that this assumption implies that ‖ek‖ → 0, and therefore Assumption 2.3.1
holds with βk = ‖ek‖∞. We now state some necessary lemmas.

Lemma 4.5 (See [14, Lemma 2]). Let z ∈ (T + NB)−1(0). Then, for all k ≥ 0,

Dh(z, xk+1) ≤ Dh(z, xk)−Dh(xk+1, xk) + αk〈ek+1, xk+1 − z〉.(4.2)

Lemma 4.6. If Assumption 4.4 holds, then the sequence {xk} is bounded and
Dh(xk+1, xk)→ 0.

Proof. The result will follow from [14, Lemma 3] once we show that, for z ∈
(T + NB)−1(0),

E(z)
def
=

∞∑
i=0

αk〈ek+1, xk+1 − z〉
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exists and is finite. But

∞∑
i=0

∣∣αk〈ek+1, z〉∣∣ ≤ ∞∑
i=0

αk‖ek+1‖‖z‖,

and Assumption 4.4 implies that the right-hand side of this relation is finite. Hence,∑∞
i=0 αk〈ek+1, z〉 exists and is finite. Using Assumption 4.4 once more, we conclude

that E(z) exists and is finite.
We also use a key result from Solodov and Svaiter [29].
Theorem 4.7 (See [29, Theorem 2.4]). Let hi satisfy Assumption 4.2. Given

two sequences {xk} ⊂ B and {yk} ⊂ intB, either one of which is convergent, with
limk→∞Dh(xk, yk) = 0, then the other sequence also converges to the same limit.

This theorem implies that h(x) =
∑n
i=1 hi(xi) is a Bregman function in the clas-

sical sense [8, 10]. Using Theorem 4.7 and Lemma 4.6, we derive the following.
Corollary 4.8. Under Assumptions 4.1, 4.2, and 4.4, {xk} has at least one limit

point. Moreover, if for some infinite set K ⊆ N we have xk →K x̄, then xk−1 →K x̄.
Therefore, Assumption 2.3.2 holds.

Before presenting the main convergence theorem for the BIPPA, we present a
final technical lemma that will help us to prove the uniqueness of the accumulation
points of {xk}.

Lemma 4.9. Under Assumption 4.4, for all z ∈ (T + NB)−1(0), Dh(z, xk) con-
verges to a value in [0,+∞) which we will denote by d(z).

Proof. Consider any z ∈ (T + NB)−1(0). Then Lemma 4.5 implies that (4.2)
holds. Using Assumption 4.4 and Dh(xk+1, xk) ≥ 0, the hypotheses of Lemma 3.5 are
satisfied with ak = Dh(z, xk) and γk = αk〈ek+1, xk+1 − z〉. Therefore, {Dh(z, xk)}
converges, necessarily to a nonnegative value.

Now, the main convergence theorem follows.
Theorem 4.10. Under Assumptions 4.1, 4.2, and 4.4, {xk} converges to a solu-

tion of 0 ∈ T (x) + NB(x).
Proof. Let x̄ be an accumulation point of {xk}, i.e., xk →K x̄, for some infinite

set K ⊆ N. Such a point exists by Lemma 4.6. From Theorem 2.6, 0 ∈ T (x̄) +NB(x̄).
We now prove the uniqueness of the limit point: from Assumption 4.2.2, we

know that Dh(x̄, xk) →K 0. Then, d(x̄), as defined in Lemma 4.9, is zero. Suppose
that {xk} has another accumulation point xk →K′ x′ for some infinite set K′ ⊆ N.
We then have that Dh(x̄, xk) →K′ d(x̄) = 0, and it follows from Theorem 4.7 that
x′ = x̄.

Another possible application of our fundamental analysis is to try to generalize to
solutions of (1.2) the idea of adding the square of the Euclidean norm and an arbitrary
generalized distance to obtain Fejér monotonicity, as in [2, 3] for the special case of
ϕ-divergences. The difficulty here is to generalize the condition that defines the class
Φ2 in [3]. This topic is the subject of ongoing research.

Appendix A. Relationship between multiplier and proximal methods.
This appendix proves that the RPMM may be applied to minus the dual functional
associated with (1.5) via the multiplier method (3.5)–(3.6).

The proof is very similar to the derivation of a special case presented in [17,
section 4.2]. Therefore, we will follow the steps in [17], changing notation whenever
necessary to suit the present setting.

In particular, as in (1.5), g0 : R
m → R is the primal objective and g : R

m → R
n

is the constraint function, with components gi, i = 1, . . . , n. We assume that the
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gi, i = 0, . . . , n, are differentiable convex functions and that (1.5) is feasible. Let
f be the negative dual function defined in (3.3), which we assume to be somewhere
finite. Note that, since f is the pointwise supremum of a nonempty collection of affine
functions, it cannot take the value −∞, and is therefore proper. Let v(·) denote the
right-hand-side perturbation function associated with the optimization problem (1.5):

∀u ∈ R
n, v(u)

def
= inf {g0(y) | y ∈ R

m, g(y) ≤ u} .
It is well known that for all x ∈ R

n, f(x) = v∗(−x); see [25, Example 1 and Theo-
rem 7].

We also assume the following throughout this section.
Assumption A.1. D : R

n → (−∞,+∞] is a closed, proper, and strictly convex
function such that ri(domD ∩ R

n
++) ∩ ri dom f �= ∅.

D⊕ denotes the monotone conjugate of D, that is, the convex conjugate of D+δR
n
+

,

and D⊕(g(·)) denotes the usual composition of D⊕ and g.
We start by proving a slight modification of [6, equation (4.41)] which plays a

fundamental role in our analysis.
Lemma A.2. If Assumption A.1 holds, then

inf
y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf
u∈Rn

{
v(u) + D⊕(u)

}
= sup

x≥0

{− f(x)−D(x)
}
.

Proof. The definition of D⊕ implies that if a ≥ b, then D⊕(a) ≥ D⊕(b), i.e., it is
nondecreasing.4 Therefore,

inf
y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf
y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf
u∈Rn

inf
y∈R

m

g(y)≤u

{
g0(y) + D⊕(g(y))

}

≤ inf
u∈Rn

inf
y∈R

m

g(y)≤u

{
g0(y) + D⊕(u)

}

= inf
u∈Rn

{
v(u) + D⊕(u)}.

On the other hand,

inf
y∈Rm

{
g0(y) + D⊕(g(y))

} ≥ inf
y∈Rm

{
v(g(y)) + D⊕(g(y))}

≥ inf
u∈Rn

{
v(u) + D⊕(u)}.

Hence, the first equality is proved.
Finally, we use Fenchel’s duality theorem [24, Theorem 31.1] and the fact that

for all x ∈ R
n, −f(x) = −v∗(−x), to assert that

inf
u∈Rn

{
v(u)+D⊕(u)

}
= sup
x∈Rn

{−f(x)−D(x)−δR
n
+

(x)
}

= sup
x≥0

{−f(x)−D(x)
}
.

Theorem A.3. Suppose that Assumption A.1 holds. Suppose that the (strictly
convex) function f + D has the minimizer x̄ over R

n, and that there is ȳ such that

ȳ ∈ Arg min
y∈Rm

{g0(y) + D⊕(g(y))}.(A.1)

4This inequality is a simple consequence of the definition of the convex conjugate; see [17, Propo-
sition 3].
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Then x̄ = ∇D⊕(g(ȳ)).
Proof. From the definition of ȳ and the nondecreasing property of D⊕, we have

that g0(ȳ) = v(g(ȳ)). Then, defining ū = g(ȳ), Lemma A.2 states that

v(ū) + D⊕(ū) = inf
u∈Rn

{
v(u) + D⊕(u)

}
= sup
x∈Rn

{− f(x)−D(x)− δR
n
+

(x)
}
.

Hence, we may use [23, Theorem 2] to verify that

x̄ = arg max
x∈Rn

{− f(x)−D(x)− δR
n
+

(x)
} ∈ ∂D⊕(ū) =

{∇D⊕(g(ȳ)
)}
,

where the last equality is a consequence of D⊕ being the convex conjugate of a strictly
convex function, meaning that ∂D⊕ is single-valued throughout its domain [24, Chap-
ter 26].

Corollary A.4. Let di, i = 1, . . . , n, conform to Assumption 2.1, with B ⊇ R
n
+.

Suppose that there is an x̄ > 0 such that x̄ ∈ dom f . Given xk ∈ dom f , there is a
unique point xk+1 that satisfies (1.3). Moreover, if there exists a point yk+1 satisfying
(3.5), then (3.6) holds.

Proof. Since we assumed that primal problem (1.5) is feasible, the weak dual-
ity theorem asserts that the dual objective function is bounded above. Hence, f is
bounded below and the existence and uniqueness of xk+1 is given by Lemma 3.2.

Finally, let D(·) =
∑n
i=1

1
αk

i

di(·, xki ). Then, for all u ∈ R
n,

D⊕(u) =

n∑
i=1

1

αki
d⊕i (αki u, x

k
i ),

as the convex conjugate of a separable function is just the sum of the convex conjugates
of its components. Also, if we define hα(x) = αh(x) for some positive number and
convex function h, we have

h∗α(x) = αh∗
(x
α

)
.

The result then follows from the previous theorem.
Now, we analyze the existence of solutions to the penalized problem (A.1). In

order to do so, we will use the notation

P (·) def
= D⊕(g(·)).

Note that P is closed because D⊕ def
= (D + δR

n
+

)∗ must be closed [24, Theorem 12.2].
Lemma A.5. Suppose that Assumption A.1 holds, domD ⊇ R

n
++, and D is

bounded below. Let R = {d | (gi)∞(d) ≤ 0, i = 1, . . . , n}. Then

P∞(d) =

{
0 if d ∈ R
+∞ otherwise.

Proof. Let ȳ be a feasible point for (1.5). From the definition of P and g(ȳ) ≤ 0,

P (ȳ) = sup
z≥0

{〈z, g(ȳ)〉 −D(z)
} ≤ sup

z≥0

{−D(z)
}
.

Hence, as D is bounded below, ȳ ∈ domP . Therefore, since P is a closed convex
function,

P∞(d) = lim
t→∞

P (ȳ + td)− P (ȳ)

t
(A.2)
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for all d ∈ R
n.

As R
n
++ ⊆ dom(D+δR

n
+

) and is an open set, we have R
n
++ ⊆ dom ∂(D+δR

n
+

), and

from D⊕ = (D + δR
n
+

)
∗

we then obtain R
n
++ ⊆ rge ∂D⊕. Thus, for all x > 0, there

exists some γ ∈ R
n with x ∈ ∂D⊕(γ). So, for all x > 0, there exists some γ ∈ R

n

such that

∀ t > 0, ∀ d ∈ R
m : D⊕(γ) + 〈x, g(ȳ + td)− γ〉 − P (ȳ) ≤ P (ȳ + td)− P (ȳ).

Dividing both sides by t and taking limits as t → ∞, (A.2) implies that for all
x ∈ R

n
++,

n∑
i=1

xi(gi)∞(d) ≤ P∞(d).(A.3)

This summation is well defined since the recession function of a closed proper convex
function is also proper [27, Corollary 3.27]. Taking the limit as x → 0, we may
conclude that

∀d ∈ R
n, 0 ≤ P∞(d).(A.4)

Now, we consider two cases:
1. d ∈ R. Then

g(ȳ + td) ≤ g(ȳ) ∀ t ≥ 0 ⇒ P (ȳ + td)− P (ȳ) ≤ 0 ∀ t ≥ 0.

Dividing both sides by t and taking limits as t→∞, it follows that P∞(d) ≤ 0.
Hence, using (A.4), P∞(d) = 0.

2. d �∈ R. Without loss of generality, let us assume that (g1)∞(d) > ζ > 0. Let
x = (M, 1, 1, . . . , 1) ∈ R

n. From (A.3), it follows that

∀M > 0, Mζ +

m∑
i=2

(gi)∞(d) ≤ P∞(d).

Since (gi)∞(d) > −∞, i = 1, . . . ,m, we can take the limit as M → ∞ and
conclude that P∞(d) = +∞.

Appendix B. Inexact multiplier methods. In this appendix, we present con-
ditions that make it possible to use the RPMM acceptance criterion (3.2) to develop
a verifiable test for accepting an approximate solution to the penalized problem (3.5).
We retain the assumptions of section 3.2, in particular the differentiability assump-
tions and Assumption 3.8. Moreover, we assume that ai = 0, i = 1, . . . , n. Then d⊕i =
d∗i and, since di is essentially smooth, R++ = int dom di = dom∇1di = rge∇1d

∗
i [24,

Theorem 23.5].
Let σ ∈ [0, 1], {sk} be a nonnegative summable sequence, and {zk} be a nonneg-

ative vanishing sequence. Let yk+1 be an approximate solution of the unconstrained
minimization (3.5) and let xk+1 be defined by (3.6). Note that xk+1 > 0. To obtain
a subgradient of f at xk+1, as required by (3.1), let

ỹ ∈ Arg min
y∈Rm

{
g0(y) +

n∑
i=1

xk+1
i gi(y)

}
.
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Then, for any x ∈ R
n
+, we have from (3.3) that

f(x) ≥ −g0(ỹ)− 〈x, g(ỹ)〉
= −g0(ỹ)− 〈xk+1, g(ỹ)〉+ 〈xk+1 − x, g(ỹ)〉
= f(xk+1) + 〈x− xk+1,−g(ỹ)〉,

whence −g(ỹ) ∈ ∂f(xk+1). On the other hand, (3.6) and [24, Theorem 23.5] tell us
that g(yk+1) ∈ diag(αk)−1∇1D(yk+1, yk). Letting ek+1 = g(yk+1) − g(ỹ), we then
conclude that the acceptance criterion (3.2) will hold if, for i = 1, . . . , n,

∣∣gi(ỹ)− gi(y
k+1)

∣∣ ≤ σ
∣∣gi(yk+1)

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}
.(B.1)

Although ỹ is unknown, the above inequality may be still be verified if we suppose
that g0 is strongly convex with modulus ζ > 0, and the constraints gi, i = 1, . . . , n,
are globally Lipschitz continuous with respective constants Li, i = 1, . . . , n.5 Let

φk(y)
def
= g0(y) +

n∑
i=1

1

αki
d∗i
(
αki gi(y), xki

)

denote the augmented Lagrangian at step k ≥ 0. Note that φk inherits the strong
convexity of g0. Then, since ∇φk(ỹ) = 0,

ζ
∥∥ỹ − yk+1

∥∥ ≤ ∥∥∇φk(yk+1)
∥∥ .

Using the Lipschitz continuity of the constraints, it follows that

ζ

Li

∣∣gi(ỹ)− gi(y
k+1)

∣∣ ≤ ∥∥∇φk(yk+1)
∥∥ , i = 1, . . . , n.

Therefore, (B.1) holds whenever

∥∥∇φk(yk+1)
∥∥ ≤ ζ

Li

[
σ
∣∣gi(yk+1)

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}]
, i = 1, . . . , n.(B.2)

This last relation may be readily tested in practice. Furthermore, our final lemma
shows that if we choose sk+1, zk+1 > 0 and use a convergent algorithm to solve the
subproblem (3.5), then (B.2) must eventually be satisfied.

Lemma B.1. Suppose sk+1 and zk+1 are both positive, and let ȳ be any solution
of (3.5). There is a neighborhood Nof ȳ such that if yk+1 ∈ N , then (B.2) holds.

Proof. Define, for i = 1, . . . , n,

xi(y)
def
= ∇1d

∗
i

(
αki gi(y), xki

)
,

wi(y)
def
= ‖∇φk(y)‖ − ζ

Li

[
σ |gi(y)|+ min

{
sk+1

‖x(y)− xk‖ , zk+1

}]
,

where x(y) denotes the n-vector of the xi(y), and the min is taken to be zk+1, as
in our standing convention, whenever the enclosed denominator is zero. With this

5The strong convexity assumption is usual in the literature; see [3, Remark 5.2] and [21, section
10]. However, these results do not require Lipschitz continuity of the constraints.
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convention, the wi, i = 1, . . . , n, are continuous functions. Moreover, at ȳ we have

wi(ȳ) ≤ 0− ζ

Li

[
σ |gi(ȳ)|+ min

{
sk+1

‖x(ȳ)− xk‖ , zk+1

}]

≤ − ζ

Li
min

{
sk+1

‖x(ȳ)− xk‖ , zk+1

}
< 0,

the last inequality following from the positivity of sk+1 and zk+1. For each i, the
continuity of wi implies the existence of a neighborhood Ni of ȳ over which wi is
negative. Let N =

⋂n
i=1Ni, which is also a neighborhood of ȳ. Recalling (3.6), we

find that (B.2) holds if yk+1 ∈ N .
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Abstract. A set of new tests for linear programming presolving analysis is described. These
tests are applicable for linear programs with box constraints and positive or zero coefficients. Partial
applicability to general linear programming (LP) problems is discussed in a special section. The aim
is to detect and remove redundant rows and columns. The tests are based on the solution of some
auxiliary LP problems with one constraint and upper bounds on the variables. A comparison with
the Klein–Holm numerical test is presented. The tests are applied iteratively to the primal and dual
LP problems. The method is also applicable to LP problems with coefficients belonging to some
range of uncertainty, providing a robust procedure for scale reduction. A detailed numerical example
and results of numerical experiments are presented.

Key words. large-scale linear programming, redundancy, presolving, robust reduction
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1. Introduction.

1.1. Presolving analysis. In the last 30 years there has been a great interest
in methods for solving large-scale linear programming (LP) problems (see [9, 27, 7,
12, 20, 10]). This is of course motivated by a wide range of applications. Complex
methods based on ideas of aggregation and decomposition, as well as modified simplex
methods, barrier methods, and interior-point methods [12, 7, 10, 21, 25, 26, 2, 28], have
been implemented in various program tools and packages. Simultaneously, computing
capabilities have expanded enormously. In spite of this, there is still a big difference
between solving an LP problem of intermediate dimension (less than one thousand
variables and constraints) and of large dimension (more than ten thousand variables
and constraints). Therefore work on producing new versions and more effective solvers
is continuing.

Simultaneously, algorithms for presolving analysis have been developed. Usually
much more effort is needed for gathering the data for a large-scale problem than for
formulating the model and solving the problem on a computer. In the case that a large
part of the data is related to redundant constraints, implying that the corresponding
rows of inequalities will never be violated, it is much more effective to devote some
effort to presolving analysis, which aims to reduce considerably the size of the problem.
The same holds for redundant constraints in the dual problem, i.e., columns can be
removed that relate to variables that will definitely be on a zero or maximal bound.

In fact, large LP problems almost always contain a significant number of redun-
dant constraints and variables. So the idea is not to solve the LP problem as it was
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formulated, but first to use a special preprocessor that will make a preliminary anal-
ysis using a set of tests that evaluate rows and columns of the problem. An effort can
then be made to obtain more exact input data for the reduced medium size problem
which is then easily and exactly solved. This policy could be briefly expressed in the
sentence by Conan Doyle: “Throw off the whole of the impossible and then what
remains is the truth.” Various presolvers are described in [17] and in [5, 1, 2, 3, 11].

1.2. A prototype: An industrial planning problem. In 1971 a set of very
successful algorithms were developed in the former Soviet Union to solve a large
number of similar large-scale LP problems of industrial planning. The problem was
formulated as follows:

(LPP) ϕ = f ′x→ max, f ≥ 0,
Ax ≤ l, A ≥ 0,
0 ≤ x ≤ xu, l ≥ 0,

xu ≥ 0.

Here A ∈ Rm×n, l ∈ Rm, and x, xu, f ∈ Rn. We shall denote the rows of the
matrix A as a′i and the columns as sj . The dual problem has the form

(DLPP) φ = l′y + x′uu→ min, u ≥ 0,
f ≤ A′y + u, y ≥ 0.

Here y ∈ Rm, u ∈ Rn, y is the vector of dual variables related to the row constraints,
and u is the vector of dual variables related to the upper bounds of primal variables.
The primal variables, x, correspond to the vector of planned industrial production,
subject to upper limits xu. If some of these limits are not known, some large numbers
could be assigned instead. The “row constraints” Ax ≤ l are related to equipment,
supplied raw materials, personnel of different professions, and so on. A huge list
of production and equipment makes the dimensionality very large. Moreover, the
plant consists of several subdivisions, each of them generating their own constraints
of the same type. The objective is to maximize the planned profit of the plant. A
particular feature is that all coefficients of the problem are nonnegative. Only a few
of the constraints are known to be limiting—in particular the manpower with fixed
salary. A program based on the above approach was designed for this problem, and it
operated for a long period (about 15 years). The method made it possible to reduce
the initial large-scale problem (15000 × 5000) to the size of about 100 × 200. The
number of calculations in the single test for one row constraint is of the same order
as the problem of finding the median of a set of real numbers (see [8]), namely, O(q)
if the row contain only q nonzeros. Therefore the set of tests for all rows of the
matrix has approximately the same computational cost as a few steps of the sparse
simplex algorithm. Another advantage of the proposed method is that it is convenient
for implementation on a parallel computer because it deals with each row or column
separately. The innovative method was implemented on a slow Russian mainframe
computer, Minsk-22 (whose speed is about that of a PC-286), with only tape volumes;
that work is described in [13]. After a long hiatus, this research was continued recently
[14, 15, 16].

The algorithms in [13, 14] have only few features in common with the presolvers
quoted in [17, 5, 1, 11], and as far as we know, also with commercial presolvers (e.g.,
[26]).
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1.3. Organization of the paper. Here we present an extended version of our
method. The subsections related to results previously obtained in [13] are marked with
a *. Also the robust variant is especially considered. This means that we consider
the problem of finding rows and columns that are redundant for any values of input
data in some given range. This range is supposed to be determined by the user who
could, for example, point out the possible uncertainty of the data as a percentage (the
common situation).

The paper is organized as follows. In section 2 the general statements of the
method are made, and in sections 3–4 primal and dual tests are presented. A detailed
numerical example illustrates the method. Section 3.10 is devoted to the general
LP problem, to which almost all primal tests (but not dual tests) could be applied.
Results of numerical experiments with some random sets of problems are presented
in section 5. In sections 6–8, robust variants of the tests are derived.

2. General statements. In the previous work [13] we designed a method for
reducing large-scale problems of the form (LPP). The main idea was not to solve the
very large problem as it is formally defined by the model, but to find its real kernel,
extracting those constraints that will always be satisfied because of other constraints,
and those variables that can be set in advance (as a result of column redundancy) to
their bounds. For this purpose a number of auxiliary small tests are performed, each
of them being an LP problem with one row constraint and box-constrained variables.
These tests make it possible to find and remove some of the redundant rows. At the
same time upper limits for the dual variables are obtained (this theorem was proven
in [13], repeated below). As a result of the first step of the tests, the number of rows
is reduced, and possibly the structure of the problem can be changed by partitioning
(one could check whether the problem is separable). In the second stage, a similar
procedure is applied to the dual problem. This leads to a reduction in the number
of variables (columns). Then the first stage is repeated, and the testing procedure
becomes iterative. Often the problem dimensions reduce by about a hundred-fold,
and the sparse matrix becomes dense. In the end, any standard LP method can solve
the problem without difficulty, because its size becomes acceptable. Computer time
is significantly reduced. Our tests are more complicated than “simple presolving” [1]
but still inexpensive in terms of computational time.

First one calculates

lu = Axu.(2.1)

If, for some component i of the vectors l and lu, the inequality

li ≥ liu(2.2)

holds, then obviously row i of matrix A is redundant and may be removed. This
test is described in [17]. We assume that this operation already has been done and
inequality (2.2) is not satisfied.

For the case when the objective vector f has some zero components, the values
liu in (2.2) should be replaced by the values

C = {j : fj > 0}, ˜liu =
∑
j∈C

aijxju.

One could easily notice that for any feasible solution there exists a solution with the
same value of the objective and xj = 0 ∀j : fj = 0. This equivalent solution will
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also be feasible, because the values of the left-hand side in all rows of the constraints
Ax ≤ l of (LPP) will not increase. For example, if a′if = 0, then the constraint i in
(LPP) is redundant.

Now we shall consider the following auxiliary problem with one general constraint:

(CKLP) ψ = f ′x→ max, f ≥ 0,
d′x ≤ b, d ≥ 0,
0 ≤ x ≤ xu, b ≥ 0.

Here d ∈ Rn. The solution of this auxiliary problem, called the “continuous knapsack
problem,” is described in detail in [9, p. 517]. From the optimality conditions, and
denoting the dual variable for the single constraint as ξ, it follows that

∀(j : fj < djξ), xj = 0; ∀(j : fj > djξ), xj = xju.(2.3)

The optimal solution will include the variables xj1 , xj2 , . . . , xjp , ordered by the de-
creasing sequence fj/dj , such that

p∑
k=1

djkxjk = b.(2.4)

All variables xjk except the last will be set to the upper bound xju. The last vari-
able xjp , corresponding to fjp/djp , becomes the basic variable and is included in the
solution with an intermediate value:

0 ≤ xjp ≤ xjpu.(2.5)

The value fjp/djp will be equal to the dual variable ξ. If the basic variable is not equal
to an intermediate value (degenerate case), then we shall assume that the dual variable
ξ is equal to fjp/djp , where p is the last value of the sorted index corresponding to
the variable included in the solution on its upper bound. This means that xjp+1

= 0.

Let us consider the problem of type (CKLP), replacing the constraint d′x ≤ b
with a single constraint of the primal problem (LPP) from row i. This problem has
the form 


ϕi = f ′x→ max,
a′ix ≤ li,
0 ≤ x ≤ xu.

(2.6)

Let the dual variable analogous to ξ be denoted by yiu, and the vector ofm components
yiu by yu : yu ∈ Rm. We present the proof of the following theorem [13].

Theorem 2.1. For the pair of problems (LPP) and (DLPP) and the set of
problems (2.6) the following inequalities hold:

yi
∗ ≤ yiu ∀(i = 1, . . . ,m),(2.7)

where yi
∗ is the ith component of the optimal solution of the dual problem (DLPP).

Proof. Let us suppose that the opposite of inequality (2.7) holds for some i:

y∗i > yiu.(2.8)
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Then taking into account that A is nonnegative, one can easily check that the in-
equality

A′y∗ ≥ aiy∗i ≥ aiyiu(2.9)

must hold and that the second inequality in (2.9) is strict for any nonzero component
of the vector ai. For a nonzero aij from aijyui ≥ fj it follows that

aijy
∗
i > aijyiu ≥ fj .(2.10)

Let us denote the optimal solution of problem (2.6) as xai. Comparing the solutions
of (LPP) and (2.6), one finds from (2.10) that for any zero components of xai,

x∗j = 0 ∀ j : xaij = 0.(2.11)

We have already noticed that the dual variable in (2.6) was chosen in such a way that
for the degenerate case the basic variable xaijp is set to its upper bound. The column

corresponding to the basic variable of (2.6) must satisfy

aijpy
∗
i > aijpyiu = fjp .(2.12)

It follows that x∗jp = 0 and

a′ix
ai − a′ix∗ ≥ aijpxaijp > 0.(2.13)

Solving (2.6) we obtain

a′ix
ai = li.(2.14)

Subtracting (2.13) from (2.14) one finds that a′ix
∗ < li and hence y∗i = 0, contradicting

assumption (2.8).
Using the upper limits of the dual variables in (2.7), one can add additional box

constraints to the dual problem (DLPP). Theorem 2.1 provides a link between tests
on the primal and dual problems.

3. Primal tests.

3.1. Upper bound for the objective. Suppose (CKLP) is aggregated, mean-
ing that all row constraints of (LPP) are summed with nonnegative coefficients. The
aggregated problem has an equal or greater feasible set than the feasible set of the pri-
mal problem (LPP). Therefore the optimal value of the objective for the aggregated
problem can be used as an upper bound for the objective of the original problem
(LPP). In the simpest case, all the coefficients of aggregation are zero except the
coefficient for constraint i, which is equal to 1. Another possible way to obtain such
an evaluation is to use aggregation with a vector of weights yu and to solve the cor-
responding aggregated problem


ϕu = f ′x→ max,

y′uAx ≤ y′ul,
0 ≤ x ≤ xu.

(3.1)

The objective value of any such aggregated problem is an upper bound for the objec-
tive of (LPP):

ϕ ≤ ϕu, ϕ ≤ ϕi.(3.2)
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Denoting

ϕil = min
i
ϕi, ϕl = min(ϕil, ϕu),(3.3)

we obtain the inequality

f ′x ≤ ϕl.(3.4)

This can be considered as an additional constraint of (LPP) that may be useful for
detecting redundancy in row constraints.

3.2. Test 1*. Let us consider the problem

αfi = a′ix→ max,
f ′x ≤ ϕl,
0 ≤ x ≤ xu.

(3.5)

If the test

αfi < li(3.6)

holds, then the ith row of A is redundant. This test is more effective if the value ϕl is
nearly optimal. The test could also be useful for the basis identification problem after
the optimal solution is obtained by an interior-point method, in which the optimal
objective value is known almost exactly [4].

3.3. Test 2. It is important to note that a similar test could be performed not
only with the objective vector f but with any positive vector; for example, it is useful
to take a vector e of ones: e ∈ Rn, ei = 1 (i = 1, . . . , n). In this case we solve the
problems 


εi = e′x→ max,

a′ix ≤ li,
0 ≤ x ≤ xu.

(3.7)

The value of εl is found as

εl = min
i
εi.(3.8)

Now solving the problem 

αεi = a′ix→ max,
e′x ≤ εl,
0 ≤ x ≤ xu,

(3.9)

we obtain the test

αεi < li.(3.10)

If this inequality holds, it means that the row constraint i is redundant. The advantage
of using Test 1* (3.6) with the objective vector f is the opportunity to find upper
bounds for the dual variables. These are then used in the set of tests for the dual
problem.
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3.4. Test 3. Another set of tests can be found that uses the properties of the fea-
sible set itself, without using additional constraints that are implied by the objective
function, or by some other vector as mentioned above.

One could choose the kth row of A and solve the problem

αki = a′ix→ max,
a′kx ≤ lk,

0 ≤ x ≤ xu.
(3.11)

If the inequality

αki < li(3.12)

holds, then the ith row of A is redundant.

3.5. Test 4. Instead of a single row k, the sum (aggregate) of rows could be
used for this test. For example, the aggregated row constraint with the weights of
upper bounds on dual variables, yu, can be used for this purpose. Then we obtain


αai = a′ix→ max,

y′uAx ≤ y′ul,
0 ≤ x ≤ xu.

(3.13)

If the inequality

αai < li(3.14)

now holds, it means that the row constraint i is redundant.

3.6. Test 5. Another approach is to choose for the aggregation the rows that
have a significant number of nonzero elements and have a low value of the normalized

right-hand side, defined as lni = li/
√∑n

j=1 a
2
ij . Different heuristic procedures can be

used for this normalization [28].
For the test (3.12) the most restrictive row constraint should be used, for which

a good candidate is the row k from the equality

k = argmin
i
ϕi.(3.15)

Let us assume that

ϕl = ϕil.(3.16)

We shall define sets L and F as

L = {x : a′kx ≤ lk; 0 ≤ x ≤ xu},
F = {x : f ′x ≤ ϕl; 0 ≤ x ≤ xu}.(3.17)

From (3.15)–(3.17) one can see that

L ⊆ F.(3.18)

According to (3.18) the tests that use the constraint a′kx ≤ lk are preferable.
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3.7. Separation of LP problem. The redundant rows that are removed from
Ax ≤ l could have been the rows that prevent the problem from being separated into
a set of problems of lower dimension. Hence, if a significant number of rows have been
removed, it is worthwhile to check whether this opportunity for separation exists. If
so, then all further analysis will proceed for each subproblem separately.

3.8. Klein–Holm test: A comparison. Klein and Holm [18] have suggested
a test that we present now for comparison. Let us determine the functions


Si = li − a′ix,
Smik = Si − Sk → min,
0 ≤ x ≤ xu.

(3.19)

If the inequality

Smik > 0(3.20)

holds, then the constraint i is redundant. Test (3.20) is weaker than test (3.12),
meaning that it is able to detect a smaller number of redundant rows. If the inequality
(3.20) is satisfied, then it implies that


Si − Sk ≥ Smik > 0,
0 ≤ x ≤ xu,
li − a′ix > lk − a′kx ≥ 0.

(3.21)

Inequality (3.12) follows from (3.21). The opposite statement is wrong. Let us multi-
ply the constraint a′kx ≤ lk by a small positive value ε. Then, when ε tends to zero,
the term Sk in (3.19) will be less than any given positive value, and test (3.20) will
tend to test (2.2), which is clearly weaker than test (3.12).

3.9. Integer and mixed-integer linear programs. Notice that all Tests 1–4
for the primal problem are also valid for the detection of row redundancy in integer
or mixed-integer problems of type (LPP).

3.10. General LP problems: A discussion. The main scheme of iterative
application of the primal and dual tests is based on Theorem 2.1, which assumed that
all conditions of (LPP) are satisfied.

The general LP problem can be considered in the form

(LPG) ϕ = f ′x→ max,
Ax | l,
0 ≤ x ≤ xu,

where | denotes = or ≤, and the components of A, l, and f can be of any sign. The
set of primal tests separately (without dual tests) can be applied to (LPG) but the
existence of negative coefficients may decrease the effectiveness. The evaluations are
valid with some minor changes. Instead of (CKLP), the general continuous knapsack
linear problem (CKLPG) must be solved without conditions of nonnegativeness of
the coefficients. But (CKLPG) can be easily transformed to the form of (CKLPGT)
below, which can be solved by the same algorithm as (CKLP) [9, p. 517]. There is no
difference in this algorithm if some of fj are negative, so the only remaining problem
is to make all the coefficients dj in a single row constraint nonnegative. Let us define

P = {j : dj ≥ 0}, N = {j : dj < 0}.
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The following transformation of variables is applied:

∀j ∈ N, Yj = xju − xj , ψN =
∑
j∈N fjxuj ,

Yuj = xuj , 0 ≤ Yj ≤ Yuj , bm = b−∑j∈N djxuj .

Now (CKLPG) will be transformed to the form of (CKLPGT):

(CKLPGT) ψ =
∑
j∈P f

′
jxj −

∑
j∈N f

′
jYj + ψN → max,∑

j∈P djxj +
∑
j∈N | dj | Yj ≤ bm,

∀j ∈ P, 0 ≤ xj ≤ xuj , ∀j ∈ N, 0 ≤ Yj ≤ Yuj .

One can see that in (CKLPGT) all the variables have nonnegative coefficients in a
single row constraint and thus the algorithm in [9, p. 517], described in section 2, can
be applied. If bm < 0, then this problem is infeasible. One must also note that if the
inequality ∑

j∈P
djxuj ≤ b

is satisfied, then this constraint is redundant. This test replaces (2.2) in the case of
(LPG).

In the first stage we temporarily assume that all constraints are inequality con-
straints of the form ≤ (which is not a restriction, because otherwise they can be
multiplied by −1). If primal tests indicate redundancy of the constraint i, and it
is really an equality constraint, then it means that this constraint is not redundant
but infeasible. One must hold a list of equality constraints (as described in [26]) and
compare it with the list of redundant constraints generated by the primal tests. For
example, if the row constraint i is an equality, then inequality (3.6), as a result of
solving problem (3.5), implies infeasibility of the primal problem.

3.11. Numerical example. Here we present an example to illustrate some of
the tests. The data has the following values:



f ′ = (3, 2, 1),
x′u = (1, 1, 2),

A =


 1 5 20

2.5 3 1
3 1 5


 ,

l′ = (5, 6.2, 3.8).

(3.22)

We note that the presolver of the program LIPSOL [28] does not detect any redun-
dancy in this problem.

Calculating the vector lu according to (2.1), we obtain

l1u = 46.0, l2u = 7.5, l3u = 14.0.

This means that the simple test (2.2) does not show any row redundancy. Applying
the Klein–Holm test, we obtain

S1 = 5 − x1 − 5x2 − 20x3,

S2 = 6.2− 2.5x1 − 3x2 − x3,

Sm21 = min
0≤x≤xu

(1.2− 1.5x1 + 2x2 + 19x3) = −0.3,
S3 = 4.5 − 3x1 − x2 − 5x3,

Sm31 = min
0≤x≤xu

(−0.5− 2x1 + 4x2 + 15x3) = −2.5.
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Fig. 3.1. Constraints on the (x1, x2) plane. ∗ denotes upper bound for the objective.

From (3.20) one can see that this simple test does not show any redundancy. Solving
(CKLP) with rows i = 1, 2, 3, one obtains

ϕ1 = 4.6, y1u = 0.4,
ϕ2 = 6.1333, y2u = 0.6667,
ϕ3 = 4.8, y3u = 1.0.

Using aggregation with weights yu for (3.1) we obtain

y′uA = (5.0667, 5.0, 13.6667), y′ul = 9.9333,
ϕu = 4.9467.

As a result, we obtain from (3.3) that

ϕl = 4.6, k = argmin
i
ϕi = 1.

The projections of the constraints in the plane (x1, x2) together with the upper bound
on the objective, ϕl ≥ f ′x, are shown in Figure 3.1.

Notice that the objective for the aggregated equation with weights yu, namely
ϕu = 4.9467, is very close to the best evaluation, ϕl = 4.6. Now solving problem
(3.5), and using in sequence the rows i = 2, 3 as the objective, one obtains

αf2 = 5.5 < l2 = 6.2,

αf3 = 12.6 > l3 = 3.8.
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This means that according to test (3.6), the row constraint with i = 2 is redundant,
while the redundancy of row constraint i = 3 is not detected.

Although we already know that row i = 2 is redundant, let us demonstrate how
the other tests proceed. Let us use test (3.12). The row constraint k = 1 here is used
as a single row constraint in problem (3.11). As a result one obtains

α1
2 = 4.9 < l2 = 6.2,

α1
3 = 4.0 > l3 = 3.8.

This test also shows that row i = 2 is redundant. Now let us check test (3.10), which
is similar to (3.6) but uses the vector e of ones instead of the objective vector f , as
mentioned above. From (3.7) we obtain

ε1 = 1.8, ε2 = 3.5667, ε3 = 1.9333,

which gives the minimal value for i = 1, namely,

εl = min
i
εi = 1.8, argmin

i
εi = 1.

Now solving (3.9) for rows i = 2, 3, one obtains

αε2 = 5 < l2 = 6.2, αε3 = 9 > l3 = 3.8.

Thus row i = 2 is again detected as redundant according to test (3.10). Also test
(3.14) based on the single aggregated constraint can be used. Solving (3.13) with
rows i = 2, 3, one obtains

αa2 = 5.4342 < l2 = 6.2,
αa3 = 4.7805 > l3 = 3.8.

This means that row i = 2 is redundant according to this test as well. The example
is continued below with dual tests.

4. Dual tests.

4.1. Auxiliary inequalities*. Similar tests can be performed for the dual prob-
lem by evaluating the columns of A and detecting two types of column redundancy:
columns that correspond to zero variables and columns that correspond to variables
attaining their upper bounds. For the optimal values of the dual variables the follow-
ing inequality holds:

l′y + x′uu ≤ ϕl.(4.1)

This inequality is the corollary of the equality of the optimal values of the objective
for the primal and dual problems (see the duality theorem of [9]). Multiplying the
inequality in (DLPP) by the vector xu and summing, one obtains

y′lu + u′xu ≥ f ′xu.(4.2)

From (4.1) and (4.2) it follows that y′(lu − l) ≥ f ′xu − ϕl. From (4.1) it also follows
that l′y ≤ ϕl. Thus we have obtained two inequalities for the dual variables y, without
the dual variables u.
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4.2. Test 6*. Let us consider the problem


ηjl = s′jy → min,
(lu − l)′y ≥ f ′xu − ϕl,

0 ≤ y ≤ yu.
(4.3)

If

ηjl > fj ,(4.4)

then, taking into account that u is nonnegative, it follows from (DLPP) that xj = 0
and the jth column is redundant.

4.3. Test 7*. In a similar way, the following problem could be considered:

ηju = s′jy → max,
l′y ≤ ϕl,
0 ≤ y ≤ yu.

(4.5)

If

ηju < fj ,(4.6)

then uj > 0 and xj = xu, from which another type of column redundancy follows.
Before these problems are solved, a simple test to find the columns that satisfy the
condition

s′jyu < fj(4.7)

must be performed. Inequality (4.7) means that the primal variable xj is equal to
its upper bound. This test also automatically detects the empty columns that could
have been produced during the previous iterations of the reduction tests.

Removing the column that corresponds to the variable that is fixed on its upper
bound implies the recalculation of vectors l and lu and also of the value ϕl.

4.4. Test 8*. One more dual test can be suggested. First the value of µ is
determined by solving 


µ = l′y → min,

(lu − l)′y ≥ f ′xu − ϕl,
0 ≤ y ≤ yu.

(4.8)

Then the following set of problems must be solved, one for each column j:

ηmjl = s′jy → min,

l′y ≥ µ,
0 ≤ y ≤ yu.

(4.9)

If

ηmjl > fj ,(4.10)

then the variable xj is fixed at zero value, and this column is redundant.
Let us define the sets U and M as follows:

U = {y : (lu − l)′y ≥ f ′xu − ϕl, 0 ≤ y ≤ yu},
M = {y : l′y ≥ µ, 0 ≤ y ≤ yu}.

Taking (4.8) into account, one can easily see that U ⊂ M. It follows that test (4.10)
is less effective than test (4.4), but numerically it is somewhat cheaper.
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4.5. Test 9. Another test can be suggested. This test uses the vector p of ones:
p ∈ Rm, pj = 1 (j = 1, . . . ,m). A lower bound for p′y is calculated from




γl = p′y → min,
(lu − l)′y ≥ f ′xu − ϕl,

0 ≤ y ≤ yu.
(4.11)

Now the lower bound of s′jy is calculated from



ηγjl = s′jy → min,

p′y ≥ γl,
0 ≤ y ≤ yu.

(4.12)

The test has the form

ηγjl > fj .(4.13)

If this is satisfied, variable xj must be set to its zero bound and column j must be
removed from the matrix A. The vectors f, xu must be changed accordingly.

4.6. Test 10. An upper bound on p′y can be calculated from

γu = p′y → max,
l′y ≤ ϕl,
0 ≤ y ≤ yu.

(4.14)

An upper bound on s′jy is calculated similarly:



ηγju = s′jy → max,

p′y ≤ γu,
0 ≤ y ≤ yu.

(4.15)

This test has the form

ηγju < fj .(4.16)

If this is satisfied, variable xj must be set to its upper bound. It is clear that removing
redundant columns can cause separation of the original LP problem. As soon as
a significant number of redundant columns is removed, this possibility should be
checked.

4.7. Numerical example (continuation). Using the numerical example from
section 3.11 and taking into account that the redundancy of row i = 2 was detected,
we can assume that y2 = 0. Let us see what follows from the dual tests. According
to (4.7) we obtain


s′1yu = 1 · 0.4 + 3 · 1 = 3.4 > f1 = 3,
s′2yu = 5 · 0.4 + 1 · 1 = 3 > f2 = 2,
s′3yu = 20 · 0.4 + 5 · 1 = 13 > f3 = 1.

(4.17)

Thus we have not detected any xj that must be set to its upper bound.
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According to (4.3) we obtain


l1u − l1 = 41, l3u − l3 = 10,
f ′xu − ϕl = 3 · 1 + 2 · 1 + 1 · 2− 4.6 = 2.4,

41y1 + 10y3 ≥ 2.4,
0 ≤ y1 ≤ y1u = 0.4, 0 ≤ y3 ≤ 1,
η1l = 0.0585 < f1 = 3,
η2l = 0.2353 < f2 = 2,
η3l = 1.17 > f3 = 1.

(4.18)

From test (4.4) and the last inequality of (4.18) it follows that variable x3 is redundant—
it must be set to zero. Solving problem (4.5) and checking tests (4.6), we obtain


5y1 + 3.8y3 ≤ ϕl = 4.6,
η1u = 3.16 > f1 = 3,
η2u = 2.6842 > f2 = 2.

(4.19)

These tests do not detect any variables that must be set at their upper bounds.
Now only variables x1, x2 remain, and the next iteration of the primal tests can be
performed. Notice that row i = 2 and column j = 3 have been removed. Checking
test (2.2), we obtain

l1u = 1 · 1 + 5 · 1 = 6 > l1 = 5,
l3u = 3 · 1 + 1 · 1 = 4 > l3 = 3.8.

This simple test does not show any further row redundancy. Solving (2.6), with
already reduced dimensions (i = 1, 3; j = 1, 2), and (3.1) we obtain

ϕ1 = 4.6, y1u = 0.4,
ϕ3 = 4.8, y3u = 1,
ϕu = 4.6, ϕl = 4.6,

which means that the value ϕl has remained unchanged. Solving (3.5) for i = 3, we
obtain

αf3 = 3.8 ≤ l3 = 3.8.(4.20)

Thus we see that the row inequality i = 3 is redundant. This implies that only the
single row inequality i = 1 remains, and the optimal solution corresponds to the
objective value ϕ∗ = ϕl = 4.6, as found earlier.

5. Numerical experiments. We designed a toolbox, IVITEST (using the MAT-
LAB language [22]), to demonstrate the algorithms. (The toolbox together with
test problems will be sent by e-mail on request.) It consists of two main programs:
ivitest5.m for (LPP) and ivitest5n.m for general LP problems (see section 3.10). In
the first program both primal and dual tests proceed iteratively indicating redundant
rows and columns, and in the second program only primal tests are applied to detect
redundant and infeasible rows. Two iterations are applied to each problem.

A special set of random nonsparse data was used for the numerical experiments.
First a random matrix and objective were generated and then some data were modified
to provide more stiff constraints and more unequal coefficients in the objective. The
results were compared with the solution obtained using the primal simplex method
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Table 5.1
Results of numerical experiments (MATLAB/CPLEX).

Name Nonnegative Size Basic var. k1 k2 k3 k5

primer2000 yes 2000×100 3 1993 42 40 -
primer6000 yes 6000×100 5 5991 41 40 -
primer6200 yes 6000×200 4 5990 53 40 -
primer12200 yes 12000×200 51 11990 51 40 -
primer2000nr no 2000×100 - 1891 - - 101
primer6000n no 6000×100 5 5690 - - 0

by (CPLEX) [26]. In Table 5.1 we show the name of the problem, its type and size.
Next, the number of basic variables (from CPLEX), k1, and k2, k3, or k5 are shown.
Here k1 is the list of redundant row constraints indicated by the tests, k2 is the list of
indicated variables on the zero bound, k3 is the list of indicated variables on the upper
bound, k5 is the list of indicated infeasible constraints. Altogether six problems were
tested: four of (LPP) type, one with some negative coefficients and some infeasible
constraints (primer2000nr), and one with some number of negative coefficients and
redundant row constraints (primer6000n). We noticed that for the feasible problems
the upper bound of the objective ϕl that was found by our tests was very close to
the optimal value found by CPLEX (not shown in the table). One can see that these
problems are very redundant and the redundancy is detected by the proposed tests
rather well.

6. Robust analysis of LP problems. It is well known that the input data are
not exact for most large-scale problems. The usual situation is that each data item
is given in some range, e.g., as a relative deviation from the given value. Of course
there are some exactly known parameters (e.g., 0 or 1), for which the upper and lower
ranges coincide. Now we have the important problem, to develop scale reduction
algorithms that are robust with respect to the uncertainty of the input data. All the
evaluations must be valid while the parameters of the problem (matrix and objective
coefficients, values of bounds, etc.) are known only within some given range.

Let us consider the set of (LPP) problems including the bounds of uncertainty
for the data. They have the following form:

(RLPP) ϕ = f ′x→ max, f ≥ f ≥ f ≥ 0,

Ax ≤ l, A ≥ A ≥ A ≥ 0,

0 ≤ x ≤ xu, l ≥ l ≥ l ≥ 0,
xu ≥ xu ≥ xu ≥ 0,

where the matrix A consists of elements aij , and the matrix A consists of elements
aij , and where the inequalities should be interpreted elementwise. A set of (DLPP)
problems (RDLPP) is formed accordingly. For this set of LP problems the method
must be modified. Usually the matrix coefficients aij are the most uncertain. There
is a waste of expensive work to find more exact values for data that will not be used
and actually not needed for the solution of the problem. The reduction of the size
of the problem as a result of the robust presolving tests permits us to detect the
potentially nonredundant input data for which more certainty might be needed. For
the following analysis we need to evaluate the inequalities for the interval sets of
the data in (RLPP). The related problems of interval analysis were investigated in
[23, 24, 19].
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7. Robust primal tests.

7.1. Simple robust test SR. First let us look at the simple test (2.2). In order
for it to be valid for all sets of data in (RLPP), it must be modified to the form

lu = Axu,

liu < li.

This test gives sufficient conditions for redundancy of the row constraint i for all
(LPP) that are included in the set (RLPP).

7.2. Test 1R. Let us now consider the robust variant of test (3.6). This test
involves an inequality, where we must replace the left-hand side by its upper bound
and the right-hand part by its lower bound. Thus it has the following form:

αfi < li,(7.1)

where the value αfi is the upper bound for αfi that must be found. αfi is a solution
of the auxiliary (CKLP) problem, where the single row constraint f ′x ≤ ϕl must

correspond to the widest feasible set according to (RLPP), and the objective αfi =
a′ix→ max must correspond to the upper bound on the set of objective vectors. Thus
we obtain 


αfi = a′ix→ max,
f ′x ≤ ϕl,
0 ≤ x ≤ xu.

(7.2)

Here the value ϕl is not yet defined and must be found as the upper bound on ϕl
(3.3). This value in turn is the minimum of the set of upper bounds on values of the
objective of (LPP), namely, ϕi (2.6) and ϕu (3.1). All of these upper bounds must
be found for the complete set of (LPP) problems according to (RLPP). The value of
the upper bound on ϕi can be found in the form


ϕi = f

′
x→ max,

a′ix ≤ li,
0 ≤ x ≤ xu.

(7.3)

The vector of dual variables found from the solutions of the set of problems (7.3) is
denoted by yr. Its components do not, in general, constitute upper bounds on the
dual variables for the full set (RLPP), in contrast to the certain case. This vector can
be used to find an aggregated upper bound on the objective of the set (RLPP). One
obtains 


ϕu = f

′
x→ max,

yr ′Ax ≤ yr ′l,
0 ≤ x ≤ xu.

(7.4)

Now the values ϕil and ϕl can be found as

ϕil = min
i
(ϕi), ϕl = min(ϕil, ϕu).(7.5)

With this value ϕl, (7.2) can be solved and the robust test (7.1) can be checked. If
this inequality holds, then row i is redundant for the full set (RLPP). We note that
other coefficients of aggregation can also be used in the calculation of ϕu, and a test
similar to (7.1) will still be robust.
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7.3. Test 2R. Using the vector e of ones we can obtain a robust analogue of
test (3.10) in the form

αεi < li.(7.6)

Inequality (7.6) implies redundancy of the row constraint i for the full set (RLPP).
Here the value αεi is found by solving the (7.7)–(7.9), which follows.

First the values εi must be found by solving the set of problems


εi = e′x→ max,

aix ≤ li,
0 ≤ x ≤ xu.

(7.7)

The values εi are upper bounds on the value e′x for the set of inequalities in (RLPP).
The least of these upper bounds can be found as

εl = min
i
εi.(7.8)

The value αεi can now be found from the problem

αεi = a′ix→ max,
e′x ≤ εl,
0 ≤ x ≤ xu.

(7.9)

This value constitutes an upper bound on the left-hand side of the row constraint i
for the set of inequalities in (RLPP). Thus all values that are needed for test (7.6)
are now found.

The row constraints that are detected as redundant according to one of the robust
tests described above can be removed from (RLPP).

7.4. Test 3R. The robust analogue of test (3.12) has the form

αki < li.(7.10)

Here the value αki is the solution of the problem

αki = a′ix→ max,

a′kx ≤ lk,
0 ≤ x ≤ xu.

(7.11)

7.5. Test 4R. When the aggregated constraint for the set of inequalities in
(RLPP) is calculated, it is also of use for another robust test of redundancy on row i.
This test presents the robust analogue of test (3.14), and it can be used in the form

αai < li.(7.12)

Here the value αai is the solution of the problem


αai = a′ix→ max,

yr ′Ax ≤ yr ′l,
0 ≤ x ≤ xu.

(7.13)
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8. Robust dual tests.

8.1. Inequalities for uncertain duals. Dual problems for each (LPP) in the
set (RLPP) constitute the set (RDLPP). For all of them the inequalities (4.1) and
(4.2) must be satisfied. From this it follows that


lu = Axu,

l′y + x′uu ≤ ϕl,

y′lu + x′uu ≥ f ′xu.
(8.1)

Combining the second and third inequalities from (8.1), one obtains

y′(lu − l) ≥ f ′xu − ϕl.(8.2)

From the second inequality in (8.1) it also follows that

l′y ≤ ϕl.(8.3)

One can see that (8.2) and (8.3) follow from (DLPP) and (RLPP).

8.2. Test 6R. Using inequality (8.2) we can solve the problem


η
jl

= s′jy → min,

y′(lu − l) ≥ f ′xu − ϕl,
0 ≤ y.

(8.4)

Now we obtain the robust test

η
jl
> f j .(8.5)

If (8.5) is satisfied, then variable xj must be set to zero for all problems in (RLPP),
and column j can be removed.

8.3. Test 7R. Another robust test can be obtained by solving the problem

ηju = s′jy → max,
l′y ≤ ϕl,
0 ≤ y.

(8.6)

This test has the form

ηju < f
j
.(8.7)

If (8.7) is satisfied, then variable j must be set to its upper bound for all problems
in (RLPP). It means that for the next step of presolving analysis, column j must be
removed, sjxju must be subtracted from l, and sjxju must be subtracted from l in
(RLPP).

8.4. Test 8R. Similarly to (4.8), another set of robust dual tests can be derived.
First a lower bound for l′y can be found by solving


µ = l′y → min,

(lu − l)′y ≥ f ′xu − ϕl,
0 ≤ y.

(8.8)
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Now the following set of problems can be solved, one for each column j:



ηm
jl

= s′jy → min,

ly ≥ µ,
0 ≤ y.

(8.9)

If

ηm
jl

> fj(8.10)

holds, it means that column j must be set to zero for the whole set (RLPP). This
test can be used instead of test (8.5), though it is clearly weaker. It does not have
the advantage of test (8.5) because in the robust case the single row constraint for
the maximization (8.6) and for the minimization (8.8) have different coefficients.

8.5. Test 9R. Instead a cheaper test can be used, based on the vector p of ones.
First a lower bound on p′y is calculated from


γ
l

= p′y → min,

(lu − l)′y ≥ f ′xu − ϕl,
0 ≤ y.

(8.11)

Now a lower bound for column j is calculated from



ηγ
jl

= s′jy → min,

p′y ≥ γ
l
,

0 ≤ y.

(8.12)

The test has the form

ηγ
jl
> f j .(8.13)

If (8.13) is satisfied, then variable j must be set to its zero bound for all of (RLPP).

8.6. Test 10R. An upper bound for the artificial constraint can also be calcu-
lated in the form 


γu = p′y → max,
l′y ≤ ϕl,
0 ≤ y.

(8.14)

Now the upper bound for column j is calculated from

ηγju = s′jy → max,

p′y ≤ γu,
0 ≤ y.

(8.15)

This test has the form

ηγju < f
j
.(8.16)

If (8.16) is satisfied, variable j must be set to its upper bound for all of (RLPP).
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9. Conclusions. In this paper we have presented a new set of presolving tests for
both primal and dual large-scale LP problems with zero or positive coefficients. The
tests do not replace “simple tests” (see [1]) but should be done in addition, resulting
in a more significant size reduction. They are based on the inherent properties of
large-scale LP problems, rather than on exceptions like empty rows or singletons.
Robust tests are suggested for evaluation in the case of uncertain input data. The
remaining data for the reduced size problem may be obtained anew, thus reducing
uncertainty in the final solution.
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Abstract. In this paper we extend the design of a class of composite-step trust-region SQP
methods and their global convergence analysis to allow inexact problem information. The inex-
act problem information can result from iterative linear system solves within the trust-region SQP
method or from approximations of first-order derivatives. Accuracy requirements in our trust-region
SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy require-
ments are stated in general terms, but we show how they can be enforced using information that
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our global convergence theory is equal to that of Dennis, El-Alem, and Maciel [SIAM J. Optim., 7
(1997), pp. 177–207]. If all iterates are feasible, i.e., if all iterates satisfy the equality constraints,
then our results are related to the known convergence analyses for trust-region methods with inexact
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1. Introduction. In this paper we study a class of trust-region sequential quad-
ratic programming (SQP) algorithms for the solution of minimization problems with
nonlinear equality constraints. Our aim is to extend the design of these algorithms
and their convergence theory to allow the use of inexact problem information that
originates from inexact first-order derivative information or from the use of inexact
linearized constraint equation or adjoint equation solves.

The problems we are interested in are of the form

min f(y, u)

subject to (s.t.) C(y, u) = 0,
(1.1)

where y ∈ R
m, u ∈ R

n−m, f : R
n −→ R, C : R

n −→ R
m, m < n. Our theory assumes

that f and C are at least twice continuously differentiable. Variants of the algorithms,
however, require only first-order derivative information. Our research is motivated by
discretized optimal control problems [16, 18, 21], parameter identification problems
and inverse problems [28, 31], and design optimization [4, 24]. In these applications,
y represents the discretized state variables, u represents the discretized controls, pa-
rameters, or design variables, respectively, and the nonlinear constraint C(y, u) = 0
is the discretized state equation. For many of the above-mentioned applications, the
solution of linear equations of the type

Cy(y, u)z = d or Cy(y, u)
T z = d,(1.2)
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de Coimbra, FCT, and Praxis XXI 2/2.1/MAT/346/94.

283



284 MATTHIAS HEINKENSCHLOSS AND LUÍS N. VICENTE

where y, u, and d are given and where Cy(y, u) and Cu(y, u) are the partial Jacobians
with respect to y and u, respectively, is costly and has to be accomplished by iterative
methods. In optimal control, parameter identification, or optimal design problems,
equations (1.2) are related to the linearized state equations and the adjoint equa-
tions, respectively, and it is often desirable to solve such equations using application-
specific methods such as Krylov subspace, multigrid, or domain decomposition meth-
ods. Hence exact solutions of linear systems (1.2) are not available; only approximate
solutions with a specified residual tolerance can be obtained.

Composite-step trust-region SQP methods are used successfully to solve large
scale optimization problems. However, existing convergence theories, which are nicely
reviewed in [5], rely on the exact solution of linear systems of the form (1.2). Most ex-
isting implementations of SQP methods use dense or sparse linear algebra methods to
accomplish the linear system solves. As we have mentioned before, this is not feasible
for several of the applications we have in mind. Our main motivation in this paper is
the control of inexactness arising from iterative system solves (1.2) in composite-step
trust-region SQP methods. However, our assumptions on the inexactness are more
general and cover inexact first-order derivative information. The novel aspect of our
work is the ability to deal with inexact first-order derivative information or inexact
linearized constraint equation solves. Of course, we also allow the inexact solution of
trust-region subproblems, which is a standard ingredient of trust-region convergence
theories and implementations.

In the context of Newton methods for nonlinear equations and unconstrained
optimization, the control of inexactness is relatively well understood; see, e.g., [2, 7,
12, 13, 14, 25]. Generalizations of the inexact Newton method concepts to the local
convergence analysis of inexact SQP methods can be found, e.g., in [8, 9, 15, 22,
26]. In [23] global convergence of line-search reduced SQP methods is studied. The
influence of inexact problem information on the global convergence of trust-region
SQP methods, however, is to our knowledge not yet studied. Our analysis and our
assumptions on inexactness are different from those of [23]. In particular, our bounds
on the inexactness do not rely on Lipschitz constants, derivative bounds, and other
quantities that are difficult to obtain in practice. Our bounds on the inexactness
depend on quantities that are readily available in our algorithms.

We give a global convergence analysis of a class of composite-step trust-region
SQP algorithms for (1.1), which are reviewed in [5, section 15.4] and [10, section 4].
In the absence of inexactness, our global convergence theory is that of [10]. If all
iterates are feasible, i.e., if all iterates satisfy C(yk, uk) = 0, then our results are
related to the convergence analyses in [3, 5] for trust-region methods with inexact
function and gradient information for unconstrained optimization.

This paper is organized as follows. In section 2 we will consider the reduced
problem min f(y(u), u) obtained from (1.1) by eliminating the variables y. We will
briefly discuss the convergence analyses in [3] and [5, sections 8.4, 10.6] for trust-region
methods with inexact function or gradient information for the reduced problem. This
will reveal some useful problem information and it will later motivate our assumptions
on the inexactness for problem (1.1). Section 3 contains a brief review of composite-
step trust-region SQP algorithms and of their global convergence analyses given in
[10]. Our inexact trust-region SQP algorithms and their global convergence analyses
will be described in section 4. Assumptions on the inexactness in section 4 are stated
in a general way. In section 5 we will discuss how they could be satisfied in an
implementation. In the conclusions, section 6, we point to some possible extensions.
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We use the following notation. We often set x = (y, u) and use zy and zu to repre-
sent the subvectors of z ∈ R

n corresponding to the y and u components, respectively.
The SQP iterates are indexed by k and the symbol of a function with subscript k is
used to represent the value of that function at xk and, possibly, λk. For instance,
fk = f(xk) = f(yk, uk). The vector and matrix norms used are the �2 norms, i.e.,
‖ · ‖ = ‖ · ‖2. The l × l identity matrix is denoted by Il.

2. Trust-region methods for the black-box formulation with inexact-
ness. Under the assumptions of the implicit function theorem, problem (1.1) can be
locally reduced to an unconstrained problem in the variable u. Since the type of inac-
curacies we are interested in for (1.1) relate to function and gradient inaccuracies for
the reduced problem, it is worthwhile to review existing results on trust-region meth-
ods with inexact function and gradient evaluations for unconstrained problems. To
simplify this presentation, we impose conditions that ensure that (1.1) is equivalent to
an unconstrained problem. We suppose that for all u ∈ R

n−m the constraint equation
C(y, u) = 0 has a unique solution y, and that Cy(y, u) is invertible for all (y, u) with
C(y, u) = 0. In this case the implicit function theorem guarantees the existence of
a twice continuously differentiable function u �→ y(u) defined through the solution of
C(y, u) = 0. Instead of (1.1) we can consider the equivalent reduced problem

min f̂(u) = f(y(u), u).(2.1)

This problem is also called the black-box formulation of the optimization problem
(1.1) because the solution of C(y, u) = 0 is treated as a black-box in the optimization
algorithms for (2.1). It can be shown that

∇f̂(u) =W (y, u)T∇f(y, u)|y=y(u) =W (y, u)T∇�(y, u, λ)|y=y(u),λ=λ(u),(2.2)

where

W (y, u) =

( −Cy(y, u)−1Cu(y, u)
In−m

)
,(2.3)

and λ(u) solves Cy(y(u), u)
Tλ = −∇yf(y(u), u). For details see, e.g., [11, 19].

Now suppose that the nonlinear equations C(y, uk) = 0 cannot be solved exactly
for yk = y(uk) but that an approximation ỹ(uk) of yk = y(uk) is computed by applying

an iterative method to C(y, uk) = 0. In this case the function f̂ and its gradient
can not be evaluated exactly. Gradient computation also requires the solution of a
linear system of the form Cy(yk, uk)

T z = −∇yf(yk, uk); if such systems are solved
iteratively, this will introduce another source of inexactness in the gradient. How does
one need to control the inexactness in function values and gradients in trust-region
methods for (2.1)? The influence of inexact gradient information is analyzed in [3],
[5, section 8.4], [35] (for a detailed literature review see [5, p. 296]), and the influence
of inexact function evaluations is studied in [5, section 10.6]. We want to ensure
that our inexactness assumptions for the trust-region method for (1.1) are compatible
with the existing inexactness assumptions for trust-region methods for (2.1) in the
case that the SQP iterate (yk, uk) satisfies C(yk, uk) = 0. Therefore we briefly review
the theory in [5, sections 8.4, 10.6].

In a trust-region method for the solution of (2.1), one computes an approximate
solution of

min
‖su‖≤∆k

m̂k(su)
def
= f̂k + ĝTk su +

1
2s
T
u Ĥksu,
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where ĝk is an approximation of ∇f̂(uk), and Ĥk replaces ∇2f̂(uk). The decision
about the acceptance of uk + (su)k as the next iterate and about how to update

the trust-region radius is based on the ratio of actual decrease âredk = f̂(uk) −
f̂(uk + (su)k) to predicted decrease p̂redk = m̂k(0) − m̂k((su)k). Let η2 ∈ (0, 1) be

the constant so that the trust-region radius is reduced if and only if âredk/p̂redk <
η2, and let η1 ∈ (0, η2] be the constant so that the step is rejected if and only if

âredk/p̂redk < η1.
In [5, section 8.4] it is shown that if the relative gradient error satisfies

‖ĝk −∇f̂(uk)‖/‖ĝk‖ ≤ ξ < (1− η2)/2,(2.4)

then global convergence of the trust-region algorithm to stationary points can be
guaranteed. This accuracy requirement for the gradient approximation is rather weak.

Inexact evaluation of f̂ influences the computation of âredk. The influence of
inexact function evaluations is analyzed in [5, section 10.6]. It is sufficient that

|f(ỹ(uk), uk)− f(y(uk), uk)| ≤ η0p̂redk,

|f(ỹ(uk + (su)k), uk + (su)k)− f(y(uk + (su)k), uk + (su)k)| ≤ η0p̂redk,
(2.5)

where η0 < 1
2η1. In particular, these accuracy requirements guarantee that if the

ratio of actual decrease to predicted decrease indicates acceptance of the step, i.e., if

âredk/p̂redk ≥ η1, where âredk is computed with the inexact function values, then one

still obtains a sufficient decrease f̂(uk)− f̂(uk+(su)k) ≥ (η1− 2η0)p̂redk in the exact
function values. Note also that the accuracy requirement for f(ỹ(uk), uk) depends on
the trust-region step (su)k, which is not known when f(ỹ(uk), uk) is computed the

first time. Therefore, f(ỹ(uk), uk) might have to be recomputed if p̂redk becomes too
small to meet the required accuracy requirement. For more details see [5, section 10.6].

3. Trust-region SQP methods. In this section we describe the class of
composite-step trust-region algorithms assuming exact f and C derivative information
and assuming exact solutions of linear systems of the form (1.2). Our representation
follows [10, 11]. This section is needed to introduce some basic terminology and nota-
tion, as well as to describe later on what can go wrong if f or C derivative information
or linear system (1.2) solutions are inexact.

3.1. The main components of our composite-step trust-region algo-
rithms. Given a local minimizer x∗ = (y∗, u∗) for problem (1.1), there exists a
Lagrange multiplier λ∗ such that the gradient ∇�(x∗, λ∗) of the Lagrangian function

�(y, u, λ) = f(y, u) + λTC(y, u)

is zero. If Cy(x∗) is assumed to be nonsingular, then the Lagrange multiplier λ∗ is
determined by ∇y�(x∗, λ∗) = ∇yf(x∗)+Cy(x∗)Tλ∗ = 0, and the first-order necessary
optimality conditions can be written as

∇u�(x∗, λ(x∗)) = W (x∗)T∇f(x∗) = 0,

∇λ�(x∗, λ(x∗)) = C(x∗) = 0,
(3.1)

where W (x∗) is given by (2.3).
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Given approximations xk = (yk, uk) and λk for the solution (y∗, u∗) and the corre-
sponding Lagrange multiplier λ∗ of (1.1), SQP algorithms compute an (approximate)
solution of the quadratic programming (QP) problem

min qk(s)
def
= �(xk, λk) +∇x�(xk, λk)T s+ 1

2s
THks,

s.t. Cy(xk)sy + Cu(xk)su + C(xk) = 0,
(3.2)

whereHk is a symmetric approximation to the Hessian∇2
xx�(xk, λk) of the Lagrangian

at (yk, uk, λk) or the Hessian itself, and then generate a new iterate (yk+1, uk+1) from
this QP solution and, possibly, the corresponding Lagrange multiplier λk+1. To en-
sure global convergence, a trust-region condition of the form ‖s‖ ≤ ∆k is imposed.
However, the linear constraints in (3.2) and this trust-region constraint can be in-
compatible. To deal with the possibility of incompatible constraints, composite-step
trust-region algorithms, many of which are reviewed in [5, section 15.4], [10, section 4],
split the step s into a sum of two steps sn and st. We assume that Cy(xk) is invertible.
In this case the step decomposition takes the form

s =

(
sy

su

)
= sn + st =

(
sny

0

)
+

(
sty

su

)
.

3.1.1. The quasi-normal step toward feasibility. First, composite-step
trust-region algorithms compute a so-called quasi-normal step snk, which is respon-
sible for moving towards feasibility. Since we assume that Cy(xk) is invertible, the
y-component of snk is an approximate solution of

min ‖Cy(xk)sny + C(xk)‖
s.t. ‖sny‖ ≤ ∆k,

(3.3)

and the u-component of snk is given by (snu)k = 0. Subproblem (3.3) is not solved
exactly. A rather coarse solution is sufficient to guarantee basic global convergence.
The quasi-normal component snk is required to satisfy

‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2 ≥ κ1‖Ck‖min{κ2‖Ck‖,∆k},(3.4)

where κ1 and κ2 are positive constants independent of k.

3.1.2. The tangential step toward optimality. In a second step, composite-
step trust-region algorithms compute a so-called tangential step stk, which is respon-
sible for moving towards optimality but has to maintain linearized feasibility, i.e.,
has to be in the null-space of the linearized constraints. The tangential step is an
approximate solution of

min qk(s
n
k + st)

s.t. Cy(xk)s
t
y + Cu(xk)su = 0,

‖su‖ ≤ ∆k.

(3.5)

From the constraints in (3.5) we see that st = Wksu, where Wk is defined in (2.3).
Therefore we can write

qk(s
n
k + st) = qk(s

n
k) +

(
WT
k (Hks

n
k +∇x�k)

)T
su +

1
2s
T
uW

T
k HkWksu(3.6)
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and pose problem (3.5) entirely in su:

min q̂k(su)
def
= qk(s

n
k) +

(
WT
k (Hks

n
k +∇x�k)

)T
su +

1
2 (su)

TWT
k HkWk(su),

s.t. ‖su‖ ≤ ∆k.
(3.7)

Reduced SQP algorithms do not approximate the Hessian ∇2
xx�(xk, λk) but the

reduced Hessian WT
k ∇2

xx�(xk, λk)Wk. In this case WT
k HkWk in (3.7) is replaced by

the reduced Hessian approximation Ĥk, and the term Hks
n
k is approximated. The

details of the latter approximation are not important in our global analysis and we
refer to, e.g., [1] for more details.

The tangential step does not need to solve (3.5) or (3.7) exactly. It is sufficient that
the tangential component (su)k satisfies a fraction of the Cauchy decrease condition
associated with the trust-region subproblem (3.7). In other words, (su)k has to provide
as much decrease in the quadratic q̂k(su) as the decrease achieved in the direction
−∇q̂k(0) = −WT

k (Hks
n
k +∇x�k) inside the trust-region. It can be proved that such a

condition implies

q̂k(0)− q̂k((su)k) ≥ κ4‖WT
k (Hks

n
k+∇x�k)‖min

{
κ5‖WT

k (Hks
n
k+∇x�k)‖, κ6∆k

}
,

(3.8)
where κ4, κ5, and κ6 are positive constants independent of k.

3.1.3. Measuring progress and evaluating the trial step. To decide about
acceptance of the step sk = snk+s

t
k, we follow [10] and use the augmented Lagrangian

merit function

L(x, λ; ρ) = f(x) + λTC(x) + ρC(x)TC(x) = �(x, λ) + ρC(x)TC(x).

The decision about acceptance of the step and update of the trust-region radius ∆k

is based on the ratio of actual decrease ared(sk; ρk), given by

ared(sk; ρk)
def
= L(xk, λk; ρk)− L(xk + sk, λk+1; ρk),(3.9)

and predicted decrease pred(sk; ρk), given by

pred(sk; ρk)
def
= L(xk, λk; ρk)−

(
qk(sk) + ∆λTk (Jksk + Ck) + ρk‖Jksk + Ck‖2

)
,(3.10)

where qk is defined in (3.2), where J(y, u) = (Cy(y, u) | Cu(y, u)) is the Jacobian of
C, and where ∆λk = λk+1−λk. Since the tangential step lies in the null-space of Jk,
we have Jks

t
k = Cy(xk)(s

t
y)k + Cu(xk)(su)k = 0, and it can be easily seen that

pred(sk; ρk) = q̂k(0)− q̂k((su)k)
+ qk(0)− qk(snk)− (∆λk)

T (Cy(xk)(s
n
y)k + Ck)

+ ρk
(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
.

(3.11)

Recall that q̂k((su)k) = qk(s
n
k +Wk(su)k) (see (3.7)).

Because of the requirements (3.4), (3.8) on the quasi-normal step
and tangential step, respectively, we have that q̂k(0) − q̂k((su)k) +
ρk
(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
> 0, provided xk does not satisfy the first-

order necessary optimality conditions (3.1). To ensure that pred(sk; ρk) is sufficiently
positive, the penalty parameter ρk is increased if necessary. In fact, the penalty
parameter ρk will be chosen so that

pred(sk; ρk) ≥ ρk
2

(
‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
(see step 2.6 in Algorithm 3.1 below).
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3.2. Statement of the algorithm. This leads to the following class of trust-
region SQP algorithms. They are the same as the trust-region SQP algorithms in
[10], but are adapted to our problem context and to our notation.

Algorithm 3.1 (Trust-region SQP algorithm).
1. Choose x0 and ∆0 > 0, and calculate λ0. Set ρ−1 ≥ 1 and εtol > 0. Choose
α1, η1, ∆min, ∆max, and ρ̄ such that 0 < α1, η1 < 1, 0 < ∆min ≤ ∆max, and
ρ̄ > 0.

2. For k = 0, 1, 2, . . .
2.1 Compute snk satisfying (3.13) and (3.4).
2.2 Compute WT

k ∇qk(snk).
2.3 If ‖Ck‖ + ‖WT

k ∇qk(snk)‖ ≤ εtol, stop and return xk as an approximate
solution for problem (1.1).

2.4 Compute (su)k satisfying (3.8).
2.5 Compute λk+1 and set ∆λk = λk+1 − λk.
2.6 Update the penalty parameter.

If pred(sk; ρk−1) ≥ ρk−1

2

(
‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
, then set

ρk = ρk−1.
Otherwise set

ρk =
2
(−q̂k(0) + q̂k((su)k)− qk(0) + qk(s

n
k) + ∆λTk (Cy(xk)(s

n
y)k + Ck)

)
‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2 + ρ̄.

2.7 Compute (sty)k = −Cy(xk)−1Cu(xk)(su)k (if not already done in step
2.4).

2.8 If ared(sk; ρk)/pred(s
n
k, (su)k; ρk) < η1, set

∆k+1 = α1 max {‖snk‖, ‖(su)k‖}

and reject sk.
Otherwise accept sk and choose ∆k+1 such that

max{∆min,∆k} ≤ ∆k+1 ≤ ∆max.

2.9 If sk was rejected, set xk+1 = xk and λk+1 = λk. Otherwise set xk+1 =
xk + sk and let λk+1 be the vector computed in step 2.5.

Remark 3.2. In reduced SQP methods, one uses

Hk =

(
0 0

0 Ĥk

)
.

In this case, Hks
n
k = 0 and steps 2.1 and 2.7 can be merged into a step inserted

immediately after step 2.4. Instead of executing steps 2.1 and 2.7, one computes
immediately after step 2.4 an approximate solution (sy)k of

min ‖Cy(xk)sy + C(xk)‖
s.t. ‖sy‖ ≤ ∆k,

(3.12)

which satisfies (3.13) and (3.4). In this case, (sny)k in steps 2.6 and 2.8 is replaced by
(sy)k.
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3.3. First-order global convergence of the algorithm. Dennis, El-Alem,
and Maciel [10] have proved that the class of trust-region SQP algorithms 3.1 is
globally convergent. Their convergence theory requires the set of assumptions given
below. For all iterations k we assume that xk, xk+sk ∈ Ω, where Ω is an open subset
of R

n.
A.1. The functions f , ci, i = 1, . . . ,m, are twice continuously differentiable func-

tions in Ω. Here ci(x) represents the ith component of C(x).
A.2. The partial Jacobian Cy(x) is nonsingular for all x ∈ Ω.
A.3. The functions f , ∇f , ∇2f , C, J , ∇2ci, i = 1, . . . ,m, are bounded in Ω. The

matrix Cy(x)
−1 is uniformly bounded in Ω.

A.4. The sequences {Hk}, {Wk}, and {λk} are bounded.
Dennis, El-Alem, and Maciel [10] show that for a subsequence of the iterates the

first-order necessary optimality conditions (3.1) of problem (1.1) are satisfied in the
limit.

Theorem 3.3. Let assumptions A.1–A.4 hold. The sequences of iterates gener-
ated by the trust-region SQP algorithms 3.1 satisfy

lim inf
k→∞

(
‖WT

k ∇fk‖+ ‖Ck‖
)
= 0.

We remark that inequality (3.4) and A.3 imply the existence of κ3 > 0, indepen-
dent of k, such that

‖snk‖ ≤ κ3‖Ck‖.(3.13)

In fact, using ‖Cy(xk)(snk)y + Ck‖ ≤ ‖Ck‖ and the boundedness of {Cy(xk)−1} we
find that

‖snk‖ ≤ ‖Cy(xk)−1‖
(
‖Cy(xk)(snk)y + Ck‖+ ‖Ck‖

)
≤ 2‖Cy(xk)−1‖ ‖Ck‖ .

In [10] the condition (3.13) is imposed as an additional condition on the quasi-normal
step, because more general quasi-normal steps are allowed.

4. Trust-region SQP methods with inexactness. Now we allow f and C
derivative information, as well as linear system (1.2) solutions to be inexact. We
assume, however, that the user is able to adjust the level of inexactness. We will in-
vestigate how Algorithm 3.1 has to be modified to cope with this inexactness. Our aim
is to devise conditions on the allowable level of inexactness that meet three criteria.
First, we want our conditions to be as weak as possible to admit inexpensive problem
information when the iterates (yk, uk) are far away from the solution. Second, we want
our conditions to be comparable with the conditions on inexact function and gradient
information for unconstrained trust-region methods applied to the black-box formula-
tion (2.1), which have been reviewed in section 2. Third, while our conditions on the
allowable level of inexactness will be general, we want them to be implementable. In
particular, the conditions on the allowable level of inexactness should not depend on
derivative bounds, Lipschitz constants, and other quantities that cannot be computed
in practice.

4.1. The main components of our composite-step trust-region algo-
rithms with inexact problem information.

4.1.1. The quasi-normal step. The assumption (3.4) on the quasi-normal step
turns out to be rather weak and can be satisfied using several algorithms that fit into
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our inexactness framework. This issue will be discussed in section 5.1. Notice also
that assumption (3.4) is already expressed in terms of the right-hand side Ck and the
residual Cy(xk)s

n
y + Ck of the linear system Cy(xk)s

n
y = −Ck.

4.1.2. The u-component of the tangential step. The computation of the
tangential step stk allowing inexact information is more complicated. Among other
things, we cannot assume that stk is in the null-space of the linearized constraints.
This condition, expressed as st = Wksu, was used repeatedly in sections 3.1.2 and
3.1.3. It will be very useful to discuss the computation of the u-component and the
computation of the y-component of the tangential step separately.

If exact derivative information and exact linearized system solves are available,
then the u-component of the tangential step is the approximate solution of (3.7). Now
only approximations of WT

k (Hks
n
k + ∇x�k) and WT

k HkWk will be available, and we
compute su as the approximate solution of

min m̂k(su)
def
= qk(s

n
k) + ĝTk su +

1
2s
T
u

˜WT
k HkWksu

s.t. ‖su‖2 ≤ ∆k.
(4.1)

In (4.1), the symbol˜ overWT
k HkWk indicates that the reduced Hessian approxima-

tion may be inexact. What are the accuracy requirements on ĝk and on ˜WT
k HkWk?

If (yk, uk) were feasible, i.e., if C(yk, uk) = 0, then snk = 0 (see (3.4)) and∇f̂(uk) =
WT
k (Hks

n
k+∇x�k) (see (2.2)). In this case the theory of [5, section 8.4] for the reduced

problem (2.1), which was reviewed in section 2, suggests an accuracy requirement of
the form

‖ĝk −WT
k (Hks

n
k +∇x�k)‖ ≤ ξ1‖ĝk‖,(4.2)

with some ξ1 ∈ (0, 1) which is related to the parameters in the trust-region algorithm
(cf. (2.4)). We need a slightly stronger condition, namely,

‖ĝk −WT
k (Hks

n
k +∇x�k)‖ ≤ ξ1 min {‖ĝk‖,∆k} ,(4.3)

where ξ1 > 0. In (4.3) the constant ξ1 is not tied to the parameters in the trust-
region algorithm—in particular, we do not need ξ1 < 1—but the absolute error in the
reduced gradient approximation must be less than ‖ĝk‖ and ∆k.

In section 5.2 we show how (4.3) can be enforced in practice, if errors in the
reduced gradient are due to inexact linear system solves. There we will see that while
(4.3) is slightly stronger than (4.2), the fact that we can give up the restriction ξ1 < 1
makes (4.3) preferable from an implementation point of view.

Remark 4.1. Imposing the inexactness condition

‖ĝk −∇f̂(uk)‖ ≤ ξ1 min {‖ĝk‖,∆k} ,(4.4)

where ξ1 > 0, instead of (2.4) also gives the standard lim inf global convergence
result for the unconstrained problem (2.1). This may be seen using the proof in [27,
Theorem 4.10] and applying (4.4) in the estimate for |ψk(sk)−∇f(xk)T sk| from [27,
p. 278].

The approximate reduced Hessian has to satisfy

(su)
T
k

˜WT
k HkWk(su)k ≤ ξ2‖(su)k‖2(4.5)
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for some ξ2 > 0 independent of k. If WT
k HkWk is evaluated exactly, then (4.5) is

implied by assumption A.4.
The approximate solution (su)k of (4.1) computed in step 2.4 of Algorithm 3.1

must provide a fraction of the Cauchy decrease on this approximate model m̂k, i.e.,

m̂k(0)− m̂k((su)k) ≥ κ4‖ĝk‖min {κ5‖ĝk‖, κ6∆k} ,(4.6)

where, as in (3.8), κ4, κ5, and κ6 are positive constants independent of k. One method
to actually compute su satisfying (4.6) will be discussed in section 5.3.

4.1.3. Measuring progress, updating the penalty parameter, and evalu-
ating the trial step. The reformulation (3.11) of the predicted decrease pred(sk; ρk)
defined in (3.10) is only valid if stk is in the null-space of the linearized constraints. If
this is not the case, then

pred(sk; ρk) = q̂k(0)− q̂k((su)k)
+ qk(0)− qk(snk)− (∆λk)

T (Cy(xk)(s
n
y)k + Ck)

+ ρk
(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
− (∆λk)

T (rt
k)− ρk‖rt

k‖2 − 2ρk(r
t
k)
T
(
Cy(xk)(s

n
y)k + Ck

)
,

where

rt
k = Cy(xk)(s

t
y)k + Cu(xk)(su)k.(4.7)

Moreover, the reduced quadratic model q̂k defined in (3.2) is now replaced by m̂k

defined in (4.1). We define

pred(snk, (su)k; ρk) = m̂k(0)− m̂k((su)k) + qk(0)− qk(snk)(4.8)

− (∆λk)
T (Cy(xk)(s

n
y)k + Ck)

+ ρk
(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
and

rpred(rt
k; ρk) = −(∆λk)T (rt

k)− ρk‖rt
k‖2 − 2ρk(r

t
k)
T
(
Cy(xk)(s

n
y)k + Ck

)
.(4.9)

We now view

pred(snk, (su)k; ρk) + rpred(rt
k; ρk)

as the quadratic model of the Lagrangian.
This predicted reduction pred(snk, (su)k; ρk) depends only on s

n
k and (su)k and can

be readily computed. In fact, the quantities m̂k(0), m̂k((su)k), and Cy(xk)(s
n
y)k+Ck

are typically already computed during the computation of the u-component of the
tangential step and the computation of the quasi-normal step, respectively.

Because of the requirements (3.4) and (4.6) on snk and (su)k, respectively, we have
that m̂k(0) − m̂k((su)k) + ρk

(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2
)
> 0, provided (yk, uk)

does not satisfy the first-order necessary optimality conditions (3.1). We update the
penalty parameter ρk, if necessary, to ensure sufficient positivity of pred(snk, (su)k; ρk).
See step i2.6 in Algorithm 4.3 below.

The evaluation of the step sk = snk + stk (we will discuss the computation of (sty)k
in a moment) will be based on the ratio ared(sk; ρk)/pred(s

n
k, (su)k; ρk).
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4.1.4. The y-component of the tangential step. As we have noted in
the previous section, the quadratic model of the Lagrangian is pred(snk, (su)k; ρk) +
rpred(rt

k; ρk). However, step evaluations are performed based on pred(snk, (su)k; ρk)
only. To ensure that the inexactness in the tangential step (sty)k does not dominate
this quadratic model, we require that∣∣rpred(rt

k; ρk)
∣∣ ≤ η0pred(s

n
k, (su)k; ρk),(4.10)

where η0 ∈ (0, 1 − η1) is a given constant and η1 is the parameter in step 2.8 of the
trust-region algorithm, and that

‖rt
k‖ ≤ ξ3∆k‖(su)k‖(4.11)

for some constant ξ3 > 0 independent of k. If we estimate |rpred(rt
k; ρk)| ≤ ρk‖rt

k‖2+
(‖∆λk‖ + 2ρk‖Cy(xk)(sny)k + Ck‖)‖rt

k‖ and insert this upper bound into (4.10), we
see that inequality (4.10) is implied by

‖rt
k‖ ≤ −σ +

√
σ2 + η0pred(snk, (su)k; ρk)/ρk,(4.12)

where σ = ‖Cy(xk)(sny)k + Ck‖ + ‖∆λk‖/(2ρk). Inequalities (4.10) and (4.11) are
satisfied for the exact solution of Cy(xk)(s

t
y)k = −Cu(xk)(su)k. The quantity ‖rt

k‖ is
the residual accuracy of an inexact solution sty of Cy(xk)s

t
y = −Cu(xk)(su)k. Since

snk, (su)k, and pred(snk, (su)k; ρk) are known, a step (sty)k with (4.10) and (4.11) can
be computed.

Remark 4.2. i. Condition (4.10) is motivated by (2.5). We need to control the
accuracy of pred(snk, (su)k; ρk) + rpred(rt

k; ρk), whereas (2.5) controls the accuracy of
the actual reduction. However, the effects of both conditions on the ratio of actual
and predicted reduction are similar.

ii. Notice that (sty)k = −Cy(xk)−1Cu(xk)(su)k + Cy(xk)
−1rt

k and that (4.11)
implies

‖Cy(xk)−1rt
k‖ ≤ ξ4∆k(4.13)

for some ξ4 > 0. In other words, it implies that the norm of the residual (tangen-
tial) step Cy(xk)

−1rt
k is bounded by a constant times the trust-region radius. If we

view Cy(xk)
−1rt

k as a second (tangential) step, or as a spacer (tangential) step, we
then identify (4.13) as a condition that has already been imposed on steps of such
types in the context of global convergence of trust-region algorithms for unconstrained
optimization [5, section 10.4], [6].

We note that the amount of positivity in pred(snk, (su)k; ρk) is determined by
the reductions m̂k(0) − m̂k((su)k) and ‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2. Thus we
can allow more inaccuracy in the (sty)k computation, which typically translates
into less expensive (sty)k computation, the larger the linearized feasibility gain
‖Ck‖2−‖Cy(xk)(sny)k+Ck‖2 achieved by the quasi-normal step and the larger the op-
timality gain m̂k(0)− m̂k((su)k) achieved by the u-component of the tangential step.
In particular, even if ‖Ck‖2−‖Cy(xk)(sny)k+Ck‖2 is small, but m̂k(0)− m̂k((su)k) is
large (which is likely the case at a point xk = (yk, uk) that is almost feasible, but away
from being optimal), the accuracy requirement on (sty)k is rather weak. Our criterion
also seems to be closely aligned with the SQP philosophy which allows one to trade
gains in feasibility for gains in optimality. Another important point worth noting is
that inaccuracy in (sty)k does not enter the penalty parameter update. If it would, the
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penalty parameter might increase faster. Since too-large penalty parameters ρk can
slow down the convergence of SQP methods, this is another benefit of our accuracy
requirement.

Our initial and somewhat straightforward approach [20, 36] to dealing with inac-
curacy did not use the split pred(snk, (su)k; ρk) + rpred(rt

k; ρk). Rather, the predicted
decrease was defined by (3.10). After determination of snk satisfying (3.4) we computed
a tangential step that, among other conditions, satisfied

‖Ck‖2 − ‖Jk(snk + stk) + Ck‖2 ≤ ξ5
(‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2

)
(4.14)

with ξ5 ∈ (0, 1). Thus accuracy of (sty)k depended only on the linearized feasibility
gain ‖Ck‖2−‖Cy(xk)(sny)k+Ck‖2 achieved by the quasi-normal step. Moreover, when

pred(sk; ρk−1) <
ρk−1

2

(
‖Ck‖2 − ‖Jk(snk + stk) + Ck‖2

)
,

where pred(sk; ρk) is given by (3.10), we used the update

ρk =
2
(−qk(0) + qk(sk) + ∆λTk (Jksk + Ck)

)
‖Ck‖2 − ‖Jk(snk + stk) + Ck‖2 + ρ̄.(4.15)

Condition (4.14) often leads to very stringent accuracy requirements for (sty)k, and
the update (4.15) often leads to large increases in the penalty parameter, espe-
cially when the current iterate (yk, uk) happens to be almost feasible. The ap-
proach presented in this paper represents the quadratic model of the Lagrangian
as pred(snk, (su)k; ρk) + rpred(rt

k; ρk), separates the computation of the u- and the
y-component of the tangential step, bases the accuracy requirement on (sty)k on fea-
sibility and optimality gains, and bases the penalty parameter update on quantities
that are not contaminated by inaccuracies in (sty)k.

4.1.5. Computation of the Lagrange multiplier estimate. Finally, the
computation of λk+1 in step 2.5 of the exact trust-region SQP algorithms 3.1 is likely
to involve inexact calculations. However, as we have seen in Theorem 3.3, global
convergence to a stationary point requires only boundedness from the sequence of
Lagrange multipliers {λk}. This requirement is not only fairly mild from a theoretical
point of view, but, under assumptions A.1–A.4, also easy to impose computationally
even when inexactness is present.

4.2. Statement of the algorithm. The inexact trust-region SQP algorithms
are defined similarly to their exact counterpart, Algorithm 3.1, but with steps 2.1 to
2.8 modified to accommodate the inexact calculations discussed above.

Algorithm 4.3 (Inexact trust-region SQP algorithms).
1. The same initializations as in step 1 of Algorithm 3.1.
2. For k = 0, 1, 2, . . .

i2.1 Compute snk satisfying (3.13) and (3.4).
i2.2 Compute an approximation ĝk to WT

k ∇qk(snk) satisfying (4.3).
i2.3 If ‖Ck‖+ ‖ĝk‖ ≤ εtol, stop and return xk = (yk, uk) as an approximate

solution for problem (1.1).
i2.4 Compute (su)k satisfying (4.6).
i2.5 Compute λk+1 and set ∆λk = λk+1 − λk.
i2.6 Update the penalty parameter.

If pred(snk, (su)k; ρk−1) ≥ ρk−1

2

(
‖Ck‖2−‖Cy(xk)(sny)k +Ck‖2

)
, then set
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ρk = ρk−1.
Otherwise set

ρk =
2
(−m̂k(0) + m̂k((su)k)− qk(0) + qk(s

n
k) + ∆λTk (Cy(xk)(s

n
y)k + Ck)

)
‖Ck‖2 − ‖Cy(xk)(sny)k + Ck‖2 +ρ̄.

i2.7 Compute (sty)k so that the residual vector rt
k satisfies (4.10) and (4.11).

i2.8 Compute pred(snk, (su)k; ρk) using (4.8).
If ared(sk; ρk)/pred(s

n
k, (su)k; ρk) < η1, set

∆k+1 = α1 max {‖snk‖, ‖(su)k‖}
and reject sk.
Otherwise accept sk and choose ∆k+1 such that

max{∆min,∆k} ≤ ∆k+1 ≤ ∆max.

i2.9 The same step and multiplier updates as in step 2.9 of Algorithm 3.1.
Remark 4.4. In reduced SQP methods where Hks

n
k = 0, the algorithm can be

slightly reorganized to save one linear system solve with system matrix (Cy)k. See
also Remark 3.2. Steps 2.1 and 2.7 can be merged into a step inserted immediately
after step 2.4. Instead of executing steps 2.1 and 2.7, one computes immediately
after step 2.4 an approximate solution (sy)k of (3.12) which satisfies (3.13) and (3.4).
In this case (sny)k is replaced by (sy)k in the remaining steps of the algorithm, and
(sty)k = 0.

4.3. First-order global convergence of the algorithm. The global conver-
gence property of the inexact trust-region SQP algorithms 3.1 is stated in the following
theorem.

Theorem 4.5. Let assumptions A.1–A.4 hold. The sequences of iterates gener-
ated by the inexact trust-region SQP algorithms 4.3 satisfy

lim inf
k→∞

(‖ĝk‖+ ‖Ck‖) = 0.(4.16)

Furthermore, we have

lim inf
k→∞

(‖WT
k ∇fk‖+ ‖Ck‖

)
= 0.(4.17)

Proof. The proof of (4.16) follows the convergence analysis given in [10] with
the predicted decrease used there always replaced by pred(snk, (su)k; ρk) as defined in
(4.8). Only a very few steps in the convergence analysis change and we will review
them in detail.

The first modification concerns the relationship between the size of the step sk
and the trust-region radius ∆k. The convergence analysis requires that

‖sk‖ ≤ κ7∆k

and, if sk is rejected, that

∆k+1 ≥ κ8‖sk‖.
In our inexact trust-region SQP algorithms, the first inequality follows from the trust-
region constraints in (3.3), (4.1), and from (4.11) and assumption A.3. The second
inequality is a consequence of the update of the trust-region radius in i2.8.
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The second modification is in the estimates of the difference between actual de-
crease and predicted decrease. Since rpred(rt

k; ρk) is different from zero, the upper
bounds on the difference between actual and predicted decreases given in [10, Lem-
mas 7.4, 7.5] are now different. We will be able to show

|ared(sk; ρk)− pred(snk, (su)k; ρk)− rpred(rt
k; ρk)|

≤ κ9∆k‖sk‖+ κ10ρk‖sk‖3 + κ11ρk‖sk‖2‖Ck‖
(4.18)

instead of [10, Lemma 7.4] and∣∣ared(sk; ρk)− pred(snk, (su)k; ρk)− rpred(rt
k; ρk)

∣∣ ≤ κ12ρk∆k‖sk‖(4.19)

instead of [10, Lemma 7.5].
The estimates (4.18) and (4.19) can be verified as follows. Using definitions (4.8)

and (4.9), we can see that

pred(snk, (su)k; ρk) + rpred(rt
k; ρk)

= −ĝTk (su)k −
1

2
(su)

T
k

˜WT
k HkWk(su)k −∇x�Tk snk −

1

2
snk
THks

n
k

−∆λTk (Jksk + Ck) + ρk
(‖Ck‖2 − ‖Jksk + Ck‖2

)
.

With definition (3.9) of the actual decrease, the previous identity, and WT
k (Hks

n
k +

∇x�k) =WT
k ∇qk(snk), we obtain

ared(sk; ρk)−
(
pred(snk, (su)k; ρk) + rpred(rt

k; ρk)
)

= �(xk, λk) + ρk‖Ck‖2 − �(xk+1, λk+1)− ρk‖Ck+1‖2
−pred(snk, (su)k; ρk)− rpred(rt

k; ρk)

= �(xk, λk)− �(xk+1, λk) + �(xk+1, λk)− �(xk+1, λk+1)

+ (Hks
n
k +∇x�k)TWk(su)k +

1
2 (su)

T
kW

T
k HkWk(su)k +∇x�Tk snk + 1

2s
n
k
THks

n
k

+(ĝk −WT
k ∇qk(snk))T (su)k + 1

2 (su)
T
k

˜WT
k HkWk(su)k − 1

2 (su)
T
kW

T
k HkWk(su)k

+∆λTk (Jksk + Ck)− ρk(‖Ck+1‖2 − ‖Jksk + Ck‖2)
= −�(xk+1, λk) + qk(sk)− qk(sk) + q̂k((su)k)

+ (ĝk −WT
k ∇qk(snk))T (su)k + 1

2 (su)
T
k

˜WT
k HkWk(su)k − 1

2 (su)
T
kW

T
k HkWk(su)k

+∆λTk (−Ck+1 + Jksk + Ck)− ρk
(‖Ck+1‖2 − ‖Jksk + Ck‖2

)
.

(4.20)
Using a Taylor expansion and definition (3.2) of qk gives

| − �(xk+1, λk) + qk(sk)| ≤ 1
2‖Hk −∇2

xx�(xk + t1ksk, λk)‖ ‖sk‖2(4.21)

with some t1k ∈ (0, 1). Using the definitions (3.2) and (3.7) of qk and q̂k, respectively,
along with (3.6) and (4.7), we find that

| − qk(sk) + q̂k((su)k)|
≤ ‖Hks

n
k −∇x�(xk, λk)‖ ‖stk −Wk(su)k‖+ 1

2‖Hk‖ ‖stk‖2 + 1
2‖WT

k HkWk‖ ‖(su)k‖2
≤ ‖Hks

n
k −∇x�(xk, λk)‖ ‖Cy(xk)−1‖ ‖rt

k‖+ 1
2‖Hk‖ ‖stk‖2 + 1

2‖WT
k HkWk‖ ‖(su)k‖2.

(4.22)
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With

‖stk‖ ≤ ‖stk −Wk(su)k‖+ ‖Wk(su)k‖ ≤ ‖Cy(xk)−1‖ ‖rt
k‖+ ‖Wk‖ ‖(su)k‖

and (4.11), equation (4.22) implies

| − qk(sk) + q̂k((su)k)|
≤ ξ3‖Hks

n
k −∇x�(xk, λk)‖ ‖Cy(xk)−1‖ ∆k‖(su)k‖

+ 1
2‖Hk‖

(
ξ23‖Cy(xk)−1‖2∆2

k + 2ξ3‖Wk‖ ‖Cy(xk)−1‖∆k + ‖Wk‖2
) ‖(su)k‖2

+ 1
2‖WT

k HkWk‖ ‖(su)k‖2.(4.23)

The inequalities (4.3) and (4.5) give

(ĝk −WT
k ∇qk(snk))T (su)k + 1

2 (su)
T
k

˜WT
k HkWk(su)k − 1

2 (su)
T
kW

T
k HkWk(su)k

≤ ξ1∆k‖(su)k‖+ 1
2 (ξ2 + ‖WT

k HkWk‖)‖(su)k‖2.(4.24)

Using a Taylor expansion, we obtain

∆λTk (−Ck+1 + Jksk + Ck)− ρk
(‖Ck+1‖2 − ‖Jksk + Ck‖2

)
= − 1

2

m∑
i=1

(∆λk)is
T
k∇2ci(xk + t2ksk)sk

− ρk
(

m∑
i=1

ci(xk + t3ksk)(sk)
T∇2ci(xk + t3ksk)(sk)

+ (sk)
TJ(xk + t3ksk)

TJ(xk + t3ksk)(sk)− (sk)
TJ(xk)

TJ(xk)(sk)

)
,

where t2k, t
3
k ∈ (0, 1). Now we expand ci(xk+ t

3
ksk) around ci(xk). This expansion and

assumptions A.1–A.4 give

∆λTk (−Ck+1 + Jksk + Ck)− ρk
(‖Ck+1‖2 − ‖Jksk + Ck‖2

)
≤ κ10ρk‖sk‖3 + κ11ρk‖sk‖2‖Ck‖.(4.25)

If we insert (4.21)–(4.25) into (4.20) and use assumptions A.3, A.4, and (4.11), we
arrive at the desired estimate (4.18) for some positive constants κ9, κ10, and κ11.
Inequality (4.19) is then a direct consequence of inequality (4.18) and the fact that
ρk ≥ 1.

We can now bound the difference between the actual and predicted decreases in
the inexact context. Combining (4.18) with (4.10) yields

|ared(sk; ρk)− pred(snk, (su)k; ρk)|
≤ ∣∣ared(sk; ρk)− pred(snk, (su)k; ρk)− rpred(rt

k; ρk)
∣∣+ ∣∣rpred(rt

k; ρk)
∣∣

≤ κ9∆k‖sk‖+ κ10ρk‖sk‖3 + κ11ρk‖sk‖2‖Ck‖+ η0 |pred(snk, (su)k; ρk)| .(4.26)

Similarly, combining (4.19) with (4.10) gives

|ared(sk; ρk)− pred(snk, (su)k; ρk)| ≤ κ12ρk∆k‖sk‖+ η0 |pred(snk, (su)k; ρk)| .(4.27)
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The estimates (4.26) and (4.27) are used in the analysis only when rejection occurs
in step i2.8. If sk is rejected, we know that

0 < 1− η1 ≤
∣∣∣∣ ared(sk; ρk)

pred(snk, (su)k; ρk)
− 1

∣∣∣∣ ,
which in our inexact context implies

1− η1 ≤
∣∣∣∣ared(sk; ρk)− pred(snk, (su)k; ρk)− rpred(rt

k; ρk)

pred(snk, (su)k; ρk)

∣∣∣∣+ η0.

Thus, when the estimate (4.19) is required, we obtain

0 < 1− η0 − η1 ≤ κ12ρk∆k‖sk‖
pred(snk, (su)k; ρk)

,

and the analysis in [10] remains unchanged except for the fact that a different lower
bound 1− η0 − η1 ∈ (0, 1) is used. A similar bound is obtained when the estimate is
given by (4.18).

The proof of (4.17) follows from the conjunction of (4.16) with (4.3) and
(3.13).

5. Implementation in the presence of inexactness. In this section we dis-
cuss how the requirements on the approximate reduced gradient and on the step
components introduced in section 4 can be satisfied in practice. Our discussion leads
to an implementable version of Algorithm 4.3. However, other implementations are
possible. This section is not meant to be comprehensive. Rather, it is meant to sup-
port our claim made in the introduction and at the beginning of section 4 that our
conditions on the allowable level of inexactness are general but implementable.

5.1. Computation of the quasi-normal component. The quasi-normal
component snk is an approximate solution of the trust-region subproblem (3.3) and
it is required to satisfy condition (3.4).

If ‖(sny)k‖ ≤ ∆k satisfies the fraction of the Cauchy decrease condition

1
2‖Cy(xk)(snk)y + Ck‖2
≤ min

{
1
2‖Cy(xk)s+ Ck‖2 : s = −tCy(xk)TCk , ‖s‖ ≤ ∆k

}
,(5.1)

then a result due to Powell [29, Theorem 4] (see also [5, section 6.3], [27, Lemma 4.8])
shows that (3.4) is satisfied. The papers [17, 32] describe two iterative methods based
on Krylov subspaces for the computation of steps (sny)k satisfying

‖Ck‖2 − ‖Cy(xk)(snk)y + Ck‖2 ≥ β
(
‖Ck‖2 − ‖Cy(xk)(sny)∗ + Ck‖2

)
,

where (sny)∗ is the solution of (3.3). In particular, these steps also satisfy (3.4).
The iterative method in [32] uses a restart technique that allows the specification
of storage limitations by the user, which is important for large scale problems. The
iterative methods in [17] and in [32] require the evaluation of Cy(xk)v and Cy(xk)

Tu
for given v and u.

For some applications, the evaluation of matrix-vector products Cy(xk)
T v is more

expensive than the evaluation of Cy(xk)v, and therefore it may be more efficient to use
methods that avoid the use of Cy(xk)

T v. In this case, one can apply nonsymmetric
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Krylov subspace methods based on minimum residual approximations, such as the
GMRES(l) algorithm [30]. In the context of nonlinear system solving, the use of such
methods is described, e.g., in [2]. In that context, trust-region subproblems of the
type (3.3) also have to be solved, and the solvers in [2] can be applied in our situation
as well. If GMRES(l) is used to project the quasi-normal step problem (3.3) onto the
l-dimensional Krylov subspace, and if

1

2
CTk

(
Cy(xk)

T + Cy(xk)
)
Ck ≥ β‖Ck‖2(5.2)

holds with β > 0, then (3.4) is satisfied. Condition (5.2) is implied by the positive
definiteness of the symmetric part of Cy(xk), a condition also important for the con-
vergence of nonsymmetric Krylov subspace methods. A proof of this result and more
details concerning the use of these methods can be found in [36].

Finally, we can also use the following simple procedure. Compute s̃nk such that
‖Cy(xk)s̃nk + Ck‖ ≤ ζ‖Ck‖, where ζ < 1, and then scale this step back into the
trust-region, i.e., set

snk =

(
ξks̃

n
k

0

)
, where ξk =

{
1 if ‖s̃nk‖ ≤ ∆k,

∆k/‖s̃nk‖ otherwise.

The step snk also satisfies (3.4) (see [36]).

5.2. Computation of an approximate reduced gradient. We show how
(4.3) can be enforced, if errors in the reduced gradient are due to inexact linear
system solves.

If we set d = Hks
n
k+∇x�k and denote the y- and u-component of d by dy and du,

respectively, then WT
k (Hks

n
k +∇x�k) = −(Cu)Tk (Cy)−Tk dy + du. We suppose that the

inexactness in the computation of WT
k (Hks

n
k +∇x�k) is due to the use of an iterative

solver for the linear system (Cy)
T
k z = −dy. More precisely, we assume that

ĝk = (Cu)
T
k ẑ + du,(5.3)

where ẑ satisfies

(Cy)
T
k ẑ = −dy − e(5.4)

with a residual error e. The following result is easy to prove.
Lemma 5.1. If ĝk is given by (5.3), (5.4) and if

‖e‖ ≤ min{c1‖(Cu)Tk ẑ + du‖, c2∆k},(5.5)

where c1, c2 > 0 are given, then inequality (4.3) is satisfied with ξ1 =
max{c1, c2}‖(Cu)Tk (Cy)−Tk ‖.

Proof. Equations (5.3) and (5.4) imply ĝk = −(Cu)Tk (Cy)−Tk (dy + e) + du and

‖ĝk −WT
k (Hks

n
k +∇x�k)‖ = ‖(Cu)Tk (Cy)−Tk e‖ ≤ ‖(Cu)Tk (Cy)−Tk ‖ ‖e‖.

Hence, using (5.3), (5.5),

‖ĝk −WT
k (Hks

n
k +∇x�k)‖ ≤ ‖(Cu)Tk (Cy)−Tk ‖ min{c1‖ĝk‖, c2∆k},

which yields the desired estimate.
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At first sight, the inequality (5.5) seems impractical since both e and (Cu)
T
k ẑ+du

depend on ẑ. However, (5.5) can be enforced if an iterative method for the solution
of (Cy)

T
k z = −dy is used, and matrix-vector products of the form (Cu)

T
k v for a given

v can be easily computed. The latter is the case for many control problems. In
fact, let z(j) be the jth iterate in the solution method for (Cy)

T
k z = −dy and let

e(j) = −dy − (Cy)
T
k z

(j) be the corresponding residual. If (Cu)
T
k z

(j) can be easily
computed, then we can monitor ‖(Cu)Tk z(j) + du‖ and we can truncate the iterative
linear system solver when

‖e(j)‖ ≤ min{c1‖(Cu)Tk z(j) + du‖, c2∆k}.
Note that the truncation criterion (5.5) for the iterative linear system solver is

only applicable because ξ1 > 0 in (4.3) is not restricted. If it were required that
ξ1 ∈ (0, 1), say, then we would need an estimate for ‖(Cu)Tk (Cy)−Tk ‖. Thus, while
(4.3) is slightly stronger than (4.2), the fact that we can give up the restriction ξ1 < 1
makes (4.3) preferable from an implementation point of view.

5.3. Computation of the u-component of the tangential component.
An approximate solution su of (4.1) that satisfies (4.6) can be computed, e.g., using
the conjugate gradient (cg) method with a modification as suggested by Steihaug [33]
and Toint [34]. Here the cg method with starting value su = 0 is applied to the
minimization of m̂k. The cg method is stopped if an approximate minimum of the
quadratic model m̂k is reached, if negative curvature is detected, or if the iterates
leave the trust-region bound. The first iterate in the Steihaug–Toint cg method is
the Cauchy-step for m̂k, and therefore (4.6) is satisfied for the first iterate of the
Steihaug–Toint cg method. If WT

k HkWk can be applied exactly, which is the case in

a reduced SQP method where WT
k HkWk = Ĥk, then the cg method ensures that m̂k

decreases monotonically, and (4.6) remains satisfied for all Steihaug–Toint cg iterates.
If WT

k HkWk is applied inexactly, then one has to compare the function values m̂k at
the first Steihaug–Toint cg iterate s1u and at the final Steihaug–Toint cg iterate sfu. If
m̂k(s

f
u) ≤ m̂k(s

1
u), then (su)k = sfu; otherwise (su)k = s1u.

5.4. Computation of the y-component of the tangential component. In
section 4.1.4 we have already shown that (4.10), (4.11) are satisfied if (sty)k satisfies
Cy(xk)s

t
y = −Cu(xk)(su)k + rt

k with residual

‖rt
k‖ ≤ min

{
ξ3∆k‖(su)k‖,−σ +

√
σ2 + η0pred(snk, (su)k; ρk)/ρk

}
,(5.6)

where σ = ‖Cy(xk)(sny)k +Ck‖+ ‖∆λk‖/(2ρk). Note that all quantities on the right-
hand side of (5.6) are known by the time (sty)k needs to be computed.

6. Conclusions. In this paper we have extended the design of a class of
composite-step trust-region SQP algorithms and their convergence theory to allow
the use of inexact first-order derivative information or the use of inexact linearized
constraint equation solves. The challenge was the formulation of accuracy require-
ments that are sufficient to guarantee global convergence to a point satisfying the
first-order optimality conditions, but at the same time can be implemented in a prac-
tical algorithm without being overly stringent. Our accuracy requirements are based
on the structure of the composite-step trust-region SQP algorithms, and they follow
the SQP philosophy which allows one to trade gains in feasibility for gains in opti-
mality. The main motivation of this paper is the control of inexactness arising from
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iterative system solves (1.2) in trust-region SQP methods. This is important, e.g.,
for the solution of discretized optimal control problems governed by partial differen-
tial equations. However, our assumptions on the inexactness are not based on this
particular source of inexactness and are applicable more broadly.

We focused on a specific class of problems (1.1) and on a limited class of algorithms
to enhance the clarity of our presentation. An extension of our analysis of the influence
of inexact first-order derivative information, or the use of inexact linearized constraint
equation solves, to a broader range of problems and global SQP algorithms is useful.
Some extensions are rather straightforward, although tedious. For example, we believe
that our analysis can be generalized to the affine-scaling interior-point trust-region
SQP algorithms in [11], which tackle problems (1.1) with additional simple bounds
on u. In fact, the predecessor [20] of this paper contains many of the technical details
of such an extension, although the assumptions on the inexactness made in [20] are
stronger than those in this paper.

Acknowledgments. The authors would like to thank the two anonymous ref-
erees and the associate editor for their constructive comments on the first version of
this paper, which lead to significant improvements in the presentation.
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Abstract. Minimization of a differentiable function subject to box constraints is proposed as a
strategy to solve the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral
cone. It is not necessary to calculate projections that complicate and sometimes even disable the
implementation of algorithms for solving these kinds of problems. Theoretical results that relate
stationary points of the function that is minimized to the solutions of the GNCP are presented.
Perturbations of the GNCP are also considered, and results are obtained related to the resolution
of GNCPs with very general assumptions on the data. These theoretical results show that local
methods for box-constrained optimization applied to the associated problem are efficient tools for
solving the GNCP. Numerical experiments are presented that encourage the use of this approach.
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1. Introduction. The generalized nonlinear complementarity problem (GNCP)
is to find x ∈ R

m such that

F (x) ∈ K, G(x) ∈ K◦, F (x)TG(x) = 0,(1)

where F and G are continuous functions from R
m to R

n, K is a nonempty closed
convex cone in R

n, and K◦ denotes the polar cone of K.
We consider the case n = m, F,G ∈ C1, and K a polyhedral cone in Rn; that is,

given A ∈ R
q×n and B ∈ R

s×n, we have

K = {v ∈ R
n |Av ≥ 0, Bv = 0}

and

K◦ = {u ∈ R
n |u = ATλ1 + BTλ2, λ1 ≥ 0}.

This problem has many interesting applications, and its solution using special
techniques has been considered extensively in the literature. See [16, 17, 24] among
others. If K = R

m
+ ≡ {x ∈ R

m |x ≥ 0}, G(x) = x − F (x), and F : R
m → R

m, the
GNCP(F,G,K) reduces to the so-called implicit complementarity problem [20, 21]. In
particular, if G(x) = x, the GNCP reduces to the nonlinear complementarity problem,
denoted by NCP.

Our approach in this paper is to formulate the GNCP as an equivalent bound-
constrained smooth optimization problem. Differentiable bound-constrained minimiz-
ation is a well-developed area of practical optimization, and many methods and reli-
able software are available for large-scale problems. See, for example, [7, 8, 12, 26].
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This motivated the authors to find equivalences between variational and complemen-
tarity problems and smooth box-constrained minimization problems (see [1, 13, 14,
15]).

We prove here that the GNCP is equivalent to a bound-constrained optimization
problem in the sense that a global minimizer with zero objective function value is a
solution of the GNCP. We also establish conditions for proving that stationary points
of the minimization problems are global minimizers and, consequently, solutions of the
GNCP. The GNCP (or GCP in other references) is a problem related to the variational
inequality problem (VIP). The VIP and other related problems were reformulated
by many authors as different minimization problems and systems of equations. See
[18, 22, 24, 25]. The reformulations of related problems as bound-constrained problems
in [1, 14, 15] that use the same approach as the one presented here cannot be extended
to obtain a merit function with the properties of the reformulation proposed in this
paper. As pointed out by one of the referees, the GNCP can be reformulated as a
mixed complementarity problem (MCP). In [4], Andreani and Mart́ınez prove results
for the MCP based on their work on the bounded VIP [5]. These results applied to the
GNCP lead to sufficient conditions on the functions F and G stronger than the ones
obtained in this paper. The sufficient conditions given in this paper on the functions
F and G that guarantee that stationary points of the merit function solve the GNCP
cannot be obtained from any of the previous results.

The objective functions of the minimization problems have a very simple struc-
ture that consists of a sum of terms that are polynomials in the original problem data
plus an additional term of the type (xT z)p, with p > 1. This term plays a funda-
mental role in the proof of the equivalence results, and p = 2 is especially interesting
for linear programming and linear complementarity problems, because in these cases
the objective function to be minimized is just a polynomial of fourth degree. It is
important to remark that no penalty parameters are needed in these problem for-
mulations, which we call the quartic approach. In [1, 13, 14, 15] some very simple
counterexamples show that when p = 1 the existence of stationary points that are
not global minimizers is possible. For the complementarity problem, [1, Theorem 2.4]
shows that if F ′ is positive definite, the merit function with p = 1 is such that its
stationary points are solutions of the original problem.

These merit functions preserve all the derivatives of the functions that define
the GNCP. Consequently, the global and local convergence properties depend on the
algorithm used for box-constrained minimization. This is a very important feature,
since it makes viable the use of algorithms that need high-order derivatives or their
approximations, such as the tensor methods of [23]. Any efficient algorithm for smooth
box-constrained minimization can be used, in particular, algorithms that do not rest
upon matrix factorizations at all, allowing us to deal with large-scale problems.

Complementarity and related problems have also been solved using algorithms
based on the projection equation. See [10] and references therein. These methods are
very efficient; however, their behavior is strongly dependent on the monotonocity of
the function that defines the problem. Failure of this condition results in divergence
of the sequences generated by these algorithms. Unlike the formulations in [22, 25],
the computation of the objective function of the equivalent minimization problem
considered here is straightforward, and projections on convex sets are not necessary
to compute either the objective function or the derivatives. Therefore, special algo-
rithms for dealing with nonsmoothness do not need to be devised. In [24], to obtain
the fundamental equivalence result for a cone that is not necessarily polyhedral, the
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authors assume the same conditions on the problem as we do here. However, even
for polyhedral cones, the implementation of the algorithm proposed there requires
projections that, in general, are very expensive to compute.

Using the same merit function of [17], a stronger result is obtained in [16] where
the GNCP is reformulated as a system of semismooth equations, and an unconstrained
differentiable formulation is given if K is the positive orthant. The conditions estab-
lished to ensure that a stationary point x∗ of the unconstrained minimization problem
is a solution of the GNCP are essentially that the Jacobian of F at x∗ (denoted by
F ′(x∗)) is invertible and that D(G′(x∗)[F ′(x∗)]−1)RRD is an S0-matrix, where D is a
convenient nonsingular diagonal matrix and R is the set of indices for which (1) does
not hold at x∗. (B ∈ R

n×n is an S0-matrix if there exists v ∈ R
n such that v ≥ 0,

v 
= 0, and Bv ≥ 0.) A trust-region method is proposed in [16] for solving the GNCP
based on these reformulations. This algorithm was implemented by the authors and
tested for some problems.

In [17] an unconstrained minimization reformulation of the GNCP is considered
such that the merit function is differentiable when K = R

n
+. The sufficient conditions

for a stationary point x∗ of the merit function to be a global minimizer are that
F ′(x∗) is nonsingular and the product G′(x∗)[F ′(x∗)]−1 is a P0-matrix. (B ∈ R

n×n

is a P0-matrix if its principal minors are all nonnegative.) The authors suggest the
use of a first-order method for minimizing the merit function due to the fact that it
is once but not twice continuously differentiable.

The case of a general cone K was considered in [24], using an unconstrained
reformulation for the GNCP. It is proved there that x∗ is a solution of the GNCP if
F ′(x∗) is nonsingular and G′(x∗)[F ′(x∗)]−1 is positive definite. The evaluation of the
corresponding objective function is rather complicated and requires projections that
in general are not easy to compute.

Here we require, essentially, the same conditions as in [24] to guarantee that
stationary points of the minimizing problems are solutions of the GNCP. These as-
sumptions cannot be relaxed for a general cone K as we show with an example in
section 3. If K = R

n
+, we require a weaker condition on matrix G′(x∗)F ′(x∗)−1. If

F and G are affine functions with K polyhedral, the conditions are that G′F ′−1 is
positive semidefinite in the null space of B and the GNCP is feasible. Finally, an even
weaker condition is needed if F and G are affine and K = R

n
+.

If K is a general cone and it is not possible to ensure that G′F ′−1 is positive
definite at a stationary point of the merit function, a sequence of perturbed problems
can be constructed for which the strict monotonicity property holds and such that
the sequence of solutions of these perturbed problems converges to a solution of the
original one. The results related to this construction are valid for a general cone and
may be applied also to the results in [24].

The paper is organized as follows: In section 2 we associate with (1) a box-
constrained minimization problem, and we prove that assuming a local strict mono-
tonicity condition, stationary points of this problem are solutions of (1). In section 3
we consider perturbations of the original problem that allow us to deal with monotone
(not necessarily strict) functions. Numerical experiments are presented in section 4.
Finally, conclusions and lines for future research are discussed in section 5.

Notation. We denote by 〈·, ·〉 the Euclidean inner product on R
n and by ‖ · ‖

the norm induced by this inner product and its corresponding matricial norm. If B
is a real n× n matrix, B ≥ 0 (B > 0) means that B is positive semidefinite (positive
definite).
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2. Equivalence results. The following minimization problem with simple bounds
is associated with the GNCP(F,G,K) defined in (1):

min f(x, z, λ)

subject to

{
z1 ≥ 0,
λ1 ≥ 0,

(2)

where

f(x, z, λ) = ‖RF (x)− z‖2 + ‖G(x)−RTλ‖2 + ρ〈z1, λ1〉2

and

R =

(
A
B

)
, z =

(
z1

0

)
∈ R

q × R
s, λ =

(
λ1

λ2

)
∈ R

q × R
s.

The next theorem states that solving problem GNCP(F,G,K) is equivalent to
finding the global minimizer of the optimization problem (2).

Theorem 1. If (x∗, z∗, λ∗) is a global minimizer of problem (2) with f(x∗, z∗, λ∗)
= 0, then x∗ is a solution of the GNCP(F,G,K). Conversely, if x∗ is a solution of
the GNCP(F,G,K), then there exist z∗, λ∗ such that (x∗, z∗, λ∗) is a global minimizer
of (2) with f(x∗, z∗, λ∗) = 0.

Proof. If f(x∗, z∗, λ∗) = 0, then

AF (x∗) = z1 ≥ 0, BF (x∗) = 0, implying that F (x∗) ∈ K,
G(x∗) = ATλ1

∗ + BTλ2
∗, with λ1

∗ ≥ 0, so G(x∗) ∈ K◦,

and

〈F (x∗), G(x∗)〉 = 〈F (x∗), RTλ∗〉 = 〈z∗, λ∗〉 = 〈z1
∗, λ

1
∗〉 = 0.

Conversely, if x∗ is a solution of the GNCP(F,G,K) then there exists λ∗ =
(λ1

∗, λ
2
∗) with λ1

∗ ≥ 0 such that G(x∗) = ATλ1
∗ + BTλ2

∗, z1
∗ = AF (x∗) ≥ 0, and

0 = F (x∗)TG(x∗) = F (x∗)T (ATλ1
∗ + BTλ2

∗) = (z1
∗)Tλ1

∗ + (BF (x∗))Tλ2
∗ = (z1

∗)Tλ1
∗.

Therefore, calling z∗ = (z1
∗, 0)T , we have that f(x∗, z∗, λ∗) = 0.

Global minimizers are very hard to find, especially in large-scale problems. Most
efficient large-scale algorithms for box-constrained optimization are guaranteed to
converge only to stationary points of the problem. Therefore, it is desirable to relate
stationary points of (2) to solutions of the GNCP.

Theorem 2. Let F (x), G(x) ∈ C1. If (x∗, z∗, λ∗) is a stationary point of (2) and
G′(x∗)[F ′(x∗)]−1 is positive definite in the null space of B, then x∗ is a solution of
the GNCP(F,G,K).

Proof. Let

H∗ = G′(x∗)[F ′(x∗)]−1,

w∗ = AF (x∗)− z1
∗,

u∗ = BF (x∗),
v∗ = G(x∗)−RTλ∗,
θ∗ = 〈z1

∗, λ
1
∗〉.
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If (x∗, z∗, λ∗) is a stationary point of (2), then there exist µ ∈ R
p
+ and γ ∈ R

s
+

such that

2G′(x∗)T v∗ + 2F ′(x∗)T (ATw∗ + BTu∗) = 0,(3)

−2Av∗ + 2ρθ∗z1
∗ − µ = 0,(4)

Bv∗ = 0,(5)

−2w∗ + 2ρθ∗λ1
∗ − γ = 0,(6)

〈µ, λ1
∗〉 = 0, 〈γ, z1

∗〉 = 0,(7)

λ1
∗ ≥ 0, µ ≥ 0, γ ≥ 0, z1

∗ ≥ 0.(8)

By (3) we have

HT
∗ v∗ + ATw∗ + BTu∗ = 0.(9)

Now, by (4), (6), and (7), we obtain

4〈Av∗, w∗〉 = 4ρ2θ2
∗ + 〈µ, γ〉,(10)

and (5), (9), and (10) imply that

〈v∗, HT
∗ v∗〉+ 〈Av∗, w∗〉 = 〈v∗, HT

∗ v∗〉+ ρ2θ3
∗ +
〈µ, γ〉

4
= 0.(11)

Therefore, by (5) and the fact that 〈v∗, HT
∗ v∗〉 > 0 in the null space of B, (11) implies

θ∗ = 0, 〈v∗, HT
∗ v∗〉 = 0.(12)

Since HT
∗ is positive definite in the null space of B, by (12), necessarily,

v∗ = 0.(13)

Thus, by (12) and (6),

2w∗ = −γ.(14)

If ai denotes the ith row of matrix A, using (13) and replacing w∗ and v∗ in (9),
we get

ATw∗ + BTu∗ =

q∑
i=1

ai(〈ai, F (x∗)〉 − (z1
∗)i) + BTBF (x∗) = 0.(15)

Let

I = {i ∈ {1, . . . , q} | (z1
∗)i = 0};

then, if i /∈ I, we have that (z1
∗)i > 0. But, by (7), we also have γi = 0. So, by (14),

(w∗)i = 〈ai, F (x∗)〉 − (z1
∗)i = 0 ∀ i /∈ I.(16)

Now, by (15) and (16)

ATw∗ + BTu∗ =
∑
i∈I

ai〈ai, F (x∗)〉+ BTBF (x∗) = 0.(17)
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Premultiplying (17) by F (x∗)T , we obtain∑
i∈I
〈ai, F (x∗)〉2 + ‖BF (x∗)‖2 = 0,(18)

and by (18)

u∗ = BF (x∗) = 0, (w∗)i = 〈ai, F (x∗)〉 = 0 ∀ i ∈ I.(19)

Finally, (12), (13), (16), and (19) imply that f(x∗, z∗, λ∗) = 0.
In the following theorem we show that the hypothesis of Theorem 2 can be relaxed

if the functions F and G are affine.
Theorem 3. Let F (x), G(x) be affine, G′F ′−1 positive semidefinite in the null

space of B and GNCP(F,G,K) feasible. If (x∗, z∗, λ∗) is a stationary point of (2),
then x∗ is a solution of GNCP(F,G,K).

Proof. As in Theorem 2, we obtain (3)–(12). Since θ∗ = 0, the optimality
conditions read as

2G′T v∗ + 2F ′T (ATw∗ + BTu∗) = 0,(20)

−2Av∗ − µ = 0,(21)

Bv∗ = 0,(22)

−2w∗ − γ = 0,(23)

〈µ, λ1
∗〉 = 0, 〈γ, z1

∗〉 = 0,(24)

λ1
∗ ≥ 0, µ ≥ 0, γ ≥ 0, z1

∗ ≥ 0.(25)

Relations (20)–(25) are the necessary and sufficient conditions for a global minimizer
of the following convex quadratic minimization problem:

min f(x, z, λ) = ‖RF (x)− z‖2 + ‖G(x)−RTλ‖2

subject to

{
z1 ≥ 0,
λ1 ≥ 0.

(26)

Since, by hypothesis, the GNCP(F,G,K) is feasible, it turns out that (x∗, z∗, λ∗)
is a global solution of (26) with objective function value zero, and as θ∗ = 0, we get
f(x∗, z∗, λ∗) = 0.

The hypotheses of Theorem 2 can also be weakened if K = R
n
+, as we show in the

following theorem.
Definition 1. A matrix B ∈ R

n×n is column-sufficient if for v ∈ R
n, vi(Bv)i ≤

0 ∀ i implies vi(Bv)i = 0 ∀ i. A matrix B is called row-sufficient if BT is column-
sufficient.

Definition 2. A matrix B ∈ R
n×n is called an S-matrix if there exists v ∈ R

n

such that v ≥ 0 and Bv > 0.
Theorem 4. Let K = R

n
+ and F (x), G(x) ∈ C1. If (x∗, z∗, λ∗) is a stationary

point of (2) and G′(x∗)[F ′(x∗)]−1 is a row-sufficient S-matrix, then x∗ is a solution
of the GNCP(F,G,K).

Proof. In this case the optimization problem is

min ‖F (x)− z‖2 + ‖G(x)− λ‖2 + ρ〈z, λ〉2

subject to

{
z ≥ 0,
λ ≥ 0.

(27)
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Defining

w∗ = F (x∗)− z∗,
v∗ = G(x∗)− λ∗,
H∗ = G′(x∗)[F ′(x∗)]−1,

and

θ∗ = zT∗ λ∗,

the optimality conditions read as

2G′(x∗)T v∗ + 2F ′(x∗)Tw∗ = 0,(28)

−2v∗ + 2ρθ∗z∗ − µ = 0,(29)

−2w∗ + 2ρθ∗λ∗ − γ = 0,(30)

〈µ, λ∗〉 = 0, 〈γ, z∗〉 = 0,(31)

λ∗ ≥ 0, µ ≥ 0, γ ≥ 0, z∗ ≥ 0.(32)

By (29) and (30),

4(w∗)i(v∗)i = 4ρ2θ2
∗(λ∗)i(z∗)i + µiγi(33)

for i ∈ {1, . . . , n}. We can write (28) as

HT
∗ v∗ + w∗ = 0.(34)

Therefore, by (33) and (34),

4(v∗)i(HT
∗ v∗)i + 4ρ2θ2

∗(λ∗)i(z∗)i + µiγi = 0(35)

for i ∈ {1, . . . , n}. Since H∗ is row-sufficient, (35) implies that

(v∗)i(HT
∗ v∗)i = 0 for i ∈ {1, . . . , n} and θ∗ = 0.(36)

Using (29), (30), (33), (34), and (36), we have that

HT
∗ v∗ = −w∗ =

γ

2
≥ 0(37)

and

v∗ = −µ

2
≤ 0.(38)

If v∗ 
= 0, (37) and (38) contradict the fact that H∗ is an S-matrix (see [11]), and
therefore

v∗ = 0, w∗ = 0.(39)

Finally, by (36) and (39), f(x∗, z∗, λ∗) = 0.
If F and G are affine functions and K is the positive orthant, then the following

result holds.
Theorem 5. Let K = R

n
+, F (x), G(x) be affine such that G′F ′−1 is a row-

sufficient matrix. If GNCP(F,G,K) is feasible and (x∗, z∗, λ∗) is a stationary point
of (2), then x∗ is a solution of GNCP(F,G,K).
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Proof. As in Theorem 4, we obtain (28) and (36). The rest of the proof mimics
that of Theorem 3.

Remark . The results of Theorems 4 and 5 are valid with the following hypothesis:
There exists a partition of I = {1, . . . , n}, I = [I0, I1], where

F̃T = (FT
i∈I0 , G

T
i∈I1) and G̃T = (GT

i∈I0 , F
T
i∈I1)

such that G̃′(x∗)[F̃ ′(x∗)]−1 is a row-sufficient S-matrix or just row-sufficient if F and
G are affine.

3. Perturbed problems. The finite variational inequality problem VIP(F̂ ,Ω),

where F̂ : R
n → R

n and Ω ⊆ R
n is a closed convex set, is to find x ∈ Ω such that

〈F̂ (x), y − x〉 ≥ 0 ∀ y ∈ Ω.
In [1], for Ω = {x ∈ R

n | g(x) ≤ 0, Bx = c, x ≥ 0}, where g = (g1, . . . , gm)T ,
gi ∈ C1(Rn) is convex ∀ i = 1, . . . ,m, B ∈ R

q×n, and c ∈ R
q, the authors reformulated

the VIP(F̂ ,Ω) as an equivalent box-constrained smooth optimization problem. The
properties of the merit function proposed there are similar to the one considered in
section 2 of this paper for the GNCP.

We relate now the GNCP(F,G,K) with the VIP(G◦F−1,K) whenever F−1 exists.
Lemma 6. If F−1 exists, then x∗ is a solution of the GNCP(F,G,K) if and only

if F (x∗) is a solution of the VIP(G◦F−1,K).
Proof. If x∗ is a solution of GNCP(F,G,K), then

F (x∗) ∈ K, G(x∗) ∈ K◦, 〈F (x∗), G(x∗)〉 = 0.(40)

Since F−1 exists,

〈G(x∗), F (x∗)〉 = 〈G ◦ F−1(F (x∗)), F (x∗)〉 = 0(41)

and, as G(x∗) ∈ K◦,

〈G(x∗), y〉 ≥ 0 ∀ y ∈ K.(42)

By (40)–(42), F (x∗) ∈ K and

〈G ◦ F−1(F (x∗)), y − F (x∗)〉 ≥ 0 ∀ y ∈ K.(43)

This implies that F (x∗) is a solution of VIP(G◦F−1,K).
Conversely, if F (x∗) is a solution of VIP(G◦F−1,K), then

F (x∗) ∈ K.(44)

So, for 0 ≤ ε ≤ 1,

(1 + ε)F (x∗) ∈ K and (1− ε)F (x∗) ∈ K(45)

and, since (43) holds for any y ∈ K, we obtain

〈G ◦ F−1(F (x∗)), F (x∗)〉 = 〈G(x∗), F (x∗)〉 = 0.(46)

By (43) and (46), 〈G(x∗), y〉 ≥ 0 ∀ y ∈ K, so G(x∗) ∈ K◦. Then, by (44) and (46), x∗
is a solution of GNCP(F,G,K).
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If F and G are affine functions we can guarantee that, if G◦F−1 is (not necessarily
strictly) monotone, stationary points of the merit function are solutions of the GNCP.

In general, we can have stationary points of the associated problem that are not
solutions of the original problem. Consider, for instance, the following example.

Example. Let F : R → R be defined as F (x) = x, G(x) = −1 if x ≤ 1 and
G(x) = (x − 1)2 − 1 if x ≥ 1, and K = R+. Observe that G ◦ F−1 is monotone and
convex. The GNCP(F,G,K) has the unique solution x∗ = 2. The merit function is
given in this case by

f(x, v, λ) =

{
(−1− v)2 + (x− λ)2 + (λv)2 if x ≤ 1,

((x− 1)2 − 1− v)2 + (x− λ)2 + (λv)2 if x ≥ 1,

and (0, 0, 0)T is a stationary point of reformulation (2) that corresponds to this prob-
lem.

In [1, Theorem 3.2] the authors proved that if F̂ is (not necessarily strictly)

monotone, the sequence of solutions of the perturbed problems F̂ + εkI, where I
is the identity matrix, converges to the unique solution of minimum norm of the
VIP(F̂ ,K).

In a similar way, given a sequence of strictly positive εk such that εk ↓ 0, we can
associate with the GNCP(F,G,K) a family of perturbed problems, as follows. For all
k ∈ N and x ∈ R

n we define

Gk(x) = G(x) + εkF (x).

In the following theorems we relate the solutions of the perturbed problems to
the solution of GNCP(F,G,K), where K is not necessarily a polyhedral cone. Thus,
these results may be used with the formulation proposed in [24].

Theorem 7. If GNCP(F,Gk,K) admits a solution xk ∀ k ∈ N and the se-
quence of solutions {xk} is bounded, then every limit point of {xk} is a solution of
the GNCP(F,G,K).

Proof. Since {xk} is bounded, it admits a convergent subsequence. Let K1 be an
infinite subset of N, and x∗ be such that

lim
k∈K1

xk = x∗.

If xk is a solution of GNCP(F,Gk,K), then

F (xk) ∈ K, G(xk) + εkF (xk) ∈ K◦, 〈F (xk), G(xk) + εkF (xk)〉 = 0.(47)

By the continuity of F and G and the closedness of K, limk∈K1 F (xk) = F (x∗) ∈ K,
limk∈K1 G(xk) = G(x∗) ∈ K◦, and F (x∗)TG(x∗) = 0.

Remark . In Theorem 7 there is no assumption of monotonicity on either the
original problem or the perturbed ones.

The result of [1, Theorem 3.2] is used next to characterize x∗ in the set of solutions
of GNCP(F,G,K), denoted by SOL(GNCP(F,G,K)). Also, SOL(VIP) denotes the
set of solutions of a VIP.

Theorem 8. Assume that G ◦ F−1 is monotone and that the set of solutions
of the GNCP(F,G,K) is not empty. Then the sequence {xk} of solutions of the
GNCP(F,Gk,K) converges to a solution x∗ of the GNCP(F,G,K) that is the unique
solution of the problem

min ‖F (x)‖ subject to x ∈ SOL(GNCP(F,G,K)).(48)
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Proof . If xk is a solution of GNCP(F,Gk,K), then, by Lemma 6, F (xk) is a
solution of the VIP(Gk ◦ F−1,K).

Since G ◦ F−1(x) is monotone and

Gk(x) ◦ F−1(x) = (G + εkF ) ◦ F−1(x) = G ◦ F−1(x) + εkx,(49)

we have that Gk ◦ F 1(x) is strictly monotone. As F is an homeomorphism, [1, The-
orem 3.2] implies that limk→∞ F (xk) = F (x∗), where F (x∗) is the unique minimum
norm solution of VIP(G ◦ F−1,K) and solves the problem

min ‖F (x)‖ subject to F (x) ∈ SOL(VIP).

Then, by Lemma 6, x∗ is a solution of GNCP(F,G,K) and is the unique solution of

min ‖F (x)‖ subject to x ∈ SOL(GNCP(F,G,K)).

The results obtained in this section allow us to solve GNCPs such that G ◦ F−1

is monotone using the approach developed in section 2 for the perturbed problems.

4. Computational experiments. Our set of experiments contains four fami-
lies: randomly generated problems in the positive orthant, implicit complementarity
problems from Outrata and Zowe [19], problems with general cones in R

n, and prob-
lems in three-dimensional cones with control of generated faces.

For the first family of problems, functions F and G are affine and both cones are
the positive orthant. Although quite simple, these problems contain essential elements
to start the investigation. By varying dimensions and features of the matrices that
define F and G, we have produced an extensive set of tests for which the theoretical
hypothesis of equivalence might hold or not.

In the second family our main objective was to solve problems already addressed
in the literature. We also extended the family of implicit complementarity problems
proposed in [19] to variable dimension, producing large-scale tests. For such problems,
however, the cones are the positive orthant as well.

General polyhedral cones were treated in the third and fourth families of problems.
In the third one, functions F and G are affine and the matrices A and B that define
the cones are generated to accomplish well defined problems, but without any specific
control. In the fourth family, we produced three-dimensional tests, so that geometrical
features of the cone, like control of edges and number of faces, were exploited to a
great extent.

The equivalent minimization problems (2), with simple bounded variables, were
solved using BOX-QUACAN, software developed by our research group at the State Uni-
versity of Campinas. It is based on the trust-region approach for solving large-scale
bound-constrained minimization and uses the infinity norm to define the trust-region,
so that the quadratic subproblems also have simple bounded variables. The subprob-
lems are solved by combining conjugate gradients with projected gradients and a mild
active set strategy (see [6, 12] or [9, p. 459]).

The code was developed in Fortran 77 double precision (Microsoft PowerStation)
and run on a Pentium 64MB RAM. The stopping criteria used are tolerance for the
objective function value εf = 10−10 and tolerance for the norm of the continuous
projected gradient εg = 10−6. We set ρ = 1 for all the tests.
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4.1. Randomly generated problems in the positive orthant. In our first
set of experiments we considered the problem of finding x ∈ R

n such that Mx+c ≥ 0,
Px + d ≥ 0, and (Mx + c)T (Px + d) = 0, where matrices M,P ∈ R

n×n and vectors
c, d ∈ R

n are given.
The problems were randomly generated to exploit specific features of matrices M

and P in a total of fourteen families as follows: M and P may be identical (families
1 to 6) or not (families 7 to 14); M and P may be symmetric (families 1 to 3 and 7
to 10) or not (4–6, 11–14); and matrices M and P may be regular (1, 2, 4, 5, 7, 8,
11, and 12) or singular (3, 6, 9, 10, 13, and 14). For each family, four values for the
dimension n were used (5, 50, 500, and 5000). For each dimension, three problems
were solved, with different seeds. For details on the generation, see [2].

Whenever M or P is invertible, the theoretical hypotheses of the equivalence
results of section 2 can be verified by analyzing properties of matrices PM−1 or
MP−1. There were some problems, from families 8, 12, and 13, that converged to
local nonglobal minimizers of (2), with merit function value greater than 10−1. For
problems from the first, second, fourth, and fifth sets, the theoretical hypotheses hold,
representing 28.5% of the total number of tests. For families 1, 2, 4, 5, and 7, the
algorithm computed the same solution that was generated for assembling the problem
data. For families 3, 6, 10, and 14, since both matrices M and P are singular, the
theoretical hypotheses fail, representing 28.5% of tests. For these tests, however, the
global solution of (2) was always obtained. There is no guarantee that the theoretical
hypotheses are valid for the test problems of sets 7, 8, 9, 11, 12, and 13, which represent
43% of tests. In fact, in 18 out of the 60 problems of these last six sets, at least one of
the values uTPM−1u or vTMP−1v, where u = Mx + c− z and v = Px + d− λ, was
negative. In the total of 168 problems solved, the hypotheses fail for 66 (39%), but
only 16 converged to local solutions of (2), which correspond to 24% of the candidates
for failure, and to 9.5% of the total of tests.

4.2. Implicit complementarity problems from Outrata and Zowe. In the
second set of experiments we solved implicit complementarity problems (see [19]) of
the following form:

Find y ∈ R
n such that

y −m(y) ≥ 0, F (y) ≥ 0, and 〈F (y), y −m(y)〉 = 0,

where mi : R
n → R, i = 1, . . . , n,

F (y) = Ay + b =




2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


 y +




1
1
1
1


 ,(50)

and m(y) = ϕ(Ay + b), with ϕ : R
n → R

n twice continuously differentiable.
As in [19, Examples 4.3 and 4.4], the following choices for function ϕ defined our

test problems:

POZ1: ϕi(λ) = −0.5− λi, i = 1, 2, 3, 4, and

POZ2: ϕi(λ) = −1.5λi + 0.25λ2
i , i = 1, 2, 3, 4.

For each problem, three starting vectors were used, namely,

(a) (0.0, 0.0, 0.0, 0.0)T ,
(b) (−0.5,−0.5,−0.5,−0.5)T ,
(c) (−1.0,−1.0,−1.0,−1.0)T .
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In [19], Newtonian strategies were adopted to solve problems POZ1 and POZ2.
In the first approach, the iterative scheme to compute fixed points of an operator S
was

yk+1 = yk − (E − V k)−1(yk − S(yk)),

where V k ∈ ∂S(yk). In the second approach, a Newton variant scheme was applied
to the semismooth operator

H(y) := min{y −m(y), F (y)} = 0,

where min denotes the componentwise minimum of the two vectors in brackets.
Problems POZ1 and POZ2 were also solved in [16], with a trust-region approach

for solving the GNCP(F,G,Rn+) using the merit function Φ : R
n → R defined by

Φ(x) :=
1

2

n∑
i=1

φ(Fi(x), Gi(x))2.

The function φ(a, b) =
√
a2 + b2 − a − b is the Fischer–Burmeister one, with the

property φ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0.
In Tables 1 and 2 we present, for comparative purposes, numerical results of [19]

and [16] for problems POZ1 and POZ2, respectively. Our results are reported in
Table 3, where the notation INNER, MVP, OUTER, and FE is used to indicate the number
of iterations and matrix-vector products performed by the inner (quadratic) solver,
and the number of iterations and functional evaluations performed by the outer (trust-
region) algorithm. We also included the final value of our merit function f(x, z, λ),
together with the norm of the projected gradient ‖gp‖ at the final approximation.

Table 1
Previous results: Problem 1 (POZ1: n = 4).

OZ95 JFQS98

Start
First approach

ITER

Second approach
ITER

ITER FE Φ

(a) 2 14 5 17 7.65D−18
(b) 2 41 4 16 9.71D−15

(c) V 2 singular 56 5 11 3.43D−24

Table 2
Previous results: Problem 2 (POZ2: n = 4).

OZ95 JFQS98

Start
First approach

ITER

Second approach
ITER

ITER FE Φ

(a) 3 15 5 17 1.05D−18

(b) V 2 singular 15 4 16 4.89D−15

(c) V 2 singular No convergence 5 11 7.05D−22

The results of our approach compared quite well with [16] and were, by far,
superior to the results of [19]. For problem POZ1, starting points (a) and (b) provide
similar results in terms of computational effort, although point (b) generates a solution
with slightly better quality. For this problem, starting with point (c), on the other
hand, requires twice as many inner iterations and matrix-vector products as starting
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Table 3
Results using our approach (n = 4).

Problem Start OUTER FE INNER MVP f(x, z, λ) ‖gp‖
POZ1 (a) 4 5 24 30 2.31D−10 8.61D−06

(b) 4 5 22 39 1.55D−14 7.03D−08
(c) 4 5 45 68 6.63D−11 7.77D−06

POZ2 (a) 5 6 48 74 4.25D−12 2.33D−06
(b) 6 8 104 171 1.15D−14 8.25D−08
(c) 3 4 31 60 9.43D−11 2.25D−05

Table 4
Additional tests with larger dimensions.

Problem Start OUTER FE INNER MVP f(x, z, λ) ‖gp‖
POZ1 (a) 7 10 125 236 1.26D−11 5.48D−06
n = 40 (b) 6 8 102 313 3.16D−13 4.52D−07

(c) 5 7 84 176 1.11D−10 6.62D−06

POZ1 (a) 8 12 146 205 2.42D−12 8.69D−07
n = 400 (b) 7 10 126 201 5.66D−12 1.59D−06

(c) 6 8 94 206 1.44D−11 2.32D−06

POZ1 (a) 9 14 143 311 1.59D−12 7.79D−07
n = 4000 (b) 8 12 123 377 7.43D−12 2.26D−06

(c) 7 9 99 289 1.96D−11 2.91D−06

POZ2 (a) 7 11 127 248 4.36D−12 2.45D−06
n = 40 (b) 6 9 116 201 1.89D−11 2.56D−06

(c) 6 8 104 176 6.90D−13 7.44D−07

POZ2 (a) 9 14 143 227 6.64D−13 5.35D−07
n = 400 (b) 7 11 135 367 1.75D−11 2.74D−06

(c) 7 10 120 203 6.30D−13 4.93D−07

POZ2 (a) 10 15 157 394 2.98D−12 9.12D−07
n = 4000 (b) 9 14 161 385 7.84D−11 5.18D−06

(c) 8 12 161 309 1.21D−12 4.94D−07

Table 5
Average results of our approach.

Problem n OUTER FE INNER MVP

POZ1 4 4.0 5.0 30.3 45.7
40 6.0 8.3 103.7 241.7
400 7.0 10.0 122.0 204.0
4000 8.0 11.7 121.7 325.7

POZ2 4 4.7 6.0 61.0 101.7
40 6.3 9.3 115.7 208.3
400 7.7 11.7 132.7 265.7
4000 9.0 13.7 159.7 362.7

with (a) or (b). For problem POZ2, the starting point that generated the highest cost
was (b).

To assess the reliability of our approach, we enlarged the dimension n of problems
POZ1 and POZ2, allowing n = 40, n = 400, and n = 4000. Matrix A ∈ R

n×n and
vector b ∈ R

n are the natural extensions of (50), as are the starting vectors (a), (b),
and (c). Results are presented in Table 4, where one can see that the computational
effort grows very slowly as n increases. The greatest difference happens between n = 4
and n = 40, but from 40 to 400 and from 400 to 4000 the cost does not grow as much
as in the first case. Such differences in the increasing factors can be better appreciated
by the average values shown in Table 5.
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4.3. Problems with general polyhedral cones in R
n. In this third set of

experiments we address the problem of finding x ∈ R
n such that Mx + c ∈ K,

Px + d ∈ K◦, and (Mx + c)T (Px + d) = 0, where the sets K, K◦ are defined by

K = {v ∈ R
n |Av ≥ 0, Bv = 0},

K◦ = {u ∈ R
n |u = ATλ1 + BTλ2, λ1 ≥ 0},

with A ∈ R
q×n, B ∈ R

s×n given. Matrices M,P ∈ R
n×n and vectors c, d ∈ R

n are
also given.

The problems were randomly generated quite similarly to our first set of exper-
iments. For details, see [2]. According to the features of matrices M and P , we
divided the set of tests into three families: (1) M = P , indefinite and nonsymmetric;
(2) M = P , indefinite and symmetric; (3) M 
= P , indefinite, nonsymmetric, and
singular. For families (1) and (2) the theoretical hypotheses of the equivalence results
hold since PM−1 = I.

For each family, six sets for the dimensions (n, q, s) were considered: (10, 5, 1),
(10, 10, 1), (10, 15, 1), (100, 50, 5), (100, 100, 5), and (100, 150, 5). For each set of di-
mensions, three problems were generated, with different seeds. The arithmetic means
of the results are reported in Tables 6 and 7, where we present the number of iterations
(INNER) and matrix-vector products (MVP) performed by the inner (quadratic) solver,
and the number of iterations (OUTER) and functional evaluations (FE) performed by
the outer (trust-region) algorithm.

Table 6
Average results: Problems with n = 10, s = 1.

q Family INNER MVP OUTER FE

5 1 136.7 170.3 9.0 10.0
10 184.0 257.0 11.3 12.3
15 309.0 436.7 18.0 19.0
5 2 168.0 213.0 11.3 12.3
10 168.7 232.3 11.8 12.8
15 208.3 282.3 12.7 13.7
5 3 208.7 253.3 10.0 11.0
10 278.7 371.7 13.0 14.0
15 485.7 640.7 19.7 20.7

Table 7
Average results: Problems with n = 100, s = 5.

q Family INNER MVP OUTER FE

50 1 1021.0 1373.0 35.7 36.7
100 2199.3 2971.3 72.0 73.0
150 3946.3 5103.0 113.3 114.0
50 2 1064.7 1421.0 37.0 38.0
100 2167.7 2833.0 67.3 68.3
150 4291.3 5720.3 124.3 125.3
50 3 7397.7 7922.0 101.0 102.0
100 160724.0 166259.0 1856.0 1857.0
150 102189.0 112886.0 957.3 963.0

We denote the figures of Tables 6 and 7 by T kij , where k ∈ {1, 2, 3} represents
each family, i ∈ {1, 2, 3} corresponds to rows with q = 5, 10, 15 (Table 6), i ∈ {4, 5, 6}
corresponds to rows with q = 50, 100, 150 (Table 7), and j ∈ {1, 2, 3, 4} is the corre-
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sponding column with the values INNER, MVP, OUTER, and FE. Based on these values,
we define cost measures to guide our analysis.

Concerning the effort spent by the algorithm, there are two aspects we would like
to address: How is such effort related to the problem dimension, and how is it related
to the problem features? Considering each dimension separately, we started by defin-
ing two cost measures, per inner iteration (MVP/INNER) and global (INNER/OUTER), as
follows:

me1(i) =
1

3

∑
k

T ki2
T ki1

and me2(i) =
1

3

∑
k

T ki1
T ki3

for i = 1, 2, 3, 4, 5, 6.
For a better understanding of the average values represented by these two mea-

sures, we also computed the minimum and maximum values:

m1(i) = min
k

T ki2
T ki1

, M1(i) = max
k

T ki2
T ki1

, m2(i) = min
k

T ki1
T ki3

, and M2(i) = max
k

T ki1
T ki3

.

Results are reported in Table 8, where the triples contain

(m1(i),me1(i),M1(i)) and (m2(i),me2(i),M2(i))

for i = 1, . . . , 6.

Table 8
Measures of effort per problem dimension.

Dimension

(q)
(m1,me1,M1) (m2,me2,M2)

5 (1.22, 1.24, 1.26) (14.69, 16.54, 20.03)

10 (1.34, 1.36, 1.38) (14.79, 17.50, 21.34)

15 (1.33, 1.37, 1.42) (16.49, 19.28, 24.11)

50 (1.09, 1.25, 1.34) (28.24, 41.04, 66.12)

100 (1.06, 1.24, 1.35) (30.49, 48.74, 83.55)

150 (1.09, 1.24, 1.34) (34.24, 54.99, 95.91)

With the aim of analyzing results according to the family of generated problems,
we define two additional measures for each one of sets 1 to 3. The weights ln(n+2q+s)
and

√
ln(n + 2q + s) were introduced to filter dependence of dimension and somehow

make uniform the computed values:

me3(k) =
1

6

(
3∑
i=1

T ki2
ln(11 + 10i)T ki1

+

6∑
i=4

T ki2
ln(100i− 195)T ki1

)

and

me4(k) =
1

6

(
3∑
i=1

T ki2√
ln(11 + 10i)T ki1

+

6∑
i=4

T ki2√
ln(100i− 195)T ki1

)

for k = 1, 2, 3. We stress that the values 11+10i, i = 1, 2, 3, and 100i−195, i = 4, 5, 6
are, respectively, the dimensions 21, 31, 41 and 205, 305, 405 used in the tests. Results
are shown in Table 9, where we also include minimum (m3,m4) and maximum values
(M3,M4).
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Table 9
Measures of effort per problem family.

Family (m3,me3,M3) (m4,me4,M4)

1 (0.50, 0.54, 0.58) (23.08, 37.16, 54.70)

2 (0.51, 0.54, 0.56) (23.19, 37.02, 53.86)

3 (0.43, 0.48, 0.54) (31.34, 81.58, 151.38)

Observing Table 8, one can see that the effort of the inner solver is always in-
ferior to 1.5 matrix-vector products per iteration. Moreover, it is slightly larger
for smaller problems (dimensions n + 2q + s ∈ {21, 31, 41}) than for larger ones
(n + 2q + s ∈ {205, 305, 405}), although the dispersion between minimum and max-
imum values grows with increasing q. This last comment also applies to the global
effort measure me2, that grows as q increases, together with the length of intervals
[m2,M2]. Although dimension differs by a factor of ten for the two sets of problems,
figures of (m2,me2,M2) are about twice as large when the two sets are compared.

Concerning Table 9, the main conclusions are that symmetry of matrices M and
P does not seem to interfere in the performance of our approach, since families 1 and
2 produced quite similar results for both triples (m3,me3,M3) and (m4,me4,M4).
The singularity of matrices M and P , on the other hand, showed significant effects,
especially as far as the global performance is concerned.

This set of experiments consists of 54 tests. For the 27 problems of smaller
dimension, the final objective function value was always inferior to 10−5. Considering
the 27 large ones, for 8 problems of the third family the final objective function values
were greater than 10−2, indicating convergence to a local nonglobal solution. This
amounts to 55.6% success among problems for which the theoretical condition of
equivalence does not hold. We stress, however, that whenever the hypothesis is valid,
a global solution was reached.

4.4. Problems in three-dimensional cones with control of generated
faces. In the fourth set of experiments we addressed the problem of finding x ∈
K = {v ∈ R

n |Av ≥ 0} such that Tx + c ∈ K◦ = {v ∈ R
n |ATλ = v, λ ≥ 0} and

xT (Tx + c) = 0. We generated the polyhedral cones K with q faces, such that their
edges were the lines


 x

y
z


 =




r cos
(

2π
q k
)

r sin
(

2π
q k
)

1


 t, t ∈ R, k = 1, . . . , q.

Therefore, K was defined by computing the rows of matrix A as the normal vectors
to the support planes of the cone faces. In other words, the vector that defines the
ith row of matrix A (i = 1, . . . , q) is given by the cross-product


cos
(

2π
q (i− 1)

)
sin
(

2π
q (i− 1)

)
1

r


×



r cos

(
2π
q i
)

r sin
(

2π
q i
)

1


 =




sin
(

2π
q i
)(

cos 2π
q − 1

)
− cos

(
2π
q i
)

sin 2π
q

cos
(

2π
q i
)(

1− cos 2π
q

)
− sin

(
2π
q i
)

sin 2π
q

r sin 2π
q


.

The problems were generated as follows. Given the values of the radius r and
of the dimension q (number of faces of cone K), we built matrix A and created two
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types of solutions x∗, at the boundary and in the interior of K, respectively. Next we
randomly generated matrix T , keeping it symmetric, and produced four families of
problems, namely, (1) T indefinite, (2) T positive definite, (3) T positive semidefinite,
and (4) T negative semidefinite. For more details, see [2].

The tests were produced by varying r ∈ {0.1, 1, 10}, q ∈ {3, 4, 5, 6, 9, 12}, the four
families of matrices T , and the two kinds of generated solution x∗, which amounted
to 144 problems. Three distinct seeds were chosen to generate problems for each
selection of r, q, T , and x∗.

To analyze the robustness of the proposed approach, since half of the generated
problems do not satisfy the hypothesis of the equivalence result (families 1 and 4, with
matrices T indefinite and negative semidefinite, respectively), we observed that for
the 72 problems with x∗ generated at the boundary of the cone, 29 out of the 72× 3
tests stopped at local nonglobal solutions. This corresponds to success for 86.6% of
the total and 73.2% of the candidates for failure. For problems with x∗ generated in
the interior of the cone, six problems converged to local nonglobal solutions, in a total
of 72 × 3 problems. In this case, the measures of success are 97.2% of the total and
94.4% of the problems without theoretical guarantee of convergence. Summing up the
two blocks of tests, there were 35 failures, representing success in 91.9% of total and
83.8% of the universe of problems that do not satisfy the hypothesis of equivalence
result.

There are some salient features that emerge from the results. First, the com-
putational cost of the inner solver grows with the problem dimension, reaching its
maximum for q = 9 and q = 5 if x∗ is generated at the boundary and in the interior
of K, respectively.

It is also evident that the degree of difficulty of the generated problems grows as
the radius r decreases: r = 10 produces the easiest problems whereas r = 0.1 generates
the most difficult ones. Recall that in this set of experiments our problem is to find
x ∈ K = {v ∈ R

n |Av ≥ 0} such that Tx + q ∈ K◦ = {v ∈ R
n |ATλ = v, λ ≥ 0}, so

the requirements for K and K◦ are different.
Grouping problems according to the features of matrix T , there are 36 problems

for each family (6 dimensions q, 3 values for r, and 2 types of generated x∗). We have
computed the ratios INNER/nt and OUTER/nt, where nt = n + 2q is the dimension
of problem (2), and calculated average values, presented in Table 10, together with
minimum and maximum values.

Table 10
Measures of effort per problem features.

Family INNER/nt OUTER/nt

Minimum Average Maximum Minimum Average Maximum

1 6.3 15.6 51.1 0.3 0.6 1.4
2 1.6 12.2 33.4 0.2 0.6 1.2
3 3.9 13.6 35.8 0.3 0.6 1.1
4 1.7 16.4 153.3 0.1 0.6 2.1

Observing the figures of Table 10, we see that solving problems from families 1
and 4 (T indefinite and negative semidefinite, respectively) demands more effort than
solving those from families 2 and 3 (T positive definite and positive semidefinite, re-
spectively). The largest dispersion, that is, the largest interval (minimum, maximum),
occurs for the fourth family, because of an outlier. Removing this discrepant value,
the triples become (1.7, 14.5, 46.2) and (0.1, 0.7, 1.2), with dispersions similar to those
of the first family.
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5. Conclusions. We proposed a smooth box-constrained minimization refor-
mulation of the GNCP(F,G,K), assuming that K is a polyhedral cone. Any efficient
minimization algorithm for solving this kind of problems may be used. The study of
perturbed problems gives information about the solutions of a GNCP(F,G,K) for a
general cone K with very mild assumptions on the problem data.

Computational experiments are presented which encourage the use of our ap-
proach. Four groups of problems were addressed: randomly generated problems in
the positive orthant, implicit complementarity problems from Outrata and Zowe,
problems with general cones in R

n, and problems in three-dimensional cones with
control of generated faces.

The numerical results showed that the solution of the GNCP using (2) was found
in the majority of the tests, even without accomplishment of theoretical hypothesis,
meaning that the behavior of the method does not depend strongly on the sufficient
conditions that guarantee the equivalence. Quantifying this robustness, considering
only the universe of problems without theoretical support for convergence, for the first
set of experiments the amount of failure was 24%. In the third and fourth sets, local
nonglobal solutions were reached in 44% and 16% of the tests, respectively. No doubt,
in the absence of theoretical support, the convergence to global solutions is more
frequent for problems of smaller dimensions. The second set of problems, included
for comparative purposes, formed by implicit complementarity problems, contained
large-scale experiments (dimension up to 3 × 4000 = 12000) for which our approach
had a very good performance. The third set of experiments revealed that general
polyhedral cones might produce quite difficult problems, especially as the dimension
increases. The fourth group of tests was created to investigate geometrical features
of the cone K. Besides noticing that, for the generated three-dimensional problems,
thinner cones need more effort than wider ones, we observed that the increasing
number of edges and faces did not substantially augment the amount of effort needed
to solve the problems. As a natural extension of this work, we would like to investigate
the possibility of approximating a general cone by a polyhedral one. This leads us
to look for further connections between theory and practice concerning geometrical
and algebraic properties of general cones and their relationship with GNCP defined
in these sets. We are also interested in studying the behavior of our approach applied
to problems with nonlinear functions F and G and polyhedral cones.

An important question that arises concerns whether limit points of the sequences
generated by the minimization algorithm exist. The boundedness of the level sets of
the merit function is a sufficient condition for the existence of these limit points, and
results in this sense are given in [3, 17]. This matter deserves future research.
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Abstract. This paper describes a continuous space discretization scheme based on statistical
experimental designs generated from orthogonal arrays (OAs) of strength three with index unity.
Chen, Ruppert, and Shoemaker [Oper. Res., 47 (1999), pp. 38–53] employed this efficient discretiza-
tion scheme in a numerical solution method for high-dimensional continuous-state stochastic dynamic
programming (SDP). These OAs may be instrumental in reducing the dimensionality of event spaces,
SDP state spaces, and first-stage decision spaces in two-stage stochastic programming. In particular,
computationally efficient space-filling measures for these OAs are derived for evaluating how well a
specific OA discretization fills the state space. Comparisons were made with two types of common
measures: ones which maximize the average (or minimum) distance between discretization points
within the OA and ones which minimize the average (or maximum) distance between discretization
points and nondiscretization points lying on a full grid (i.e., points lying on the full grid that are
not contained in the OA discretization). OAs of strength three were tested by fitting multivariate
adaptive regression splines to data from an inventory-forecasting continuous-state stochastic dynamic
program.

Key words. continuous state space, event space, space-filling design, finite projective geometry
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1. Introduction. Stochastic programming (SP) and stochastic dynamic pro-
gramming (SDP) have been used to solve problems in manufacturing systems, envi-
ronmental engineering, revenue management, and many other fields (see King (1988),
Birge and Louveaux (1997); White (1988), Puterman (1994)). Neither SP nor SDP
is new (e.g., Dantzig (1955), Bellman (1957), Nemhauser (1966)), but they can both
require computationally demanding solutions. For both, the objective is to mini-
mize expected “cost,” which represents any measure that one would like to minimize.
Equivalently, one could maximize “benefit.” SDP minimizes the cost to operate a
stochastic system over several time periods by controlling decision variables in each
time period. The state variables represent the current state of the system (e.g., at
the beginning of a specific time period). Similarly, SP models decisions in discrete
and ordered stages, where decisions in subsequent stages depend on decisions in prior
stages. SDP is restricted to stochastic systems whose states can be modeled by a
Markov decision process. SP is typically practical for only a small number of stages
(most commonly two).

In both SP and SDP, computational complications arise when the random vector
representing the stochastic nature of the system has a continuous distribution, i.e.,
a continuous event space. Both require a finite sample of scenarios to represent this
distribution. The sample of scenarios is not only used to estimate the expected cost,
but is needed to demonstrate “almost sure” feasibility of solutions.
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More interesting computational issues arise in the context of (nearly) continu-
ous decision variables in the first (or prior) SP stages and (nearly) continuous SDP
state variables. In a two-stage SP formulation, the second-stage value function is the
optimal expected cost in the second stage, subject to constraints that are directly
dependent on the decision in the first stage. Thus, when the first-stage decision vari-
ables are continuous, the second-stage value function cannot be calculated for every
possible first-stage decision. In practice, even if the first-stage decisions are discrete,
there will be too many to calculate all possibilities. Instead, iterative approximation
methods which exploit the structure of SP problems are employed (see Birge and
Louveaux (1997)).

In SDP, the future value function provides the minimum (cumulative) expected
cost through the end of the (finite) time horizon. Continuous-state SDP assumes
that the state variables are continuous. In deterministic form, large continuous-state
dynamic programs may be efficiently solved using differential dynamic programming
(see Caffey, Liao, and Shoemaker (1993)). Solutions to large continuous-state SDP
models are much more difficult due to the stochasticity. However, the orthogonal
array/multivariate adaptive regression splines (OA/MARS) method introduced by
Chen, Ruppert, and Shoemaker (1999) shows great promise. In SDP with continuous
state spaces, an approximate solution is found by discretizing the state space to a finite
set of points. In Chen, Ruppert, and Shoemaker (1999), a discretization based on an
OA was instrumental in reducing the dimensionality of high-dimensional continuous-
state SDP.

The OA discretization is useful for representing any continuous space and is com-
monly used to design experiments for efficient statistical analysis. For SP and SDP,
OA discretizations have the potential to significantly affect computational effort. This
paper provides details on the construction of the OAs used by Chen, Ruppert, and
Shoemaker (1999) and describes measures for assessing the “goodness” of these OA
discretizations from a space-filling perspective. In particular, new computationally
efficient space-filling measures for these OAs are introduced. These measures were
used to differentiate the space-filling quality of OAs in a study by Chen (1999).

The next section briefly describes a two-stage SP formulation and a continuous-
state SDP problem, highlighting the discretization issues. Section 3 presents dis-
cretization from a statistical perspective. Section 4.1 describes the construction of
the OA designs employed by Chen, Ruppert, and Shoemaker (1999), followed by
the derivation of properties in section 4.2 that lead to new measures of goodness in
section 5.2. Section 5.1 introduces some common measures for space-filling designs,
section 5.3 derives the computational requirements of all the measures, and section 5.4
presents correlation results between all the measures for OAs of strength three with
four, six, and nine continuous variables. Finally, section 5.5 illustrates the difference
in accuracy between “good” and “poor” state space discretizations on data from the
last period of four-, six-, and nine-dimensional inventory-forecasting continuous-state
SDP problems (see Chen (1999)).

2. Motivation for discretization.

2.1. A two-stage SP formulation. The basic two-stage stochastic linear pro-
gram solves the following problem:
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min
x

cTx + E

{
min
y

gTy

}
s.t. Ax = b,

Tx +Wy = h,
x ≥ 0,y ≥ 0,

where x ∈ Rn1 is the first-stage decision vector with linear costs c ∈ Rn1 , y ∈ Rn2 is
the second-stage decision vector with linear costs g ∈ Rn2 , A is the m1×n1 first-stage
linear constraint matrix with right-hand-side b ∈ Rm1 , and T and W are, respectively,
m2×n1 and m2×n2 matrices specifying the second-stage linear constraints on x and
y with right-hand-side h ∈ Rm2 . The expectation is taken over stochastic variables
that may appear in g, T , W , or h. For a given realization of the stochastic variables,
call it ω, we can write the second-stage value function as

Q(x,ω) = min
y

{
g(ω)Ty |W (ω)y = h(ω)− T (ω)x,y ≥ 0

}
.(2.1)

Here we can see that the second-stage decision depends directly on the first-stage
decision. Then the expected second-stage value function is

Q(x) = E[Q(x,ω)],

where the expectation is taken over scenario realizations ω. Finally, the first-stage
decision is found by solving the deterministic linear program:

min
x

cTx +Q(x)

s.t. Ax = g,
x ≥ 0.

(2.2)

The difficulty lies in determining Q(x). If the stochastic variables are continuous,
then a large number of scenarios may be needed to estimate the expectation. The
second-stage value function in (2.1) must be solved individually for each scenario
ω. Thus there is a high computational cost for “evaluating” Q(x) at just one x.
In solving the minimization in (2.2), each evaluation of Q(·) is computationally ex-
pensive. Consequently, the iterative approximation methods described by Birge and
Louveaux (1997) can be very slow to converge.

Discretization may be useful in two ways for SP: (i) for generating the set of
scenarios representing the continuous event space of the stochastic variables, and
(ii) for constructing an approximation of Q(·) over the x-space. The first item is a
common use of discretization in SP. However, the second item is yet to be explored.
To control the computational requirements of a solution method, we would need to
control the number of times we evaluate Q(·). If we discretize the x-space to a finite
set of points and solve for Q(·) only at those points, then we can employ a function
approximation technique to estimate the entire surface of Q(·). This approximation,
call it Q̂(·), will be computationally trivial to evaluate in the minimization of (2.2). In
selecting a discretization, it will be important to select only those x vectors that result
in a feasible solution in the second stage. The state space discretization problem for
SDP, discussed next, is more straightforward.
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2.2. Solving continuous-state SDP. The objective of SDP is to minimize
expected costs over T time periods, i.e., to solve

min
u1,...,uT

E

{
T∑
t=1

ct(xt,ut, εt)

}

s.t. xt+1 = f(xt,ut, εt) for t = 1, . . . , T − 1, and

(xt,ut) ∈ Γt for t = 1, . . . , T ,

where xt ∈ Rn is the state vector, ut ∈ Rm is the decision vector, ct : R
n+m+l → R1

is a known cost function for period t, Γt ⊂ Rn+m is the set of constraints on ut which
depend on xt, and the expectation is taken over the random vector εt ∈ Rl, with
known probability distribution. The known function f defines the transition from xt
to xt+1 by xt+1 = f(xt,ut, εt). The future value function at time t is

Ft(xt) = min
ut,...,uT

E

{
T∑
τ=t

cτ (xτ ,uτ , ετ )

}

s.t. xτ+1 = f(xτ ,uτ , ετ ) for τ = t, . . . , T − 1 and
(xτ ,uτ ) ∈ Γτ for τ = t, . . . , T − 1,

for t = 1, . . . , T , and can be written recursively as

Ft(xt) = min
ut

E{ct(xt,ut, εt) + Ft+1(xt+1)}, t = 1, . . . , T,(2.3)

where we define FT+1 ≡ 0. It is assumed that the expected value can be calculated
exactly (i.e., that the stochastic variable has a finite number of realizations). If the
event space is continuous, then a set of scenarios, as discussed for SP, may be used to
estimate the expected value.

Since there are assumed to be no costs incurred after the last period, the basic
SDP solution algorithm solves backwards in time. In theory, the SDP solution is found
by exhaustively solving, for each period, the minimization in (2.3) for every possible
xt state. This would result in a complete description of the future value function
for each period (given the future value functions, we can re-solve for the optimal
decisions). Of course, in continuous-state SDP this exhaustive solution method is
impossible, since there are an infinite number of states. Instead, an approximate
solution is found by discretizing the n-dimensional state space to a finite set of points,
then using a function approximation technique to estimate the future value function
over the continuous state space.

The most popular technique for discretizing a continuous SDP state space is
to form a finite grid of discretization points in the state space. This approach is
subject to exponential growth in the number of discretization points as the number
of state variables increases. From a statistical design of experiments perspective,
the discretization of the n-dimensional state space is analogous to constructing an
experimental design for n predictor variables. This is discussed in the next section.

3. Design of experiments. The task of finding a good discretization parallels
the task of finding a good statistical experimental design. The primary purpose
of the field of experimental design is to create designs such that the relationship
between a univariate response from an experiment and several predictor variables
may be accurately modeled with an efficient number of design points. When a specific
parametric model can be assumed for this relationship, then a design may be chosen
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which satisfies special criteria, such as minimizing maximum variance, known as G-
optimality in the statistical literature (Johnson, Moore, and Ylvisaker (1990)). When
a model cannot be assumed, then a space-filling design, which spreads design points
evenly over the region of interest, may be employed. A space-filling discretization
would attempt to fill the continuous state, event, or decision space uniformly.

Consider an experiment with n predictor variables, x = (x1, . . . , xn). In par-
ticular, these correspond to the n state variables in the SDP model. Alternatively,
these could correspond to n stochastic variables over which an expectation will be
calculated or, in SP, n first-stage decision variables. Assume each predictor variable
can be set to q different levels. One trial of an actual experiment entails setting the
predictor variables to specific levels and measuring the response produced by this
combination of levels. For a particular trial, the setting of levels of the predictor
variables corresponds to a discretization point in the x-space. The set of trials for an
experiment constitutes an experimental design, which corresponds to a discretization
of the x-space. Let N be the total number of trials in an experimental design (i.e., the
number of discretization points). The N trials correspond to the rows of the N × n
experimental design matrix D.

A full factorial design for an experiment with n predictors, each at q levels,
contains all possible trials (combinations of levels of the predictor variables) and cor-
responds to the grid of N = qn discretization points in the n-dimensional continuous
space, where each dimension represents a predictor variable and each variable takes
on q levels. Clearly, N increases exponentially with n. A fractional factorial design is
any proper subset of a full factorial design.

Themain effect due to one predictor variable consists of the effect of that predictor
on the response, averaged over the values of the other predictors. An interaction exists
between two or more predictor variables when the combined effect of these predictors
on the response is different from the sum of their main effects. A full factorial design
permits estimation of all possible interactions between any number of variables. In
practice, most relationships can be approximated using only main effects and low-
order interactions. By assuming that all high-order interactions (e.g., all interactions
involving four or more predictor variables) are negligible, fractional factorial designs
or other smaller designs may be utilized. OA designs are special fractional factorial
designs.

In addition to the usual fractional factorial designs (see Montgomery (1997)),
there is a growing literature on experimental designs for meta-modeling. In meta-
modeling, the goal is to build a response surface model based on a deterministic
simulation of a complex system, so as to facilitate optimization of the system. This
is very similar to (but not quite the same as) use of the discretization problems for
approximating the value functions of SP and SDP. In a recent meta-modeling study
using a flexible “kriging” model (see Sacks et al. (1989)), Palmer (1998) evaluated
several types of experimental designs, including Latin hypercube sampling (McKay,
Conover, and Bechman (1979)), OA-based Latin hypercube sampling (Owen (1992),
Tang (1993)), (t,m, s)-based b nets (Owen (1995)), the Hammersley sequence
(Kalagnanam and Diwekar (1997)), and a minimum-bias Latin hypercube design
(Palmer and Tsui (2001)). Although the results were somewhat mixed, those that per-
formed best overall in estimating one seven-dimensional and three four-dimensional
chemical process systems were minimum-bias Latin hypercubes, OA-based designs,
and Latin hypercube sampling. It should be noted that Latin hypercubes are a spe-
cial case of OAs. In this paper, optimal OA designs (such as minimum-bias) are not
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specifically generated because finding them is computationally grueling. However,
assessing the “goodness” of our OA design in a computationally efficient manner is
the focus of sections 5.1 through 5.3.

For discretization of the SDP state space, Chen, Ruppert, and Shoemaker (1999)
selected OA designs because of their inherent relationship with factorial designs and
their ease of construction. An OA design of strength d for n predictor variables
and q levels is a fractional factorial design with the property that for any subset of
d predictors, all possible factor-level combinations appear with the same frequency
(λ). OA designs are balanced when looking at the variables d at a time. Spatially,
when the points of an OA design of strength d in n dimensions are projected onto
any d-dimensional subspace, each point of the d-dimensional full factorial with q
levels in each dimension will be represented λ times. The notation for this array is
OA(N,n, q, d) with index λ, where n, q, d, and λ are as above and N = λqd is the
total number of points in the design. An array OA(N = qk, n, q, d) is identical to
a hypercube denoted by (n, q, k, d). OAs of strength two are equivalent to hyper-
Græco-Latin squares, and OAs of strength one with index unity are equivalent to
Latin hypercubes. In order to minimize confusion, we will use only the OA notation.

The discretization used by Chen, Ruppert, and Shoemaker (1999) was chosen
according to OA designs of strength three (d = 3) with index unity (λ = 1). Thus
the total number of discretization points is N = q3. For this OA design, the number
of predictor variables must satisfy (see Bush (1952))

n ≤
{

q + 1 when q is odd,
q + 2 when q is even.

Thus q must increase linearly with n, implying that N increases polynomially with
n, compared to exponentially for the full factorial design. MATLAB functions which
generate the strength three OA designs when q is prime, and instructions on their
use, may be obtained from the author.

4. OA discretization.

4.1. Construction. Following the notation used in the previous section, Chen’s
group (1999) employed an OA of strength three with index unity, which is denoted
as OA(N = q3, n, q, 3). Suppose that the number of levels q = pk, where p is prime
and k is a positive integer. Then Bose and Bush (1952) proved we can construct an
array OA(qr, n, q, d), where r ≥ d is an integer, if we can find an n × r matrix C,
whose elements belong to the pk-element Galois field GF(pk) such that every d × r
submatrix has rank d. They state that this is equivalent to finding n points in a
(r − 1)-dimensional finite projective geometry based on the pk-element Galois field
such that no d are conjoint. A set of d points is said to be conjoint if they all lie on a
flat space with dimension d − 2 or lower. In Chen, Ruppert, and Shoemaker (1999),
r = 3 and d = 3, so a strength three OA discretization may be generated by finding
n points in the projective plane such that no three points lie in a line (i.e., conjoint
translates to collinear in the projective plane). A brief background on the projective
plane is provided in Appendix A.

Although the theory for generating these OAs appears in the literature, an actual
algorithm does not. In this section we present our algorithm. As stated above, our
goal is to find n points such that no three points are collinear. Batten (1986) shows
that any line in the projective plane intersects a nondegenerate point conic (described
in Appendix B and briefly illustrated in the next paragraph) in either 0, 1, or 2 points.
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Fig. 4.1. This central perspectivity transforms the points on line L1 onto line L2 such that the
corresponding pairs of points on L1 and L2 are collinear with the point O. In particular, we see that
the four points A, B, C, and D on L1 become the points A′, B′, C′, and D′ on L2, respectively.

In other words, no three points of a nondegenerate point conic are collinear. Thus we
can achieve our goal by constructing a nondegenerate point conic. For strength d = 3
and n = q+1 points, and specifying r = 3, we can generate the array OA(q3, q+1, q, 3)
from the coordinates of the q + 1 points on a nondegenerate point conic of the finite
projective plane PG(2, q). The maximum allowable number of predictor variables for
a strength three OA with q odd (e.g., prime greater than two) is q+1 (Bush (1952)).
A similar approach in projective space may be used to generate strength four OAs;
however, strength four OAs are generally too large to be practical.

To follow the algorithm, the reader must have, at minimum, a graphical under-
standing of a point conic. Figures 4.1 and 4.2 illustrate two basic concepts, perspectiv-
ity and projectivity, leading up to the point conic illustrated in Figure 4.3. As shown
in Figure 4.1, a central perspectivity transforms the points of one line onto another
line via a point called the center of perspectivity. A product of perspectivities is called
a projectivity. The projectivity illustrated in Figure 4.2 is the product of two central
perspectivities.

Figure 4.3 attempts to illustrate a point conic. The construction of a point conic
begins with two points, say P and Q. In the finite projective plane PG(2, q), a point
P has exactly q+1 lines going through it. This set of lines is called the pencil through
point P . The point conic is formed by a projectivity of the lines in the pencil through
P onto the lines in the pencil through Q. In Figure 4.3, the lines are labeled such
that line ui in the pencil through P is projected onto line vi in the pencil through Q.
The dots are the points in the resulting point conic. Given the same two pencils, a
different projectivity would result in a different point conic.

For the algorithm, we adopt the notation P for points, u and v for lines, and
use subscripts {1, 2} to denote the two pencils. The algorithm for generating an
OA(q3, n, q, 3) design from a nondegenerate point conic is given below. In step 2(a),
the selection of two lines from each pencil defines the specific projectivity that will be
used to generate the point conic. In step 2(c), the rows of the matrix C correspond
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Fig. 4.2. This projectivity transforms the points on line L1 onto line L3 and is a product of
two central perspectivities. The first central perspectivity transforms the points on line L1 onto line
L2 via the center of perspectivity O1. The second transforms the points on line L2 onto line L3 via
the center of perspectivity O2. In particular, we see that the four points A, B, C, D on L1 become
the points A′′, B′′, C′′, D′′ on L3, respectively.

Fig. 4.3. This point conic in PG(2,5) is the result of a projectivity of the lines through point
P into lines through point Q. The lines ui in the pencil through P are projected into the lines vi in
the pencil through Q, and the intersections of the pairs of lines (ui, vi), i = 1, . . . , 6, form the points
of the conic. This is a nondegenerate point conic since there are six lines in both pencils and six
points in the point conic itself.

to the points of the point conic.

ALGORITHM OA3.
1. Select two distinct points P1 and P2 from the projective plane.
2. Identify the points of the point conic generated by P1 and P2 as follows:
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(a) Select two distinct lines, u1 = [u11, u12, u13]
T and v1, from the pen-

cil through P1 and any two distinct lines, u2 and v2, from the pencil
through P2;

(b) Calculate the coefficients

aij = aji = [(u1iv2j − u2jv1i) + (u1jv2i − u2iv1j)]/2(4.1)

for the symmetric homogeneous second-degree equation

3∑
i=1

3∑
j=1

aijxixj = xTAx = 0;(4.2)

(c) Construct the (q+1)×3 matrix C with rows corresponding to the points
x that satisfy (4.2).

3. If C is not full rank, then the point conic is degenerate → return to step 1.
4. Otherwise the point conic is nondegenerate and the OA may be constructed

as follows:
(a) Construct the q3 × 3 matrix E with rows consisting of all q3 possible

triples with components belonging to GF(pk);
(b) Calculate D = ECT , which is the q3×(q+1) experimental design matrix

for the array OA(q3, q + 1, q, 3). For n < q + 1 variables, select n of the
q + 1 columns of the matrix D.

The rows of D are the points in the OA discretization. Details on the derivation
of (4.1) and (4.2) are given in Appendix B. Permutations of the columns 1, 2, . . . , n
of the design matrix D and permutations of the elements 0, 1, . . . , q − 1 within any
column generate other OA(q3, n, q, 3) discretizations.

For illustration in the later sections of this paper, two OA(53, 6, 5, 3) discretiza-
tions, two OA(73, 8, 7, 3) discretizations, one OA(113, 12, 11, 3) discretization, and one
OA(133, 14, 13, 3) discretization were generated in MATLAB. Denote the two OAs
with q = 5 levels by OA(5)1 and OA(5)2, the two OAs with q = 7 by OA(7)1
and OA(7)2, and the q = 11 and q = 13 OAs by OA(11)1 and OA(13)1. All our
OA(q3, n, q, 3) discretizations were constructed by choosing a subset of n columns
from an OA(q3, q + 1, q, 3) discretization. Details on creating the six discretizations
above are given in Appendix C.

4.2. Properties. In this section we will focus on the properties of the
OA(N = qd, n, q, d) discretizations generated by the Bose and Bush (1952) theo-
rem used in section 4.1. This will lead to new space-filling measures specifically for
these OAs. As described in section 3, these OAs have the special property that, spa-
tially, when the n-dimensional points of the OA are projected onto any d-dimensional
subspace, each point of the d-dimensional full factorial with q levels in each dimension
will be represented once. Equivalently, in the N × n design matrix, where each col-
umn corresponds to a variable, two rows may coincide in at most d−1 columns. This
property gives OA discretizations balance, but does not guarantee an evenly spaced
discretization.

For OAs with index unity, we can consider the configurations of points on
(n − d + 1)-dimensional slices with d − 1 variables fixed. For example, in a four-
dimensional discretization, Figure 4.4 pictures slices with x1 and x4 fixed. Specifically,
if we pull out all the points in our OA for which x1 = 3 and x4 = 0, that would result
in exactly the p = 7 points plotted in the first square of Figure 4.4. The figure does
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Fig. 4.4. Eight configurations from the same q-family in the OA(73, 4, 7, 3) array which consists
of the columns 1, 4, 5, and 7 from the array OA(7)1. The plot for one square was generated by
pulling all points out of the OA(73, 4, 7, 3) array for which x1 and x4 were fixed at the designated
levels, then plotting the resulting set of p = 7 points in the two-dimensional subspace of x2 and x3.
This subspace is referred to as a “slice” of the array. Note that, for all the configurations, the points
lie on lines with slope 2.
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Fig. 4.5. Two types of configurations. In the configuration on the left, the points lie on parallel
lines with slope 2 (x2 jumps z = 2 levels for each x1 unit jump). In the configuration on the right,
x2 jumps in steps 1, 2, 4, 2, 1 as x1 jumps levels 0–1–2–3–4–0. The second type of configuration does
not occur with our OAs.

not show all possible slices with x1 and x4 fixed since this would vary x1 and x4 in all
possible combinations, resulting in 49 squares. Looking at the spatial configurations
pictured in these slices, we obtain graphical evidence of the space-filling “goodness”
of the OA. If the seven points in the slice appear to be evenly spread over the square
(as they basically do in Figure 4.4), then this indicates good space-filling quality. By
contrast, if all seven points lie on one diagonal line, then this would clearly indicate
poor space-filling quality. By considering the configurations of all possible slices, we
can obtain a measure of the space-filling “goodness” of a particular OA discretization.
The new space-filling measures presented in section 5.2 are based on this premise.

The reality of generating all possible slices would result in a prohibitively large
computation. Instead, we present properties of our OAs that significantly reduce the
number of slices we must consider and thus reduce the computational requirement
for calculating the new measures (see section 5.3). The first property is illustrated in
Figure 4.5. For OAs generated by the Bose and Bush (1952) theorem, only certain
configurations are possible. For example, Figure 4.5 illustrates configurations from
two OA(53, 4, 5, 3) discretizations. The first one has a constant step size in x2 for
each unit of x1, and the second one has variable step sizes. This second type never
occurs in the OAs generated by the Bose and Bush (1952) theorem. The second
property is illustrated in Figure 4.6 and is proven below. This property states that
for a particular set of d − 1 fixed variables (e.g., x1 and x4 fixed in Figure 4.4), the
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resulting configurations will all have the same step size. Thus, for each possible set
of d− 1 fixed variables, only one configuration must be identified. For example, note
that all the configurations in Figure 4.4 show x3 with a step size of two for each unit
of x2.

In an OA discretization, if variables (xi1 , xi2 , . . . , xid−1
) are fixed at specific values,

then there will be exactly q rows of D that contain these variables at these values
(due to the balance property of an OA with index unity). Call this set of rows a q-set.
Since for any two rows d− 1 is the maximum number of coinciding columns, each of
the n − d + 1 nonfixed columns in a q-set contains each of the q elements in GF(q)
exactly once. If two q-sets have the same variables fixed, then they are in the same
q-family. There are exactly qd−1 q-sets in a q-family, and

(
n
d−1

)
types of q-families in

D. Also note that the rows of the q-sets of one q-family comprise D.
Theorem 4.1. Let E be the N × d matrix of all possible d-tuples with elements

belonging to GF(q). Then D = ECT is the corresponding experimental design matrix,
where C satisfies the theorem from Bose and Bush (1952). Since GF(q) is closed
under the operations addition, subtraction, multiplication, and division, assume all
operations are taken modulo q. Consider two rows, D1 and D2, of D contained in
a q-set with variables (xi1 , xi2 , . . . , xid−1

) fixed at the values (K1,K2, . . . ,Kd−1). For
any nonfixed column v, define Di(v) to be the value in the vth column of Di, and
∆v = D1(v) − D2(v). Choose a nonfixed column u as a reference column and let
(v1, v2, . . . , vn−d) denote the remaining n−d nonfixed columns. Then for each vi, i =
1, 2, . . . , n− d, a slope z(vi) can be computed such that

∆vi = ∆u · z(vi),(4.3)

where z(vi) is identical for any two rows in the q-set.
Furthermore, the slopes z(v1), . . . , z(vn−d) only depend on the choice of columns

(i1, . . . , id−1, u) and do not depend on the values of those columns.
Proof. Without loss of generality, consider only column v1. Sort the rows of

the q-set so that the uth column is (0, 1, . . . , p − 1)T . Let Cv denote the row of
C corresponding to the vth column of D, and let C̃ be the d × d submatrix of C
corresponding to the columns i1, i2, . . . , id−1, u. Let Ẽ denote the q × d submatrix of
E corresponding to the ordered q-set, and let Ẽj denote the jth row of Ẽ.

Since the q-set is ordered according to the uth column, the difference between
values of column u for any two points is simply the difference in the indices,

Ẽj+∆uC
T
u − ẼjC

T
u = (Ẽj+∆u − Ẽj)C

T
u = ∆u,

where j and ∆u are both elements of GF(q). In matrix form, we have

(Ẽj+∆u − Ẽj)C̃
T = (K1 −K1,K2 −K2, . . . ,Kd−1 −Kd−1,∆u)
= (0, 0, . . . , 0,∆u).

(4.4)

Since any d× d submatrix of C has full rank, C̃ is nonsingular. Thus we can solve for
(Ẽj+∆u − Ẽj) in (4.4) to get

Ẽj+∆u − Ẽj = (0, 0, . . . , 0,∆u)C̃−T .(4.5)

For column v1, we need to show

∆v = Ẽj+∆uC
T
v1 − ẼjC

T
v1 = (Ẽj+∆u − Ẽj)C

T
v1 = ∆u · z(v1)(4.6)
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Fig. 4.6. Four configurations from different q-families. The third one is from the family shown
in Figure 4.4. The equivalent slope vectors s that have minimizing length ‖s‖ for these q families
are (respectively): (2,−1), (1,−1), (1, 2), and (2, 1). Thus, the first, third, and fourth q-families
have δms = 2, while the second has δms = 1.

for any j in GF(q). Plugging (4.5) into (4.6), we have

∆v = (0, 0, . . . , 0,∆u)C̃−TCTv1 = ∆u · z(v1),

where z(v1) = (0, 0, . . . , 0, 1)C̃−TCTv1 .
The main consequence of Theorem 4.1 is that all q-sets in the same q-family

have exactly the same slopes z(v1), . . . , z(vn−d). Thus, it is sufficient to compute the
slopes for each q-family. For an OA(73, 4, 7, 3) discretization generated from the array
OA(7)1, Figure 4.4 illustrates configurations for the q-family with variables x1 and x4

fixed. Figure 4.6 illustrates configurations from four different q-families.
Corollary 4.2. For the situation in Theorem 4.1, define the slope vector to be

s = (∆u,∆v1, . . . ,∆vn−d)T . Then the slope vector for a different choice of rows D1

and D2 is equivalent to s in the sense that it is a multiple (modulo q) of s.
Proof. From (4.3), we deduce that the slope vector for any two rows in a q-set is

equivalent to the vector (1,∆v1/∆u, . . . ,∆vn−d/∆u)T , which is equivalent to s.
As a consequence of Corollary 4.2, all q-sets in the same q-family have equivalent

slope vectors. Since the rows of D correspond to the points in the discretization,
the length of the slope vector for two rows translates to the distance between the
corresponding two points. The minimum distance between two points in a q-set can
be determined by choosing the equivalent slope vector s which minimizes the length
‖s‖. For example, in Figure 4.4, if we take x2 as the reference column (u = 2) and
x3 as the remaining nonfixed column (v = 3), then the two topmost points in the
first configuration produce the slope vector, modulo q = 7, (∆u = 4,∆v = 1). (Note:
in GF(q), −3 = 4.) The equivalent slope vectors are (1, 2), (5, 3), (2, 4), (6, 5), and
(3, 6). The minimum-length slope vector is (1, 2) with a Euclidean norm of

√
5. The

minimum distance between two points in any of the configurations is easily seen to be√
5. This leads to special space-filling measures for OAs generated by the Bose and

Bush (1952) method.

5. Measuring goodness.

5.1. Space-filling measures. A good space-filling discretization should spread
points evenly over the continuous space of interest. Define a nondiscretization point
to be a point in the continuous space not contained in the discretization. Reasonable
objectives include (1) minimizing the maximum distance from any nondiscretization
point to the nearest discretization point and (2) maximizing the minimum distance
from any discretization point to its nearest neighbor in the discretization. Related
objectives include (1) minimizing the average distance from a nondiscretization point
to the nearest discretization point and (2) maximizing the average distance from a
discretization point to its nearest neighbor in the discretization. Let d(x, y) be a



334 VICTORIA C. P. CHEN

distance measure (commonly Euclidean distance) over the region of interest. Let XD

be the set of discretization points and XN be the set of nondiscretization points.
Define the measures

δMnd = max
x∈XN

{
min
y∈XD

d(x, y)

}
,(5.1)

δmdd = min
x∈XD


 min
y ∈ XD
y �= x

d(x, y)


,(5.2)

δnd =
1

| XN |
∑
x∈XN

{
min
y∈XD

d(x, y)

}
, and(5.3)

δdd =
1

| XD |
∑
x∈XD


 min
y ∈ XD
y �= x

d(x, y)


,(5.4)

where | X | is the cardinality of the set X. For the above to be computationally
practical we must assume | XN | and | XD | are finite. Our objectives translate to
minimizing δMnd or δnd (minimax) and maximizing δmdd or δdd (maximin).

5.2. A new measure. For an OA(N = qd, n, q, d) discretization satisfying the
properties in the previous section, let S be the set of slope vectors corresponding to
the

(
n
d−1

)
q-families. For each slope vector in S, determine the equivalent slope vector

s that minimizes the length, ‖s‖, and let S∗ be the set of minimum-length slope
vectors. This minimum length for a q-family is the minimum distance between points
within a q-set from that family. Define the “slicing” measures

δms = min
s∈S∗
{‖s‖} and(5.5)

δs =
1(
n
d−1

) ∑
s∈S∗
{‖s‖},(5.6)

which represent the minimum and average length of the minimum-length slope vectors
in S∗. Intuitively, our space-filling objective is to maximize both δms and δs. In
Figure 4.6, the second configuration, which is the least desirable of the four, has
‖s‖ = 1 while the other three have a minimum length of ‖s‖ = √5. Thus, one main
objective would be to avoid discretizations containing q-families with ‖s‖ = 1.

5.3. Computational considerations. In this section, the computational times
of the measures given in (5.1)–(5.6) are compared. The minimax measures δMnd and
δnd compute distances for all pairs of nondiscretization and discretization points. The
maximin measures δmdd and δdd compute distances for all pairs of discretization points.
The slicing measures δms and δs compute distances (lengths) for equivalent slopes
corresponding to each q-family. As before, let n be the dimension of the continuous
space of interest (e.g., the SDP state space), q be the number of levels for each variable,
and d be the strength of the OA. The time required to compute each distance is O(n).
For OAs with index unity, the number of discretization points is qd. Restricting all
points to the full grid, the number of nondiscretization points is qn − qd. Finally, the
number of q-families is

(
n
d−1

)
, each having q equivalent slope vectors. Thus we have
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Table 5.1
Computational times (in hours, minutes, or seconds) on a Sun SPARCstation 10. Estimated

times are given in parentheses. Notation: n is the number of state variables and q is the number of
discretization levels in each dimension; an entry of “· · ·” means that computational demands were
too high for times to be estimated.

n q δM
nd

and δnd δm
dd

and δdd δms and δs

4 5 0.29 s 0.07 s < 0.001 s
7 3.21 s 0.52 s 0.0014 s

11 1.34 m 7.92 s 0.0022 s
13 4.36 m 22.06 s 0.0033 s

6 7 3.74 m 0.73 s 0.0036 s
11 3.95 h 11.24 s 0.0051 s
13 (18 h) 31.34 s 0.0082 s

9 11 (7, 850 h) 16.75 s 0.0141 s
13 (58, 250 h) 44.72 s 0.0213 s

15 17 · · · (6 m) (0.1 s)

40 41 · · · (50 h) 3 s

the computational times:

Cnd = O
(
n
[
qn − qd

]
qd
)
= O

(
nqnd

)
,

Cdd = O
(
n
(
qd

2

))
= O

(
nq2d

)
,

Cs = O
(
pn
(
n
d−1

))
= O

(
pnd
)
.

Actual and estimated (based on Cnd, Cdd, Cs) computational times are shown in
Table 5.1. Our new measures δms and δs compute the fastest, with measures δMnd and
δnd becoming impractical very quickly.

5.4. Correlation between measures. The three types of measures were com-
pared on OA discretizations generated from the arrays OA(5)1, OA(5)2, OA(7)1,
OA(7)2, OA(11)1, and OA(13)1. For a specific OA, the six computed measures δMnd,
δnd, δ

m
dd, δdd, δ

m
s , and δs provide the space-filling quality of the OA. In conducting the

computational study, it was discovered that different OAs would frequently have the
exact same six computed measures. This indicated that the configurations of these
OAs were spatially equivalent. Thus, it was only necessary to identify all the different
sets of measures, which are referred to below as different “OA patterns.”

First consider the case with n = 4 continuous variables. For q = 5 levels, four
possible sets of measures were identified, i.e., m = 4 different OA patterns. For q = 7,
11, and 13, OA patterns were identified with m = 11, 8, and 22, respectively. Recall
that the objectives are to minimize (δnd, δ

M
nd), maximize (δdd, δ

m
dd), and maximize

(δs, δ
m
s ). In Figure 5.1(a) one can see that the best δs values correspond to the

best δnd values, and, in particular, the worst values for each q correspond exactly.
Figure 5.1(b) indicates that δdd cannot distinguish between OAs with q = 5 and
q = 7, and can only distinguish the top values for q = 11 and q = 13. Correlations
between our new slicing measures and the others are shown in Table 5.2(a). Note that
δms is perfectly correlated with δmdd and is perfectly correlated with δdd when q = 11
and q = 13.

Next consider the case with n = 6 continuous variables. For q = 7, 11, and 13,
OA patterns were identified with m = 14, 50, and 581, respectively. Correlations are
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Fig. 5.1. Measures for four-dimensional OA discretizations consisting of columns from the ar-
rays OA(5)1, OA(5)2, OA(7)1, OA(7)2, OA(11)1, and OA(13)1. In plot (a), the average minimum-

length slope, δs, is negatively correlated with the average distance from a nondiscretization point to
the nearest discretization point, δnd. In plot (b), the average distance from a discretization point to

its nearest neighbor in the discretization, δdd, distinguishes only a few discretizations with high δs.

Table 5.2
Correlations between (δs, δms ) and (δnd, δ

M
nd
, δdd, δ

m
dd

). Notation: n is the number of state
variables, q is the number of discretization levels in each dimension, and m is the number of different
OA patterns; N/A indicates data not available.

n q m δnd δM
nd

δdd δm
dd

(a) 4 5 4 δs −0.99 −0.97 0.22 N/A
δms N/A N/A N/A 1.00

7 11 δs −0.98 −0.83 0.64 N/A
δms N/A N/A N/A 1.00

11 8 δs −0.94 −0.91 0.41 0.40
δms −0.35 −0.35 1.00 1.00

13 22 δs −0.86 −0.84 0.47 0.46
δms −0.41 −0.38 1.00 1.00

(b) 6 7 14 δs −0.73 −0.10 0.23 0.14
δms −0.33 −0.36 0.91 0.96

11 50 δs −0.88 −0.81 0.51 0.36
δms −0.75 −0.64 0.87 0.70

13 581 δs N/A N/A 0.32 0.20
δms N/A N/A 0.82 0.73

(c) 9 11 12 δs N/A N/A 0.84 N/A
δms N/A N/A 0.98 N/A

13 475 δs N/A N/A 0.14 −0.13
δms N/A N/A 0.93 0.92

shown in Table 5.2(b). The measures δMnd and δnd were not computed for q = 13 due
to excessive computational time. Figure 5.2(a) illustrates strong decreasing linear
relationships between δs and δnd for q = 7 and q = 11. Both Figures 5.1(a) and
5.2(a) imply that we can use δs when δnd cannot be computed. In Figure 5.2(b),
the values of δdd separate into three regions. The worst δms values correspond to the
worst δdd values for q = 7 and q = 11, but δms does not distinguish between the two
other regions. However, the middle level completely consists of q = 13 points, except
for one q = 7 point, and the top level predominantly consists of q = 11 points and
the “good” q = 7 points. Within each region, one can see a slightly increasing linear
relationship, indicating that δms is able to distinguish the “good” δdd values from the
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Fig. 5.2. Measures for six-dimensional OA discretizations consisting of columns from the
arrays OA(7)1, OA(7)2, OA(11)1, and OA(13)1 (plot (b) only). In plot (a), the average minimum-

length slope, δs, is negatively correlated with the average distance from a nondiscretization point
to the nearest discretization point, δnd. In plot (b), the smallest minimum-length slope, δms , is
positively correlated with the average distance from a discretization point to its nearest neighbor in
the discretization, δdd.
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Fig. 5.3. Measures for nine-dimensional OA discretizations consisting of columns from the
arrays OA(11)1 and OA(13)1. The smallest minimum-length slope, δms , is positively correlated with

the average distance from a discretization point to its nearest neighbor in the discretization, δdd.

“poor” ones.

Finally, consider the case with n = 9 continuous variables. For q = 11 and 13,
OA patterns were identified with m = 12 and 475, respectively. The measures δMnd

and δnd were not computed. Correlations are shown in Table 5.2(c). In Figure 5.3, an
increasing linear relationship is visible among the q = 11 points, which only appear
at the top of the plot. The q = 13 points are separated into two regions, one which
parallels the q = 11 relationship, and one which contains the worst δdd values. There is
overlap in the δdd values between the two regions, but, overall, a “poor” discretization
can be avoided by choosing one with a high δms value.

5.5. Fitting the last period future value function in SDP. As an empirical
evaluation of how space-filling goodness affects accuracy in function approximation,
we consider the inventory-forecasting SDP problems of Chen (1999). These involve
discrete state variables (inventory and demand forecasts) that have a wide enough
range so that we may consider them to be near-continuous. SDP models a stochastic
system over several, say T , time periods. The future value function in period t ≤ T
provides the minimum cost to operate the system from time period t through T as a
function of the state of the system at the beginning of period t. For the inventory-
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Table 5.3
Correlations between mean absolute deviation (MAD) or standard error (SE) and

δnd, δ
M
nd
, δdd, δ

m
dd
, δs, δms , based on SDP data results. Notation: n is the number of state

variables, q is the number of discretization levels in each dimension, and m is the number of OAs
tested.

n q m δnd δM
nd

δdd δm
dd

δs δms

(a) 4 5 8 MAD 0.78 0.78 −0.27 N/A −0.78 N/A
SE 0.78 0.77 −0.26 N/A −0.77 N/A

7 22 MAD 0.68 0.73 −0.55 N/A −0.68 N/A
SE 0.75 0.82 −0.62 N/A −0.77 N/A

11 8 MAD 0.95 0.96 −0.29 −0.27 −0.92 −0.27
SE 0.93 0.95 −0.27 −0.26 −0.87 −0.27

13 22 MAD 0.83 0.85 −0.34 −0.33 −0.67 −0.33
SE 0.86 0.86 −0.40 −0.39 −0.71 −0.34

(b) 6 7 14 MAD 0.41 0.41 −0.41 −0.35 −0.29 −0.41
SE 0.32 0.28 −0.31 −0.27 −0.26 −0.35

11 50 MAD 0.66 0.64 −0.41 −0.28 −0.60 −0.47
SE 0.72 0.65 −0.53 −0.44 −0.69 −0.50

13 9 MAD N/A N/A −0.80 −0.72 −0.90 −0.76
SE N/A N/A −0.85 −0.80 −0.86 −0.80

(c) 9 11 7 MAD N/A N/A −0.73 N/A −0.61 −0.80
SE N/A N/A −0.72 N/A −0.61 −0.80

13 8 MAD N/A N/A −0.86 −0.76 −0.31 −0.85
SE N/A N/A −0.94 −0.83 −0.25 −0.93

forecasting SDPs, the true future value functions are unknown, but given the specific
state of the system the true value of this function can be computed for the last period
alone. Using this last period future value function, the curve fitting ability of “good”
versus “poor” OA discretizations generated from the arrays OA(5)1, OA(5)2, OA(7)1,
OA(7)2, OA(11)1, and OA(13)1 is considered with respect to the measures discussed
in this paper.

For each OA discretization tested, a MARS approximation (Friedman (1991))
was evaluated, the true value of the last period future value function was computed
at 10,000 randomly chosen initial states, and then the mean absolute deviation was
computed over the 10,000 points. Correlations between mean absolute deviation, its
standard error, and the six measures are shown in Table 5.3. We hope to see a negative
relationship between mean absolute deviation and the minimax measures δnd and δMnd,
while a positive relationship is desired with the maximin and slicing measures, δdd,
δmdd, δs, and δms . The maximin measures δdd and δmdd only achieved good correlation
results for the nine-dimensional SDP in Table 5.3(c), and the six-dimensional SDP
with q = 11 in Table 5.3(b). The smallest correlations for δnd, δMnd, δs, and δms
were found in Table 5.3(b) with the arrays from OA(7)1 and OA(7)2, implying that
q = 7 was not sufficient for the six-dimensional SDP. As expected from the results in
Table 5.2, our measure δs performed similarly to the minimax measures δnd and δMnd,
and our measure δms performed similarly to the maximin measures δdd and δmdd.

In Figure 5.4 accuracy increases as δs increases, indicating that high values of this
measure yield better OA discretizations. The plot of mean absolute deviation versus
δnd is very similar to Figure 5.4, except with accuracy increasing as δnd decreases.
The plot of mean absolute deviation versus δdd was not informative.

In Figure 5.5(a) the relationship is very different for the different values of q. For
both q = 11 and q = 13, the “worst” OA discretizations have the worst accuracy,
which is motivation to avoid OA discretizations with very low δs values. MARS was
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Fig. 5.4. The four-dimensional SDP data. The average minimum-length slope, δs, is negatively
correlated with mean absolute deviation.
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Fig. 5.5. The six-dimensional SDP data. In plot (a), the average minimum-length slope, δs, is
plotted versus mean absolute deviation. There is a visible negative trend, although for q = 7 it is very
slight and for q = 11 there is a lack of data at low values of δs. In plot (b), the smallest minimum-
length slope, δms , is negatively correlated with mean absolute deviation. In addition, accuracy is
more variable for smaller values of δms .

only fit to a few q = 13 OAs because significant CPU was required by these OA
discretizations. Again, the plot of mean absolute deviation versus δnd is similar. In
Figure 5.5(b), the “best” OA discretizations are associated with the best accuracy,
which is motivation to choose OA discretizations with high δms values. The plot of
mean absolute deviation versus δdd was messy and unclear.

For Figure 5.6 results were available for only a few OAs due to the size of these
OA discretizations. Including the omitted data point at δms = 4.0, the “worst” OA
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Fig. 5.6. The nine-dimensional SDP data. In plot (a), the average minimum-length slope, δs,
is plotted versus mean absolute deviation. There is a negative trend when q = 11, but none visible
when q = 13. In plot (b), the smallest minimum-length slope, δms , appears to be negatively correlated
with mean absolute deviation. In particular the two worst δms values for q = 13 are distinguished
from the others. Missing from both plots is the q = 11 OA discretization, which had a mean absolute
deviation of 102.07 with the worst δs and δms values of 6.566 and 4.0, respectively.

discretizations achieved the worst accuracy in Figure 5.6(b), reinforcing the notion of
choosing OA discretizations with high δms values.

6. Conclusions. An efficient OA discretization enabled the development of the
first truly high-dimensional continuous-state SDP solution method. Discretization can
also be employed to generate scenarios for event spaces, and application of a discretiza-
tion approach was discussed for SP in the context of a two-stage stochastic linear
program. Two new space-filling measures were developed for the OAs used by Chen,
Ruppert, and Shoemaker (1999) to discretize a continuous SDP state space. Compar-
isons were made against “minimax” measures (distance from any nondiscretization
point to the nearest discretization point) and “maximin” measures (distance from
any discretization point to its nearest neighbor in the discretization). Although only
OAs of strength three were tested in this paper, the new “slicing” measures (distance
between points in {n− d+1}-dimensional slices) were derived for general strength d.
With strength three OA discretizations, strong correlations were identified between
one of the slicing measures and the minimax measures, and between the other slicing
measure and the maximin measures. In addition, it was significantly faster to compute
the slicing measures than the minimax measures, and it was somewhat faster than
computing the maximin measures. Finally, in an empirical study of the last period
for three inventory-forecasting SDP problems, it was found that the strength three
OA discretizations deemed “good” by the slicing and minimax measures produced
more accurate MARS approximations of the future value function than those deemed
“poor.” The maximin measures were generally inferior to the others but could be-
come more effective in higher dimensional problems. Although only problems with
up to nine dimensions were studied, the graphical justification discussed in section
4.2 holds in higher dimensions, implying similar expectations with larger problems.
The results of this study provide motivation to employ space-filling measures for OAs,
since not all OA discretizations are ideally spaced. One important issue to be consid-
ered in future work is to extend these measures to situations in which a nonuniform
distribution (e.g., normal distribution) of points is desired.

Appendix A. Projective plane. The primary distinction between projective
geometry and Euclidean geometry is that parallel lines are defined to meet at a single
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“point at infinity” in projective geometry. Since lines in Euclidean geometry may be
partitioned into equivalence classes of parallel lines, every distinct class of parallel lines
is associated with a distinct point at infinity. In the projective plane, we complete
the geometry by defining all points at infinity to lie on a single line at infinity. These
extra points are called ideal points and the extra line is called the ideal line.

In the Euclidean plane, points are represented by pairs (x, y), and lines are rep-
resented by equations of the form

Ax+By + C = 0.(A.1)

Two parallel lines have equations that may written as

Ax+By + C = 0,
Ax+By + C ′ = 0.

(A.2)

In the projective plane, these two lines meet at an ideal point, so the coordinates of
this ideal point must “solve” the equations of these lines. Instead of trying to solve
the equations in (A.2), we introduce a third variable, z, and rewrite (A.1) as

Ax+By + Cz = 0.

When z is zero, the equations for two parallel lines become equivalent, thus the triple
(x, y, 0), where x and y satisfy

Ax+By = 0,
−A
B

= m,(A.3)

represents the ideal point for lines with slope m. For fixed m, there are several eligible
triples (x, y, 0) that satisfy (A.3), and they are all representations of the same ideal
point. When z is nonzero, then the triple (x, y, z) represents a finite point which has
the unique representation in Euclidean coordinates (u, v), where u = x/z and v = y/z.
As with ideal points, there are several eligible triples (x, y, z) that can represent the
finite point with Euclidean coordinates (u, v).

Placing z as the last coordinate is arbitrary, and we will now define the first
coordinate of the triple (x1, x2, x3) to be zero for ideal points and nonzero otherwise.
The duality of the projective plane permits representation of a line by the coordinates
[u1, u2, u3], where not all ui are zero, corresponding to the line with equation

u1x1 + u2x2 + u3x3 = 0.(A.4)

Note that this equation is symmetric in the u’s and x’s and is satisfied by the point
(x1, x2, x3) and the line [u1, u2, u3] if and only if the point lies on the line or the line
passes through the point (equivalent incidence statements). Thus, given [u1, u2, u3],
(A.4) is the equation of a point.

A finite projective plane has points whose coordinates are elements of a Galois
field. For p, a positive prime number, and k, a positive integer, let q = pk. The
finite projective plane based on the Galois field GF(pk) is denoted by PG(2, s). The
projective plane PG(2, s) consists of q2 + q + 1 points (x1, x2, x3) and q2 + q + 1
lines [u1, u2, u3], where all coordinates are elements of GF(pk). Since each finite line
additionally has an ideal point lying on it, there are q + 1 points on every line. Since
the ideal line passes through every ideal point, there are also q+1 lines through every
point. Thus the duality principle is upheld. This is dual for “all points lying on a
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line.” All the lines in the pencil can be represented as a weighted sum of two distinct
lines in that pencil.

Appendix B. Coefficients of a point conic. Given two pencils through two
distinct points, P1 and P2, one can find the points of a point conic with respect to a
certain projectivity. Given any two distinct lines u1 and v1, from the pencil through
P1, then all the lines in the pencil through P1 can be expressed in the form c1u1+d1v1,
where c1 and d1 are elements of GF(pk). Similarly, select two distinct lines u2 and
v2 from the pencil through P2. A point conic is constructed by projecting the lines
in the pencil through P1 into the lines in the pencil through P2. The equation

k

(
c1
c2

)
=

[
1 0
0 1

](
d1

d2

)
(B.1)

determines a projectivity from the pencil through P1 onto the pencil through P2 in
which the line c1u1 + d1v1 is transformed into the line c2u2 + d2v2 for kc1 = c2 and
kd1 = d2. Given the projectivity in (B.1), the ratios c1/d1 and c2/d2 must be equal.

A point in the conic, denoted by a column vector as x = (x1, x2, x3)
T , occurs

at the intersection of corresponding members of the pencils; thus x must lie on both
c1u1 + d1v1 and c2u2 + d2v2, i.e.,

(c1u1 + d1v1)
Tx = 0 and

(c2u2 + d2v2)
Tx = 0.

(B.2)

Denote the lines u1, v1, u2, and v2 by column vectors. For example, let u1 =
[u11, u12, u13]

T . Then from (B.2) we can express the ratios as

c1
d1

= − v11x1 + v12x2 + v13x3

u11x1 + u12x2 + u13x3
,(B.3)

c2
d2

= − v21x1 + v22x2 + v23x3

u21x1 + u22x2 + u23x3
.(B.4)

Setting the right-hand sides of (B.3) and (B.4) equal, we can rewrite this relationship
as a homogeneous second-degree equation for the point conic

3∑
i=1

3∑
j=1

bijxixj = 0, where bij = u1iv2j − u2jv1i.

Letting aij = aji = (bij + bji)/2, we find the symmetric homogeneous second-degree

equation for the point conic
∑3
i=1

∑3
j=1 aijxixj = xTAx = 0. The coefficients aij are

those calculated in (4.1).

Appendix C. Specific OA discretizations. The algorithm in section 4.1 was
used to generate the six OA(q3, q+1, q, 3) discretizations discussed in section 5.2. The
OA(53, 6, 5, 3) discretization denoted by OA(5)1 was created by choosing

P1 = (1, 0, 0), u1 = [0, 1, 1], v1 = [0, 2, 1],

P2 = (0, 1, 0), u2 = [1, 0, 1], v2 = [1, 0, 2],

which then generated

A =


 0 4 0

4 0 0
0 0 2


 and CT =


 0 1 1 1 1 1

1 0 1 1 4 4
0 0 1 4 2 3


 .
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The OA(53, 6, 5, 3) discretization denoted by OA(5)2 was created by choosing

P1 = (1, 2, 3), u1 = [1, 0, 3], v1 = [1, 2, 0],

P2 = (1, 2, 4), u2 = [0, 1, 2], v2 = [1, 3, 2],

which then generated

A =


 2 2 3

2 1 0
3 0 2


 and CT =


 1 1 1 1 1 1

0 1 2 2 4 4
1 1 3 4 3 4


 .

The OA(73, 8, 7, 3) discretization denoted by OA(7)1 was created by choosing

P1 = (1, 0, 0), u1 = [0, 1, 1], v1 = [0, 1, 3],

P2 = (1, 3, 2), u2 = [1, 0, 3], v2 = [1, 2, 0],

which then generated

A =


 0 0 5

0 4 6
5 6 3


 and CT =


 1 1 1 1 1 1 1 1

0 0 1 1 3 3 5 5
0 6 4 5 2 6 2 5


 .

The OA(73, 8, 7, 3) discretization denoted by OA(7)2 was created by choosing

P1 = (1, 0, 2), u1 = [1, 1, 3], v1 = [1, 3, 3],

P2 = (1, 5, 3), u2 = [1, 0, 2], v2 = [1, 2, 1],

which then generated

A =


 0 0 6

0 4 1
6 1 1


 and CT =


 0 0 1 1 1 1 1 1

1 1 0 0 4 4 5 6
1 4 0 2 3 5 3 2


 .

The OA(113, 12, 11, 3) discretization denoted by OA(11)1 as created by choosing

P1 = (1, 0, 0), u1 = [0, 1, 1], v1 = [0, 1, 3],

P2 = (1, 3, 2), u2 = [1, 0, 5], v2 = [1, 5, 3],

which then generated

A =


 0 0 9

0 10 3
9 3 9


 and CT =


 1 1 1 1 1 1 1 1 1 1 1 1

0 0 3 3 5 5 8 8 9 9 10 10
0 9 2 5 5 8 1 10 1 2 8 9


 .

The OA(133, 14, 13, 3) discretization denoted by OA(13)1 was created by choosing

P1 = (1, 0, 0), u1 = [0, 1, 1], v1 = [0, 1, 3],

P2 = (1, 0, 2), u2 = [1, 0, 6], v2 = [1, 11, 6],

which then generated

A =


 0 0 6

0 6 2
6 2 7


 and CT =


 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 2 2 3 5 5 10 10 12
7 11 0 2 3 4 5 7 2 4 10 3 10 5


 .
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Abstract. We study how the lift-and-project method introduced by Lovász and Schrijver [SIAM
J. Optim., 1 (1991), pp. 166–190] applies to the cut polytope. We show that the cut polytope of
a graph can be found in k iterations if there exist k edges whose contraction produces a graph
with no K5-minor. Therefore, for a graph G with n ≥ 4 nodes with stability number α(G), n − 4
iterations suffice instead of the m (number of edges) iterations required in general and, under some
assumption, n−α(G)− 3 iterations suffice. The exact number of needed iterations is determined for
small n ≤ 7 by a detailed analysis of the new relaxations. If positive semidefiniteness is added to the
construction, then one finds in one iteration a relaxation of the cut polytope which is tighter than
its basic semidefinite relaxation and than another one introduced recently by Anjos and Wolkowicz
[Discrete Appl. Math., to appear]. We also show how the Lovász–Schrijver relaxations for the stable
set polytope of G can be strengthened using the corresponding relaxations for the cut polytope of
the graph G∇ obtained from G by adding a node adjacent to all nodes of G.

Key words. linear relaxation, semidefinite relaxation, lift-and-project, cut polytope, stable set
polytope

AMS subject classifications. 05C50, 15A57, 52B12, 90C22, 90C27
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1. Introduction. Lovász and Schrijver [22] have introduced a method for con-
structing a higher dimensional convex set whose projection N(K) approximates the
convex hull P of the 0–1 valued points in a polytope K defined by a given system
of linear inequalities. If the linear system is in d variables, the convex set consists of
symmetric matrices of order d+1 satisfying certain linear conditions. A fundamental
property of the projection N(K) is that one can optimize over it in polynomial time
and thus find an approximate solution to the original problem in polynomial time.
Moreover, after d iterations of the operator N , one finds the polytope P . Lovász
and Schrijver [22] also introduce some strengthenings of the basic construction; in
particular, adding positive semidefinite constraints leads to the operator N+, and
adding stronger linear conditions in the definition of the higher dimensional set of
matrices leads to the operators N ′ and N ′

+. They study in detail how the method
applies to the stable set polytope. Starting with K = FRAC(G) (the fractional stable
set polytope defined by nonnegativity and the edge constraints), they show that in
one iteration of the N operator one obtains all odd hole inequalities (and no more),
while in one iteration of the N+ operator one obtains many inequalities including odd
wheel, clique, and odd antihole inequalities and orthogonality constraints; therefore,
the relaxation N+(FRAC(G)) is tighter than the basic semidefinite relaxation of the
stable set polytope by the theta body TH(G). In particular, this method permits one
to solve the maximum stable set problem in a t-perfect graph or in a perfect graph
in polynomial time. They also show that the stable set polytope of G is found after
at most n − α(G) − 1 iterations of the N operator (resp., α(G) iterations of the N+

operator) applied to FRAC(G), if G has at least one edge.
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On the other hand, there exist “easy” polytopes P (meaning that their linear
description is known and one can optimize over them in polynomial time) for which
the number of iterations of the N or N+ operators needed in order to find P grows
linearly with the dimension of P . For example, Stephen and Tunçel [29] showed
that n iterations are needed for finding the matching polytope of K2n+1 (starting
with the polytope defined by nonnegativity and the degree constraints) using the
N+ operator. Recently, Cook and Dash [8] and Goemans and Tunçel [12] constructed
examples where positive semidefiniteness does not help; namely, the same number d of
iterations is needed for finding some d-dimensional polytope P using the N or the N+

operator. This is the case, for instance, for the polytope P := {x ∈ Rd |∑d
i=1 xi ≥ 1}

if we start from its relaxation K := {x ∈ Rd |∑d
i=1 xi ≥ 1

2}.
In this paper we study how the method applies to the cut polytope when starting

with its linear relaxation by the metric polytope MET(G) (to be defined later). When
using the operator N+, one obtains in one iteration a semidefinite relaxation of the
cut polytope which is tighter than its basic semidefinite relaxation and also tighter
than a refinement of the basic relaxation introduced recently by Anjos and Wolkowicz
[2]. One can, in fact, refine the relaxation N(MET(G)) by first applying the N
operator to the metric polytope of the complete graph and then projecting on the
edge set of the graph; the relaxation denoted as N(G) obtained in this way satisfies
CUT(G) ⊆ N(G) ⊆ N(MET(G)). We consider in this paper both constructionsN(G)
and N(MET(G)), also for the stronger operators N+, N

′, N ′
+ and their iterates.

We show that CUT(G) = Nk(MET(G)) if there exist k edges in G whose contrac-
tion produces a graph with no K5-minor. In particular, the cut polytope of a graph on
n nodes can be found after n−4 (resp., n−5) iterations of the N (resp., N ′) operator
if n ≥ 4 (resp., n ≥ 6) (while the cut polytope has dimension m, the number of edges
of the graph). Moreover, if G has stability number α(G), then CUT(G) = Nk(G),
where k := max(0, n − α(G) − 3); equality CUT(G) = Nk(MET(G)) holds if there
exists a maximum stable set in G whose complement induces a graph with at most
three connected components. The upper bound n− α(G)− 3 is similar to the upper
bound in [22] for the stable set polytope. It is well known that the stable set polytope
STAB(G) can be realized as a face of the cut polytope CUT(G∇), where G∇ is ob-
tained by adding a new node to G adjacent to all nodes of G; moreover, an analogous
relation exists between their basic linear and positive semidefinite relaxations. We
study how this fact extends to their relaxations obtained via the Lovász–Schrijver
procedure. Namely, we show that Nk(MET(G∇)) (resp., νk(MET(G∇))) yields a
relaxation of STAB(G) which is tighter than Nk+1(FRAC(G)) (resp., νk(FRAC(G))
for ν = N+, N

′, N ′
+).

Although the inclusion N+(MET(G)) ⊆ N(MET(G)) is strict for certain graphs
(e.g., for any complete graph on n ≥ 6 nodes), we do not know of an example of
a graph G for which the number of iterations needed for finding CUT(G) is smaller
when using the operator N+ than when using the operator N . This contrasts with
the case of the stable set polytope where, for instance, STAB(Kn) is found in one
iteration of the N+ operator applied to FRAC(G), while n − 2 iterations of the N
operator are needed.

The paper is organized as follows. Section 2 gives a general description of the
Lovász–Schrijver (LS) procedure, and section 3 contains a presentation of the various
relaxations of the cut polytope considered in the paper. In section 4, we study the
index of a graph (the smallest number of iterations of the LS procedure needed for
finding its cut polytope); upper bounds are proved in sections 4.1 and 4.3, the behavior
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of the index under taking graph minors and clique sums is investigated in section 4.4,
and a number of needed technical tools are provided in section 4.2. We study in section
5 the validity of hypermetric inequalities for the new relaxations, which enables us
to determine the exact value of the index of a graph on n ≤ 7 nodes; some technical
proofs are delayed until section 7. Finally, in section 6 we study the links between
the LS relaxations for the cut polytope and the original LS relaxations for the stable
set polytope.

2. The LS Procedure. Let F ⊆ {±1}d, let P := conv(F ) be the integral
polytope whose linear description one wishes to find, and let

K = {x ∈ Rd | Ax ≥ b}

be a linear relaxation of P such that K ⊆ [−1, 1]d and K ∩ {±1}d = F (K is a linear
programming formulation for P ).

Starting from K, the LS method constructs a hierarchy of linear relaxations for
P which in d steps finds the exact description of P . The basic idea is as follows.
If we multiply an inequality aTx ≥ β, valid for F , by 1 ± xi ≥ 0, we obtain two
nonlinear inequalities which remain valid for F . Applying this to all the inequalities
from the system Ax ≥ b, substituting x2

i by 1, and linearizing xixj by a new variable

yij for i �= j, we obtain a polyhedron in the
(
d+1
2

)
-space whose projection N(K) on

the original d-space contains P and is contained in K. The method was described in
[22] in terms of 0–1 variables, but for our application to the max-cut problem it is
more convenient to work with ±1 variables, which is why we present it here in this
setting.

It is useful to reformulate the construction in matrix terms. First we introduce
some notation. As it is often more convenient to work with homogeneous systems of
inequalities, i.e., with cones rather than polytopes, one embeds the d-space into Rd+1

as the hyperplane: x0 = 1. For a polytope P in Rd, P̃ := {λ(1, x) | x ∈ P, λ ≥ 0}
denotes the cone in Rd+1 obtained by homogenization of P ; thus P = {x ∈ Rd |
(1, x) ∈ P̃}. Given a cone K, its dual cone K∗ is defined as

K∗ = {y | yTx ≥ 0 for all x ∈ K}.

Consider the cube Q := [−1, 1]d and its homogenization Q̃ = {(x0, x) ∈ Rd+1 | −x0 ≤
xi ≤ x0 for all i = 1, . . . , d}. Thus the dual cone of Q̃ is generated by the 2d vectors
e0 ± ei (i = 1, . . . , d), where e0, e1, . . . , ed denote the standard unit vectors in Rd+1.

Given two polytopes K1 ⊆ K2 ⊆ Q, let M(K1,K2) denote the set of symmetric
matrices Y = (yij)

d
i,j=0 satisfying the conditions

yi,i = y0,0 for i = 1, . . . , d,(2.1)

Y K̃∗
2 ⊆ K̃1,(2.2)

and set

N(K1,K2) := {x ∈ Rd | (1, x) = Y e0 for some Y ∈M(K1,K2)}.

One can easily verify that

K1 ∩ {±1}d ⊆ N(K1,K1) ⊆ N(K1,K2) ⊆ N(K1, Q) ⊆ K1.
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Therefore, the choice (K1,K2) = (K,K) provides the best relaxation N(K,K) for P .
However, it is also interesting to consider the choice (K1,K2) = (K,Q), giving the
weaker relaxation N(K,Q), as it behaves better algorithmically. Indeed, as observed
in [22], if one can solve in polynomial time the (weak) separation problem over K,
then the same holds for M(K,Q) and thus also for its projection N(K,Q); this
property holds for N(K,K) under the more restrictive assumption that an explicit
linear description whose size is polynomial is known for K (details will be given later
in this section).

One can obtain tighter relaxations for P by iterating the constructions N(K,Q)
and N(K,K). One can iterate the construction N(K,Q) by the sequence N(K,Q),
N(N(K,Q), Q), etc. A first way in which the construction N(K,K) can be iterated is
by considering the sequence N(K,K), N(N(K,K), N(K,K)), etc. A major drawback
is then that, even if K is given by an explicit linear system of polynomial length, it is
not clear whether this holds for the next iterate N(K,K). A more tractable way is to
consider the sequence N(K,K), N(N(K,K),K), etc. For simplicity in the notation,
for a polytope H ⊆ K ⊆ Q set

M(H) := M(H,Q), M ′(H) := M(H,K), N(H) := N(H,Q), N ′(H) := N(H,K).

The sequences K,N(K,Q), N(N(K,Q), Q), . . . and K,N(K,K), N(N(K,K),K), . . .
can then be defined iteratively by

N0(K) = (N ′)0(K) := K, Nk(K) := N(Nk−1(K), Q),

(N ′)k(K) := N((N ′)k−1(K),K)

for k ≥ 1. Thus x ∈ νk(K) if and only if (1, x) = Y e0 for some Y ∈ µ(νk−1(K)),
where µ = M (resp., M ′) if ν = N (resp., N ′).

One can reinforce the operators N and N ′ by adding positive semidefiniteness
constraints. For a polytope H ⊆ Q, define M+(H) (resp., M ′

+(H)) as the set of
positive semidefinite matrices Y ∈M(H) (resp., Y ∈M ′(H)); the projections N+(H)
and N ′

+(H) and their iterates are then defined in the obvious way. The following
hierarchy holds:

P ⊆ N ′
+(K) ⊆ N ′(K) ⊆ N(K) ⊆ K, P ⊆ N ′

+(K) ⊆ N+(K) ⊆ N(K) ⊆ K.(2.3)

For membership in M(K), condition (2.2) can be rewritten as

Y (e0 ± ei) ∈ K̃ for i = 1, . . . , d.(2.4)

As Y e0 = 1
2 (Y (e0 + ei) + Y (e0 − ei)), we deduce that

N(K) ⊆ conv(K ∩ {x | xi = ±1}) for any i = 1, . . . , d.(2.5)

Using this fact and induction, one can prove that after d iterations of the operator
N , one finds the polytope P .

Theorem 2.1 (see [22]). Nd(K) = P .
Obviously, the same holds for the operators N+, N

′, or N ′
+, but the corresponding

sequences of relaxations may converge faster to P .

2.1. Comparison with other lift-and-project methods. Other lift-and-
project methods have been proposed in the literature, in particular by Balas, Ceria,
and Cornuéjols [3], by Sherali and Adams [28], and, recently, by Lasserre [16, 17].
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Each of these methods produces a hierarchy of linear or semidefinite (in the case of
Lasserre) relaxations: P ⊆ Kd ⊆ · · · ⊆ K1 ⊆ K such that P = Kd. For k ≥ 1,
the kth iterate Sk(K) in the Sherali–Adams hierarchy is obtained by multiplying the
system Ax ≥ b by each of the products

∏
i∈I(1+xi)

∏
j∈J(1−xj) for I, J ⊆ [1, d] dis-

joint with |I∪J | = k and then replacing each square x2
i by 1, linearizing each product∏

i∈I xi, and projecting back on Rd; hence, the first step is identical to the first step

of the LS method, i.e., S1(K) = N(K). It is shown in [22] that St(K) ⊆ Nk(K) (see
[18] for a simple proof).

The first relaxation Pi(K) in the Balas–Ceria–Cornuéjols hierarchy is obtained
by multiplying Ax ≥ b by 1 ± xi for some given i ∈ [1, d] (and then linearizing and
projecting back on Rd); the next relaxations are defined iteratively by Pi1...ik(K) :=
Pik(Pi1...ik−1

(K)). It is shown in [3] that Pi1...ik(K) = conv(K ∩ {x | xi1 , . . . , xik =
±1}). Setting

N0(K) :=

d⋂
i=1

Pi(K) =

d⋂
i=1

conv(K ∩ {x | xi = ±1}),(2.6)

we deduce from (2.5) that

N(K) ⊆ N0(K),(2.7)

and thus Nk(K) ⊆ Nk
0 (K) =

⋂
i1...ik

Pi1...ik(K) for k ≥ 1. In fact, N0(K) can be

seen as the “noncommutative” analogue of N(K), as N0(K) = {x ∈ Rd | (1, x) =
Y e0 for some Y ∈ M0(K)}, where M0(K) is the set of matrices (not necessarily
symmetric) satisfying (2.1) and (2.4).

Using facts about moment sequences and representations of positive polynomi-
als as sums of squares, Lasserre [16, 17] introduces a new hierarchy of semidefinite
relaxations Qk(K) of P . It is shown in [18] that this new hierarchy refines the LS
hierarchy; that is, Qk(K) ⊆ Nk

+(K), and its relation to the Sherali–Adams hierarchy
is explained.

2.2. Algorithmic aspects. Given a convex body B ⊆ Rd, the separation prob-
lem for B is the problem of deciding whether a given point y ∈ Rd belongs to B and,
if not, of finding a hyperplane separating y from B; the weak separation problem is
the analogous problem where one allows for numerical errors. An important appli-
cation of the ellipsoid method is that if one can solve in polynomial time the weak
separation problem for B, then one can optimize any linear objective function over B
in polynomial time (with an arbitrary precision), and vice versa. (One should assume
some technical information over B, like the knowledge of a ball contained in B and
of a ball containing B.) See [14] for details.

An important property of the LS construction is that if one can solve in polynomial
time the weak separation problem for K, then the same holds for M(K) and M+(K),
and thus for their projections N(K) and N+(K). Therefore, for any fixed k, one can
optimize in polynomial time a linear objective function over the relaxations Nk(K)
and Nk

+(K); the same holds for the relaxations Sk(K) and Pi1...ik(K) of Sherali–
Adams and of Balas–Ceria–Cornuéjols. For the operators N ′ and N ′

+ and for the
Lasserre hierarchy, an analogous result holds under the more restrictive assumption
that an explicit linear description is known for K whose size is part of the input data.

2.3. Identifying valid inequalities for N(K) andN+(K). We mention two
results from [22] permitting us to construct inequalities valid for N(K) and N+(K);
the first one follows directly from (2.5) and we prove the second one for completeness.
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Lemma 2.2. Suppose that, for some i = 1, . . . , d, the inequality aTx ≥ β is valid
for K ∩ {x | xi = ±1}. Then the inequality aTx ≥ β is valid for Pi(K) and thus for
N0(K) and N(K).

Lemma 2.3. Suppose that ai ≥ 0 for i = 1, . . . , d and β ≤ 0. If the inequality
aTx ≥ β is valid for K∩{x | xi = −1} for every i for which ai > 0, then the inequality
aTx ≥ β is valid for N+(K).

Proof. Set b := (−β, a) ∈ Rd+1; thus b ≥ 0. Let Y ∈ M+(K). We show that
bTY e0 ≥ 0. By the assumption, we know that bTY (e0−ei) ≥ 0 if ai > 0. Multiplying
both sides of the inequality by ai and summing over i = 1, . . . , d yields(

d∑
i=1

ai

)
bTY e0 ≥ bTY

(
d∑
i=1

aiei

)
= bTY (b+ βe0),

and thus (
∑

i ai − β)bTY e0 ≥ bTY b. The result now follows since bTY b ≥ 0 (as Y is
positive semidefinite) and

∑
i ai − β > 0 (else, there is nothing to prove).

2.4. Comparing N+(K) with the basic semidefinite relaxation in the
equality case. The relaxation N+(K) is often stronger than some basic semidefinite
relaxation one can think of for the problem at hand; this is the case for the stable
set problem and for max-cut (see later) and, as we see now, when K is defined by
an equality system. Suppose that K = {x ∈ Rd | Ax = b}. The set K̂ consisting of

the vectors x ∈ Rd for which there exists a positive semidefinite matrix Y = ( 1
x

xT

X ),
satisfying Xii = 1 (i = 1, . . . , d) and Tr(ATAX) = bT b, is a natural semidefinite
relaxation for P which is contained in K. (This relaxation can be obtained by taking
the dual of the Lagrange dual of the formulation: Ax = b, x2

i = 1 (i = 1, . . . , d), and
(Ax− b)T (Ax− b) = 0; cf. [24], [21]).

Proposition 2.4. N+(K) ⊆ K̂.
Proof. Let x ∈ N+(K) and Y ∈M+(K) such that (1, x) = Y e0. Then Y (e0±ei) ∈

K̃, which means that Ax = b and AXei = bxi (i = 1, . . . , d) (setting X := (Yi,j)
d
i,j=1).

Since b = Ax =
∑d

i=1(Aei)xi, then Tr(ATAX) − bT b =
∑d

i=1(Aei)
TAXei −∑d

i=1(Aei)
T bxi =

∑d
i=1(Aei)

T (AXei − bxi) = 0, implying x ∈ K̂.

3. The cut polytope and some relaxations.

3.1. The cut polytope and the metric polytope. Given an integer n ≥ 3,
set Vn := {1, . . . , n}, En := {ij | 1 ≤ i < j ∈ Vn}, and dn := |En| =

(
n
2

)
. Let Sn

denote the set of n × n symmetric matrices. For X ∈ Sn, X � 0 means that X is
positive semidefinite (abbreviated as sdp). Set

S1
n := {X ∈ Sn | xii = 1 for all i ∈ Vn}, En := {X ∈ S1

n | X � 0}.
Given a vector x ∈ REn , let smat(x) denote the matrix X ∈ S1

n whose off-diagonal en-
tries are given by x; conversely, given a symmetric matrix X = (xij)

n
i,j=1, svec(X) :=

(xij)1≤i<j≤n denotes the vector consisting of the upper triangular entries ofX. Hence,
smat and svec are inverse bijections between the sets REn and S1

n.
Given x ∈ {±1}n, xxT is called a cut matrix and svec(xxT ) ∈ REn is the associ-

ated cut vector of the complete graph Kn = (Vn, En). Thus, svec(xxT ) is the (±1)-
incidence vector of the cut δ(S) := {ij ∈ En | |S∩{i, j}| = 1}, where S := {i | xi = 1}.

Let G = (Vn, E) be a graph where E ⊆ En. The cut polytope CUT(Kn) of
the complete graph Kn is defined as the convex hull of the cut vectors svec(xxT ) for
x ∈ {±1}n, and the cut polytope CUT(G) of G is then defined as the projection of
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CUT(Kn) on the subspace RE indexed by the edge set of G. As linear programming
formulation for CUT(G) we consider the metric polytope MET(G) defined by the
conditions x ∈ [−1, 1]E and the circuit inequalities:∑

ij∈D
xij −

∑
ij∈C\D

xij ≥ 2− |C|(3.1)

for all circuits C of G and all subsetsD ⊆ C with |D| odd. It is known that CUT(G) =
MET(G) if and only if G has no K5-minor [7]. In the linear description of MET(G),
it suffices to consider the circuit inequalities for chordless circuits [7]. Therefore,
MET(Kn) is defined by the 4

(
n
3

)
triangle inequalities:

xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1(3.2)

for all distinct i, j, k ∈ Vn. The polytope MET(G) coincides with the projection of
MET(Kn) on the subspace RE [6]; therefore, one can optimize a linear objective
function over MET(G) in polynomial time and thus solve the separation problem for
MET(G) in polynomial time. For a direct proof of the latter fact, see [7].

3.2. Semidefinite relaxations. We present here a number of semidefinite re-
laxations for the cut polytope.

The basic sdp relaxation As every cut matrix xxT (x ∈ {±1}n) belongs to En,
we have

smat(CUT(Kn)) ⊆ En.

The set En is the basic semidefinite relaxation of the cut polytope underlying the
approximative algorithm for max-cut of Goemans and Williamson [13].

The Anjos–Wolkowicz sdp relaxation. In what follows, matrices in Sdn+1

or Edn+1 are assumed to be indexed by the set En ∪ {0}, and e0, eij (ij ∈ En) denote
the standard unit vectors in Rdn+1. For x ∈ {±1}n, let y := (1, svec(xxT )) be the

associated cut vector in C̃UT(Kn) and set Y := yyT . Then svec(xxT ) = (Y0,ij)ij∈En .
Moreover, Y belongs to Edn+1 and satisfies the equations

Yik,jk = Y0,ij for all distinct i, j, k ∈ Vn,(3.3)

Yij,hk = Yih,jk = Yik,jh for all distinct i, j, h, k ∈ Vn.(3.4)

Anjos and Wolkowicz [2] used condition (3.3) for defining the following sets Fn and
Fn:

Fn := {Y ∈ Edn+1 | Y satisfies (3.3)}, Fn := {(Y0,ij)ij∈En | Y ∈ Fn}.

The set Fn is obviously contained in the set Gn of matrices Y ∈ Edn+1 satisfying

Y0,ij =
1

n− 2

∑
k∈Vn, k 	=i,j

Yik,jk (ij ∈ En);

the relaxation Gn is introduced in [2] as bidual (dual of the Lagrange dual) of some
formulation of max-cut.

Proposition 3.1 (see [2]). CUT(Kn) ⊆ Fn ⊆ MET(Kn) ∩ svec(En).
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Proof. The inclusion CUT(Kn) ⊆ Fn has already been observed above. The
inclusion Fn ⊆ svec(En) ∩ MET(Kn) can be verified as follows. For Y ∈ Fn, set
y := (Y0,ij)ij∈En andX := smat(y). By the relation (3.3), the matrixX coincides with
the principal submatrix of Y with row and column indices in the set {0, 12, . . . , 1n}.
Therefore X ∈ En, and thus y ∈ svec(En). In order to show the triangle inequality
y12 + y13 + y23 ≥ −1, consider the principal submatrix Z of Y indexed by the set
{0, 12, 13, 23} and let σ denote the sum of the entries of Z. As Z � 0, we have σ ≥ 0,
which implies that y12 + y13 + y23 ≥ −1. The other triangle inequalities follow by the
same argument after suitably flipping signs in Z.

For n ≤ 4, equality MET(Kn) = CUT(Kn) holds. It is shown in [2] that both
inclusions in Proposition 3.1 are strict for n ≥ 5; for instance, the minimum of the
linear objective function

∑
ij∈E5

xij over CUT(K5) is −2, while its minimum over F5

is −2.5.
New sdp relaxations based on the LS procedure. If we apply the LS

construction to the cut polytope CUT(G) starting with its linear relaxation by the
metric polytope MET(G), we obtain the relaxations N(MET(G)), N+(MET(G)),
N ′(MET(G)), and N ′

+(MET(G)) satisfying the hierarchy (2.3).
As G = (Vn, E) is a subgraph of the complete graph Kn = (Vn, En), we have that

CUT(G) = πE(CUT(Kn)) and MET(G) = πE(MET(Kn)), where πE : REn −→ RE

denotes the projection onto the subspace indexed by the edge set of G. Let ν stand for
one of the operators N, N+, N

′, or N ′
+ and let µ denote the corresponding operator

M , M+, M
′, M ′

+ (i.e., µ = M if ν = N , etc.). Taking projections at both sides of the
inclusion CUT(Kn) ⊆ ν(MET(Kn)), we obtain

CUT(G) ⊆ πE(ν(MET(Kn))).

Lemma 3.2. πE(ν(MET(Kn))) ⊆ ν(MET(G)).
Proof. Let y ∈ πE(ν(MET(Kn))). Then (1, y) = πE(Y e0), where Y ∈ µ(MET(Kn)).

Let X denote the principal submatrix of Y indexed by the set {0} ∪ E. Then
X ∈ µ(MET(G)). (This follows from the fact that each column of X is the projec-
tion on R{0}∪E of the corresponding column of Y and MET(G) = πE(MET(Kn)).)
Therefore y = ((Xe0)f )f∈E belongs to ν(MET(G)).

Equality holds obviously in the inclusion of Lemma 3.2 when G = Kn. We do
not know whether equality holds in general, i.e., whether the two operators ν and πE
commute. Note that not every matrix Y ∈M(MET(G)) can be extended to a matrix
of M(MET(Kn)); for example, the matrix

Y :=




0 12 23 34 14

0 1 0 0 0 0
12 0 1 1 1 1
23 0 1 1 0 0
34 0 1 0 1 0
14 0 1 0 0 1




belongs to M(MET(G)), where G is the circuit (1, 2, 3, 4), but Y cannot be extended
to a matrix of M(MET(K4)) (because Y12,23 �= Y14,34; cf. Proposition 3.4(i) below).
For simplicity in the notation, we set

ν(G) := πE(ν(MET(G))).

Iterates are defined in the obvious manner: νk(G) := πE(ν
k(MET(Kn))). The inclu-

sion from Lemma 3.2 will be extended to higher iterates in Corollary 4.13.
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It seems preferable to work with the relaxation ν(G) rather than ν(MET(G)),
as it provides a better relaxation for CUT(G). Moreover, one can optimize a linear
objective function over ν(G) in polynomial time for any graph and ν = N, . . . , N ′

+. In
contrast, this is true for ν(MET(G)) for any graph G if ν = N,N+ and, if ν = N ′, N ′

+,
for any graph G for which the list of circuit inequalities (3.1) (for chordless circuits)
has a polynomial length (thus, for instance, if G is a complete graph or more generally
a chordal graph). One more attractive feature of the relaxation ν(G) is that the class
of graphs G for which CUT(G) = ν(G) is well behaved; e.g., it is closed under taking
deletion minors while it is not clear whether this property holds for the relaxation
ν(MET(G)) (cf. section 4.4). On the other hand, it will be convenient to work with
the relaxation ν(MET(G)) in order to establish results about valid inequalities (cf.
section 4.2).

Permutation and switching. Every permutation σ acts in a natural way
on an n × n symmetric matrix X and on a vector x ∈ REn , producing the vector
xσ := (xσ(i)σ(j))ij∈En

. As σ induces a permutation of En, it also acts on a matrix
Y ∈ Sdn+1, producing the matrix Y σ ∈ Sdn+1 defined by

Y σ
0,ij := Y0,σ(i)σ(j), Y σ

ij,rs := Yσ(i)σ(j),σ(r)σ(s) for ij, rs ∈ En.(3.5)

Permutation preserves the cut polytope of the complete graph Kn and all its relax-
ations considered in the paper.

Given a subset S ⊆ Vn and X ∈ Sn, let XS denote the matrix obtained from X by
changing the signs of its rows and columns indexed by S; in other words, one switches
the signs of the entries of X indexed by edges in the cut δ(S). Switching extends
naturally to matrices Y ∈ Sdn+1 and produces Y δ(S) obtained from Y by changing
signs of its rows and columns indexed by the set δ(S). Switching also applies to
vectors x ∈ RE (E ⊆ En): simply change the signs of the entries of x indexed by the
set δ(S) ∩ E.

Clearly,XS ∈ smat(CUT(Kn)) (resp.,X
S ∈ En) if and only ifX ∈ smat(CUT(Kn))

(resp., X ∈ En). For X,Y ∈ Sn, one has 〈X,Y 〉 = 〈XS , Y S〉. (Here 〈X,Y 〉 =∑n
i,j=1 xijyij denotes the usual inner product in Sn.) Therefore, if an inequality

〈A,X〉 ≥ β is valid for smat(CUT(Kn)), its switching 〈AS , X〉 ≥ β remains valid for
smat(CUT(Kn)). Note that the classes of triangle inequalities and of circuit inequal-
ities are closed under switching. Switching preserves all the relaxations of the cut
polytope considered in the paper.

3.3. Basic properties of the new relaxations. The following is an easy but
important property of the metric polytope that will be repeatedly used in this paper.

Proposition 3.3. If y ∈ MET(G) satisfies yuv = ε for some edge uv ∈ E and
ε ∈ {±1}, then

yui = εyvi for every node i adjacent to both u and v.(3.6)

Proof. Apply the triangle inequalities (3.2) to the triple uvi.
As a first application, we find that (3.3) and (3.4) are valid for M(MET(G)) and

M ′(MET(G)), respectively.
Proposition 3.4.
(i) If Y ∈ M(MET(G)), then Yik,jk = Y0,ij for all distinct pairwise adjacent

i, j, k ∈ Vn.
(ii) If Y ∈ M ′(MET(G)), then Yij,hk = Yih,jk = Yik,jh for all distinct pairwise

adjacent i, j, h, k ∈ Vn.
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Proof. (i) Let 1, 2, 3 be pairwise adjacent nodes and Y ∈ M(MET(G)). By

assumption, the vector y := Y (e0 − e12) belongs to M̃ET(G). As y0 = −y12, we have
from (3.6) that y13 = −y23, which implies

Y0,13 + Y0,23 = Y12,13 + Y12,23.

Similarly, using the fact that Y (e0 − e13), Y (e0 − e23) ∈ M̃ET(G), we obtain

Y0,12 + Y0,23 = Y13,12 + Y13,23 and Y0,12 + Y0,13 = Y23,12 + Y23,13.

From this it follows that Y0,12 = Y23,13, which shows (i).
(ii) Let 1, 2, 3, 4 be pairwise adjacent nodes in G and Y ∈ M ′(MET(G)). By

assumption, the vector y := Y (e0 + e12 + e13 + e23) belongs to M̃ET(G) and thus
satisfies the triangle inequalities −y12 + y14 − y24 ≥ −y0 and −y12 − y14 + y24 ≥ −y0.
Using the above result (i), we find that y12 = y0. Now (3.6) implies that y14 = y24,
which, using (i) again, yields Y14,23 = Y13,24.

Corollary 3.5. N+(Kn) ⊆ Fn.
We will see later thatN+(K5) = CUT(K5); therefore, the inclusionN+(Kn) ⊆ Fn

is strict for n ≥ 5.

4. The index of a graph. The N -index ηN (G) of a graph G is defined as
the smallest integer k for which CUT(G) = Nk(MET(G)), and its projected N -index
ηπN (G) is the smallest k for which CUT(G) = Nk(G); the indexes ην and η

π
ν are defined

analogously with respect to the other operators ν = N+, N ′, or N ′
+. Obviously,

ηπν (G) ≤ ην(G). By Theorem 2.1, the N -index of G is bounded by the number of
edges of G; in section 4.1, we show some sharper upper bounds which, in fact, remain
valid for the N0-index since they are obtained using Lemma 2.2. In particular, we
show that ηN (G) ≤ n− 4 for a graph G on n ≥ 4 nodes, and in section 4.3 we prove
the upper bound n − 5 for the N ′-index of a graph on n ≥ 6 nodes. In section 4.4,
we study how the index of a graph behaves with respect to the graph operations of
taking minors and clique sums. Section 4.2 contains some technical results needed for
establishing the upper bounds on theN ′-index and for proving the minor monotonicity
of the index of a graph.

4.1. Upper bounds for the N-index of a graph. Let G = (Vn, E) be a
graph. We show here a linear upper bound in O(n) for the N -index of G (in place of
the bound |E|). The basic idea is to use Lemma 2.2 and to reformulate the validity
of an inequality aTx ≥ β for MET(G) ∩ {x | xuv = ε} in terms of the validity of a
transformed inequality for MET(G/uv), the metric polytope of the contracted graph
G/uv.

We need some definitions. For u ∈ Vn, NG(u) denotes the set of nodes adjacent to
u in G. Given an edge uv ∈ E, let H := G/uv denote the graph obtained from G by
contracting uv; its node set is Vn \ {u, v} ∪ {w}, where w is the new node created by
contraction of edge uv, and we denote by F its edge set (multiple edges are erased).

Clearly F is in bijection with the subset F̂ := {f̂ | f ∈ F} of E where, for f ∈ F ,

f̂ := f if w �∈ f, f̂ := ui if f = wi with i ∈ NG(u),

f̂ := vi if f = wi with i ∈ NG(v) \NG(u).
(4.1)

Given y ∈ RE satisfying yuv = ε ∈ {±1} and (3.6), its ε-restriction yF,ε ∈ RF is
defined by

yF,εf := yf̂ for all f ∈ F except yF,εwi := εyvi for i ∈ NG(v) \NG(u).(4.2)
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Conversely, relation (4.2) permits us to define for any vector x ∈ RF its ε-extension
y ∈ RE in such a way that yuv = ε and yF,ε = x. Note that for ε = −1, yF,−1

coincides with the 1-restriction of the vector y′ obtained from y by switching the
signs of its entries indexed by edges in the cut δ(v). Our objective is to show that
membership of y in some iterate νk(MET(G)) is equivalent to membership of its ε-
restriction in the corresponding iterate νk(MET(G/uv)) of the contracted graph (ν
being any of the operators N, . . . , N ′

+). We treat here the case k = 0, and the general
case will be treated in the next subsection. It will be convenient to use the following
correspondence between the circuits of G and those of H = G/uv:

To any circuit C of H there corresponds a circuit C ′ of G, where

C ′ := Ĉ ∪ {uv} if w ∈ C and its neighbors a, b on C satisfy

a ∈ NG(u), b ∈ NG(v) \NG(u), and C ′ := Ĉ otherwise

(4.3)

(setting Ĉ := {f̂ | f ∈ C}, where f̂ is defined by (4.1)).
Lemma 4.1. Let x ∈ RF and let y ∈ RE be its ε-extension, where ε = ±1. Then
(i) x ∈ MET(G/uv) ⇐⇒ y ∈ MET(G),
(ii) x ∈ CUT(G/uv) ⇐⇒ y ∈ CUT(G).
Proof. (i) We let ε = 1, as the case ε = −1 can be derived from it by applying

switching. Obviously, y ∈ [−1, 1]E if and only if x ∈ [−1, 1]F . Suppose first that
y ∈ MET(G); we show that x ∈ MET(H). For this let C be a circuit in H and let
D ⊆ C be a subset of odd cardinality; we show that x(D)− x(C \D) ≥ 2− |C|. Let
D̂ := {f̂ | f ∈ D} and let C ′ be the circuit in G derived from C as indicated in (4.3).
Then, x(D) − x(C \ D) = y(D̂) − y(Ĉ \ D̂). If C ′ = Ĉ, then y(D̂) − y(Ĉ \ D̂) ≥
2− |C ′| = 2− |C|; if C ′ = Ĉ ∪ {uv}, then y(D̂)− y(Ĉ \ D̂) ≥ 2− |C ′|+ yuv = 2− |C|,
using the assumption yuv = 1. We omit the proof for the reverse implication which is
similar. Assertion (ii) follows from the fact that the extension/restriction operation
maps the cut vectors of H to cut vectors of G.

Given a ∈ RE and ε = ±1, let aε ∈ RF be defined by

(4.4)

(aε)wi := aui for i ∈ NG(u) \NG(v), (aε)wi := εavi for i ∈ NG(v) \NG(u),

(aε)wi := aui + εavi for i ∈ NG(u) ∩NG(v), (aε)ij := aij for ij ∈ E, i, j �= u, v.

It follows from these definitions that

aT y = aTε x+ εauv for x ∈ RF and its ε-extension y ∈ RE .(4.5)

Lemma 4.2. Let a ∈ RE, ε ∈ {±1}, aε ∈ RF as in (4.4), and β ∈ R be given.
Then

aT y ≥ β is valid for MET(G) ∩ {y | yuv = ε}
⇐⇒ aTε x ≥ β − ε auv is valid for MET(G/uv),

aT y ≥ β is valid for CUT(G) ∩ {y | yuv = ε}
⇐⇒ aTε x ≥ β − ε auv is valid for CUT(G/uv).

Proof. Apply Lemma 4.1 and (4.5).
Theorem 4.3. Let G be a graph and e1, . . . , ek be distinct edges in G. Then

CUT(G) = conv(MET(G) ∩ {x | xe1 , . . . , xek = ±1})
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if and only if the graph G/{e1, . . . , ek} has no K5-minor.
Proof. The proof is by induction on k ≥ 0. The result holds for k = 0 since

it is shown in [7] that CUT(G) = MET(G) if and only if G has no K5-minor. Let
k ≥ 1 and suppose that the result from Theorem 4.3 holds for k − 1; we show that
it also holds for k. Applying the induction assumption to the graph G/ek, we obtain
that CUT(G/ek) = conv(MET(G/ek) ∩ {x | xe1 , . . . , xek−1

= ±1}) if and only if G/
{e1, . . . , ek} has no K5-minor. Therefore, it remains to show that the two statements

CUT(G/ek) = conv(MET(G/ek) ∩ {x | xe1 , . . . , xek−1
= ±1}),

CUT(G) = conv(MET(G) ∩ {x | xe1 , . . . , xek = ±1})
are equivalent, which is a simple verification using Lemma 4.1.

Corollary 4.4. If a graph G has a set of k edges whose contraction produces a
graph with no K5-minor, then CUT(G) = Nk

0 (G) = Nk(G). In particular, CUT(G) =
Nn−4(MET(G)) if G has n ≥ 4 nodes.

Proof. The first statement is a direct application of Theorem 4.3 and (2.6), (2.7).
We now show that in a graph G on n nodes there exist at most n − 4 edges whose
contraction produces a graph with noK5-minor. If G is connected, let T be a spanning
tree in G and let u, v, w ∈ Vn for which T ′ := T\{u, v, w} is still a tree. (Such nodes
can be easily found if T is a path, and otherwise choose three leaves of T .) Then the
graph obtained from G by contracting the n− 4 edges of T ′ has no K5-minor. If G is
not connected, apply the same reasoning to each connected component of G.

Given an integer r ≥ 1, let αr(G) denote the maximum cardinality of a subset
S ⊆ Vn for which the induced subgraph G[S] has no Kr+1 minor; thus α1(G) is
the stability number α(G) of G, and αr+1(G) ≥ αr(G) + 1 if αr(G) ≤ n − 1. As a
consequence of Corollary 4.4, we can show the following.

Corollary 4.5. Let r ∈ {1, 2, 3} and G = (Vn, E) be a graph on n nodes. Then,

ηπN (G) ≤ max(0, n− αr(G) + r − 4).(4.6)

If there exists a subset S ⊆ Vn for which G[S] has no Kr+1 minor, G[Vn \ S] has at
most 4− r connected components, and |S| = αr(G), then

ηN (G) ≤ max(0, n− αr(G) + r − 4).(4.7)

Proof. We use the following observation: The graph G∗, obtained from G[S] by
adding to it 4− r pairwise adjacent nodes that are adjacent to all nodes of S, has no
K5-minor, and thus the same holds for any subgraph of G∗. We first verify that (4.7)
holds. For this, suppose that S ⊆ Vn with |S| = αr(G), G[S] has no Kr+1 minor, and
G[Vn \S] has at most 4− r connected components; we show that a graph with no K5-
minor can be obtained from G by contracting at most kr := max(0, n−αr(G)+r−4)
edges. Indeed, using the assumption that G[Vn \S] has at most 4−r components, one
can find at most kr edges in G[Vn \ S] whose contraction transforms G[Vn \ S] into a
graph on at most 4 − r nodes. We now verify (4.6). If G[Vn \ S] has t components,
let G′ be the graph obtained from G by adding t− 1 edges between the components
of G[Vn \ S] so as to make G′[Vn \ S] connected. We just saw that ηN (G′) ≤ kr
and thus CUT(G′) = Nkr (G′). By projecting out the added edges, we obtain that
CUT(G) = Nkr (G), that is, ηπN (G) ≤ kr.

In particular, the N -index of the graph G∇, obtained from G by adding a new
node adjacent to all nodes of G, is at most n − α(G) − 2. Some rationale for the
similarity between this upper bound and the known upper bound n − α(G) − 1 for
the N -index of the stable set polytope of G will be given in section 6.
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Consider, for example, the complete bipartite graph K4,5: then ηπN (K4,5) = 1
(by (4.6)) but the upper bound from (4.7) does not apply (since the complement of
a maximum stable set induces a graph with four connected components). It would
be interesting to determine whether ηN (K4,5) = 1. If not, then K4,5 would be an
example of a graph for which the inclusion N(G) ⊆ N(MET(G)) is strict; moreover,
this would show that the N -index is not monotone with respect to deletion of edges,
since the N -index of the graph obtained from K4,5 by adding one edge is equal to 1.

As another consequence of Corollary 4.4, we have found a compact representation
for the cut polytope of a graph having k edges whose contraction produces a graph
with no K5-minor. Therefore, the max-cut problem can be solved in polynomial time
for such graphs (for fixed k). This result can, however, be checked directly using a
branching strategy. For instance, if G/uv has no K5-minor and one wishes to find
the maximum weight W of a cut in G with respect to some weight function a, then
W = max(W1,W−1 + a(δG(v))), where, for ε = ±1, Wε is the maximum weight of a
cut in G/uv with respect to the weight function aε (defined as in (4.4)). (This idea is
also present, e.g., in [23].)

4.2. Validity for the new relaxations via contraction. We saw in Lemma
4.2 that the validity of an inequality aTx ≥ β for MET(G) ∩ {x | xuv = ε} can be
reformulated in terms of the validity of the transformed inequality aTε x ≥ β − ε auv
for MET(G/uv). We here extend this result for any iterate νk(MET(G)), where
ν = N, . . . , N ′

+ and k ≥ 1. For this we need to extend the notions of ε-extension
and restriction to matrices. We begin with an application of (3.6) to matrices in
M(MET(G)).

Proposition 4.6. Let Y ∈M(MET(G)) and assume that Y0,uv = εY0,0 for some
edge uv ∈ E and ε = ±1. Then Y satisfies

Y e0 = εY euv, Y eui = εY evi for every node i ∈ NG(u) ∩NG(v);(4.8)

that is, Y has the following block decomposition:

Y =




I K J

I A BT εA
K B C εB
J εA εBT A


,(4.9)

setting I := {0} ∪ {ui | i ∈ NG(u) ∩NG(v)}, J := {uv} ∪ {vi | i ∈ NG(u) ∩NG(v)},
and K := E \ (I ∪ J).

Proof. As y := Y (e0−εeuv) ∈ M̃ET(G) with y0 = 0, we have that −y0 ≤ yf ≤ y0,
which yields yf = 0 for all f ∈ E, and thus Y e0 = εY euv. Let i be a node adjacent

to both u and v. As x := Y e0 ∈ M̃ET(G) with x0 = εxuv, we have from (3.6) that

xui = εxvi, i.e., Y0,ui = εY0,vi. Given f ∈ E, set z := Y (e0 − ef ); then z ∈ M̃ET(G)
and z0 = εzuv by the above. By (3.6) this implies that zui = εzvi and thus Yui,f =
εYvi,f . This shows that Y eui = εY evi.

Let Y be a symmetric matrix indexed by {0} ∪ E and satisfying (4.8) for some
ε = ±1 and uv ∈ E; then, Y has the form (4.9). We define its ε-restriction Y F,ε in

the following manner: If ε = 1, then Y F,1 is the principal submatrix (AB
BT

C ) of Y

indexed by the subset {0} ∪ F̂ = I ∪ K. If ε = −1, let Y ′ be the matrix obtained
from Y by switching the signs of its rows/columns indexed by edges in the cut δ(v);
then Y F,−1 is the principal submatrix of Y ′ indexed by I ∪K. As F is in bijection
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with F̂ we can view Y F,ε as being indexed by {0}∪F . Conversely, one can define the
ε-extension Y of a matrix X indexed by {0} ∪ F in such a way that Y0,0 = εY0,uv

and Y F,ε = X. Clearly,

Y � 0⇐⇒ Y F,ε � 0.(4.10)

Recall that the dual cone of the cone M̃ET(G) is spanned by the vectors e0 ± ef
(f ∈ E) and

ξC,D := (|C| − 2)e0 +
∑
f∈D

ef −
∑

f∈C\D
ef

for all chordless circuits C of G and all odd subsets D ⊆ C.
Proposition 4.7. Let k ≥ 0 be an integer, let Y be a symmetric matrix indexed

by {0} ∪ E satisfying (4.8) for some ε = ±1 and uv ∈ E, and let Y F,ε be its ε-
restriction. Let ν be one of the operators N, . . . , N ′

+ and µ the corresponding operator
from M, . . . ,M ′

+. Then

Y ∈ µ(νk(MET(G)))⇐⇒ Y F,ε ∈ µ(νk(MET(G/uv))).

Proof. Let ε = 1, as the case ε = −1 can be derived from it by applying switching.
In view of relation (4.10) it suffices to show the result for the operators ν = N , N ′.
The proof is by induction on k ≥ 0 and uses Lemma 4.1 together with the following
observation: For f ∈ F , the f̂th column of Y is the 1-extension of the corresponding
fth column of Y F,1, while the remaining columns of Y are duplicates of some of those.
We first consider the case k = 0. The statement for the case ν = N follows as a direct
application of the above observation. Suppose now that Y ∈M ′(MET(G)); we show
that Y F,1 ∈ M ′(MET(H)). For this let C be a circuit in H and let D ⊆ C with an

odd cardinality; we show that x := Y F,1ξC,D ∈ ˜MET(H). Set D̂ := {f̂ | f ∈ D}
and let C ′ be the circuit in G obtained from C as indicated in (4.3). By assumption,

y := Y ξC
′,D̂ ∈ M̃ET(G) and y0 = yuv. Thus, by Lemma 4.1, its 1-restriction yF,1

belongs to ˜MET(H). It suffices now to observe that Y F,1ξC,D coincides with yF,1

(using the fact that Y e0 = Y euv in the case in which C ′ = Ĉ ∪ {uv}). The proof for
the implication Y F,1 ∈ M(MET(H)) =⇒ Y ∈ M(MET(G)) is analogous and thus
omitted.

Let k ≥ 1 and suppose that the result from Proposition 4.7 holds for k −
1; we show that it holds for k. We treat only the case when ν = N , as the
proof is analogous for N ′. Suppose first that Y ∈ M(Nk(MET(G))); we show that
Y F,1 ∈ M(Nk(MET(H))). For this, let f ∈ F , ε′ = ±1, and x := Y F,1(e0 +

ε′ef ); we show that x ∈ ˜Nk(MET(H)). By assumption, the vector y := Y (e0 +

ε′ef̂ ) belongs to ˜Nk(MET(G)) and satisfies y0 = yuv. Hence there exists a ma-

trix A ∈ M(Nk−1(MET(G))) such that y = Ae0. As A0,0 = A0,uv, A satis-
fies (4.8) by Proposition 4.6, and we deduce from the induction assumption that

AF,1 ∈ M(Nk−1(MET(H))). Thus yF,1 = AF,1e0 belongs to ˜Nk(MET(H)). The
result now follows since x = yF,1. We omit the details of the proof for the converse
implication: Y F,1 ∈M(Nk(MET(H))) =⇒ Y ∈M(Nk(MET(G))).

Corollary 4.8. Let k ≥ 0 be an integer, let y ∈ R{0}∪E satisfying yuv = εy0

and (3.6) for some ε = ±1 and uv ∈ E, and let yF,ε ∈ R{0}∪F be its ε-restriction
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defined by (4.2). Let ν be one of the operators N, . . . , N ′
+. Then

y ∈ ˜νk(MET(G))⇐⇒ yF,ε ∈ ˜νk(MET(G/uv)).

Proof. For k = 0 the result holds by Lemma 4.1, and for k ≥ 1 it follows from
Proposition 4.7.

Relation (4.5) together with Corollary 4.8 imply the following.
Proposition 4.9. Let k ≥ 0 be an integer, ε = ±1, uv ∈ E, a ∈ RE, β ∈ R, and

ν one of N, . . . , N ′
+. The inequality aTx ≥ β is valid for νk(MET(G))∩{x | xuv = ε}

if and only if the inequality aTε x ≥ β − εauv is valid for νk(MET(G/uv)).
Let us say that the inequality aTε x ≥ β − εauv is obtained from the inequality

aTx ≥ β by collapsing (ε = 1) or anticollapsing (ε = −1) nodes u and v. Recall that
anticollapsing amounts to first switching the signs of entries of a indexed by the cut
δ(v) and then collapsing u and v. The following reformulations of Lemmas 2.2 and
2.3 will be used later in the paper.

Proposition 4.10. Let ν = N, . . . , N ′
+. The inequality aTx ≥ β is valid for

νk+1(MET(G)) if there is an edge uv ∈ E for which both inequalities obtained from it
by collapsing and anticollapsing nodes u and v are valid for νk(MET(G/uv)).

Proposition 4.11. Suppose that af ≥ 0 for all f ∈ E and β ≤ 0. The inequality
aTx ≥ β is valid for Nk+1

+ (MET(G)) if, for every edge uv ∈ E for which auv > 0,
the inequality obtained from aTx ≥ β by anticollapsing nodes u and v is valid for
Nk

+(MET(G/uv).
It is obvious that CUT(Kn) is equal to the projection of CUT(Kn+1) on the

subspace REn indexed by the edge set of Kn; similarly for MET(Kn). The same
can be verified for Fn and for any iterate νk(MET(Kn)). (In the latter case, use
Corollaries 4.8 and 4.13.)

Proposition 4.12. Let G = (Vn, E) be a graph, F ⊆ E, and H := (Vn, F ) the
corresponding subgraph of G. Let ν be one of the operators N, . . . , N ′

+, µ the associated
operator from M, . . . ,M ′

+, and let k ≥ 0 be an integer. If Y ∈ µ(νk(MET(G))), then
its principal submatrix X indexed by the set {0} ∪ F belongs to µ(νk(MET(H))).

Proof. It suffices to consider the case when ν = N,N ′ as Y � 0 implies X � 0.
We use the following facts in the proof: MET(H) is the projection on RF of MET(G);
if ξ belongs to the dual cone of MET(H), then its extension ξ′ := (ξ, 0, . . . , 0) ∈ RE

belongs to the dual of MET(G); and Xξ is the projection on R{0}∪F of Y ξ′.
The proof is by induction for k ≥ 0. The case k = 0 is obvious in view of

the above observations. Let k ≥ 1 and suppose that the result holds for k − 1.
Assume that Y ∈ µ(νk(MET(G))); we show that X ∈ µ(νk(MET(H))). For this,
consider ξ ∈ MET(H)∗ and its extension ξ′ ∈ MET(G)∗. We show that x := Xξ ∈

˜νk(MET(H)). By assumption, y := Y ξ′ ∈ ˜νk(MET(G)). Therefore, y = Ae0 for some
A ∈ µ(νk−1(MET(G))). Using the induction assumption, the principal submatrix B

of A indexed by {0}∪F belongs to µ(νk−1(MET(H))), and thus Be0 ∈ ˜νk(MET(H)).
Note now that x, being the projection on R{0}∪F of y, is equal to Be0. This shows
the result; indeed, for ν = N , restrict the above argument to ξ of the form e0 ± ef
(f ∈ F ).

Corollary 4.13. Let G = (Vn, E) be a graph, H = (Vn, F ) a subgraph of G,
πF the projection from RE onto RF , k ≥ 0 an integer, and ν = N, . . . , N ′

+. Then
πF (ν

k(MET(G))) ⊆ νk(MET(H)). In particular, CUT(G) ⊆ νk(G) ⊆ νk(MET(G)).

4.3. Upper bound for the N ′-index of a graph. We showed in section 4.1
the upper bound n − 4 for the N -index of a graph on n ≥ 4 nodes. We will see in
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section 5 that

ηN (K6) = ηN+
(K6) = 2, ηN ′(K6) = 1, ηN ′

+
(Kn) ≥ 2 for n ≥ 7.

Thus ηN ′(G) ≤ 1 for a graph on n ≤ 6 nodes. Based on this fact, one can show the
slightly better upper bound n− 5 for the N ′-index of a graph on n ≥ 6 nodes.

Theorem 4.14. Let ν be one of N, . . . , N ′
+ and let h, k ≥ 0 be integers. If

there exist k edges e1, . . . , ek in G for which CUT(G/{e1, . . . , ek}) = νh(MET(G/
{e1, . . . , ek})), then CUT(G) = νh+k(MET(G)).

Proof. The proof is by induction for k ≥ 0. The result holds trivially for k = 0.
Let k ≥ 1 and suppose that the result holds for k − 1. Let aTx ≥ β be an inequality
valid for CUT(G). By Lemma 4.2, the inequalities obtained from it by collapsing
and anticollapsing the end nodes of ek are valid for CUT(G/ek), which is equal to
νh+k−1(MET(G/ek)) by the induction assumption. By Proposition 4.10, this implies
that aTx ≥ β is valid for νh+k(MET(G)).

Corollary 4.15. The N ′-index of a graph on n ≥ 6 nodes is at most n− 5.
Proof. If G is connected, one can find a set F of n − 6 edges whose contraction

produces a graph on six nodes; as CUT(G/F ) = N ′(MET(G/F )), we deduce from
Theorem 4.14 that CUT(G) = (N ′)|F |+1(MET(G)) = (N ′)n−5(MET(G)). If G is
not connected, then, by the above, CUT(Gi) = (N ′)n−5(MET(Gi)) for each con-
nected component Gi of G; using Proposition 4.17, this implies that CUT(G) =
(N ′)n−5(MET(G)).

4.4. Behavior of the index under taking graph minors and clique sums.
An important motivation for the study of the LS relaxations is that one can solve the
max-cut problem in polynomial time over the class of graphs having bounded ν-index
(ν = N,N+) or bounded projected ν-index (ν = N, . . . , N ′

+). It is therefore of great
interest to understand which graphs have small index, e.g., ≤ 1. This is, however,
a difficult question. As a first step, we study here whether these graph classes are
closed under taking minors and clique sums.

Let G = (Vn, E) be a graph with edge set E ⊆ En. Given an edge e = uv ∈ E,
recall that G\e is the graph obtained from G by deleting edge e, and G/e is the
graph obtained from G by contracting e; a minor of G is then a graph obtained from
G by a sequence of deletions and/or contractions. Let Gi(Vi, Ei) (i = 1, 2) be two
graphs such that the set V1 ∩V2 induces a clique in both G1 and G2. Then the graph
G := (V1 ∪ V2, E1 ∪E2) is called the clique t-sum of G1 and G2, where t := |V1 ∩ V2|.

Proposition 4.16. For ν = N, . . . , N ′
+, ηπν (H) ≤ ηπν (G) if H is a minor of G,

and ην(H) ≤ ην(G) if H is a contraction minor of G.
Proof. Monotonicity of the projected index under taking deletion minors follows

directly from the definitions. Suppose now that H is a contraction minor of G; say,
G = (Vn, E), e := uv ∈ E, and H = G/uv = (Vn \ {u, v} ∪ {w}, F ). We show
that ην(H) ≤ ην(G). For this, suppose that CUT(G) = νk(MET(G)); we show

that CUT(H) = νk(MET(H)). Let x ∈ ˜νk(MET(H)); then x = Xe0 for some
X ∈ µ(νk−1(MET(H))). By Proposition 4.7, the 1-extension Y of X belongs to

µ(νk−1(MET(G))), and Y0,0 = Y0,uv. Thus y := Y e0 ∈ ˜νk(MET(G)) = ˜CUT(G). By

Lemma 4.1(ii), this implies that x = yF,1 ∈ ˜CUT(H).
We now show that ηπν (H) ≤ ηπN (G). Suppose that CUT(G) = νk(G); we show

that CUT(H) = νk(H). For this, let x ∈ νk(H). Thus x = πF (Xe0) for some
X ∈ µ(νk−1(MET(Kn−1))) with X0,0 = 1. Viewing Kn−1 as Kn/uv, we have from
Proposition 4.7 that the 1-extension Y of X belongs to µ(νk−1(MET(Kn))), and
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Y0,0 = Y0,uv = 1. Thus y := πE(Y e0) ∈ νk(G) = CUT(G), implying x = yF,1 ∈
CUT(H).

Proposition 4.17. Let G be the clique t-sum of two graphs G1 and G2, where t =
0, 1, 2, 3. Then ηπν (G) ≤ max(ηπν (G1), η

π
ν (G2)) and ην(G) ≤ max(ην(G1), ην(G2)).

Proof. Let G = (Vn, E) be the clique t-sum of two graphs Gi = (Vi, Ei) for
i = 1, 2 with t ≤ 3; thus Vn = V1 ∪ V2 and E = E1 ∪ E2. We use the following fact
shown in [4]: Given y ∈ RE1∪E2 and its projections yi := (y(e))e∈Ei for i = 1, 2, we
then have y ∈ CUT(G) ⇐⇒ yi ∈ CUT(Gi) for i = 1, 2. Let k ≥ 0 be an integer.
Suppose first that CUT(Gi) = νk(Gi) for i = 1, 2 and let y ∈ νk(G); we show that
y ∈ CUT(G). For this it suffices to show that yi ∈ νk(Gi) for i = 1, 2. There exists
Y ∈ µ(νk−1(MET(Kn))) such that y = πE(Y e0). By Proposition 4.12, the principal
submatrix Yi of Y indexed by {0}∪Fi, where Fi is the edge set of the complete graph
on Vi, belongs to µ(νk−1(MET(KVi))). Thus yi = πEi(Yie0) ∈ νk(Gi) for i = 1, 2.

Suppose now that CUT(Gi) = νk(MET(Gi)) for i = 1, 2 and let y ∈ ˜νk(MET(G));

we show that yi ∈ ˜νk(MET(Gi)). There exists Y ∈ µ(νk−1(MET(G))) such that
y = Y e0. By Proposition 4.12, the principal submatrix Yi of Y indexed by {0} ∪ Ei
belongs to µ(νk−1(MET(Gi))), and thus yi = Yie0 ∈ ˜νk(MET(Gi)).

As the class of graphs G with ηπν (G) ≤ 1 is closed under taking minors, we
know from the theory of Robertson and Seymour [26] that there exists a finite list of
minimal forbidden minors characterizing membership in that class; that is, ηπν (G) ≤ 1
if and only if G does not contain any member of the list as a minor. For ν = N,N+,
ηπν (K6\e) = 1 while ηπν (K6) = 2; hence the graph K6 is a minimal forbidden minor
for both properties ηπN (G) ≤ 1 and ηπN+

(G) ≤ 1. There are necessarily other minimal
forbidden minors. Indeed, the max-cut problem is known to be NP-hard for the class
of graphs having no K6-minor (in fact, also for the class of apex graphs; that is, the
graphs having a node whose deletion results in a planar graph) (cf. [5]).

Let G0 denote the graph obtained from K7 by removing a matching of size 3. We
have verified that, for a graph G on 7 nodes distinct from G0, η

π
N (G) ≤ 1 if and only

if it does not contain K6 as a minor. It would be interesting to compute ηπN (G0); if
its value is ≥ 2, then G0 is another minimal forbidden minor.

In view of Propositions 4.16 and 4.17, the property νπν (G) ≤ 1 is preserved under
the ∆Y operation (which consists of replacing a triangle by a claw K1,3). However, it
is not preserved under the converse Y∆ operation. Indeed, if G is the graph obtained
from K6 by applying one ∆Y transformation, then ηN (G) = ηπN (G) = 1 (by (4.7))
while ηN (K6) = 2. We have verified that all the graphs in the Petersen family (con-
sisting of the graphs that can be obtained from K6 by Y∆ and ∆Y transformations)
except K6 have projected N -index equal to 1.

5. Valid inequalities for the new relaxations. We saw above that the N -
index of Kn is at most n− 4, with equality for n = 4, 5. We conjecture that equality
holds for any n. In order to show this conjecture, one has to find an inequality valid
for CUT(Kn) which is not valid for Nn−5(Kn). A possible candidate is the inequality

∑
1≤i<j≤n

xij ≥ −
⌊n
2

⌋
.(5.1)

Note that (5.1) is not valid for Nn−5(Kn) if and only if there exists a < − 1
n (n odd)

or a < − 1
n−1 (n even) for which (a, . . . , a) ∈ Nn−5(Kn). We will show in Proposition

5.3 that inequality (5.1) is not valid for Nn−5(Kn) if n = 7; we conjecture that
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this remains true for any odd n. However, for n even, inequality (5.1) is valid for
Nn−5(Kn). (Indeed, for n even, inequality (5.1) follows by summation from the
inequalities (5.1) for n − 1; as the latter inequalities are valid for Nn−5(Kn−1), we
deduce that (5.1) too is valid for Nn−5(Kn).) Therefore, for n even, one should use
some more complicated inequality. We will show in Proposition 5.2 that the inequality

(n− 4)

n∑
i=2

x1i +
∑

2≤i<j≤n
xij ≥ −1

2
(n2 − 7n+ 14)(5.2)

is not valid for Nn−5(Kn) if n = 6, and we conjecture that this holds for any even
n ≥ 6. The inequalities (5.1) and (5.2) are special instances of gap inequalities that
we now introduce.

5.1. Gap inequalities. Given an integer vector b = (b1, . . . , bn) ∈ Zn, its gap
γ(b) is defined as

γ(b) := min
S⊆Vn

∣∣∣∣∣∣
∑
i∈S

bi −
∑

i∈Vn\S
bi

∣∣∣∣∣∣ ,
and the inequality

∑
1≤i<j≤n

bibjxij ≥ 1

2

(
γ(b)2 −

n∑
i=1

b2i

)
(5.3)

in the variable x ∈ REn is called the gap inequality associated with b. The analogue
of (5.3) in the matrix variable X ∈ S1

n takes the simpler form

bTXb ≥ γ(b)2.(5.4)

Inequality (5.4) is obviously valid for any cut matrix xxT (x ∈ {±1}n); that is,
inequality (5.3) is valid for the cut polytope CUT(Kn). The gap inequalities are
introduced in [19] as a generalization of negative-type inequalities (case γ(b) = 0,
[27]) and hypermetric inequalities (case γ(b) = 1, [9]); see [10] for a detailed survey.

The class of gap inequalities is closed under switching; indeed, switching the gap
inequality for b ∈ Zn along the cut δ(S) amounts to flipping the signs of the compo-
nents of b on S. (Anti)collapsing specializes to gap inequalities in the following man-
ner. Given b = (b1, b2, . . . , bn) ∈ Zn, set b′ := (b1 + b2, b3, . . . , bn) ∈ Zn−1 and b′′ :=
(b1−b2, b3, . . . , bn) ∈ Zn−1. As γ(b′), γ(b′′) ≥ γ(b), we have that 1

2 (γ(b
′)2−∑n

i=2 b
′2
i ) ≥

1
2 (γ(b)

2−∑n
i=1 b

2
i )−b1b2 and 1

2 (γ(b
′′)2−∑n

i=2 b
′′2
i ) ≥ 1

2 (γ(b)
2−∑n

i=1 b
2
i )+b1b2. There-

fore, if the gap inequality for b′ (resp., b′′) is valid for νk(Kn−1), then the inequality
obtained from the gap inequality for b by collapsing (resp., anticollapsing) nodes 1
and 2 is valid for νk(Kn−1). This fact will be useful when applying Propositions 4.10
and 4.11 to gap inequalities.

The negative-type inequalities do not induce facets of CUT(Kn) (since they are
implied by the hypermetric inequalities); moreover, they are implied by the condition
X � 0. In fact, no gap inequality for b ∈ Zn with gap γ(b) ≥ 2 and inducing a facet
of the cut polytope is known (cf. [19]). On the other hand, hypermetric inequalities
include large classes of facets for the cut polytope. This is the case, for instance, for
the following vectors b:

b = (1, . . . , 1) ∈ Zn for n odd, b = (n− 4, 1, . . . , 1) ∈ Zn for n ≥ 4.
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The hypermetric inequality for b = (1, 1, 1) is a triangle inequality (occurring in
case (5.1) for n = 3, and in case (5.2) for n = 4); the hypermetric inequality for
b = (1, 1, 1, 1, 1) is called the pentagonal inequality (occurring in cases (5.1) and (5.2)
for n = 5). Moreover, for n ≤ 6, all facets of CUT(Kn) are induced by hypermetric
inequalities. More precisely, CUT(Kn) = MET(Kn) for n ≤ 4; up to switching, all
facets of CUT(K5) arise from the triangle inequality and the pentagonal inequality; up
to switching and permutation, all facets of CUT(K6) arise from the triangle inequality,
the pentagonal inequality, and the hypermetric inequality for b = (2, 1, 1, 1, 1, 1) (case
n = 6 of (5.2)).

5.2. Valid hypermetric inequalities for the new relaxations. By con-
struction, the triangle inequalities are valid for N(Kn). As CUT(K5) = N(K5)
(by Corollary 4.4), the pentagonal inequality (that is, the gap inequality for b =
(1, 1, 1, 1, 1, 0, . . . , 0)) is also valid for N(Kn). We now examine the validity of the gap
inequalities for (1, . . . , 1) ∈ Zn (n ≥ 7, odd) and (n− 4, 1, . . . , 1) (n ≥ 6).

Proposition 5.1. Let k ≥ 1 be an integer and n := 2k + 3. The gap inequality
for (1, . . . , 1) ∈ Zn is valid for Nk

+(Kn).

Proof. We proceed by induction for k ≥ 1. The result holds for k = 1. Let k ≥ 2
and assume that the result holds for k − 1. By the induction assumption, the gap
inequality for b′′ := (0, 1, . . . , 1) ∈ Zn−1 is valid for Nk−1

+ (Kn−1). Therefore, using
Proposition 4.11, we deduce that the gap inequality for b is valid for Nk

+(Kn).

One cannot hope to improve the above result and show validity for Nk(Kn) with
the help of Proposition 4.10; indeed, collapsing of the gap inequality for (1, 1, 1, 1, 1, 1, 1)
∈ Z7 gives the gap inequality for (2, 1, 1, 1, 1, 1) ∈ Z6 which, as we see below, is not
valid forN(K6). In fact, the gap inequality for (1, 1, 1, 1, 1, 1, 1) is not valid forN2(K7)
(cf. Proposition 5.3). The proofs of Propositions 5.2–5.4 below, being quite technical,
are delayed until section 7.

Proposition 5.2. The gap inequality for (n − 4, 1, . . . , 1) ∈ Zn is valid for
N ′(Kn) if n = 6, 7, it is not valid for N ′(Kn) if n ≥ 8, it is not valid for N+(Kn) if
n ≥ 6, and it is valid for Nn−5(Kn) for n ≥ 7.

Proposition 5.3. The hypermetric inequality for (1, . . . , 1) ∈ Zn (n ≥ 7, odd)
is not valid for N ′

+(Kn) nor for N2(Kn).

Proposition 5.4. CUT(Kn) = N(Kn) if n ≤ 5, CUT(K6) = N ′(K6) ⊂
N+(K6), N

′
+(Kn) ⊂ N+(Kn) ⊂ N(Kn) for n ≥ 6, and CUT(Kn) ⊂ N ′

+(Kn) for
n ≥ 7.

Let aTx ≥ β be an inequality valid for CUT(Kn) and let G denote its support
graph, whose edges are the pairs ij for which aij �= 0. Obviously, the inequality
aTx ≥ β is valid for N(MET(G)) if ηN (G) ≤ 1. This is the case, for instance, for
parachute inequalities (cf. section 30.4 in [10]) and for bicycle odd wheel inequalities,
that is, the inequalities

xuv +
∑

ij∈E(C)

xij +
∑

i∈V (C)

(xui + xvi) ≥ 1− |C|,

where C is an odd circuit and u, v two adjacent nodes that are adjacent to all nodes
of C.

6. Application to the stable set polytope. We explain here how the LS
relaxations ν(MET(G)) for the cut polytope permit us to tighten the corresponding
LS relaxations for the stable set polytope. Given a graph G = (Vn, E), its fractional
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stable set polytope is

FRAC(G) := {d ∈ Rn | d ≥ 0, di + dj ≤ 1 for all ij ∈ E},

and its stable set polytope is

STAB(G) := conv(x ∈ {0, 1}n | x ∈ FRAC(G)).

Lovász and Schrijver [22] studied the relaxations N(FRAC(G)) and N+(FRAC(G)) in
detail. (As FRAC(G) lives in the unit cube Q = [0, 1]d, the operators N,N+ are now
defined in the context of 0, 1 variables, which means that condition (2.1) is replaced by
yi,i = y0,i for i = 1, . . . , d, while condition (2.4) is replaced by Y (ei), Y (e0 − ei) ∈ K̃
(i = 1, . . . , d).) In particular, they have shown the following results. The relaxation
N(FRAC(G)) is equal to the polytope ODD(G) defined by nonnegativity, the edge

inequalities di+dj ≤ 1 (ij ∈ E), and the odd hole inequalities
∑

i∈V (C) di ≤ |C|−1
2 (C

being an odd circuit in G). Any clique inequality
∑

i∈V (K) di ≤ 1 (K a clique in G)

is valid for N+(FRAC(G)) and N |K|−2(FRAC(G)) but not for N |K|−3(FRAC(G));
odd wheel inequalities, odd antihole inequalities, orthogonality constraints are valid
for N+(FRAC(G)).

Let G∇ denote the graph obtained from G by adding a new node a (the apex
node) adjacent to all nodes of G and set

LG := {x ∈ RE(G∇) | xij − xai − xaj = −1 for all ij ∈ E}.

For d ∈ RVn define x := ϕ(d) ∈ RE(G∇) by

xai := 1− 2di (i ∈ Vn), xij := 1− 2di − 2dj (ij ∈ E).(6.1)

Then ϕ is a bijection between RVn and RE(G∇). For S ⊆ Vn, the (±1)-incidence
vector of the cut δ(S) (in G∇) lies in LG if and only if S is a stable set in G. This
shows the following well-known fact (cf., e.g., [25]):

ϕ (STAB(G)) = CUT(G∇) ∩ LG.(6.2)

As ϕ(STAB(G)) is a face of CUT(G∇), every valid inequality for CUT(G∇) gives rise
to a valid inequality for STAB(G). For instance, if C is an odd circuit in G, the circuit
inequality

∑
ij∈E(C) xij ≥ 2− |C| for CUT(G∇) gives rise to the odd hole inequality∑

i∈V (C) di ≤ |C|−1
2 for STAB(G) (as

∑
ij∈E(C) xij = |C| − 4

∑
i∈V (C) di); one can

verify that the (switching of the) bicycle odd wheel inequality

−xau +
∑

i∈V (C)

(−xai + xui) +
∑

ij∈E(C)

xij ≥ 1− |C|

for CUT(G∇) gives rise to the odd wheel inequality
∑

i∈V (C) di+
|C|−1

2 du ≤ |C|−1
2 for

STAB(G), and that the gap inequality for (ba, b1, . . . , bn) = (−(n−3), 1, . . . , 1) ∈ Zn+1

for CUT(G∇) gives rise to the clique inequality
∑n

i=1 di ≤ 1. It is shown in [20] that
the correspondence (6.2) extends at the level of the basic linear and semidefinite
relaxations; namely,

ϕ (ODD(G)) = MET(G∇) ∩ LG and ϕ (TH(G)) = E(G∇) ∩ LG,(6.3)
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where E(G∇) is the projection of En+1 onRE(G∇) and TH(G) is the theta body defined
as the set of vectors x ∈ RVn for which (1, x) = Xe0 for some positive semidefinite
matrix X = (xij)

n
i,j=0 satisfying x0i = xii (i = 1, . . . , n) and xij = 0 (ij ∈ E). It

follows from the above that

ϕ (STAB(G)) ⊆ MET(G∇) ∩ LG = ϕ (N(FRAC(G))) .

We now examine how the correspondence between the relaxations ν(MET(G∇)) and
ν(FRAC(G)) carries out for ν = N,N+, N

′, N ′
+ and their iterates.

Proposition 6.1. Let k ≥ 0 be an integer. Then

ϕ (STAB(G)) ⊆ Nk(MET(G∇)) ∩ LG ⊆ ϕ
(
Nk+1(FRAC(G))

)
,

and, for ν = N+, N
′, N ′

+,

ϕ (STAB(G)) ⊆ νk(MET(G∇)) ∩ LG ⊆ ϕ
(
νk(FRAC(G))

)
.

Proof. The left inclusions follow from (6.2). We show that Nk(MET(G∇)) ∩ LG
is contained in ϕ(Nk+1(FRAC(G))) by induction on k ≥ 0. The inclusion holds
for k = 0. Let k ≥ 1 and suppose that the inclusion holds for k − 1. Let x ∈
Nk(MET(G∇)) ∩ LG; then (1, x) = Y e0 for some Y ∈ M(Nk−1(MET(G∇))). Let Z
denote the matrix indexed by {0} ∪ Vn defined by

Z0,0 := 1, Z0,i = Zi,i :=
1
2 (1− Y0,ai) (i ∈ Vn),

Zi,j :=
1
4 (1 + Yai,aj − Y0,ai − Y0,aj) (i, j ∈ Vn).

(6.4)

Then ϕ−1(x) = (Z0,i)i∈Vn . Therefore the result will follow if we can show that
the matrix Z belongs to M(Nk(FRAC(G))), i.e., that Z(ek), Z(e0 − ek) belong to

˜Nk(FRAC(G)). By assumption, Y (e0 ± ef ) ∈ ˜Nk−1(MET(G∇)) for all f ∈ E(G∇).

As Y e0 ∈ L̃G and Y e0 = 1
2 (Y (e0+ef )+Y (e0−ef )), we deduce that Y (e0±ef ) ∈ L̃G,

and thus Y ef ∈ L̃G for all f ∈ E(G∇), which can be rewritten as

1 + Y0,ij − Y0,ai − Y0,aj = 0, Y0,f + Yij,f − Yai,f − Yaj,f = 0 for f ∈ E(G∇).(6.5)

Using the induction assumption, we obtain that ϕ−1(Y (e0 ± eak)) (k ∈ Vn) belongs

to ˜Nk(FRAC(G)). (We have extended the bijection ϕ as a bijection between the

homogenized spaces RVn∪{0} and RE(G∇)∪{0} in the obvious way; namely, (x0, x) =
ϕ(d0, d) if x0 = d0, xai = d0 − 2di, and xij = d0 − 2di − 2dj .) In order to conclude, it
suffices now to observe that Zek = ϕ−1( 1

2Y (e0−eak)) and Z(e0−ek) = ϕ−1( 1
2Y (e0+

eak)) for k ∈ Vn; this is an easy verification using the relation (6.5).
We now show the result for the N ′ operator. In view of the above, it suffices to

show the following result: If Y ∈ M ′((N ′)k−1(MET(G∇))) satisfies Y e0 ∈ L̃G and if
Z is the associated matrix defined by (6.5), then Z ∈ M ′((N ′)k−1(FRAC(G))); that

is, Zek, Z(e0 − eh − ek) belong to ˜(N ′)k−1(FRAC(G)) for all k ∈ Vn, all hk ∈ E(G),
respectively. By assumption, the vectors Y (e0±ef ) (f ∈ E(G∇)) and Y (e0±eai±eaj±
eij) (with an even number of minus signs) (ij ∈ E(G)) belong to (N ′)k−1(MET(G∇));

as Y e0 ∈ L̃G, their images under ϕ−1 belong to (N ′)k−1(FRAC(G)) (by the induction
assumption) and (6.5) holds. To conclude the proof it suffices to verify (using (6.5))
that Z(e0 − eh − ek) = ϕ−1

(
1
4Y (e0 + eah + eak + ehk)

)
for hk ∈ E(G).
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The result for the N+ and N ′
+ operators follows, using the fact that Y � 0 =⇒

Z � 0, which holds because bTZb = cTY c, where b ∈ Rn+1 and c := (−(b0 +∑n
i=0 bi), b1, . . . , bn).
It is shown in [22] that the smallest integer k for whichNk(FRAC(G)) = STAB(G)

is less than or equal to n−α(G)−1 if G has at least one edge. On the other hand, by
(4.7), ηN (G∇) ≤ n+ 1− α(G∇)− 3 = n− α(G)− 2 if α(G) ≤ n− 2. The similarity
between the two bounds reflects the fact that STAB(G) arises as a face of CUT(G∇).
In fact the two upper bounds match, as the discrepancy of 1 can be explained by the
fact that in the case of the cut polytope we start with a stronger relaxation than in
the case of the stable set polytope; indeed, in view of (6.3), we “win” one iteration at
the beginning step.

The inclusion Nk(MET(G∇)) ∩ LG ⊆ ϕ
(
Nk+1(FRAC(G))

)
holds at equality for

k = 0 for all graphs and is strict for k ≥ 1 for certain graphs. Indeed, for k ≥ 1,

STAB(Kk+4) = ϕ−1
(
Nk(MET(K∇

k+4)) ∩ LKk+4

) ⊂ Nk+1(FRAC(Kk+4)).

To see it, note that the clique inequality
∑k+4

i=1 di ≤ 1 is not valid forNk+1(FRAC(Kk+4)),
while it is valid for ϕ−1

(
Nk(MET(K∇

k+4)) ∩ LKk+4

)
. The latter holds because the

clique inequality
∑k+4

i=1 di ≤ 1 arises from the gap inequality for (−(k+1), 1, . . . , 1) ∈
Zk+5 (assigning −(k+1) to the apex node), which is valid for Nk(MET(Kk+5)) when
k ≥ 2 by Proposition 5.2; in the case k = 1, while not valid for N(MET(K6)), the
gap inequality for (−2, 1, 1, 1, 1, 1) is valid for N(MET(K∇

5 )) ∩LK5
(cf. Lemma 7.5).

We know that clique and odd antihole inequalities are valid for N+(MET(G∇))∩
LG (as they are valid for N+(FRAC(G))). It would be interesting to find for them
some “parent” inequality for CUT(G∇) which would be valid for N+(MET(G∇)).

7. Proofs of Propositions 5.2–5.4. We study here in detail the validity of the
gap inequalities for cn := (1, . . . , 1) ∈ Zn (n ≥ 7 odd) and for bn := (n− 4, 1, . . . , 1) ∈
Zn (n ≥ 6) for some relaxations νk(Kn). Set

Cn := min


 ∑

1≤i<j≤n
xij | x ∈ νk(Kn)


 ,(7.1)

Bn := min


(n− 4)

n∑
i=2

x1i +
∑

2≤i<j≤n
xij | x ∈ νk(Kn)


 .(7.2)

Given some scalars a, c ∈ R, the vector x(a, c) ∈ REn is defined by

x(a, c)1i := a for i = 2, . . . , n, x(a, c)ij := c for 2 ≤ i < j ≤ n;(7.3)

it is said to have pattern (a, c).
A first basic observation is that the minimum in the program (7.1) (resp., (7.2))

is attained at a point of νk(Kn) having some pattern (a, a) (resp., (a, c)). Indeed, let
x ∈ νk(Kn) be an optimum solution to program (7.1) and set x∗ := 1

n!

∑
σ x

σ, where
the sum is taken over all permutations σ of [1, n]; then x∗ ∈ νk(Kn) is still optimum
for (7.1) and has pattern (a, a) for some a ∈ R. The reasoning is similar in the case
of program (7.2), except x∗ := 1

(n−1)!

∑
σ x

σ, where the sum is now taken over all

permutations of [1, n] fixing 1; then x∗ has pattern (a, c) for some a, c ∈ R.
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For the proofs of Propositions 5.2 and 5.3 we need to determine the conditions on
a, c which will permit us to express membership of the vector x(a, c) in N(Kn) and
N ′(Kn). The study of validity for N2(Kn) will involve checking the membership in
N(Kn) of a more complicated vector x(a, b, c, d) := x, defined as follows:

x12 := a, x1i := b, x2i := c for i = 3, . . . , n, xij := d for 3 ≤ i < j ≤ n;(7.4)

(a, b, c, d) is again called the pattern of the vector x(a, b, c, d). Note that x(a, b, c, d) =
x(a, c) if a = b and c = d.

The rest of this section is organized as follows. In section 7.1 we determine the
conditions on a, b, c, d expressing membership in N(Kn) for the vector x(a, b, c, d)
or membership in N ′(Kn) for the vector x(a, c). These results are then applied in
sections 7.2–7.3 to proving Propositions 5.3–5.4.

7.1. Vectors with pattern (a, b, c, d). We begin by determining the condi-
tions on a, b, c, d expressing membership in N(Kn) for a vector with pattern (a, b, c, d).
By definition, x := x(a, b, c, d) ∈ N(Kn) if and only if (1, x) = Y e0 for some matrix
Y ∈ M(MET(Kn)). In fact, such a matrix Y can be assumed to satisfy certain
symmetries. Indeed, set Y ∗ := 1

(n−2)!

∑
σ Y

σ, where the sum is taken over all per-

mutations σ of [1, n], fixing 1 and 2 (recall the definition of Y σ from (3.5)). Then
Y ∗ ∈ M(MET(Kn)) and Y ∗e0 = (1, x). Moreover, the matrix Y ∗ has the property
that the value of its (ij, hk)th entry depends only on whether the pairs ij and hk
meet and whether they contain any of the points 1 and 2. Namely, if the pairs ij and
hk meet, then the value of Yij,hk is determined by relation (3.3) and is thus one of
a, b, c, d; otherwise,

Y12,ij = x for 3 ≤ i < j ≤ n,

Y1i,2j = z for 3 ≤ i �= j ≤ n,

Y1i,hk = y, Y2i,hk = u for 3 ≤ i ≤ n, 3 ≤ i < j ≤ k, h, k �= i,

Yij,hk = v for 3 ≤ i < j ≤ n, 3 ≤ h < k ≤ n, {i, j} ∩ {h, k} = ∅

(7.5)

for some scalars x, y, z, u, v; (a, b, c, d, x, y, z, u, v) is then called the pattern of Y .

Let Yn denote the set of matrices Y ∈ S1
1+dn

having some pattern
(a, b, c, d, x, y, z, u, v) as defined above. A matrix Y ∈ Y6 is shown in Figure 7.1.
When a = b and c = d (i.e., when x = x(a, c)), the matrix Y can be assumed to
satisfy the additional symmetry x = y = z and u = v, and (a, c, x, u) is then called
the simplified pattern of Y . (Such a matrix is pictured in Figure A.1.)

We first work out the conditions on a, . . . , v for membership of Y ∈ Yn in
M(MET(Kn)), and then deduce the conditions on a, b, c, d for membership of x(a, b, c, d)
in N(Kn).

Lemma 7.1. Let Y ∈ Yn with pattern (a, b, c, d, x, y, z, u, v) and n ≥ 6. Then Y
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0 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

0 1 a b b b b c c c c d d d d d d
12 a 1 c c c c b b b b x x x x x x
13 b c 1 d d d a z z z b b b y y y
14 b c d 1 d d z a z z b y y b b y
15 b c d d 1 d z z a z y b y b y b
16 b c d d d 1 z z z a y y b y b b
23 c b a z z z 1 d d d c c c u u u
24 c b z a z z d 1 d d c u u c c u
25 c b z z a z d d 1 d u c u c u c
26 c b z z z a d d d 1 u u c u c c
34 d x b b y y c c u u 1 d d d d v
35 d x b b b y c u c u d 1 d d v d
36 d x b y y b c u u c d d 1 v d d
45 d x y b b y u c c u d d v 1 d d
46 d x y b y b u c u c d v d d 1 d
56 d x y y b b u u c c v d d d d 1




Fig. 7.1. A matrix Y ∈ Y6 with pattern (a, b, c, d, x, y, z, u, v).

belongs to M(MET(Kn)) if and only if a, . . . , v satisfy the linear inequalities

a + 2b + 2c + d + x ≥ −1, a− 2b− 2c + d + x ≥ −1,
−a + 2b− 2c + d− x ≥ −1, −a− 2b + 2c + d− x ≥ −1,

a− d− x ≥ −1, −a− d + x ≥ −1, a + 3d + 3x ≥ −1, −a + 3d− 3x ≥ −1,
a + 2b + 2c + d + z ≥ −1, −a + 2b− 2c + d− z ≥ −1, a− d− z ≥ −1,
−a− d + z ≥ −1, a− 2b− 2c + d + z ≥ −1, −a− 2b + 2c + d− z ≥ −1,

3b + 3d + y ≥ −1, −3b + 3d− y ≥ −1, −b− d + y ≥ −1, b− d− y ≥ −1,
b + 2c + d + y + 2z ≥ −1, b− 2c + d + y − 2z ≥ −1, b− d− y ≥ −1,

−b + 2c + d− y − 2z ≥ −1, −b− 2c + d− y + 2z ≥ −1, −b− d + y ≥ −1,
b + 3d + 3y ≥ −1, −b + 3d− 3y ≥ −1, 3c + 3d + u ≥ −1, −3c + 3d− u ≥ −1,

2b + c + d + 2z + u ≥ −1, −2b + c + d− 2z + u ≥ −1, c− d− u ≥ −1,
2b− c + d− 2z − u ≥ −1, −2b− c + d + 2z − u ≥ −1, −c− d + u ≥ −1,

c + 3d + 3u ≥ −1, −c + 3d− 3u ≥ −1, 6d + v ≥ −1, −2d + v ≥ −1, v ≤ 1.

(7.6)

Proof. By definition, Y ∈ M(MET(Kn)) if and only if, for all ij ∈ E6, y :=
Y (e0 ± eij) satisfies all triangle inequalities. By symmetry, it suffices to consider the
cases when ij = 12, 13, 23, or 34. Let ij = 12. Due to symmetry and to the fact that
y12 = ±y0, it suffices to consider the triangle inequalities based on the triples 134 and
345. The triangle inequalities based on triple 134 can be reformulated as

a+ 2b+ 2c+ d+ x ≥ −1, a− 2b− 2c+ d+ x ≥ −1, a− d− x ≥ −1,
−a+ 2b− 2c+ d− x ≥ −1, −a− 2b+ 2c+ d− x ≥ −1, −a− d− x ≥ −1,

and those based on triple 345 give

a+ 3d+ 3x ≥ −1, −a+ 3d− 3x ≥ −1.
Next let ij be one of 13, 23, 34. Due to symmetry and to the fact that yij = ±y0, it
suffices to consider the triangle inequalities based on the triples 124, 145, 245, and
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456. When ij = 13, we find from (7.6) the relations a + 2b + 2c + d + z ≥ −1 until
−b + 3d − 3y ≥ −1. When ij = 23, we find the relations 3c + 3d + u ≥ −1 until
−c + 3d − 3u ≥ −1. When ij = 34, we find the relations 6d + v ≥ −1,−2d + v ≥
−1, v ≤ 1.

Corollary 7.2. The vector x(a, b, c, d) belongs to N(Kn) (n ≥ 6) if and only if

d ≤ 1, ±2b+ d ≥ −1, ±2c+ d ≥ −1, ±2b+ 3d ≥ −1, ±2c+ 3d ≥ −1,
±a± b± c ≥ −1, ±a± 3b± 3c+ 3d ≥ −2,

±3a± 5b± 9c+ 6d ≥ −5, ±3a± 9b± 5c+ 6d ≥ −5,
(7.7)

where in lines 2 and 3 of the above system there is an even number of minus signs
(e.g., a + b + c ≥ −1, −a − b + c ≥ −1, etc.). The vector x(a, c) belongs to N(Kn)
(n ≥ 6) if and only if a, c satisfy

±2a+ c ≥ −1, ±2a+ 3c ≥ −1, ±12a+ 11c ≥ −5, − 1
5 ≤ c ≤ 1.(7.8)

Proof. We saw above that x = x(a, b, c, d) ∈ N(Kn) if and only if (1, x) = Y e0
for some matrix Y ∈ M(MET(Kn)) having pattern (a, b, c, d, x, y, z, u, v) for some
x, y, z, u, v. Using the computer code cdd+ of Fukuda [11] for polyhedral computa-
tions, we have verified that the projection on the subspace indexed by the variables
a, b, c, d of the polytope defined by linear system (7.6) is described by linear system
(7.7). One can then verify that for a = b and c = d, system (7.7) is equivalent to
(7.8).

We now characterize membership in N ′(Kn) for a vector with pattern (a, c).
Lemma 7.3. Let Y ∈ Yn with pattern (a, c, x, u) and n ≥ 6. Then Y ∈

M ′(MET(Kn)) if and only if a, c, x, u satisfy the linear inequalities

−2c+ u ≥ −1, 2c− 3u ≥ −1, 10c+ 5u ≥ −1, 2a− 2x− u ≥ −1,
−2a+ 2x− u ≥ −1, 4a+ 6c+ 4x+ u ≥ −1, −4a+ 6c− 4x+ u ≥ −1,

2a+ 4c+ 6x+ 3u ≥ −1, −2a+ 4c− 6x+ 3u ≥ −1,
(7.9)

as well as 6c+ 9u ≥ −1 when n ≥ 7.
Proof. By definition, Y ∈M ′(MET(Kn)) if and only if, for all 1 ≤ i < j < k ≤ n,

the vector Y (e0 ± eij ± eik ± ejk) (with 0 or 2 minus signs) satisfies all triangle
inequalities. By symmetry, it suffices to consider the two cases when ijk = 123
or 234. Consider first the case when ijk = 123. Due to symmetry, it suffices to
consider the triangle inequalities for the vectors x := Y (e0 + e12 + e13 + e23), y :=
Y (e0 + e12 − e13 − e23), and z := Y (e0 − e12 − e13 + e23), based on the triples 145
and 456 (we also use the fact that x12 = x13 = x23 = x0, y13 = y23 = −y12 = −y0,
and z12 = z13 = −z23 = −z0). The triangle inequalities for x based on triple 145 are
equivalent to

(a) 4a+ 6c+ 4x+ u ≥ −1, 2a− 2x− u ≥ −1, −2c+ u ≥ −1,

and those based on triple 456 give the new relation

(b) 2a+ 4c+ 6x+ 3u ≥ −1.

The triangle inequalities for y based on triples 145 and 456 yield, respectively,

(c) −2a+ 2x− u ≥ −1, 2c− 3u ≥ −1.
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The triangle inequalities for z based on triples 145 and 456 give, respectively, the
relations:

(d) −4a+ 6c− 4x+ u ≥ −1, −2a+ 4c− 6x+ 3u ≥ −1.
Consider now the case when ijk = 234. Due to symmetry, it suffices to look at the
triangle inequalities for the vectors x := Y (e0 + e23 + e24 + e34) and y := Y (e0 −
e23 − e24 + e34), based on the triples 125, 156, 256, and 567 (the last occurring only
for n ≥ 7). The triangle inequalities for x based on triples 125 and 156 give no new
condition; those for triple 256 give the condition

(e) 10c+ 5u ≥ −1,
and, when n ≥ 7, those for triple 567 yield

(f) 6c+ 9u ≥ −1.
No new condition is obtained when looking at the triangle inequalities for y. The
inequalities from (a)–(f) are those from (7.9).

Corollary 7.4. For n = 6, x(a, c) ∈ N ′(Kn) if and only if

±2a+ c ≥ −1, ±5a+ 5c ≥ −2, −1

5
≤ c ≤ 1,(7.10)

and, for n ≥ 7, x(a, c) ∈ N ′(Kn) if and only if a, c satisfy (7.10) together with the
inequalities ±18a+ 15c ≥ −7.

Proof. We have verified (using the computer program cdd+ [11]) that the pro-
jection on the subspace indexed by the variables a and c of the polytope defined by
the linear system (7.9) (resp., (7.9) together with 6c + 5u ≥ −1) is described by the
linear system (7.10) (resp., (7.10) together with ±18a+ 15c ≥ −7).

We will also need to check whether a matrix Y ∈ Yn is sdp. For concrete examples
this can be checked using a computer. However, for a matrix Y with simplified
pattern (a, c, x, u) one can explicitly describe the conditions on a, c, x, u ensuring Y �
0. Indeed, the positive semidefiniteness of Y can be reformulated as the positive
semidefiniteness of some smaller matrix Z whose eigenvalues can be computed because
Z belongs to an association scheme. Details will be given in the appendix.

7.2. Proof of Proposition 5.2. We show here the (non)validity of the gap
inequality for bn = (n− 4, 1, . . . , 1) ∈ Zn for the relaxations ν(Kn) (ν = N, . . . , N ′

+).
Validity over ν(Kn) means that Bn ≥ ρn := − 1

2 (n
2 − 7n + 14), where Bn is defined

in (7.2) (with k = 1); note that ρ6 = −4, ρ7 = −7, ρ8 = −11. As the program (7.2)
admits an optimum solution x having some pattern (a, c) we can, using the results
from the preceding subsection, reformulate (7.2) as a program in the variables a and
c. In particular, for ν = N ′ and n = 6, (7.2) can be reformulated as

min(10a+ 10c | a, c satisfy (7.10)),

and, for ν = N ′ and n = 7, (7.2) is reformulated as

min(18a+ 15c | a, c satisfy (7.10) and ± 18a+ 15c ≥ −7).
Hence we deduce that the gap inequality for bn is valid for N ′(Kn) when n = 6, 7.

We now show nonvalidity for N ′(Kn) (n ≥ 8) and N+(Kn) (n ≥ 6). We first
observe that it suffices to consider the two bottom cases: n = 8 for N ′ and n = 6
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for N+. Indeed, the gap inequality for bn = (n − 4, 1, . . . , 1) ∈ Zn coincides with
the inequality obtained from the gap inequality for bn+1 = (n − 3, 1, . . . , 1) ∈ Zn+1

by anticollapsing the nodes 1 and n + 1. Therefore, if x ∈ ν(Kn) violates the gap
inequality for bn, then by taking successive (−1)-extensions of x we construct a point
y ∈ ν(Km) violating the gap inequality for bm for any m ≥ n+ 1.

Let a := − 2
3 and c := 1

3 . Then x(a, c) ∈ N ′(Kn) for any n ≥ 7, and (n− 4)(n−
1)a +

(
n−1

2

)
c < ρn for any n ≥ 8. This shows that the gap inequality for bn is not

valid for N ′(Kn) for n ≥ 8.

Let a := − 5
12 , c :=

1
120 , x := 11

45 , u := − 29
90 . Then x(a, c) ∈ N+(K6). Indeed, the

matrix Y ∈ Y6 with simplified pattern (a, c, x, u) belongs to M+(MET(K6)); that is,
a, c, x, u satisfy (7.6) and (A.2). (Note that λ0(X) = 0 in (A.2).) As 10a + 10c =
− 49

12 < −4, x(a, c) violates the gap inequality for b6. We have found those values of
a, c, x, u with the help of the software package SDPPACK [1]. Using SDPPACK, we
have solved the semidefinite programming problem

min(10a+ 10c | Y ∈M+(MET(K6)) having some pattern (a, c, x, u))

and found that the optimum is attained at the above values of a, c, x, u. (This is a
problem in dimension 1+

(
6
2

)
= 16 with

(
16
2

)− 4+ 14+ 16 = 146 linear (in)equalities;

indeed, one can replace the 2
(
6
2

) × 4
(
6
3

)
= 2400 triangle inequalities expressing Y ∈

M(MET(K6)) by the 14 linear inequalities from (7.6).)

Note that min(10a+ 10c | x(a, c) ∈ N(K6)) = − 30
7 , attained at a = − 2

7 , c = − 1
7 .

This again shows that the gap inequality for b6 is not valid for N(K6) or, moreover,
for the strict inclusion N+(K6) ⊂ N(K6). The following result has been referred to
earlier in the paper.

Lemma 7.5. Although it is not valid for N(MET(K6)), the gap inequality for
(−2, 1, 1, 1, 1, 1) is valid for N(MET(K∇

5 )) ∩ LK5 (assigning −2 to the apex node).

Proof. Indeed, x(a, c) belongs to LK5 if and only if c = 2a − 1. Then x(a, c) ∈
N(MET(K6)) implies that −12a+11c ≥ −5 and thus 10a ≥ 6; that is, −10a+10c ≥
−4.

We now show that the gap inequality for bn is valid forNn−5(Kn) for n ≥ 7. Again
it suffices to show the result for the bottom case n = 7, as the general result follows
using induction. (Indeed, consider bn+1 = (n− 3, 1, . . . , 1) ∈ Zn+1. Anticollapsing of
nodes 1 and n+1 yields the gap inequality for bn, which is valid for Nn−5(Kn) by the
induction assumption, while collapsing of these two nodes yields the gap inequality
for (n − 2, 1, . . . , 1) ∈ Zn, which is valid for MET(Kn) (as it is a sum of triangle
inequalities). Therefore we deduce, using Proposition 4.10, that the gap inequality
for bn+1 is valid for Nn−4(Kn+1).) Our task is now to show that

min(18a+ 15c | x(a, c) ∈ N2(K7)) ≥ −7.

For this we need to characterize when x(a, c) ∈ N2(K7). By definition, x(a, c) ∈
N2(K7) if and only if (1, x(a, c)) = Y e0 for some matrix Y ∈ M(N(K7)) with sim-
plified pattern (a, c, x, u) for some x, u. Due to symmetry, Y ∈ M(N(K7)) if and
only if Y (e0 ± e12), Y (e0 ± e23) ∈ N(K7). Note that the vector Y (e0 + e12) is the
1-extension of a vector in RE6 with pattern ( a+c1+a ,

c+x
1+a ); the vector Y (e0 − e12) is

the (−1)-extension of x( a−c1−a ,
c−x
1−a ) ∈ RE6 ; the vector Y (e0 + e23) is the 1-extension

of x( 2a
1+c ,

a+x
1+c ,

2c
1+c ,

c+u
1+c ) ∈ RE6 ; the vector Y (e0 − e23) is the (−1)-extension of

x(0, 0, a−x1−c ,
c−u
1−c ) ∈ RE6 . Using Corollary 7.2, we find that x( a+c1+a ,

c+x
1+a ), x(

a−c
1−a ,

c−x
1−a )
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belong to N(K6) if and only if

a− c− x ≥ −1, −a− c + x ≥ −1, 3a + 3c + x ≥ −1, −3a + 3c− x ≥ −1,
17a + 23c + 11x ≥ −5, −17a + 23c− 11x ≥ −5, 7a− c− 11x ≥ −5,

−7a− c + 11x ≥ −5, 3a + 5c + 3x ≥ −1, −3a + 5c− 3x ≥ −1,
a + c− 3x ≥ −1, −a + c + 3x ≥ −1, a + 5c + 5x ≥ −1, −a + 5c− 5x ≥ −1.

(7.11)

Moreover, x( 2a
1+c ,

a+x
1+c ,

2c
1+c ,

c+u
1+c ) ∈ N(K6) if and only if

− 1
3
≤ u ≤ 1, 2a + 2c + 2x + u ≥ −1, −2a + 2c− 2x + u ≥ −1,

2a + 4c + 2x + 3u ≥ −1, −2a + 4c− 2x + 3u ≥ −1, 6c + u ≥ −1,
−2c + u ≥ −1, 8c + 3u ≥ −1, 3a + 3c + x ≥ −1, −3a + 3c− x ≥ −1,

a− c− x ≥ −1, −a− c + x ≥ −1, 5a + 11c + 3x + 3u ≥ −2,
−5a + 11c− 3x + 3u ≥ −2, −a− c− 3x + 3u ≥ −2, a− c + 3x + 3u ≥ −2,

11a + 29c + 5x + 6u ≥ −5, −11a + 29c− 5x + 6u ≥ −5, a− 7c− 5x + 6u ≥ −5,
−a− 7c + 5x + 6u ≥ −5, 15a + 21c + 9x + 6u ≥ −5, −15a + 21c− 9x + 6u ≥ −5,

−3a + c− 9x + 6u ≥ −1, 3a + c + 9x + 6u ≥ −5.

(7.12)

Finally, after noting that x(0, 0, x, u) ∈ N(K6) if and only if − 1
3 ≤ u ≤ 1, −1 ≤ x ≤ 1,

±2x+ u ≥ −1, ±2x+ 3u ≥ −1, we find that x(0, 0, a−x1−c ,
c−u
1−c ) ∈ N(K6) if and only if

−a− c + x ≥ −1, a− c− x ≥ −1, −2c + u ≥ −1, 2c− 3u ≥ −1,
2a− 2x− u ≥ −1, −2a + 2x− u ≥ −1, 2a + 2c− 2x− 3u ≥ −1,

−2a + 2c + 2x− 3u ≥ −1.
(7.13)

Using a computer, we verified that the minimum value of 18a+15c subject to a, c, x, u
satisfying the linear system (7.11), (7.12), and (7.13) is equal to −7 (attained at
a = − 1

3 , c = − 1
15 , x = 1

5 , u = − 1
15 ). This shows that the gap inequality for b7 is valid

for N2(K7).

7.3. Proof of Propositions 5.3 and 5.4. We begin by showing that the gap
inequality for cn = (1, . . . , 1) ∈ Zn is not valid for N ′

+(Kn) for n ≥ 7 odd. First let
n = 7 and set a = c := − 11

70 and x = u := 4
35 . Then the matrix Y ∈ Y7 with pattern

(a, c, x, u) belongs to M ′
+(K7), because a, c, x, u satisfy (7.9) and (A.1) (for n = 7).

Hence x(a, a) belongs to N ′
+(K7) and violates the gap inequality for c7 as 21a < −3.

We extend the result for any odd n ≥ 7 by induction. Suppose x ∈ N ′
+(Kn) violates

the gap inequality for cn for some odd n ≥ 7. For ε = ±1, the ε-extension xε of
x belongs to N ′

+(Kn+1), and thus x̂ := 1
2 (x

1 + x−1) ∈ N ′
+(Kn+1) with x̂i,n+1 = 0

(1 ≤ i ≤ n) and x̂ij = xij (ij ∈ En). Consider now the (−1)-extension y of x̂ defined
by yn+1,n+2 = −1. Then y ∈ N ′

+(Kn+2) and violates the gap inequality for cn+2. This
proves the first part of Proposition 5.3 and the strict inclusion CUT(Kn) ⊂ N ′

+(Kn)
(n ≥ 7).

We now show that the gap inequality for cn is not valid for N2(Kn) for odd n ≥ 7.
As observed above, it suffices to consider the case n = 7. We show that

min(21a | x(a, a) ∈ N2(K7)) < −3.
Using the results from the preceding subsection, we find that x(a, a) ∈ N2(K7) if and
only if there exists x ∈ R satisfying x( 2a

1+a ,
a+x
1+a ), x(0,

a−x
1−a ) ∈ N(K6), which in turn

is equivalent to the following linear system:

− 1
3 ≤ x ≤ 1, −2a+ x ≥ −1, 6a+ x ≥ −1,

40a+ 11x ≥ −5, −8a+ 11x ≥ −5,
8a+ 3x ≥ −1, 2a− 3x ≥ −1,
6a+ 5x ≥ −1, 4a− 5x ≥ −1.

(7.14)
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One can verify that the minimum value of a for which (7.14) holds is − 9
61 (attained

at a = − 9
61 , x = 5

61 ), and thus

x(a, a) ∈ N2(K7)⇐⇒ − 9

61
· 21 ≤ a ≤ 1.

As − 9
61 · 21 < −3, we deduce that the gap inequality for c7 is not valid for N2(K7).

Finally we prove Proposition 5.4. The equality CUT(Kn) = N(Kn) (n ≤ 5)
follows from Corollary 4.4, and CUT(K6) = N ′(K6) ⊂ N+(K6) from Proposition 5.2.
We now verify the strict inclusions N ′

+(Kn) ⊂ N+(Kn) ⊂ N(Kn) for n ≥ 6. It suffices
to check them for n = 6; the first one follows from the above. For the second one note
that x(− 2

7 ,− 1
7 ) ∈ N(K6) \N+(K6). Indeed, if x ∈ N+(K6), then there exist x, u for

which the matrix Y with pattern (− 2
7 ,− 1

7 , x, u) belongs to M+(K6). The inequalities
a + 2b + 2c + d + x ≥ −1 and −a + 3d − 3x ≥ −1 from (7.6) imply that x = 2

7 , and
the inequalities 3c + 3d + u ≥ −1 and 2b − c + d − 2z − u ≥ −1 imply that u = − 1

7
(we have here a = b, c = d, x = y = z, u = v). However, the matrix Y is not sdp since
the eigenvalue λ0 (from (A.2)) is negative.

Appendix. Positive semidefinite matrices with a simplified pattern. We
will use the following standard result about Schur complements (see, e.g., [15]).

Lemma A.1. Let X = ( A
BT

BT

C ) be a symmetric matrix. If A is nonsingular,
then

X � 0⇐⇒ A � 0 and C −BTA−1B � 0.

The matrix C −BTA−1B � 0 is known as the Schur complement of A in X.




0 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

0 1 a a a a a c c c c c c c c c c
12 a 1 c c c c a a a a x x x x x x
13 a c 1 c c c a x x x a a a x x x
14 a c c 1 c c x a x x a x x a a x
15 a c c c 1 c x x a x x a x a x a
16 a c c c c 1 x x x a x x a x a a
23 c a a x x x 1 c c c c c c u u u
24 c a x a x x c 1 c c c u u c c u
25 c a x x a x c c 1 c u c u c u c
26 c a x x x a c c c 1 u u c u c c
34 c x a a x x c c u u 1 c c c c u
35 c x a x a x c u c u c 1 c c u c
36 c x a x x a c u u c c c 1 u c c
45 c x x a a x u c c u c c u 1 c c
46 c x x a x a u c u c c u c c 1 c
56 c x x x a a u u c c u c c c c 1




Fig. A.1. A matrix Y ∈ Y6 with simplified pattern (a, c, x, u).

Let Y ∈ Yn with simplified pattern (a, c, x, u) (i.e., a = b, c = d, x = y = z,
u = v) and let Z denote the Schur complement in Y of its (0, 0)-entry. Suppose first
that a = c and x = u. Then Z has the property that the value of its (ij, hk)th entry
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depends only on whether the pairs ij and hk meet. Let An (resp., Bn) denote the
symmetric matrix indexed by En whose entries are all equal to 0, except entry (ij, hk)
equal to 1 if |{i, j} ∩ {h, k}| = 1 (resp., = 0). Then

Z = (1− a2)Idn + (a− a2)An + (x− a2)Bn

(where Idn is the identity matrix of order dn). The matrices An and Bn commute (they
are the adjacency matrices of the Johnson scheme J(n, 2)) and thus have a common
basis of eigenvectors. From this it follows that a matrix X = αAn + βBn + γIdn has
three distinct eigenvalues

λ0(X) = 2(n− 2)α+
(
n−2

2

)
β + γ, λ1(X) = −2α+ β + γ,

λ3(X) = (n− 4)α− (n− 3)β + γ.

Therefore we deduce that Y � 0 if and only if

λ0(Z) = 2(n− 2)(a− a2) +
(
n−2

2

)
(x− a2) + 1− a2 ≥ 0,

λ1(Z) = −2a+ x+ 1 ≥ 0, λ2(Z) = (n− 4)a− (n− 3)x+ 1 ≥ 0.
(A.1)

In the general case, the matrix Z is not of the form αAn + βBn + γdn . Let Z1

be its principal submatrix indexed by {12, . . . , 1n}; its eigenvalues are 1 − c and
1+(n−2)c−(n−1)a2. If 1−c �= 0 and 1+(n−2)c−(n−1)a2 �= 0, we can define the Schur
complement X of Z1 in Z, which turns out to be of the form αAn−1+βBn−1+γIdn−1 ,
and whose eigenvalues are therefore computable. We mention the result only in the
case n = 6: Assuming that c �= 1, 1 + 4c− 5a2 �= 0, Y � 0 if and only if

c ≤ 1, 1 + 4c− 5a2 ≥ 0,

λ0(X) = 1 + 6c− 10c2 + 3u− 2 (2a+3x−5ac)2

1+4c−5a2 ≥ 0,

λ1(X) = 1− 2c+ u ≥ 0, λ2(X) = 1 + c− 2u− 3 (a−x)2
1−c ≥ 0.

(A.2)
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Abstract. In this paper we introduce a new exact augmented Lagrangian function for the solu-
tion of general nonlinear programming problems. For this Lagrangian function a complete equivalence
between its unconstrained minimization on an open set and the solution of the original constrained
problem can be established under mild assumptions and without requiring the boundedness of the
feasible set of the constrained problem. Moreover we describe an unconstrained algorithmic model
which is globally convergent toward KKT pairs of the original constrained problem. The algorith-
mic model can be endowed with a superlinear rate of convergence by a proper choice of the search
direction in the unconstrained minimization, without requiring strict complementarity.
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1. Introduction. The problem considered here is the constrained nonlinear pro-
gramming problem:

(P)
minimize f(x)
subject to (s.t.) g(x) ≤ 0,

where f : Rn → R and g : Rn → R
m are twice continuously differentiable functions.

We denote by

F = {x ∈ R
n : g(x) ≤ 0}

the feasible set of problem (P) and by

I0(x) = {i : gi(x) = 0}

the index set of the active constraints at x. The Lagrangian function associated with
problem (P) is the function L : Rn × R

m → R given by

L(x, λ) = f(x) + λ′g(x).

A Karush–Kuhn–Tucker (KKT) pair for problem (P) is a pair (x̄, λ̄) ∈ R
n × R

m

such that

∇xL(x̄, λ̄) = 0, g(x̄)′λ̄ = 0, λ̄ ≥ 0, g(x̄) ≤ 0.

If the gradients ∇gi(x̄), i ∈ I0(x̄), are linearly independent, the pair (x̄, λ̄) satisfies
the KKT first order necessary conditions for x̄ to be a local solution for problem (P).

∗Received by the editors May 27, 1997; accepted for publication (in revised form) February 9,
2001; published electronically November 13, 2001. This work was supported by MURST, National
Research Program Algorithms for Complex Systems Optimization.

http://www.siam.org/journals/siopt/12-2/32189.html
†Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” via Buonar-
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A KKT pair (x̄, λ̄) satisfies the strict complementarity condition if λ̄i > 0 for all
i ∈ I0(x̄).
Given a KKT pair (x̄, λ̄), we denote by I+(x̄, λ̄) the index set of the active con-

straints with positive multiplier, that is,

I+(x̄, λ̄) = {i ∈ I0(x̄) : λ̄i > 0}.
A KKT pair (x̄, λ̄) satisfies the strong second order sufficient condition for x̄ to be a
strict local solution of problem (P) if

w′∇2
xL(x̄, λ̄)w > 0 ∀w �= 0 : ∇gi(x̄)

′w = 0, i ∈ I+(x̄, λ̄).

It is clear that the constrained problem (P) is determined by the interaction of two
distinct subproblems: the feasibility subproblem and the subproblem of minimizing
the objective function. In this paper we are concerned with the definition of a merit
function able to properly balance the two distinct subproblems.
The definition of merit functions of this kind is of interest both from the theoret-

ical and the computational point of view. In fact, problem (P) can be solved either
by resorting to the unconstrained minimization of a suitable merit function or by
employing a suitable merit function to enforce the global convergence of algorithms,
based on the solution of subproblems of particular structure (such as SQP-type algo-
rithms), that are locally convergent with superlinear convergence rate. We refer to
[1, 2, 13, 8, 4, 14] for some basic references on merit functions for nonlinear program-
ming problems.
We say that a merit function enjoys “exactness” properties if it is possible to

establish some correspondence between its unconstrained minimizers and the solutions
of problem (P).
The initial idea in defining merit functions was to add, to the original objective

function, terms penalizing the violation of the constraints. This approach has led
to the definition of merit functions which are exact but nondifferentiable or to merit
functions which are continuously differentiable but not “exact” in the sense meant
before.
The subsequent step has been the introduction of merit functions which charac-

terize “better” the connections between the feasibility subproblem and the minimizing
subproblem: namely, functions which consider not only the feasibility but also other
characteristics of the constrained minimum points. A practicable choice has been to
define merit functions which take the KKT conditions into account. Following this
line, two classes of continuously differentiable merit functions have been proposed:

• merit functions which are defined on the same space of the variables of the
original constrained problem,

• merit functions which are defined on the product space of the problem vari-
ables and of the KKT multipliers.

The functions in the first class penalize the violation of the KKT conditions by making
use of multiplier functions, namely, of functions λ(x) which yield estimates of the
KKT multipliers as functions of the variable x. In general a multiplier function is
quite expensive from the computational point of view when the number of constraints
is large, which may limit somewhat the applicability of merit functions of this kind.
The functions belonging to the second class can be in turn divided into two

subclasses:
• penalty functions (in the extended space) in which the terms that account
for the KKT conditions are added to the objective function f(x),
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• augmented Lagrangian functions in which the terms that account for the KKT
conditions are added to the Lagrangian function L(x, λ).

An example of a penalty function (in the extended space) has been proposed in
[27] in order to globalize a locally convergent Gauss–Newton-type algorithm. Under
suitable assumptions, not requiring the strict complementarity, the resulting algorithm
has been shown to be globally convergent towards a KKT pair, with a superlinear
rate of convergence. However, even if a feasible starting point is known (and, hence,
the feasibility subproblem is solved), it is not guaranteed that, at the attained KKT
point, the objective function f(x) is decreased.

In this paper we introduce a new augmented Lagrangian function La(x, λ; ε),
where ε > 0 is a penalty parameter. This function is continuously differentiable and
has level sets that are compact for every value of the penalty parameter ε. These
features are of basic importance for ensuring global convergence properties to the al-
gorithms that employ it. From the exactness point of view, it is possible to prove that,
for sufficiently small values of the penalty parameter ε but without requiring that ε
goes to zero, every minimum point (KKT point) of the original problem corresponds
to a minimum point (stationary point) of La(x, λ; ε) on P×R

m and conversely, where
P is a given open set containing F . These strong exactness results can be stated under
assumptions weaker than all similar assumptions employed before. Under these as-
sumptions, it is possible to propose an algorithmic model, based on the unconstrained
minimization of the function La, which is globally convergent towards KKT pairs of
problem (P). Moreover, if a feasible starting point is known, we can ensure that, at
every produced KKT pair, the objective function f(x) is decreased. In the case that
it is not possible to guarantee that all the assumptions are satisfied, and even in the
case that problem (P) is not feasible, it is possible to characterize some limit points
produced by the algorithm with respect to problem (P).

In addition, if the problem functions are three times continuously differentiable,
the algorithmic model can be endowed with a superlinear rate of convergence by a
proper choice of the search direction in the minimization of La. In particular, among
others, we discuss search directions that can be evaluated by solving a simple linear
system and that provide superlinear convergence towards KKT pairs of problem (P)
where the strong second order sufficient condition holds, without requiring that the
strict complementarity condition also holds.

The paper is organized as follows. In section 2 we introduce the new augmented
Lagrangian function La(x, λ; ε), and we list the assumptions employed to establish
its exactness properties. In section 3 we point out some preliminary properties of
La. In section 4 we study the correspondence between KKT pairs of problem (P)
and stationary points of La. In section 5 we study the correspondence between local
(global) solutions of problem (P) and local (global) minimum points of La. In section 6
we study the local behavior of the generalized Hessian of La in a neighborhood of
a KKT pair of problem (P), and we establish some additional exactness results. In
section 7 we describe an algorithmic model for the solution of problem (P) based on the
unconstrained minimization of La, and we analyze its global convergence properties.
Finally, in section 8 we discuss some search directions that can be employed in the
minimization of La, in order to get a superlinear rate of convergence towards KKT
pairs of problem (P). A numerical experiment to test the algorithmic model is out
of the scope of this paper; it is currently being undertaken and will be a matter for
future work.

We conclude this section by introducing some basic notation. For any vector v,
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we denote by V the diagonal matrix V = diag(vi); we denote by vS the subvector with
components vi, i ∈ S, where S is a given index subset; we denote by ‖v‖ the Euclidean
norm of v. Given two vectors u, v of same dimension, we denote by max{u, v} the
vector with components max{ui, vi}. Given a set S, we denote by

◦
S its interior, by

S̄ its closure, and by ∂S its boundary.
2. The new augmented Lagrangian function. Let α, s ∈ R be given scalars

such that α > 0 and s ≥ 2. We can consider the open perturbation P of the feasible
set F , defined by

P =
{
x ∈ R

n :

m∑
i=1

max{gi(x), 0}s < α

}
;

it is clear that F ⊂ P. Moreover we can introduce the function

a(x) = α−
m∑
i=1

max{gi(x), 0}s,(2.1)

which takes positive values on P and which is zero on the boundary ∂P.
Then, let us consider the function

p(x, λ) =
a(x)

1 + ‖λ‖2 ;(2.2)

this function is characterized by the following properties:

p(x, λ) > 0 ∀(x, λ) ∈ P × R
m,(2.3)

lim
x→∂P

p(x, λ) = 0,(2.4)

lim
‖λ‖→∞

p(x, λ) = 0.(2.5)

Due to (2.3), (2.4), and (2.5), the term 1/p(x, λ) plays the role of a barrier term that
penalizes both the fact that the variable x is too close to the boundary of P and the
fact that the norm of the vector λ is too large.
Now we can define the following augmented Lagrangian function for problem (P):

La(x, λ; ε) = f(x) + λ′max{g(x),−εp(x, λ)λ}
+

1

2εp(x, λ)
‖max{g(x),−εp(x, λ)λ}‖2 + ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2,(2.6)

where ε > 0 is a penalty parameter and G = diag(gi).
We can recognize that La(x, λ; ε) is an augmented Lagrangian function by the

fact that (2.6) can be rewritten in the form

La(x, λ; ε) = L(x, λ) +
1

2εp(x, λ)

[‖g(x)‖2 − ‖min{0, g(x) + εp(x, λ)λ}‖2](2.7)

+ ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2.
By observing the expression (2.6), we note that La(x, λ; ε) is obtained by adding

the terms 1
2εp(x,λ)ψ1(x, λ; ε) and ψ2(x, λ) to the function f(x), where

ψ1(x, λ; ε) = 2εp(x, λ)λ
′max{g(x),−εp(x, λ)λ}+ ‖max{g(x),−εp(x, λ)λ}‖2,

ψ2(x, λ) = ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2.
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We refer to [14] for a detailed discussion about the reasons for the presence and the
importance of the role of terms similar to ψ1 and ψ2 in an augmented Lagrangian
function. Here we only point out that these terms guarantee a “smooth” penalization
of the violation of the KKT conditions; in fact both are continuously differentiable
and satisfy the following:

• limε→0 ψ1(x, λ; ε) = ‖max{g(x), 0}‖2;
• if x ∈ F , then ψ1(x, λ; ε) = 0 if and only if λ ≥ 0, g(x)′λ = 0;
• ψ2(x, λ) is a convex function w.r.t. λ;
• if (x̄, λ̄) is a KKT pair and if the gradients of the active constraints are linearly
independent at x̄, then ψ2(x̄, λ) = 0 if and only if λ = λ̄.

Therefore, roughly speaking, the term ψ1 forces the feasibility, the nonnegativity of
λ, and the complementarity condition g(x)′λ = 0, while the term ψ2 convexifies w.r.t.
λ and penalizes the distance between the variable λ and a KKT multiplier λ̄.
Looking at the expression of La given by (2.7), we can observe that the first

two terms in the right-hand side (r.h.s.), with p(x, λ) = 1, correspond to the usual
Hestenes–Powell–Rockafellar augmented Lagrangian function for problem (P); the
addition of the third term was already proposed by Di Pillo and Grippo [9] and
Lucidi [25]. Hence, the distinguishing element in the expression of the La is the
presence of the term p(x, λ).
This term is most effective in order to provide the function La with improved ex-

actness properties under weaker assumptions. We can get an idea of the way this term
acts by considering the following simple example problem with unbounded feasible set:

(EP)
minimize x3

s.t. x ≥ 0.

Problem (EP) has the unique global solution x∗ = 0, with associated multiplier
λ∗ = 0. For this problem, the Hestenes–Powell–Rockafellar augmented Lagrangian
function LHPRa is given by

LHPRa (x, λ; ε) = x3 − λx+
1

2ε

[
x2 −min{0,−x+ ελ}2] ,

the Di Pillo–Grippo–Lucidi augmented Lagrangian function LDGLa is given by

LDGLa (x, λ; ε) = x3 − λx+
1

2ε

[
x2 −min{0,−x+ ελ}2]+ (λ− 3x2 + x2λ)2,

and the augmented Lagrangian function La of concern here is given by

La(x, λ; ε) = x3 − λx+
1

2εp(x, λ)

[
x2 −min{0,−x+ εp(x, λ)λ}2]+ (λ− 3x2 + x2λ)2,

with

p(x, λ) =
α−min{x, 0}s
1 + λ2

.

These functions are plotted in Figures 1, 2, and 3, respectively, for ε = 0.25 and
α = 1, s = 3. It appears that the use of an unconstrained minimization algorithm
for the solution of problem (EP) is much more reliable if applied to the function La.
In fact, in this case the algorithm would search for the minimum point of a function
with compact level sets, while if applied to LDGLa it could produce sequences, even
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Fig. 1. The augmented Lagrangian function LHPR
a for problem (EP).
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Fig. 2. The augmented Lagrangian function LDGL
a for problem (EP).
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Fig. 3. The augmented Lagrangian function La for problem (EP).

unbounded, moving out of the region where exactness holds, and if applied to LHPRa

it should search for a saddle point.

From the definition and the differentiability assumptions on f and g, it follows
that the function La(x, λ; ε) is an SC

1 function for all (x, λ) ∈ P × R
m, that is,

a continuously differentiable function with a semismooth gradient (see [29]). The
gradient of La is obtained from (2.6) as

∇xLa(x, λ; ε) = ∇xL(x, λ) + 1

εp(x, λ)
∇g(x)max{g(x),−εp(x, λ)λ}

+
s

2εa(x)p(x, λ)
‖max{g(x),−εp(x, λ)λ}‖2

m∑
i=1

∇gi(x)max{gi(x), 0}s−1(2.8)

+Q(x, λ)
[∇g(x)′∇xL(x, λ) +G(x)2λ

]
,

∇λLa(x, λ; ε) = max{g(x),−εp(x, λ)λ}+ 1

εa(x)
‖max{g(x),−εp(x, λ)λ}‖2λ

+ 2M(x)
[∇g(x)′∇xL(x, λ) +G(x)2λ

]
,(2.9)

where

Q(x, λ) = 2

[
∇2
xL(x, λ)∇g(x) +

m∑
i=1

∇2
xgi(x)∇xL(x, λ)e′i + 2∇g(x)G(x)Λ

]
,(2.10)

M(x) = ∇g(x)′∇g(x) +G2(x),(2.11)
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ei denotes the ith column of the m×m identity matrix, and Λ = diag(λi).
Remark 2.1. It is a known result that if the gradients ∇gi(x), i ∈ I0(x), are

linearly independent, then the matrix M(x) given by (2.11) is positive definite, and
hence nonsingular (see, for instance, [19, 11]).
Given a point (x0, λ0) ∈ P × R

m, we can introduce the level set of La:

Ω(x0, λ0; ε) = {(x, λ) ∈ P × R
m : La(x, λ; ε) ≤ La(x0, λ0; ε)}.

In this regard, we point out that, given any point (x0, λ0) ∈ R
n × R

m, it is easy to
select values α and s in the definition of P and La such that x0 ∈ P.
As we said before, our aim is to solve problem (P) by an unconstrained mini-

mization of La on P × Rm. Therefore we are interested in analyzing the correspon-
dence between stationary points of La belonging to Ω(x0, λ0; ε) and KKT pairs of
problem (P), as well as the correspondence between local (global) minimizers of La
belonging to Ω(x0, λ0; ε) and local (global) solutions of problem (P).
In order to establish these correspondences we distinguish between two cases: the

case that x0 is a feasible point and the case that x0 is not a feasible point. Indeed,
in the first case, since the feasibility subproblem can be considered already solved, we
deal with an easier task. This is reflected in the fact that it is possible to simplify the
assumptions required in the study of the exactness properties of La.
More specifically, we make use of the following assumptions.
Assumption A1. One of the two following conditions is satisfied:
(a) P̄ is a bounded set;
(b) x0 ∈ F and f(x) is coercive on P̄ (that is, for any {xk} ⊆ P such that

‖xk‖ → ∞, we have f(xk)→∞).
Assumption A2. For every x ∈ F the gradients ∇gi(x), i ∈ I0(x), are linearly

independent.
Assumption A3. One of the two following conditions is satisfied:
(a) At every point x ∈ P/F , ∑

i:gi(x)>0

ci(x)∇gi(x) �= 0,(2.12)

where

ci(x) =

[
1 +

s

2

‖max{g(x), 0}‖2gi(x)(s−2)

a(x)

]
gi(x).(2.13)

(b) x0 ∈ F .
In what follows, we assume that Assumption A1 holds everywhere. Assumptions

A2 and A3 will be invoked when needed.
As already claimed, the assumptions employed to establish the exactness proper-

ties of La are weaker than the ones used by all Lagrangian functions defined before
(see, e.g., [1, 9, 24]). More specifically, by Assumption A1(b), constrained optimiza-
tion problems with unbounded feasible sets can be tackled, provided that a feasible
point is known and that all the level sets of the objective function in the open set P are
compact (this property is quite similar to the one usually used in the case of uncon-
strained optimization); by Assumption A2, the linear independence of the gradients
of the active constraints is required only in the feasible set, a mild requirement which
implies the existence and uniqueness of the KKT multipliers. Assumption A3(a) is a
weakening of the Mangasarian–Fromovitz constraint qualification condition. In fact



384 GIANNI DI PILLO AND STEFANO LUCIDI

the Mangasarian–Fromovitz constraint qualification condition (see, e.g, [26]) holds
at x if

∑
i:gi(x)≥0 ci∇gi(x) �= 0 for all ci ≥ 0. Of course, Assumption A3(a) is im-

plied by the positive linear independence of the gradients of the violated constraints;
moreover, it is also implied by the assumption that at every point x ∈ P/F the set
{z ∈ R

n : ∇gi(x)
′z + gi(x) ≤ 0, i : gi(x) ≥ 0} is not empty (see [25]), an assump-

tion widely used in the analysis of SQP algorithms. Assumption A3(a) involves the
behavior of the constraint functions outside the feasible set and it is connected to the
feasibility of the original problem. In fact it is a sufficient condition for the nonempti-
ness of the feasible set, and it is also necessary in the case of a bounded feasible set
given by convex inequalities (see again [25]); therefore, at least for this class of con-
straints, the condition used is the weakest possible assumption which guarantees that
the original constrained problem has a nonempty feasible set.
Finally we remark that Assumptions A1, A2, and A3 are all a priori assump-

tions on the problem, while, in the analysis of constrained optimization algorithms,
a posteriori assumptions on the generated sequences are often required.

3. Preliminary properties. In this section we point out some preliminary
properties of the function La(x, λ; ε). In particular, we establish results on the com-
pactness of the level set Ω(x0, λ0; ε).

Proposition 3.1. For every ε > 0,
(a) for all KKT pairs (x̄, λ̄) of problem (P) it holds that

La(x̄, λ̄; ε) = f(x̄);

(b) for all (x, λ) ∈ F × R
m it holds that

La(x, λ; ε) ≤ f(x) + ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2;(3.1)

(c) for all (x, λ) ∈ P × R
m it holds that

La(x, λ; ε) ≥ f(x)− εα

2
+

1

2εa(x)
‖max{g(x),−εp(x, λ)λ}‖2(3.2)

+ ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2.
Proof. (a) It can be easily verified that max{g(x̄),−εp(x̄, λ̄)λ̄} = 0 for all KKT

pair (x̄, λ̄). Then (a) follows from (2.6).
(b) By (2.6) we have

La(x, λ; ε)− f(x)− ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2

=

m∑
i=1

[
λimax{gi(x),−εp(x, λ)λi}+ 1

2εp(x, λ)
max{gi(x),−εp(x, λ)λi}2

]
.(3.3)

Consider the ith term of the summation in (3.3). If the index i is such that max{gi(x),
−εp(x, λ)λi} = gi(x), taking into account that gi(x) ≤ 0 for all x ∈ F , we have

0 ≤ 2 (gi(x) + εp(x, λ)λi) ≤ gi(x) + 2εp(x, λ)λi,

so that we obtain

λimax{gi(x),−εp(x, λ)λi}+ 1

2εp(x, λ)
max{gi(x),−εp(x, λ)λi}2

=
1

2εp(x, λ)

[
gi(x)

2 + 2εp(x, λ)λigi(x)
] ≤ 0.(3.4)
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If the index i is such that max{gi(x),−εp(x, λ)λi} = −εp(x, λ)λi, we have

λimax{gi(x),−εp(x, λ)λi}+ 1

2εp(x, λ)
max{gi(x),−εp(x, λ)λi}2

= −εp(x, λ)

2
λ2
i ≤ 0.(3.5)

By (3.4) and (3.5), all terms of the summation in (3.3) are not positive for any x ∈ F
and λ ∈ R

m, and this proves (b).
(c) Recalling (2.2), we can rewrite the function La(x, λ; ε) in the form

La(x, λ; ε) = f(x) + λ′max{g(x),−εp(x, λ)λ}+ 1

2εa(x)
‖λ‖2‖max{g(x),−εp(x, λ)λ}‖2

+
1

2εa(x)
‖max{g(x),−εp(x, λ)λ}‖2 + ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2,

from which we have

La(x, λ; ε) ≥ f(x)− ‖λ‖ ‖max{g(x),−εp(x, λ)λ}‖
+

1

2εa(x)

(
1 + ‖λ‖2) ‖max{g(x),−εp(x, λ)λ}‖2

+ ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2.

Now, taking into account that the minimum of the quadratic form −u + 1
2εa(x)u

2 is

− εa(x)
2 and recalling that a(x) < α holds for x ∈ P, we have

La(x, λ; ε) ≥ f(x)− εα

2
+

1

2εa(x)
‖max{g(x),−εp(x, λ)λ}‖2(3.6)

+ ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2,

which proves (c).
From (a) and (b) of Proposition 3.1, a first interesting property of the level set

Ω follows immediately; in fact, if a feasible point x0 is known and if λ0 is properly
selected, the set Ω(x0, λ0; ε) allows us to localize a subset of the KKT points of
problem (P) that have an objective function value smaller than or equal to f(x0)
(namely, the KKT points (x̄, λ̄) such that f(x̄) ≤ P (x0, λ0; ε) ≤ f(x0)).

Proposition 3.2. Let x0 be a feasible point and λ0 be a vector such that

∇g(x0)
′∇f(x0) +M(x0)λ0 = 0,(3.7)

where M(x0) is given by (2.11); then, for every ε > 0, any KKT pair (x̄, λ̄) of prob-
lem (P) contained in Ω(x0, λ0; ε) is such that f(x̄) ≤ f(x0).
In the next two theorems we state some compactness properties of the level set Ω.
Theorem 3.3. For every εM > 0, there exists a compact set C ⊂ R

n such that
Ω(x0, λ0; ε) ⊆ C × R

m for all ε ∈ (0, εM ].
Proof. Recalling Assumption A1, if P̄ is compact, then C = P̄. Otherwise we

know that x0 is feasible and that the function f(x) is coercive on P̄. Now let (x, λ) ∈
Ω(x0, λ0; ε); recalling (3.1) we can write

La(x, λ; ε) ≤ La(x0, λ0; ε) ≤ f(x0) + ‖∇g(x0)
′∇xL(x0, λ0) +G(x0)

2λ0‖2,(3.8)
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and from (3.2), (3.8) and the fact that ε ∈ (0, εM ] we have

f(x)−αεM
2

≤ La(x, λ; ε) ≤ La(x0, λ0; ε) ≤ f(x0)+‖∇g(x0)
′∇xL(x0, λ0)+G(x0)

2λ0‖2.

Therefore we can take

C =
{
x ∈ P̄ : f(x) ≤ f(x0) +

αεM
2
+ ‖∇g(x0)

′∇xL(x0, λ0) +G(x0)
2λ0‖2

}
,

which is a compact set by Assumption A1(b).
Theorem 3.4. Suppose that Assumption A2 holds; then for every ε > 0 the level

set Ω(x0, λ0; ε) is compact.
Proof. First we show that Ω(x0, λ0; ε) is bounded. We prove this assertion by

contradiction; therefore we assume that there exists a sequence {(xk, λk)} such that
La(xk, λk; ε) ≤ La(x0, λ0; ε),(3.9)

with xk ∈ C, where C is the compact set introduced in Theorem 3.3, and with ‖λk‖ →
∞. Since xk ∈ C there exists a subsequence, that we relabel {(xk, λk)}, such that

xk → x̃,
λk
‖λk‖ → λ̃.(3.10)

We note that, by (2.2), we have

lim
k→∞

p(xk, λk) = 0,(3.11)

lim
k→∞

‖λk‖ p(xk, λk) = 0,(3.12)

lim
k→∞

‖λk‖2p(xk, λk) = a(x̃).(3.13)

Now (2.6), (3.9), (3.11), and (3.12) yield

lim
k→∞

1

‖λk‖2La(xk, λk; ε) = limk→∞
1

2ε‖λk‖2p(xk, λk)‖max{g(xk),−εp(xk, λk)λk}‖2

+ lim
k→∞

∥∥∥∥M(xk) λk
‖λk‖

∥∥∥∥
2

≤ lim
k→∞

1

‖λk‖2La(x0, λ0; ε) = 0,

which, taking into account (3.13), yields

lim
k→∞

max{g(xk),−εp(xk, λk)λk} = max {g(x̃), 0} = 0,(3.14)

lim
k→∞

∥∥∥∥M(xk) λk
‖λk‖

∥∥∥∥
2

=
∥∥∥M(x̃)λ̃∥∥∥2

= 0.(3.15)

From (3.14) we get x̃ ∈ F and from (3.15) we getM(x̃)λ̃ = 0, with ‖λ̃‖ = 1. Hence the
matrix M(x̃) should be singular, but, under Assumption A2, this is a contradiction.
Therefore we can conclude that for every ε > 0, Ω(x0, λ0; ε) is bounded.
Then we prove that Ω(x0, λ0; ε) is closed. To this aim we show that every limit

point (x̃, λ̃) of every sequence {(xk, λk)} ∈ Ω(x0, λ0; ε) belongs to Ω(x0, λ0; ε). Sup-
pose by contradiction that (x̃, λ̃) /∈ Ω(x0, λ0; ε); then by the definition of Ω and by
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the continuity of La, we have that x̃ ∈ ∂P and hence a(x̃) = 0. Then, by recalling
that (xk, λk) ∈ Ω(x0, λ0; ε), it holds that

lim
k→∞

a(xk)La(xk, λk; ε) ≤ lim
k→∞

a(xk)La(x0, λ0; ε) = 0,

lim
k→∞

a(xk)La(xk, λk; ε) =
1 + ‖λ̃‖2
2ε

‖max{g(x̃),−εp(x̃, λ̃)λ̃}‖2 = 0,

so that g(x̃) ≤ 0; this contradicts the statement a(x̃) = 0. Therefore the level set
Ω(x0, λ0; ε) is compact.

Remark 3.5. The fact, shown by Theorem 3.4, that the continuously differentiable
function La(x, λ; ε) has level sets that are compact for every value of the penalty
parameter ε is quite relevant. It implies, on the one hand, that La admits a global
minimum point, and hence a stationary point, on P × R

m; and on the other hand,
that any globally convergent unconstrained minimization algorithm, using first order
derivatives of the objective function only, can be employed to compute the stationary
points of La.

4. Stationary points of the function La. In this section we consider the
relationships between KKT pairs of problem (P) and stationary points of La(x, λ; ε).
First we prove that, for any ε > 0, every KKT pair of problem (P) is a station-
ary point of La. Then we show that every stationary point (x̄, λ̄) of La such that
max{g(x̄),−εp(x̄, λ̄)λ̄} = 0 is a KKT pair of problem (P). Finally we prove that,
under Assumptions A2 and A3 and for sufficiently small values of ε, every stationary
point of La is such that max{g(x̄),−εp(x̄, λ̄)λ̄} = 0 and, hence, is a KKT pair of
problem (P).

Theorem 4.1. Let (x̄, λ̄) be a KKT pair of problem (P). Then, for any ε > 0,
the pair (x̄, λ̄) is a stationary point of La(x, λ; ε).

Proof. The proof is straightforward using (2.8) and (2.9).

Proposition 4.2. Let (x̄, λ̄) ∈ P ×R
m be a stationary point for La(x, λ; ε), and

assume that

max{g(x̄),−εp(x̄, λ̄)λ̄} = 0.(4.1)

Then, (x̄, λ̄) is a KKT pair of problem (P).

Proof . The proof can easily be derived as in [9]; we include it for completeness.

By using (2.9) and the assumption that (x̄, λ̄) is a stationary point of La which
satisfies (4.1), we obtain

M(x̄)
[∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄

]
= 0.

Premultiplying by [∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄]′ and recalling (2.11), we get

[∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄
]′
[∇g(x̄)′ G(x̄) ]

×
[∇g(x̄)

G(x̄)

] [∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄
]
= 0,

from which [∇g(x̄)
G(x̄)

] [∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄
]
= 0.
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Premultiplying by [∇xL(x̄,λ̄)

G(x̄)λ̄
]′ we get

[∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄
]
= 0.(4.2)

Taking into account that (x̄, λ̄) is a stationary point of La satisfying (4.1), and using
(2.8) and (4.2), we obtain

∇xL(x̄, λ̄) = 0.(4.3)

Now the proof of the proposition is complete by recalling that (4.1) implies

g(x̄) ≤ 0, λ̄ ≥ 0, G(x̄)λ̄ = 0.(4.4)

The next proposition provides a technical result to be employed in the proof that
stationary points of La are also KKT pairs of problem (P). Due to the technical nature
of the proposition, its proof is given in the appendix.

Proposition 4.3. For every x̂ ∈ F such that the gradients ∇gi(x̂), i ∈ I0(x̂),
are linearly independent, there exist numbers ε(x̂) > 0, σ(x̂) > 0, and ρ(x̂) > 0 such
that, for all ε ∈ (0, ε(x̂)], for all (x, λ) ∈ Ω(x0, λ0; ε) satisfying ‖x − x̂‖ ≤ σ(x̂) and
‖∇λLa(x, λ; ε)‖ ≤ ‖max{g(x),−εp(x, λ)λ}‖, the following inequality holds:

ε‖∇xLa(x, λ; ε)‖ ≥ ρ(x̂)‖max{g(x),−εp(x, λ)λ}‖.(4.5)

By using Proposition 4.3 we can prove the following result, which will be exploited
also in order to define an updating rule for the penalty parameter in the algorithmic
model described in section 7.

Proposition 4.4. Suppose that Assumptions A2 and A3 hold. Then there exists
an ε̄ > 0 such that for all ε ∈ (0, ε̄] and all (x, λ) ∈ Ω(x0, λ0; ε) we have

‖∇La(x, λ; ε)‖ ≥ ‖max{g(x),−εp(x, λ)λ}‖.(4.6)

Proof. The proof is by contradiction. Suppose that the result is false; then,
recalling Theorem 3.3, there exist sequences {εk} and {(xk, λk)} such that

εk → 0,(4.7)

(xk, λk) ∈ Ω(x0, λ0; εk),(4.8)

xk → x̃ ∈ C,(4.9)

‖∇La(xk, λk; εk)‖ < ‖max{g(xk),−εkp(xk, λk)λk}‖.(4.10)

From (4.10) we have

‖∇λLa(xk, λk; εk)‖ < ‖max{g(xk),−εkp(xk, λk)λk}‖,(4.11)

εkp(xk, λk)‖∇xLa(xk, λk; εk)‖ < εkp(xk, λk)‖max{g(xk),−εkp(xk, λk)λk}‖.(4.12)

By the expression of p(xk, λk), the sequences p(xk, λk) and max{g(xk),−εkp(xk, λk)λk}
are bounded; then, by (4.7), we have

lim
k→∞

εkp(xk, λk)‖max{g(xk),−εkp(xk, λk)λk}‖ = 0,

which, by (4.12), implies that

lim
k→∞

εkp(xk, λk)‖∇xLa(xk, λk; εk)‖ = 0.(4.13)
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Again by the expression of p(x, λ), the sequences {p(xk, λk)∇g(xk)λk} and{
p(xk, λk)Q(xk, λk)

[∇g(xk)
′∇L(xk, λk) +G(xk)

2λk
]}

are also bounded. Then, taking the limit of {εkp(xk, λk)∇xLa(xk, λk; εk)} and recall-
ing (2.8), we obtain

0 = lim
k→∞

εkp(xk, λk)∇xLa(xk, λk; εk)

=

m∑
i=1

[
1 +

s

2

‖max{g(x̃), 0}‖2max{gi(x̃), 0}(s−2)

a(x̃)

]
max{gi(x̃), 0}∇gi(x̃),

which, if Assumption A3(a) holds, yields x̃ ∈ F .
On the other hand, if Assumption A3(b) holds, namely, if we assume that x0 ∈ F ,

by Proposition 3.1(b) and (c), we have, for any k,

f(xk)− εkα

2
+

1

2εka(xk)
‖max{g(xk),−εkp(xk, λk)λk}‖2

≤ La(xk, λk; εk) ≤ La(x0, λ0; εk) ≤ f(x0) + ‖∇g(x0)
′∇xL(x0, λ0) +G(x0)

2λ0‖2.
By taking limits and by the continuity assumptions

f(x̃) + lim sup
k→∞

1

2εka(xk)
‖max{g(xk),−εkp(xk, λk)λk}‖2

≤ f(x0) + ‖∇g(x0)
′∇xL(x0, λ0) +G(x0)

2λ0‖2,
which implies max{g(x̃), 0} = 0, so that again x̃ ∈ F .
In conclusion, if Assumption A3 holds, the point x̃ to which the sequence con-

verges is feasible. This fact with (4.7), (4.11), and Proposition 4.3 imply that, for
sufficiently large k, we have a contradiction with (4.10).
By the proof of the preceding proposition we can extract the following result,

which will be used in what follows.
Proposition 4.5. Let {εk} be a sequence of positive numbers converging to zero

and let {(xk, λk)} be a sequence of points such that (xk, λk) ∈ Ω(x0, λ0; εk). Assume
that Assumption A3(b) holds; then every limit point x̃ of the sequence {xk} is feasible
for problem (P).
By combining Propositions 4.2 and 4.4, we can now establish the following result,

which, together with Theorem 4.1, completes the analysis of the correspondences
between stationary points of La(x, λ; ε) and KKT pairs of problem (P).

Theorem 4.6. Suppose that Assumptions A2 and A3 hold. Then there exists
an ε̄ > 0 such that for all ε ∈ (0, ε̄], if (x̄, λ̄) ∈ Ω(x0, λ0; ε) is a stationary point of
La(x, λ; ε), the pair (x̄, λ̄) is a KKT pair for problem (P).
In conclusion, we have shown that, under Assumptions A1, A2, and A3, for

sufficiently small values of ε, there exists a one-to-one correspondence between KKT
pairs of the constrained problem (P) and the unconstrained stationary points of La
in the level set Ω(x0, λ0; ε); however, since the pair (x0, λ0) is arbitrary in P × R

m,
the correspondence holds on the whole set P × R

m.

5. Optimality results. In this section, we complete the analysis of the exact-
ness properties of La(x, λ; ε) by establishing the relationships between local or global
solutions of problem (P) and local or global unconstrained minimum points of the
augmented Lagrangian function.
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To this aim, we first recall (see, e.g., [17, p. 46]) that given a setM, a nonempty
subsetM∗ ⊂M is called an isolated set ofM if there exists a closed set E such that
◦
E ⊃ M∗ and such that, if x ∈ E\M∗, then x /∈ M. IfM(f̄) denotes the set of local
minimum points of problem (P) corresponding to the local minimum value f̄ , then
an isolated compact setM∗(f̄) ofM(f̄) possesses a property pointed out in [12].

Proposition 5.1. LetM∗(f̄) be an isolated compact set of local minimum points
of problem (P), corresponding to the local minimum value f̄ . Then there exists a

compact set E ⊂ P such thatM∗(f̄) ⊂
◦
E and, for any point x ∈ F ∩E, if x /∈M∗(f̄),

then f(x) > f̄ .
Now we can prove that isolated compact sets of local minimizers of problem (P)

correspond to unconstrained local minimizers of La.
Theorem 5.2. Suppose that Assumption A2 holds. Let M∗(f̄) be an isolated

compact set of local minimum points of problem (P), corresponding to the local min-
imum value f̄ ; then there exists an ε̄ > 0 such that for all ε ∈ (0, ε̄], if x̄ ∈ M∗(f̄)
and λ̄ is the associated KKT multiplier, then the pair (x̄, λ̄) is a local unconstrained
minimum point of La(x, λ; ε).

Proof. By Proposition 5.1 there exists a compact set E ⊂ P such thatM∗(f̄) ⊂
◦
E

and, for any point x ∈ F ∩ E , if x /∈ M∗(f̄), then f(x) > f̄ . By Theorem 4.1 and
point (a) of Proposition 3.1, the pair (x̄, λ̄) is a stationary point of La(x, λ; ε), with
La(x̄, λ̄; ε) = f̄ .
Now, assume that the proposition is false. Then, for any integer k, there must

exist an εk ≤ 1/k and a pair (x̄k, λ̄k) ∈M∗(f̄)×R
m which is not a local unconstrained

minimum point for La(x, λ; εk). On the other hand, since E ⊂ P, Theorem 3.4 implies
that La(x, λ; εk) has a global minimum point (xk, λk) on E × R

m; this point satisfies

La(xk, λk; εk) < La(x̄k, λ̄k; εk) = f̄ .(5.1)

Since E is compact, there exists a subsequence, which we relabel {(xk, λk)}, such that

lim
k→∞

xk = x̃ ∈ E .

By taking limits, from (3.2) and (5.1), we have

f(x̃) + lim sup
k→∞

1

2εka(xk)
‖max{g(xk),−εkp(xk, λk)λk}‖2 ≤ lim sup

k→∞
La(xk, λk; εk) ≤ f̄ .

(5.2)
Taking into account that the term p(x, λ)λ is bounded in E × R

m, (5.2) implies that
x̃ ∈ F and f(x̃) ≤ f̄ , so that x̃ ∈M∗(f̄).

Since x̃ ∈
◦
E and xk → x̃, we must have, for k large enough,

∇La(xk, λk; εk) = 0.(5.3)

Now, if we introduce the level sets Ω(x0, λ0; εk), where (x0, λ0) = (x̄, λ̄) ∈M∗(f̄)×R
m,

we have that Assumption A3(b) is satisfied and, by (5.1), that (xk, λk) ∈ Ω(x0, λ0; εk).
Therefore Theorem 4.6 and (5.3) imply that, for sufficiently large values of k, (xk, λk)
is a KKT pair of problem (P). Then, we have xk ∈ F ∩ E and, by point (a) of
Proposition 3.1, La(xk, λk; εk) = f(xk). Therefore, by (5.1), we obtain f(xk) < f̄ ,
which contradicts the assumption xk ∈ F ∩ E .
By reasoning as in [9] and [14], we can also prove the following converse result.
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Theorem 5.3. Suppose that Assumptions A2 and A3 hold. Then, there exists
an ε̄ > 0 such that, for all ε ∈ (0, ε̄], if (x̄, λ̄) ∈ Ω(x0, λ0; ε) is a local unconstrained
minimum point of La(x, λ; ε), x̄ is a local minimum point of problem (P) and λ̄ is the
corresponding KKT multiplier.

Proof. If (x̄, λ̄) ∈ Ω(x0, λ0; ε) is a local minimum point of La(x, λ; ε), then Theo-
rem 4.6 ensures that an ε̄ > 0 exists such that, for all ε ∈ (0, ε̄], the pair (x̄, λ̄) is a KKT
pair for problem (P). By point (a) of Proposition 3.1 we have also f(x̄) = La(x̄, λ̄; ε).
Since (x̄, λ̄) ∈ Ω(x0, λ0; ε) is a local unconstrained minimum point of La(x, λ; ε),

there exist neighborhoods Bx̄ and Bλ̄ of x̄, λ̄ such that
f(x̄) = La(x̄, λ̄; ε) ≤ La(x, λ; ε)

for all x ∈ Bx̄ and for all λ ∈ Bλ̄. By point (b) of Proposition 3.1 we have
f(x̄) ≤ La(x, λ; ε) ≤ f(x) + ‖∇g(x)′∇xL(x, λ) +G(x)2λ‖2(5.4)

for all x ∈ Bx̄ ∩ F and for all λ ∈ Bλ̄. Recalling that by Assumption A2 the matrix
M(x) is nonsingular, we have that, for every point x, the term ‖∇g(x)′∇xL(x, λ) +
G(x)2λ‖2 = ‖∇g(x)′∇f(x)+M(x)λ‖2 is a strictly convex function in λ, whose unique
minimum point is given by

λ(x) = −M(x)−1∇g(x)′∇f(x).

Since ‖∇g(x̄)′∇xL(x̄, λ̄) +G(x̄)2λ̄‖2 = 0, we have that λ(x̄) = λ̄. Then there exists a
neighborhood B′

x̄ ⊆ Bx̄ such that λ(x) ∈ Bλ̄ for all x ∈ B′
x̄. Therefore, (5.4) implies

f(x̄) ≤ La(x, λ(x); ε) ≤ f(x) + ‖∇g(x)′∇f(x) +M(x)λ(x)‖2 = f(x)

for all x ∈ B′
x̄ ∩ F , and this shows that x̄ is a local minimum point also for prob-

lem (P).
Again reasoning as in [14], we can state the one-to-one correspondence between

global solutions of problem (P) and global minimizers of La.
Theorem 5.4. Suppose that the feasible set F is not empty and that Assump-

tion A2 holds. Then, there exists an ε̄ > 0 such that, for all ε ∈ (0, ε̄], if x̄ is a global
minimum point of problem (P) and λ̄ is the corresponding KKT multiplier, the pair
(x̄, λ̄) is a global minimum point of La(x, λ; ε) on P × R

m, and conversely.
Proof. If x̄ is a global minimum point for problem (P) and λ̄ is the corresponding

KKT multiplier, then (x̄, λ̄) is a KKT pair, so that, by point (a) of Proposition 3.1,
we have f(x̄) = La(x̄, λ̄; ε).
On the other hand, if (x̄, λ̄) is global minimum point of La(x, λ; ε), it is a stationary

point of La contained in the level set Ω(x0, λ0; ε) with x0 ∈ F . Recalling Theorem
4.6, we have that there exists ε̄ such that for all ε ∈ (0, ε̄] every stationary point of La
in Ω(x0, λ0; ε) is a KKT pair of problem (P). Therefore, also in this case, by point (a)
of Proposition 3.1 we have f(x̄) = La(x̄, λ̄; ε). We can conclude that the functions f
and La take the same value at every point that is either a global minimum point for
problem (P) or a global minimum point of La, and this proves the proposition.

6. Second order analysis. In this section we assume that f and gi, i =
1, . . . ,m, are three times continuously differentiable functions and that s > 2. Un-
der these assumptions we perform an analysis of the second order properties of the
Lagrangian function La. This analysis allows us to prove an additional exactness
result, and provides the bases for the definition of algorithms which combine the
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global convergence with a superlinear convergence rate, without requiring the strict
complementarity assumption (see section 8).
Since La is an SC

1 function in P × R
m, its generalized Hessian ∂2La(x, λ; ε), in

Clarke’s sense, can be defined [7]. We recall that the generalized Hessian ∂2La(x, λ; ε)
is the set of matrices given by

∂2La(x, λ; ε) = co {∂2
BLa(x, λ; ε)},

where

∂2
BLa(x, λ; ε) =

{
H ∈ R

(n+m)×(n+m) : ∃{(xk, λk)} → (x, λ) with
∇2La differentiable at (x

k, λk) and {∇2La(x
k, λk; ε)} → H

}
.

The generalized Hessian ∂2La is a nonempty, convex, compact set of symmetric
matrices; furthermore, the point-to-set map (x, λ) �→ ∂2La(x, λ; ε) is bounded on
bounded sets [21].
For the Lagrangian function La it is possible to describe the structure of the

generalized Hessian ∂2La in a neighborhood of a KKT pair of problem (P). To this aim
we consider a partition of the index set {1, . . . ,m} into the subsets A ⊆ {1, . . . ,m},
N = {1, . . . ,m} \ A, and we partition the vectors g and λ according to these index
sets: g = (g′A g′N )

′ and λ = (λ′
A λ′

N )
′. Then we introduce the (n + m) × (n + m)

symmetric matrix H(x, λ; ε, A) given blockwise by

Hxx(x, λ; ε, A) = ∇2
xL(x, λ)

+
1

εp(x, λ)
∇gA(x)∇gA(x)

′ + 2∇2
xL(x, λ)∇g(x)∇g(x)′∇2

xL(x, λ),(6.1)

Hxλ(x, λ; ε, A) =

[
∇gA(x) 0

]

+ 2∇2
xL(x, λ)∇g(x)

(
∇g(x)′∇g(x) +

[
0 0
0 GN (x)

2

])
,(6.2)

Hλλ(x, λ; ε, A) = −εp(x, λ)

[
0 0
0 IN

]

+ 2

(
∇g(x)′∇g(x) +

[
0 0
0 GN (x)

2

])(
∇g(x)′∇g(x) +

[
0 0
0 GN (x)

2

])
,(6.3)

where IN is the identity matrix of dimension |N | and 0 is a zero matrix of proper
dimensions.
The following proposition, which is proved in the appendix, states that in a neigh-

borhood of a KKT pair of problem (P), the set ∂2
BLa(x, λ; ε) can be described almost

explicitly.
Proposition 6.1. For every KKT pair (x̄, λ̄) of problem (P) and every given ε

there exists a neighborhood B of (x̄, λ̄) such that, for all (x, λ) in B, we have
∂2
BLa(x, λ; ε) = {H(x, λ; ε, A) +K(x, λ; ε, A) : A ∈ A},

where
• A = {A : A = I+(x̄, λ̄) ∪ J ∀J ⊆ I0(x̄) \ I+(x̄, λ̄)};
• H(x, λ; ε, A) is a matrix given blockwise by (6.1)–(6.3);
• K(x, λ; ε, A) is a matrix such that ‖K(x, λ; ε, A)‖ ≤ ρ(x, λ), with ρ(x, λ) a
nonnegative continuous function such that ρ(x̄, λ̄) = 0.
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At a KKT pair where strict complementarity holds, we have I+(x̄, λ̄) = I0(x̄). In
this case ∂2La(x̄, λ̄; ε) reduces to a singleton, and in a neighborhood of the KKT pair
the generalized Hessian can be further characterized.

Proposition 6.2. For every KKT pair (x̄, λ̄) of problem (P) where strict com-
plementarity holds, and for every given ε, there exists a neighborhood B of (x̄, λ̄) such
that for all (x, λ) in B, La is twice continuously differentiable, with Hessian matrix
given by

∇2La(x, λ; ε) = H(x, λ; ε, A) +K(x, λ; ε, A),

where A = I0(x̄), and H and K are matrices as in Proposition 6.1.
The next theorem, which can be considered the main result of this section, proves

that, for sufficiently small values of ε, KKT pairs of problem (P) satisfying the strong
second order sufficient condition are strict local minimizers of La which satisfy also
the second order sufficient optimality condition for SC1 functions (see [23]).

Theorem 6.3. Let (x̄, λ̄) be a KKT pair of problem (P) which satisfies the
strong second order sufficient condition and assume that at x̄ the gradients of the
active constraints are linearly independent. Then there exists an ε̄ such that, for all
ε ∈ (0, ε̄], (x̄, λ̄) is an isolated local minimum point for La(x, λ; ε), and all matrices in
∂2La(x̄, λ̄; ε) are positive definite.

Proof. By Theorem 4.1, the pair (x̄, λ̄) is a stationary point for La(x, λ; ε).
By Proposition 6.1 and by the Carathéodory theorem, every matrix H̄(x̄, λ̄; ε) in
∂2La(x̄, λ̄; ε) can be written in the form

H̄(x̄, λ̄; ε) =

t∑
i=1

βiH(x̄, λ̄; ε, Ai),

where t ≤ (n+m)2+1, βi ≥ 0,
∑t
i=1 βi = 1, and Ai ∈ A. Now consider the following

quadratic form in (v, w) ∈ R
n × R

m:

(v′, w′)H̄(x̄, λ̄; ε)
(

v
w

)
= s(v, w) +

1

ε
q(v, w) + εr(v, w),(6.4)

where

s(v, w) = v′∇2
xL(x̄, λ̄)v + 2‖∇g(x̄)′∇2

xL(x̄, λ̄)v +M(x̄)w‖2

+ 2

t∑
i=1

βiv
′∇gAi

(x̄)wAi
,

q(v, w) =
1

p(x̄, λ̄)

t∑
i=1

βi‖∇gAi(x̄)
′v‖2,

r(v, w) = −p(x̄, λ̄)
t∑
i=1

βi‖wNi‖2.

First we note that q(v, w) ≥ 0. Then we observe that q(v, w) = 0 implies that

∇g′I+(x̄,λ̄)v = 0.

Therefore, since the pair (x̄, λ̄) satisfies the strong second order sufficient condition
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for problem (P), s(v, w) ≤ 0 and q(v, w) = 0 imply that

v = 0, M(x̄)w = 0.

Since, by the linear independence of the gradients of the active constraints, the matrix
M(x̄) is nonsingular, this last equality implies that w = 0. In conclusion, for every
(v, w) ∈ R

n × R
m,

(i) q(v, w) ≥ 0;
(ii) q(v, w) = 0 and s(v, w) ≤ 0 imply v = 0 and w = 0.

Recalling known results on the sum of quadratic forms (see, for example, [9]) it is
possible to assert that there exists a value ε̄ such that s(v, w)+(1/ε)q(v, w)+ εr(v, w)
is positive definite for all ε ∈ (0, ε̄]. This implies, by (6.4), that every matrix in
∂2La(x̄, λ̄; ε) is positive definite for every ε ∈ (0, ε̄]. Then the pair (x̄, λ̄) also sat-
isfies the second order sufficient condition to be an isolated minimum point for La;
see [23].

7. The algorithmic model. In this section we describe an algorithmic model
for the solution of problem (P), based on the unconstrained minimization of the func-
tion La(x, λ; ε). The main result in this section is that, under Assumptions A1, A2,
and A3 employed to establish the exactness properties of La, every algorithm de-
scribed by the model is globally convergent towards KKT pairs of problem (P), with-
out requiring that the penalty parameter ε goes to zero. As is well known, the fact
that the penalty parameter is bounded away from zero limits ill-conditioning in the
unconstrained minimization of merit functions.

Nevertheless the algorithm is able to extract some information about the original
problem even when Assumptions A2 and/or A3 do not hold. Therefore, drawing our
inspiration from [5, 6], we will analyze in detail the behavior of the algorithm when
only Assumption A1 holds. In this analysis we use the notion of generalized critical
point (see, e.g., [22]).

A point x̄ ∈ F is a generalized critical point for problem (P) if there exist multi-
pliers η̄ ∈ R and λ̄ ∈ R

m, not both zero, such that

∇f(x̄)η̄ +∇g(x̄)λ̄ = 0, G(x̄)λ̄ = 0.

In particular, a point x̄ ∈ F is a generalized critical point if there exists a λ̄ �= 0 such
that ∇g(x̄)λ̄ = 0, G(x̄)λ̄ = 0.

In the algorithm we make use of an iteration map T : P × R
m → P × R

m that
satisfies the following assumption.

AssumptionA4. For every fixed value ε and every starting point (x0, λ0) ∈ P×R
m,

the sequence {(xk, λk)} given by (xk+1, λk+1) = T
[
(xk, λk)

]
belongs to the level set

Ω(x0, λ0; ε), and all its limit points are stationary points of La(x, λ; ε).

These requirements on the map T can be easily satisfied by any globally con-
vergent algorithm for the unconstrained minimization of La(x, λ; ε). In fact we can
always ensure, by simple devices, that the trial points produced along the search di-
rection remain in Ω(x0, λ0; ε). In the next section we give some guidelines in order to
define an iteration map T able to provide a superlinear convergence rate.

Now, we can describe the algorithm.
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Algorithm ALFA (Augmented Lagrangian Function Algorithm).

Data: (z0, µ0) ∈ R
n × R

m and ε0 > 0.

Choose α > 0 such that z0 ∈ P, set j = 0, k = 0, and (x0, λ0) = (z0, µ0).

While ‖∇La(x0, λ0; εj)‖+ ‖max{g(x0),−εjp(x0, λ0)λ0}‖ �= 0 do.
While ‖∇La(xk, λk; εj)‖ ≥ ‖max{g(xk),−εjp(xk, λk)λk}‖ do.

Compute (xk+1, λk+1) = T
[
(xk, λk)

]
, set k = k + 1.

If ‖∇La(xk, λk; εj)‖+ ‖max{g(xk),−εjp(xk, λk)λk}‖ = 0 STOP.
End while

Choose εj+1 ∈ (0, εj), set (zj+1, µj+1) = (xk, λk), j = j + 1, and k = 0.

If La(z0, µ0; εj) ≤ La(zj , µj ; εj) set (x0, λ0) = (z0, µ0); else set (x0, λ0) =
(zj , µj).

End while

The algorithm performs an outer iteration and an inner iteration. The outer
iteration, indexed by j, monitors the decrease of the penalty parameter and provides
a proper starting point (x0, λ0) for the inner iteration. The inner iteration, indexed by
k, performs an unconstrained minimization of La starting from (x0, λ0). In particular,
the outer iteration produces the sequences {εj} ⊂ R

+ and {(zj , µj)} ⊆ P × R
m; the

inner iteration produces, for a fixed εj , a sequence {(xk, λk)}j ⊆ Ω(x0, λ0; εj).

Theorem 7.1. Let {εj}, {(zj , µj)}, and {{(xk, λk)}j} be the sequences produced
by Algorithm ALFA. Then the following hold:

(a) If the sequence {εj} is finite, with last element εj̄ , then
(a1) in the case that the sequence {λk}j̄ is bounded, every limit point (x̃, λ̃)

of the sequence {(xk, λk)}j̄ is a KKT pair for problem (P);
(a2) in the case that the sequence {λk}j̄ is not bounded, the sequence {xk}j̄

has a limit point x̃ which is a generalized critical point for problem (P).
(b) If the sequence {εj} is infinite, then
(b1) every limit point z̃ of the sequence {zj} such that z̃ /∈ F violates As-

sumption A3(a), that is,

∑
i:gi(z̃)>0

ci(z̃)∇gi(z̃) = 0,(7.1)

where the positive coefficients ci(z̃) are given by (2.13);
(b2) every limit point z̃ of the sequence {zj} such that z̃ ∈ F is a generalized

critical point for problem (P).

Proof. (a) Let εj̄ be the last element of the finite sequence {εj}. The properties of
the iteration map T ensure that every point (xk, λk), produced with ε = εj̄ , belongs
to the level set Ω(x0, λ0; εj̄).

Now, if the sequence {λk}j̄ is bounded, Theorem 3.3 implies that the sequence
{(xk, λk)}j̄ is bounded. Furthermore, by Assumption A4, every limit point (x̃, λ̃) of
the sequence {(xk, λk)}j̄ is a stationary point of the function La(x, λ; εj̄). Due to

the condition in the inner while-instruction, we have that ∇xLa(x̃, λ̃; εj̄) = 0 implies
max{g(x̃),−εj̄p(x̃, λ̃)λ̃} = 0; then, point (a1) follows from Proposition 4.2.
If the sequence {λk}j̄ is not bounded, we can repeat the same arguments of the

proof of Theorem 3.4 and we can conclude (see (3.14) and (3.15)) that there exists a
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limit point (x̃, λ̃) of the sequence {(xk, λk/‖λk‖)}j̄ such that
max {g(x̃), 0} = 0,(7.2)

M(x̃)λ̃ = 0,(7.3)

‖λ̃‖ = 1.(7.4)

Now (7.3) yields

λ̃′M(x̃)λ̃ = λ̃′ (∇g(x̃)′ G(x̃) )

(∇g(x̃)
G(x̃)

)
λ̃ = 0,

which, in turn, implies that

∇g(x̃)λ̃ = 0,(7.5)

G(x̃)λ̃ = 0.(7.6)

Now the proof of point (a2) follows from (7.2), (7.4), (7.5), and (7.6).
(b) Consider the sequence {(zj , µj)}. For j > 0, the points (zj , µj) are produced

because it happens that

‖∇xLa(zj+1, µj+1; εj)‖2 + ‖∇λLa(zj+1, µj+1; εj)‖2(7.7)

< ‖max {g(zj+1,−εjp(zj+1, µj+1)µj+1)} ‖2.
Now, we observe that, by the if-instruction of the outer iteration, we have

(zj+1, µj+1) ∈ Ω(z0, µ0; εj)

for all j; then Theorem 3.3 ensures that the sequence {zj} is bounded. Let z̃ be any
limit point of {zj}; (7.7) implies that

lim
j→∞

εjp(zj+1, µj+1)∇xLa(zj+1, µj+1; εj) = 0.

By the expression of the term p(x, λ), the sequences

{p(zj+1, µj+1)},
{p(zj+1, µj+1)∇g(zj+1)µj+1},
{p(zj+1, µj+1)Q(zj+1, µj+1)

[∇g(zj+1)
′∇xL(zj+1, µj+1) +G(zj+1)

2µj+1

]}
are bounded. Then, we obtain

lim
j→∞

εjp(zj+1, µj+1)∇xLa(zj+1, µj+1; εj)

=

m∑
i=1

[
1 +

s

2

‖max {g(z̃), 0} ‖2
a(z̃)

max {gi(z̃), 0}s−2

]
max {gi(z̃), 0}∇gi(z̃) = 0,

and this proves point (b1) if z̃ /∈ F .
If z̃ ∈ F and the gradients ∇gi(z̃), for i ∈ I0(z̃), are linearly dependent, there

exists µ̃ �= 0 such that ∇g(z̃)µ̃ = 0 and G(z̃)µ̃ = 0. Therefore, z̃ is a generalized
critical point for problem (P). On the other hand, if the gradients ∇gi(z̃) for i ∈ I0(z̃)
were linearly independent we would get a contradiction between Proposition 4.3 and
the fact that the points of the sequence {(zj , µj)} do not satisfy the test in the inner
while-instruction; thus, point (b2) is also proved.
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Remark 7.2. It can be verified that, if case (b1) occurs, z̃ is a stationary point of
the function

φ(x) =
1

a(x)
‖max{g(x), 0}‖2,

where a(x) is given by (2.1). The function φ is a weighted measure of the constraint
violations. In particular, if case (b1) occurs with s = 2 in (2.1), the point z̃ becomes
also a stationary point of the distance function

dist[g(x)|Rm− ] = inf
y
{‖g(x)− y‖; y ≤ 0 ∈ R

m} = ‖max{g(x), 0}‖;

therefore, if problem (P) is nonfeasible and g(x) is convex, Algorithm ALFA provides
a point that is as close to feasibility as possible (see [25]).
If Assumption A2 holds in addition to Assumption A1, then only the cases (a1)

and (b1) can occur for the sequences generated by Algorithm ALFA. This is easily seen
by looking at the proof of Theorem 7.1. In fact, the point x̃ produced in the case (a2)
would be feasible by (7.2) and would violate Assumption A2 due to (7.4), (7.5), (7.6);
the feasible point z̃ produced in the case (b2) would again violate Assumption A2. On
the other hand, if Assumption A3 holds in addition to Assumption A1, then the case
(b1) cannot occur. In fact, if Assumption A3(b) holds, then Proposition 4.5 ensures
that every accumulation point of {xk} should be a feasible point; if Assumption A3(a)
holds, then every point satisfying (7.1) should be feasible.
Therefore, we can conclude with the following main result.
Theorem 7.2. Assume that Assumptions A1, A2, and A3 hold, and let {εj},

{{(xk, λk)}j} be the sequences produced by Algorithm ALFA. Then the sequence {εj}
is finite; if εj̄ is the final value of the penalty parameter, every limit point of the
sequence {(xk, λk)}j̄ is a KKT pair for problem (P).

8. Remarks on the iteration map T . In this section we give some guidelines
on the construction of the iteration map T for the unconstrained minimization of La.
We confine ourselves to a linesearch approach. In this case the sequence {(xk, λk)}

given by the map T is described by the iteration

xk+1 = xk + θkdkx,(8.1)

λk+1 = λk + θkdkλ,(8.2)

where θk ∈ R is the steplength and dk = (dkx, d
k
λ) ∈ R

n × R
m is the search direction.

As is well known, a proper choice for the search direction (dkx, d
k
λ) guarantees a super-

linear convergence rate in the unconstrained minimization of La. However, the use
of the Newton direction is not suitable for the function La due to the fact that, by
construction, La is not twice continuously differentiable everywhere in P × R

m, and
due also to the fact that the evaluation of the Hessian matrix ∇2La, where it exists,
requires the evaluation of the third order derivatives of the problem functions f and g.
Here we assume, for analytical purposes, that the problem functions are three

times continuously differentiable, and that s > 2 in (2.1). However, we will describe
some directions which can be used to produce sequences {(xk, λk)} which are locally
convergent with a superlinear rate of convergence without requiring the evaluation of
third order derivatives. In particular, we consider search directions which satisfy the
following assumption.

Assumption A5. The direction dk ∈ R
n+m satisfies a system of the kind

H̃(xk, λk; ε)d = −∇La(x
k, λk; ε),(8.3)



398 GIANNI DI PILLO AND STEFANO LUCIDI

where the matrix H̃(xk, λk; ε) has the property that if the sequence {(xk, λk)} con-
verges to a KKT pair (x̄, λ̄) for problem (P), then

lim
k→∞

dist
[
H̃(xk, λk; ε)

∣∣∂2
BLa(x

k, λk; ε)
]
= 0.(8.4)

Search directions which satisfy Assumption A5 play a fundamental role in defining
efficient iteration maps T , as is shown by the following proposition.

Proposition 8.1. Let (x̄, λ̄) be a KKT pair which satisfies the strong second
order sufficient condition for problem (P), and assume that at x̄ the gradients of the
active constraints are linearly independent. If the vectors in the sequence {dk} satisfy
Assumption A5, then there exists an ε̄ such that, for all ε ∈ (0, ε̄],
(a) there exists a neighborhood B(x̄, λ̄) of (x̄, λ̄) such that, for all (xk, λk) ∈

B(x̄, λ̄),
• the search direction dk satisfies the conditions

∇La(x
k, λk; ε)′dk ≤ −c‖∇La(x

k, λk; ε)‖2,
c‖dk‖ ≤ ‖∇La(x

k, λk; ε)‖,
where c is a positive constant;

• an Armijo-type linesearch accepts the unit stepsize;
(b) if the sequence {(xk, λk)} given by (8.1) and (8.2) with θk = 1 converges to
(x̄, λ̄), then the rate of convergence is superlinear.

Proof. Point (a) follows from Assumption A5, Theorem 6.3, and the results given
in [15]. Point (b) follows again from Assumption A5, Theorem 6.3, and [28, Theo-
rem 2].
In particular, point (a) of Proposition 8.1 shows that standard globalization tech-

niques will eventually produce xk+1 by performing a unit stepsize along the direction
dk. This fact and point (b) of the same proposition show that the use of search direc-
tions satisfying Assumption A5 allows us to define algorithms for solving problem (P)
which combine the global convergence with a superlinear rate of convergence.
The proposal of a specific globally and superlinearly convergent algorithm for

problem (P) is beyond the scope of this paper. Here we limit ourselves to indicating,
as examples, some directions which satisfy Assumption A5.
To this aim, we consider at the point (xk, λk) the estimates of the sets of the

active and nonactive constraints A(xk, λk; ε) and N(xk, λk; ε) given by

A(xk, λk; ε) = {i : gi(xk) ≥ −εp(xk, λk)λki },(8.5)

N(xk, λk; ε) = {i : gi(xk) < −εp(xk, λk)λki }(8.6)

and denoted by the short notations Ak and Nk; we recall that in [16] it has been
shown that, for every value of the penalty parameter ε, there exists a neighborhood
B of a KKT point (x̄, λ̄) such that for all (xk, λk) ∈ B the set Ak satisfies

I+(x̄, λ̄) ⊆ Ak ⊆ I0(x̄).(8.7)

The first search direction that we consider has been proposed in [10]. At each
iteration, this direction is computed by solving the linear system

H(xk, λk; ε, Ak)d = −∇La(x
k, λk; ε),(8.8)

where the matrix H(xk, λk; ε, Ak) is given blockwise by (6.1)–(6.3). By Theorem 6.3,
system (8.8) is well defined in a neighborhood of a KKT pair which satisfies the strong
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second order sufficient condition and where the gradients of the active constraints are
linearly independent. Then, by Proposition 6.1 and (8.7), it is immediate to verify
that the direction given by solving system (8.8) satisfies Assumption A5.
As a second example we consider the search direction proposed in [10] and [1]

(and further studied in [16]). At each iteration, this direction depends again on the
estimates Ak and Nk of the index sets of the active and nonactive constraints given
by (8.5) and (8.6). Given the vectors pk and zk obtained by solving the linear system[

∇2
xL(x

k, λk) ∇gAk(xk)

∇gAk(xk)′ 0

][
p

z

]
= −

[
∇f(xk)

gAk(xk)

]
,(8.9)

the search direction dk = (dkx, d
k
λ) is defined in the following way:

dkx = pk,(8.10)

dkλ
Ak
= zk − λkAk ,(8.11)

dkλ
Nk
= −λkNk .(8.12)

In the next proposition we state that the direction dk given by (8.10)–(8.12)
satisfies Assumption A5. The proof is given in the appendix.

Proposition 8.2. If the linear system (8.9) is well defined at the kth iteration,
then the direction dk given by (8.10)–(8.12) satisfies Assumption A5.
For the direction dk given by (8.10)–(8.12), it is possible to state a stronger

convergence rate result. In fact in [16] the following proposition is proved.
Proposition 8.3. Let (x̄, λ̄) be a KKT pair for problem (P) which satisfies

the strong second order sufficient condition, and assume that in x̄ the gradients of
the active constraints are linearly independent. Then, for any ε > 0, there exists a
neighborhood B(x̄, λ̄) of (x̄, λ̄) such that if (x0, λ0) ∈ B(x̄, λ̄), the system (8.9) is well
defined, and the sequence {(xk, λk)} produced by (8.1)–(8.2), with θk = 1 and dk given
by (8.10)–(8.12), satisfies (xk, λk) ∈ B(x̄, λ̄) for all k, converges to (x̄, λ̄), and has a
rate of convergence which is quadratic (superlinear for the sequence {xk}).
Finally we may consider a direction given by the usual SQP approach. In this

case the direction dkx is the solution of the quadratic subproblem

min
d

1

2
d′∇2L(xk, λk)d+∇f(xk)′d(8.13)

s.t. ∇g(xk)′d+ g(xk) ≤ 0,
and

dkλ = µk − λk,(8.14)

where µk is the KKT multiplier associated with the solution dkx of subproblem (8.13).
The local behavior of the SQP iteration has been widely studied (see, e.g., [20,

30, 18, 3]). Here we report the following proposition which shows that, under suit-
able assumptions, the search direction produced by an SQP approach also satisfies
Assumption A5. The proof of this proposition is in the appendix.

Proposition 8.4. Let (x̄, λ̄) be a KKT pair for problem (P) that satisfies the
strict complementarity assumption and assume that there exists a neighborhood of
(x̄, λ̄) where the solution of subproblem (8.13) exists and is continuous. Then the
direction dk, obtained from (8.13)–(8.14), satisfies Assumption A5.
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Appendix.
Proof of Proposition 4.3. By the linear independence of the gradients of the

active constraints, we have that the matrix M(x̂) is positive definite. Let B be
a neighborhood of x̂ where the matrix M(x) is nonsingular. If ‖∇λLa(x, λ; ε)‖ ≤
‖max{g(x),−εp(x, λ)λ}‖ by (2.9) we can write∥∥∥max{g(x),−εp(x, λ)λ}+ 1

εa(x)
‖max{g(x),−εp(x, λ)λ}‖2λ

+ 2M(x)
(∇g(x)′∇xL(x, λ) +G(x)2λ

) ∥∥∥ ≤ ‖max{g(x),−εp(x, λ)λ}‖,

and if x ∈ B, we can obtain
‖∇g(x)′∇xL(x, λ) +G(x)2λ‖(A.1)

≤ ‖M(x)−1‖
{
1 +

1

2εa(x)
‖λ‖‖max{g(x),−εp(x, λ)λ}‖

}
‖max{g(x),−εp(x, λ)λ}‖.

Now, omitting the arguments to simplify the notation, and recalling that

Max{g,−εpλ} = diag(max{gi, εpλi}),
by (2.8) we can write

‖∇g′∇xLa‖ =
∥∥∥∥∥∇g′∇xL+G2λ−

[
GΛ− 1

εp

(
G2 −G Max{g,−εpλ})]max{g,−εpλ}

+
1

εp
∇g′∇gmax{g,−εpλ}(A.2)

+
s

2εap

m∑
i=1

∇g′∇gimax{gi, 0}(s−1)‖max{g,−εpλ}‖2

+∇g′Q
[∇g′∇xL+G2λ

]∥∥∥∥∥,
where we have used the equality

Gλ = Λmax{g,−εpλ}+ 1
εp

[
Max{g,−εpλ} −G

]
max{g,−εpλ};(A.3)

hence we can write

εp‖∇g′∇xLa‖ =
∥∥Γmax{g,−εpλ}+ εp

(
I +∇g′Q

)[∇g′∇xL+G2λ
]∥∥,

where the matrix Γ(x, λ; ε) is given by

Γ(x, λ; ε) =
[∇g′∇g +

(
G2 −G Max{g,−εpλ})]− εpGΛ

+
s

2a

m∑
i=1

∇g′∇gimax{gi, 0}(s−1)max{g,−εpλ}′.

Therefore, employing (A.1), we have

εp‖∇g′∇xLa‖ ≥ ‖Γmax{g,−εpλ}‖
− εp‖(I +∇g′Q

)‖‖M−1‖
{
1 +

1

2εa
‖λ‖‖max{g,−εpλ}‖

}
‖max{g,−εpλ}‖,
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from which we obtain

εη‖∇xLa‖ ≥ εp‖∇g′∇xLa‖(A.4)

≥
[
σm (Γ)− ‖

(
I +∇g′Q

)‖‖M−1‖
{
εp+

1

2a
‖pλ‖‖max{g,−εpλ}‖

}]
‖max{g,−εpλ}‖,

where σm (Γ) is the smallest singular value of Γ, and

η > max
x∈C

|a(x)|‖∇g(x)‖,

with C defined in Theorem 3.3. Now we note that, if x̂ ∈ F , then for all λ ∈ R
m

we have

Γ(x̂, λ; 0) =
[∇g(x̂)′∇g(x̂) +G(x̂)2

]
=M(x̂),

so that the matrix Γ(x̂, λ; 0) is positive definite and σm (Γ(x̂, λ; 0)) is strictly positive.
Moreover the term{

εp(x, λ) +
1

2a
‖p(x, λ)λ‖‖max{g(x),−εp(x, λ)λ}‖

}
(A.5)

in (A.4) vanishes for ε = 0 and x̂ ∈ F .
By Theorem 3.3, the points x such that (x, λ) ∈ Ω(x0, λ0; ε) belong to a compact

set C which does not depend on ε. This and the expression of p(x, λ) imply that both
p(x, λ) and p(x, λ)λ are bounded for all (x, λ) ∈ C ×Rm.
Then we can see that, for all “sufficiently small” values of ε, for all x in a “suf-

ficiently small” neighborhood of x̂ ∈ F , and for all λ ∈ Rm, the term σm (Γ) is
“sufficiently positive” and the term (A.5) is “sufficiently small” so as to make the
term in square brackets in (A.4) strictly positive. More formally we can say that
there exist numbers ε(x̂) > 0, σ(x̂) > 0, and ρ(x̂) > 0 such that for all ε ∈ (0, ε(x̂)]
and for all (x, λ) ∈ Ω(x0, λ0; ε) satisfying ‖x − x̂‖ ≤ σ(x̂) and ‖∇λLa(x, λ; ε)‖ ≤
‖max{g(x),−εp(x, λ)λ}‖, it holds that

1

η

[
σm (Γ)− ‖

(
I +∇g′Q

)‖‖M−1‖
{
εp+

1

2a
‖pλ‖‖max{g,−εpλ}‖

}]
(A.6)

≥ ρ(x̂) > 0.

By (A.4) and (A.6) we get (4.5), so that the proposition is proved.
Proof of Proposition 6.1. Let (x̄, λ̄) be a KKT pair of problem (P). Consider a

point (x, λ) in a neighborhood B of (x̄, λ̄) and a sequence {(xk, λk)} converging to
(x, λ) such that the Hessian of La exists in (x

k, λk). By looking at (2.8)–(2.9) we note
that ∇La is differentiable in (x

k, λk) either if we have gi(x
k) �= −εp(xk, λk)λki for all

i or if for every i such that gi(x
k) = −εp(xk, λk)λi we also have −ε∇xp(xk, λk)λi =

∇xgi(xk) and −ε∇λ
(
p(xk, λk)λi

)
= 0. Let Ak and Nk indicate the sets given by

Ak = {i : gi(xk) ≥ −εp(xk, λk)λki },
Nk = {i : gi(xk) < −εp(xk, λk)λki };

by partitioning the vectors g and λ according to the index sets Ak and Nk, ∇La can
also be written in the following way:
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∇xLa(xk, λk; ε) = ∇xL(xk, λk) + 1

εp(xk, λk)
∇gAk(xk)gAk(xk)−∇gNk(xk)λkNk

+
s

2εa(xk)p(xk, λk)

[
‖gAk(xk)‖2(A.7)

+ ε2p(xk, λk)2‖λkNk‖2
] m∑
i=1

∇gi(x
k)max{gi(xk), 0}s−1

+Q(xk, λk)

[
∇g(xk)′∇xL(xk, λk) +G(xk)2λk

]
,

∇λLa(xk, λk; ε) =
[
gAk(xk)
0

]
− εp(xk, λk)

[
0

λkNk

]

+
1

εa(xk)

[
‖gAk(xk)‖2 + ε2p(xk, λk)2‖λkNk‖2

]
λk(A.8)

+ 2

[
∇g(xk)′∇g(xk) +G(xk)2

][
∇g(xk)′∇xL(xk, λk) +G(xk)2λk

]
.

Then the Hessian of La in (x
k, λk) can be obtained by differentiating (A.7)–(A.8),

and this yields

∇2La(x
k, λk; ε) = H(xk, λk; ε, Ak) +K(xk, λk; ε, Ak),

where H(xk, λk; ε, Ak) is given by (6.1)–(6.3) and K(xk;λk; ε, Ak) represents the sum
of matrices whose terms contain as a factor either a component of gAk(xk), a com-
ponent λkNk , or a component of ∇xL(xk, λk). Now, for sufficiently large values of k
(see [16]),

I+(x̄, λ̄) ⊆ Ak ⊆ I0(x̄),(A.9)

which implies both that gAk(xk) and λkNk go to 0 as (x
k, λk) → (x̄, λ̄) and that, for

sufficiently large k, Ak ∈ A. These facts, recalling the definition of ∂2La(x, λ; ε),
imply that

∂2
BLa(x, λ; ε) ⊆ {H(x, λ; ε, A) +K(x, λ; ε, A) : A ∈ A}.

Now to prove that the two sets of the above inclusion coincide we show that for every
index set A ∈ A it is possible to find a sequence {(xk, λk)}, converging to (x̄, λ̄),
such that

{i : gi(xk) > −εp(xk, λk)λki } = A,

{i : gi(xk) < −εp(xk, λk)λki } = {1, . . . ,m} \A

and such that

∇2La(x
k, λk; ε) = H(xk, λk; ε, A) +K(xk;λk; ε, A).

Let us denote by N the index set {1, . . . ,m} \ A; recalling the definition of A we
can write

A = A1 ∪A2,

N = N1 ∪N2,
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where

A1 = {i ∈ A : gi(x̄) = 0, λ̄i > 0},
A2 = {i ∈ A : gi(x̄) = 0, λ̄i = 0},
N1 = {i ∈ N : λ̄i = 0, gi(x̄) < 0},
N2 = {i ∈ N : λ̄i = 0, gi(x̄) = 0}.

Now, for all (xk, λk) sufficiently close to (x̄, λ̄) we have

{i : gi(xk) > −εp(xk, λk)λki } ⊇ A1,(A.10)

{i : gi(xk) < −εp(xk, λk)λki } ⊇ N1.(A.11)

Then, to conclude the proof, we show that it is possible to refine further the choice of
the points (xk, λk) so that the following inclusions also hold:

{i : gi(xk) > −εp(xk, λk)λki } ⊇ A2,(A.12)

{i : gi(xk) < −εp(xk, λk)λki } ⊇ N2.(A.13)

Let δ > 0 be a number such that |λ̄i| ≤ δ for all i = 1, . . . ,m. Since gi(x̄) = 0 for all
i ∈ A2 ∪N2, we can find a sequence {xk} such that, for all k and for all i ∈ A2 ∪N2,
we have

2|gi(xk)|
εa(xk)

≤ δ

1 +mδ2
.(A.14)

In correspondence to the sequence {xk}, we consider a sequence {λk} converging to
λ̄ such that

|λki | ≤ δ, i ∈ A1 ∪N1,(A.15)

λki = max

{
2|gi(xk)|(1 +mδ2)

εa(xk)
,
δ

k

}
, i ∈ A2,(A.16)

λki = −max
{
2|gi(xk)|(1 +mδ2)

εa(xk)
,
δ

k

}
, i ∈ N2.(A.17)

Recalling (A.14), |λki | ≤ δ for all i = 1, . . . ,m, and this implies that

‖λk‖2 ≤ mδ2.(A.18)

Now, by using (A.16), (A.18), and the definition of p(xk, λk), we have for all i ∈ A2

−λki = −max
{
2|gi(xk)|(1 +mδ2)

εa(xk)
,
δ

k

}
≤ −max

{
2|gi(xk)|(1 + ‖λk‖2)

εa(xk)
,
δ

k

}

< −|gi(x
k)|(1 + ‖λk‖2)
εa(xk)

≤ gi(x
k)(1 + ‖λk‖2)
εa(xk)

=
gi(x

k)

εp(xk, λk)
,

which proves (A.12). In a similar way, by using (A.17), we have for all i ∈ N2

−λki = max

{
2|gi(xk)|(1 +mδ2)

εa(xk)
,
δ

k

}
≥ max

{
2|gi(xk)|(1 + ‖λk‖2)

εa(xk)
,
δ

k

}

>
|gi(xk)|(1 + ‖λk‖2)

εa(xk)
≥ gi(x

k)(1 + ‖λk‖2)
εa(xk)

=
gi(x

k)

εp(xk, λk)
,
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which proves (A.13). Hence we have shown that there exists a sequence {(xk, λk)},
converging to (x̄, λ̄), such that

{i : gi(xk) > −εp(xk, λk)λki } ⊇ A1 ∪A2 = A,(A.19)

{i : gi(xk) < −εp(xk, λk)λki } ⊇ N1 ∪N2 = N.(A.20)

Noting that {A,N} constitutes a partition of the set {1, . . . ,m} we must have
{i : gi(xk) > −εp(xk, λk)λki } = A,

{i : gi(xk) < −εp(xk, λk)λki } = N,

and this completes the proof of the proposition.
Proof of Proposition 8.2. First we note that (8.9)–(8.12) yield (omitting the

arguments and the index k)

∇2
xLdx +∇gAdλA

+∇gNdλN
= −∇xL,

∇gAdx = −gA,(A.21)

dλN
= −λN .

From these equalities and recalling (A.7)–(A.8) we have

−∇xLa = ∇2
xLdx +∇gAdλA

+
1

εp
∇gA∇g′Adx(A.22)

+
s

2εap

m∑
i=1

∇gimax{gi, 0}s−1(g′A∇g′Adx + ε2p2λ′
NdλN

)

+ 2

[
∇2
xL∇g +

m∑
i=1

∇2
xgi∇xLe′i + 2∇gGΛ

]

×
[
∇g′

(∇2
xLdx +∇gdλ

)
+

(
GAΛA∇g′Adx

G2
NdλN

)]
,

−∇λLa =
[∇g′A
0

]
dx − εp

[
0
IN

]
dλN

(A.23)

+
1

εa

([
λAg

′
A∇g′A
0

]
dx + ‖gA‖2

[
0
IN

]
dλN
+ ε2p2λλ′

NdλN

)

+ 2

[
∇g′∇g +G2

][
∇g′

(∇2
xLdx +∇gdλ

)
+

(
GAΛA∇g′Adx

G2
NdλN

)]
.

Reordering the terms in (A.22)–(A.23) we obtain

−∇La(x, λ; ε) =

[
H(x, λ; ε, A(x, λ; ε)) +R(x, λ; ε)

]
d,(A.24)

where the matrixH(x, λ; ε, A(x, λ; ε)) is given by (6.1)–(6.3) and the matrix R satisfies
‖R(x, λ; ε)‖ ≤ ρ̂(x, λ), with ρ̂(x, λ) a positive continuous function such that ρ̂(x̄, λ̄) = 0
at every KKT pair (x̄, λ̄). Then the proof of the proposition follows from Proposition
6.1 and (8.7).

Proof of Proposition 8.4. The proof follows from the proof of Proposition 8.2 by
noting that, under the assumptions stated and for any ε, there exists a neighborhood
of (x̄, λ̄) where we have

A(x, λ; ε) = {i : ∇gi(x)dx = −gi(x)},
N(x, λ; ε) = {i : (dλ)i = −λi}.



AN AUGMENTED LAGRANGIAN FUNCTION 405

Acknowledgments. We wish to thank three anonymous referees and the editor
of the journal for their careful reading of the paper and for their constructive comments
that contributed greatly to improving the paper.

REFERENCES

[1] D. P. Bertsekas, Constrained Optimization and Lagrange Multipliers Methods, Academic
Press, New York, 1982.

[2] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[3] J. F. Bonnans, Rates of convergence of Newton type methods for variational inequalities and

nonlinear programming, Appl. Math. Optim., 29 (1994), pp. 161–186.
[4] D. Boukari and A. V. Fiacco, Survey of penalty, exact-penalty and multiplier methods from

1968 to 1993, Optimization, 32 (1995), pp. 301–334.
[5] J. V. Burke, A sequential quadratic programming method for potentially infeasible mathemat-

ical programs, J. Math. Anal. Appl., 139 (1989), pp. 319–351.
[6] J. V. Burke and S. P. Han, A robust sequential quadratic programming method, Math. Pro-

gram., 43 (1989), pp. 277–303.
[7] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[8] G. Di Pillo, Exact penalty methods, in Algorithms for Continuous Optimization: The State

of the Art, E. Spedicato, ed., Kluwer, Boston, 1994, pp. 203–253.
[9] G. Di Pillo and L. Grippo, An augmented Lagrangian for inequality constraints in nonlinear

programming problems, J. Optim. Theory Appl., 36 (1982), pp. 495–519.
[10] G. Di Pillo and L. Grippo, A class of continuously differentiable exact penalty function

algorithms for nonlinear programming problems, in System Modelling and Optimization,
E. P. Toft-Christensen, ed., Springer-Verlag, Berlin, 1984, pp. 246–256.

[11] G. Di Pillo and L. Grippo, A continuously differentiable exact penalty function for nonlinear
programming problems with inequality constraints, SIAM J. Control Optim., 23 (1985),
pp. 72–84.

[12] G. Di Pillo and L. Grippo, An exact penalty method with global convergence properties, Math.
Programming, 36 (1986), pp. 1–18.

[13] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM J. Con-
trol Optim., 27 (1989), pp. 1333–1360.

[14] G. Di Pillo and S. Lucidi, On exact augmented Lagrangian functions in nonlinear program-
ming, in Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi, eds.,
Plenum Press, New York, 1996, pp. 85–100.

[15] F. Facchinei, Minimization of SC1 functions and the Maratos effect, Oper. Res. Lett.,
17 (1995), pp. 131–137.

[16] F. Facchinei and S. Lucidi, Quadratically and superlinearly convergent algorithms for the so-
lution of inequality constrained minimization problems, J. Optim. Theory Appl., 85 (1995),
pp. 265–289.

[17] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley, New York, 1968.

[18] R. Fletcher, Practical Methods of Optimization, John Wiley, New York, 1987.
[19] T. Glad and E. Polak, A multiplier method with automatic limitation of penalty growth,

Math. Programming, 17 (1979), pp. 140–155.
[20] S. P. Han, Superlinearly convergent variable metric algorithms for general nonlinear program-

ming problems, Math. Programming, 11 (1976), pp. 263–282.
[21] J. B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen, Generalized Hessian matrix

and second-order optimality conditions for problems with C1,1 data, Appl. Math. Optim.,
11 (1984), pp. 43–56.

[22] J. Guddat, F. Guerra Vasquez, and H. Th. Jongen, Parametric Optimization: Singulari-
ties, Pathfollowing and Jumps, John Wiley, Chichester, UK, 1990.

[23] D. Klatte and K. Tammer, On second-order sufficient optimality conditions for C1,1-
optimization problems, Optimization, 19 (1988), pp. 169–179.

[24] S. Lucidi, New results on a class of exact augmented Lagrangians, J. Optim. Theory Appl.,
58 (1988), pp. 259–282.

[25] S. Lucidi, New results on a continuously differentiable exact penalty function, SIAM J. Optim.,
2 (1992), pp. 558–574.

[26] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in
the presence of equality constraints, J. Math. Anal. Appl., 17 (1967), pp. 34–47.

[27] J. S. Pang, Serial and parallel computation of Karush-Kuhn-Tucker points via nonsmooth
equations, SIAM J. Optim., 4 (1994), pp. 872–893.



406 GIANNI DI PILLO AND STEFANO LUCIDI

[28] J. S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim.,
3 (1993), pp. 443–465.

[29] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[30] S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear-programming algorithms, Math. Programming, 7 (1974), pp. 1–16.



AN APPROPRIATE SUBDIFFERENTIAL FOR
QUASICONVEX FUNCTIONS∗
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Abstract. In this paper we introduce and study a subdifferential that is related to the quasi-
convex functions, much as the Fenchel–Moreau subdifferential is related to the convex ones. It is
defined for any lower semicontinuous function, through an appropriate combination of an abstract
subdifferential and the normal cone to sublevel sets. We show that this “quasiconvex” subdifferential
is always a cyclically quasimonotone operator that coincides with the Fenchel–Moreau subdifferential
whenever the function is convex, and that under mild assumptions, the density of its domain in the
domain of the function is equivalent to the quasiconvexity of the function. We also show that
the “quasiconvex” subdifferential of a lower semicontinuous function contains the derivatives of its
differentiable quasiaffine supports. As a consequence, it contains the subdifferential introduced by
Mart́ınez-Legaz and Sach in a recent paper [J. Convex Anal., 6 (1999), pp. 1–12]. Several other
properties and calculus rules are also established.

Key words. subdifferential, quasiconvex function, nonsmooth analysis, quasimonotone operator
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1. Introduction. In the last thirty years, several notions of subdifferentials
for quasiconvex functions have been proposed. The oldest ones are the Greenberg–
Pierskalla subdifferential [6] and the tangential introduced by Crouzeix [4]. These
two subdifferentials have in common that they are convex cones, and are therefore
too large to give enough information on the function. The lower subdifferential of
Plastria [13] is smaller but still unbounded, as are the related α-lower subdifferentials
[10]. All of these subdifferentials arise in the context of some quasiconvex conjugation
scheme. Of a different nature is the weak lower subdifferential [9], which is more in
the spirit of nonsmooth analysis in that its support function partially coincides with
the directional derivative; however, this set is not quite satisfactory either, as it is
even bigger than the lower subdifferential of Plastria. Trying to remedy this draw-
back, Mart́ınez-Legaz and Sach [11] recently introduced the Q-subdifferential. Given
that it is a subset of the Greenberg–Pierskalla subdifferential, it shares with all other
quasiconvex subdifferentials the property that its nonemptiness on the domain of a
lower semicontinuous function implies quasiconvexity of the function, which justifies
the claim that it is a quasiconvex subdifferential; on the other hand, unlike all other
subdifferentials previously introduced in quasiconvex analysis, it can be regarded as
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a small set, as it is contained in the Fréchet subdifferential. But this advantage is,
at the same time, the main drawback of this subdifferential, as one has to impose
rather strong assumptions on a quasiconvex function to ensure the nonemptiness of
its Q-subdifferential on a dense subset of the domain.

In view of all these considerations, one can reasonably say that the problem of
defining a sufficiently good subdifferential for quasiconvex functions is still open. To
solve it, one has first to set the standards that such a concept should meet. In this
sense, we can formulate the general principle that a quasiconvex subdifferential should
be related to quasiconvex functions in a way similar to the classical Fenchel–Moreau
subdifferential’s relation to convex functions. Let us be more precise. The Fenchel–
Moreau subdifferential is well defined for an arbitrary function, while, under mild con-
ditions, its nonemptiness on a dense subset of the domain of a lower semicontinuous
function is equivalent to convexity of the function. Similarly, a quasiconvex subdiffer-
ential should be defined for arbitrary functions, but its nonemptiness on the domain
of a lower semicontinuous function should be equivalent (under mild assumptions)
to quasiconvexity of the function. Another desirable property of any (quasiconvex)
subdifferential is that it should reduce to the Fenchel–Moreau subdifferential in the
case of convex functions. As we shall prove below, the quasiconvex subdifferential
introduced in this paper satisfies all these requirements. Moreover, it is smaller than
all previously defined quasiconvex subdifferentials (except the Q-subdifferential), as
it is contained in the upper Dini subdifferential.

The new subdifferential is defined through an appropriate combination of an
abstract subdifferential (in the sense of the axiomatic scheme of Aussel–Corvellec–
Lassonde [2]) and geometrical considerations based on the notion of the normal cone
to sublevel sets, in such a way that it retains important properties from both. For
instance, for the class of quasiconvex functions our subdifferential is identical (under
mild conditions) to the abstract subdifferential, so that it inherits the same calculus
rules; on the other hand, for any continuous function f , the existence of a nonzero
element of the subdifferential at x0 implies that f is “quasiconvex with respect to x0,”
in the sense that if x0 = λx+(1−λ)y, with 0 ≤ λ ≤ 1, then f(x0) ≤ max{f(x), f(y)}.

The rest of the paper is organized as follows. Section 2 establishes the notation
and some preliminaries related to the abstract subdifferentials upon which our qua-
siconvex subdifferential is built. The central part of the paper is section 3, where the
quasiconvex subdifferential is introduced and compared with other subdifferentials,
and its main properties are discussed.

2. Notation and preliminaries. In what follows, X �= {0} will denote a Ba-
nach space and X∗ its dual. For any x ∈ X and x∗ ∈ X∗ we denote by 〈x∗, x〉 the
value of x∗ at x. For x ∈ X and ε > 0 we denote by Bε(x) the closed ball centered
at x with radius ε > 0, while for x, y ∈ X we denote by [x, y] the closed segment
{tx+(1−t)y : t ∈ [0, 1]}. The segments ]x, y], [x, y[, and ]x, y[ are defined analogously.

Throughout this article we shall deal with proper functions f : X → R ∪ {+∞}
(i.e., functions for which dom(f) := {x ∈ X : f(x) < +∞} is nonempty). For
any a ∈ R the sublevel (resp., strict sublevel) set of f corresponding to a is the set
Sa (f) = {x ∈ X : f (x) ≤ a} (resp., S<a (f) = {x ∈ X : f (x) < a}). We shall use Sa
and S<a if there is no risk of confusion.

The Fenchel–Moreau subdifferential ∂FMf (x) of f at any x ∈ dom(f) is defined
by the formula

∂FMf(x) := {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X}.(2.1)
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(If x /∈ dom(f), then we set ∂FMf(x) = ∅.)
Another useful subdifferential is the Greenberg–Pierskalla subdifferential ∂GP f ,

given by

∂GP f (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≥ 0⇒ f (y) ≥ f (x)} .(2.2)

Given a set C ⊆ X and x ∈ X, the normal cone to C at x is by definition the cone

NC (x) = {x∗ ∈ X∗ : ∀y ∈ C, 〈x∗, y − x〉 ≤ 0} .
Let Nf (x) := NSf(x)

(x) (resp., N<
f (x) := NS<

f(x)
(x)) be the normal cone to the

sublevel (resp., strict sublevel) set corresponding to the value f (x). The following
equivalencies are straightforward:

x∗ ∈ Nf (x)⇐⇒ (∀y ∈ X, 〈x∗, y − x〉 > 0⇒ f (y) > f (x)) ;(2.3)

x∗ ∈ N<
f (x)⇐⇒ (∀y ∈ X, 〈x∗, y − x〉 > 0⇒ f (y) ≥ f (x)) .(2.4)

Combining the above relations it follows that

∂GP f (x) ⊆ N<
f (x) and Nf (x) ⊆ N<

f (x) .

Besides ∂FM and ∂GP , one can define other subdifferentials which, unlike the
former ones, depend only on the local properties of the function f . Such is the
Fréchet subdifferential ∂F f(x), defined by

∂F f(x) := {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉+ o(y − x) ∀y ∈ X},
where o : X → R is some real valued function satisfying

lim
x→0

o(x)

‖x‖ = 0.

Another “local” subdifferential is the upper Dini subdifferential ∂D
+

f, defined as
follows:

∂D
+

f(x) =

{ {x∗ ∈ X∗ : 〈x∗, d〉 ≤ fD+ (x, d) ,∀d ∈ X} if x ∈ dom (f) ,
∅ if x /∈ dom (f) ,

where

fD
+

(x, d) = lim sup
t↘0+

1

t
(f (x+ td)− f (x)) .(2.5)

Both the upper Dini and the Fréchet subdifferential belong to a larger class of
subdifferentials defined axiomatically. We recall from [2, Definition 2.1] the relevant
definition.

Definition 1. A subdifferential ∂ is an operator that associates to any lower
semicontinuous (lsc) function f : X → R ∪ {+∞} and any x ∈ X a subset ∂f (x) of
X∗ so that the following properties are satisfied:

∂f(x) = ∂FMf(x), whenever f is convex;(P1)

0 ∈ ∂f(x), whenever f has a local minimum at x; and(P2)

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x)(P3)
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for all convex continuous functions g for which both ∂g(x) and ∂(−g)(x) are nonempty.
(Such functions are called ∂-differentiable at x.)

Other subdifferentials satisfying the above properties are the Gâteaux, Hadamard,
and Clarke–Rockafellar subdifferentials [2].

Remark 2. Let us observe, in relation to Property (P1), that

∂FMf ⊆ ∂f(2.6)

for any lsc function f . Indeed, take any x0 ∈ X and any x∗ ∈ ∂FMf (x0). Then
relation (2.1) guarantees that the function

g (x) = f (x)− 〈x∗, x− x0〉

has a minimum at x0, which yields in view of (P2) that 0 ∈ ∂g (x0). Using Properties
(P3) and (P1) we now conclude

0 ∈ ∂f (x0) + ∂ (〈−x∗, · − x0〉) = ∂f (x0)− x∗,

i.e., x∗ ∈ ∂f (x0).
For the purposes of the present paper we shall always use a subdifferential ∂ such

that ∂ ⊆ ∂D+

.
We further recall from [2, Definition 2.2] the following definition.
Definition 3. A norm ‖.‖ on X is said to be ∂-smooth if the functions of the

form x �→∑
n µn‖x− vn‖2 are ∂-differentiable, where the sequence (vn) converges in

X, µn ≥ 0, and the series
∑
n µn is convergent.

We shall always assume that the space X admits a ∂-smooth renorming. (Note
that this condition is automatically satisfied if ∂ is the Clarke–Rockafellar subdiffer-
ential; also, all reflexive Banach spaces admit a ∂F -smooth renorming.) In such a
case, the following mean value theorem holds [2, Theorem 4.1].

Theorem 4. Let f be lsc and ∂ be a subdifferential. If x, y ∈ X and f (y) > f (x),
then there exist z ∈ [x, y[ and sequences (xn) ⊆ dom(f), (x∗n) ⊆ X∗, such that xn → z,
x∗n ∈ ∂f(xn), and

〈x∗n, z + t (y − x)− xn〉 > 0 ∀t > 0.

In particular, dom(∂f) is dense in dom(f).
Subdifferentials can be used to characterize lsc quasiconvex functions. We recall

that a function f : X → R ∪ {+∞} is called quasiconvex if its sublevel sets Sα are
convex subsets of X for all α ∈ R. In [1] it has been shown that a function f is
quasiconvex if and only if the following property is true:

if x∗ ∈ ∂f (x) and 〈x∗, y − x〉 > 0, then f (z) ≤ f (y) ∀z ∈ [x, y].(2.7)

An easy consequence of (2.7) is the following property of lsc quasiconvex functions

(for ∂f ⊆ ∂D+

f):

if x∗ ∈ ∂f (x) and 〈x∗, y − x〉 > 0, then f (y) > f(x).(2.8)

Indeed, x∗ ∈ ∂f (x) and 〈x∗, y − x〉 > 0 yield fD
+

(x, y − x) > 0; hence for some
t > 0 (suitably small) we have f (x) < f (x+ t (y − x)). From (2.7) it follows that
f (x+ t (y − x)) ≤ f(y); hence the result.
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Next let T : X ⇒ X∗ be a multivalued operator. Following [5] we say that T
is cyclically quasimonotone if for any n ≥ 1 and any x1, x2, . . . , xn ∈ X there exists
i ∈ {1, 2, . . . , n} such that

〈x∗i , xi+1 − xi〉 ≤ 0 ∀x∗i ∈ T (xi)(2.9)

(where xn+1 := x1). If we restrict n in (2.9) to n = 2, then T is called quasimonotone.

3. The “quasiconvex” subdifferential ∂q. In this section we introduce the
“quasiconvex” subdifferential ∂q whose definition depends on both local and global
properties of the function. We show that this subdifferential seems completely adapted
in quasiconvex analysis (as far as one considers that the Fenchel–Moreau subdifferen-
tial ∂FM is apt in convex analysis). In subsection 3.1 we compare the subdifferential
∂q with the one defined recently in [11], while in subsection 3.2 we present some
interesting properties of ∂q.

Given an abstract subdifferential ∂ (according to Definition 1) contained in ∂D
+

,
we introduce below the “quasiconvex” subdifferential ∂q.

Definition 5. The quasiconvex subdifferential ∂qf : X ⇒ X∗ of f is defined for
all x ∈ dom(f) as follows:

∂qf (x) =

{
∂f (x) ∩Nf (x) if N<

f (x) �= {0},
∅ if N<

f (x) = {0}.
If x /∈ domf , then we set ∂qf (x) = ∅.

We present some fundamental properties of ∂q in the following propositions.
Proposition 6. For every proper function f , the operator ∂qf is cyclically

quasimonotone.
Proof. It is sufficient to show that the operator Nf (relation (2.3)) is cycli-

cally quasimonotone. The proof follows exactly the same pattern as the proof of
quasimonotonicity of Nf in [12]. If xi ∈ X, i = 1, 2, . . . , n, and x∗i ∈ Nf (xi) are
such that 〈x∗i , xi+1 − xi〉 > 0 for all i (where xn+1 ≡ x1), then (2.8) implies that
f (xi+1) > f (xi) for all i. By transitivity we conclude f (x1) > f (x1); hence we have
a contradiction.

Proposition 7. Let f be a radially continuous function (that is, the restriction
of f on line segments is continuous). Then

(i) for all x ∈ dom (f) we have

∂qf (x) =

{
∂f (x) ∩Nf (x) if ∂GP f (x) �= ∅,

∅ if ∂GP f (x) = ∅.
In particular for any x ∈ X, if ∂qf (x) �= ∅, then ∂GP f (x) �= ∅.

(ii) ∂qf (x) \ {0} ⊆ ∂GP f (x) .
Proof. (i) If 0 ∈ ∂GP f (x), then ∂GP f (x) = X∗. Hence, if ∂GP f (x) �= ∅, then

N<
f (x) �= {0} . So we have only to prove that if ∂GP f (x) = ∅, then N<

f (x) = {0}.
Note that from (2.4) we always have 0 ∈ N<

f (x). Let us show that N<
f (x) \ {0} ⊆

∂GP f (x). To this end, let x∗ ∈ N<
f (x) \ {0} and suppose that 〈x∗, y − x〉 ≥ 0.

Choose d ∈ X such that 〈x∗, d〉 > 0. For any t > 0 one has 〈x∗, y + td− x〉 > 0; hence
f (y + td) ≥ f (x). Letting t → 0 and using radial continuity we get f (y) ≥ f (x),
that is, x∗ ∈ ∂GP f (x).

(ii) The second assertion follows from the following inclusions:

∂qf (x) \ {0} ⊆ Nf (x) \ {0} ⊆ N<
f (x) \ {0} ⊆ ∂GP f(x).
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The proof is complete.
Proposition 8. Suppose that f is lsc and satisfies one of the following condi-

tions:
(i) f is convex;
(ii) f is quasiconvex and for all a > inf f the sublevel sets Sa (f) have nonempty

interior.
Then

∂f = ∂qf.

Proof. It follows directly from Definition 5 that ∂qf ⊆ ∂f . To show that equality
holds, consider any x∗ ∈ ∂f (x). Suppose first that x∗ �= 0. Then (2.8) and (2.3)
entail that x∗ ∈ Nf (x); hence x∗ ∈ ∂q (x). If now x∗ = 0, then obviously x∗ ∈
∂f (x) ∩ Nf (x). According to Definition 5 it suffices to ensure that N<

f (x) �= {0}.
Indeed, if x is a global minimum, then N<

f (x) = X∗. If x is not a global minimum,
then f cannot be convex; hence assumption (ii) holds. It follows that the convex
set S<f(x) has a nonempty interior. Thus by the Hahn–Banach theorem there exists

y∗ ∈ X∗\ {0} such that 〈y∗, x〉 ≥ 〈y∗, x′〉 for all x′ ∈ S<f(x). We now conclude that

y∗ ∈ N<
f (x), i.e., N<

f (x) �= {0}.
Remark. The same proof shows that Proposition 8 (ii) holds without any assump-

tion on the sublevel sets, in the case of X finite-dimensional.
Note that if f is lsc, quasiconvex, and radially continuous, then Sa has a nonempty

interior for all a > inf f . This is a direct consequence of the following proposition.
Proposition 9. If f is quasiconvex, lsc, and radially continuous, then it is

continuous.
Proof. Since f is lsc, it suffices to show that S<a is open. For any x ∈ S<a , let b

be such that f (x) < b < a. Since f is radially continuous, for any y ∈ X we can find
ε > 0 such that ]x − εy, x + εy[ ⊆ Sb . Hence x ∈ alg intSb. For closed convex sets
in Banach spaces the algebraic and the topological interior coincide (e.g., [7, p. 139]).
It follows that x ∈ intSb ⊆ intS<a . Hence S<a is open.
The following lemma is in the same spirit.

Lemma 10. Let K ⊆ X be closed. If alg intK �= ∅, then intK �= ∅.
Proof. Let x ∈ algintK. Then obviously⋃

n∈N

n (K − x) = X.

By Baire’s lemma, there exists n0 ∈ N such that int (n0 (K − x)) �= ∅. We conclude
that intK �= ∅.

We are now ready to state the following result.
Proposition 11. Let f be lsc, and suppose that either f is radially continuous,

or dom (f) is convex and Sa has nonempty interior for all a > inf f .
(i) If the set {x ∈ X : N<

f (x) �= {0}} is dense in dom (f), then f is quasiconvex.
(ii) f is quasiconvex if and only if the domain of ∂qf is dense in dom (f).
Proof. (i) To show that f is quasiconvex, it suffices to show that Sa is convex for

all a with inf f < a < +∞. For this it is sufficient to show that any x ∈ X\Sa can
be strictly separated from Sa by means of a closed hyperplane. By Lemma 10, both
assumptions imply that intSa �= ∅. Choose any y ∈ intSa.

Case 1. Suppose that f is radially continuous. Then the restriction of f on the
line segment [x, y] takes all the values between f (x) and f (y). Hence there exists
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z ∈ ]x, y[ such that a < f (z) < +∞. In particular, z ∈ dom (f), so (by assumption)
we can find c∗ ∈ N<

f (c) \ {0} , where c is as close to z as we wish. Since f is lsc we
may assume that f (c) > a and c ∈ ]x, y′[ for some y′ ∈ intSa. Using (2.4) we now
obtain

〈c∗, d〉 > 0⇒ f(c+ d) ≥ f(c).

For all w ∈ Sa we have 〈c∗, w − c〉 ≤ 0 (otherwise we would have f (w) ≥ f (c) > a).
In particular, 〈c∗, w − c〉 ≤ 0 for all w ∈ y′ + Bε (y′) for a suitable ε > 0. It follows
easily that 〈c∗, y′ − c〉 < 0, hence 〈c∗, x− c〉 > 0. Summarizing,

〈c∗, w〉 ≤ 〈c∗, c〉 < 〈c∗, x〉 ∀w ∈ Sa.

Consequently, c∗ separates strictly Sa and x.
Case 2. Suppose that dom (f) is convex. If x /∈ dom(f), then we can strictly

separate x and dom(f) by means of a closed hyperplane. In particular, the same
hyperplane strictly separates x and Sa.

If x ∈ dom(f), then [y, x[ ⊆ int dom (f). Since Sa is closed and x /∈ Sa, there
exists z ∈ ]y, x[ such that a < f (z) < +∞. As in Case 1, it now follows that x and
Sa can be strictly separated.

(ii) If f is quasiconvex, then by Proposition 8 we conclude ∂qf = ∂f . Hence
(by Theorem 4) dom(∂qf) is dense in dom (f). Conversely, if dom (∂qf) is dense in
dom (f) , then the set {z ∈ dom (f) : N<

f (z) �= {0}} is dense in dom (f); hence by (i)
the function f is quasiconvex.

Combining Proposition 8, Proposition 11, and Theorem 4, we obtain the following
corollary.

Corollary 12. Let f be an lsc radially continuous function (respectively, f is
an lsc function with convex domain and its sublevel sets have nonempty interior).
Then the following are equivalent:

(i) f is quasiconvex;
(ii) ∂qf = ∂f ;
(iii) ∂qf satisfies the conclusion of Theorem 4 (mean value theorem);
(iv) dom(∂qf) is dense in dom (f).

3.1. Comparison of ∂q with other subdifferentials. We start with the fol-
lowing result.

Proposition 13. For any lsc function f,

∂FMf ⊆ ∂qf ⊆ ∂f.(3.1)

Proof. The second inclusion follows directly from Definition 5. To prove the
first inclusion, consider any x∗ ∈ ∂FMf(x). It is straightforward from (2.3) that
x∗ ∈ Nf (x) ⊆ N<

f (x). Note also that N<
f (x) �= {0} (if x∗ = 0, then (2.1) implies that

N<
f (x) = X∗). Hence (3.1) follows from Remark 2.
Remark 14. In view of Proposition 8, the inclusion ∂qf ⊆ ∂f becomes an equality

if the function f is quasiconvex and continuous, while both inclusions in (3.1) become
equalities if the function f is convex.

We shall further compare ∂q with the subdifferential ∂Q introduced recently in
[11, Definition 2.1]. Before recalling the definition of the latter, we provide a result
concerning the representation of lsc quasiconvex functions by means of quasiaffine
functions. We recall that a function f is called quasiaffine if it is both quasiconvex
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and quasiconcave. In contrast to the rest of the paper, in the next proposition we
allow the functions to take the value −∞.

Proposition 15. A function f : X → R∪{+∞,−∞} is lsc quasiconvex if and
only if it satisfies

f(x) = sup
q∈Q

q(x),

where Q is the set of continuous quasiaffine minorants q : X → R∪{+∞,−∞} that
are differentiable on q−1 (R).

Proof. The “if” part of the statement is obvious, since all continuous quasiaffine
functions are lsc quasiconvex, and this class is closed under pointwise suprema. To
prove the “only if” part, let f : X → R∪{+∞,−∞} be lsc quasiconvex and define
g : X → R∪{+∞} by g(x) = ef(x) (using the conventions e+∞ = +∞ and e−∞ = 0).
It follows that g is quasiconvex and nonnegative. Combining [8, Theorem 5.15] with
implication (ii)⇒(i) in [8, Theorem 5.1], we conclude that g is the pointwise supremum
of the collection of its real valued, differentiable, quasiaffine minorants with bounded
derivatives. It follows that g is also the supremum of a collection of continuous
nonnegative quasiaffine functions, which are differentiable at all points where their
value is positive. Let us observe that f(x) = ln g(x) (with the conventions ln 0 = −∞
and ln+∞ = +∞) and that the logarithmic function

ln : [0,+∞]→ R∪ {+∞,−∞}

is continuous, differentiable on ]0,+∞[ , and increasing. The proposition follows from
the observation that the composition q = ln ◦ r of ln with a continuous quasiaffine
function r which is differentiable at all points x such that r(x) ∈]0,+∞[ yields a
continuous quasiaffine function q differentiable on q−1 (R).

Given an lsc function f : X → R∪{+∞}, let us recall the definition of the
subdifferential ∂Qf given in [11], as follows. The subdifferential ∂Qf(x) of f at
x ∈ dom(f) is the set of all x∗ ∈ X∗ such that for some nondecreasing differentiable
function ϕ : R→ R (depending on x∗), with ϕ(0) = 0 and ϕ′(0) = 1, the following
relation holds:

f(y) ≥ f(x) + ϕ(〈x∗, y − x〉) ∀y ∈ X.(3.2)

Let us observe that the right-hand part of the above inequality defines a differentiable
quasiaffine support function of f at x (i.e., a differentiable quasiaffine function g
satisfying f ≥ g and f(x) = g(x)). Therefore ∂Qf(x) is contained in the set of the
derivatives at x of the differentiable quasiaffine supports of f at x.

Proposition 16. Let f : X → R∪{+∞} be lsc, and suppose that ∂F f ⊆ ∂f .
(i) If x∗ is the derivative of a continuous quasiaffine support of f at x differentiable

at x, then x∗ ∈ ∂qf(x).
(ii) ∂Qf(x) ⊆ ∂qf(x).
Proof. (i) From Theorem 2.31 of [8] it follows that a continuous function h : X →

R is quasiaffine if and only if there exist y∗ ∈ X∗ and a nondecreasing continuous
function ψ : R→ R such that h = ψ ◦ y∗. Thus if h is a quasiaffine support of f at x,
and x∗ is the derivative of h at x, then x∗ = ψ′(〈y∗, x〉)y∗. Since h is a support of f
at x, we obviously have x∗ ∈ ∂F f (x); thus x∗ ∈ ∂f (x).

Let us first assume that x∗ �= 0. Let y ∈ X be such that 〈x∗, y − x〉 > 0.
Since x∗ ∈ ∂f (x) and h is quasiconvex, using (2.8) we conclude that f(y) ≥ h(y) >
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h(x) = f(x). Thus y /∈ S<f(x)(f), which proves that x∗ ∈ Nf (x) ⊆ N<
f (x) . Hence

x∗ ∈ ∂f(x) ∩Nf (x) = ∂qf(x).
Suppose now that x∗ = 0. Then obviously x∗ ∈ ∂f (x) ∩Nf (x); hence it suffices

to show that N<
f (x) �= {0} . This certainly holds if x is a global minimum of f . If

this is not the case, then y∗ �= 0. Let us prove that, in this case, y∗ ∈ N<
f (x). Indeed,

for y ∈ S<f(x)(f) one has ψ(〈y∗, y〉) ≤ f(y) < f(x) = ψ(〈y∗, x〉), whence, as ψ is

nondecreasing, 〈y∗, y〉 < 〈y∗, x〉.
(ii) This portion of the proof follows directly from (i) and (3.2).

3.2. Other properties of the subdifferential ∂q. In this section we establish
calculus rules for the quasiconvex subdifferential ∂q. Let us first remark that inside
the class of lsc quasiconvex functions whose sublevel sets have nonempty interior, the
quasiconvex subdifferential ∂q inherits calculus rules from the abstract subdifferential
∂; see Corollary 12. On the other hand, for any lsc function f, Definition 5 yields the
following necessary condition for global optimality:

f has a global minimum at x0 =⇒ 0 ∈ ∂qf(x0).(3.3)

Remark. Thanks to Proposition 8, relation (3.3) holds true also for local minima
whenever f is lsc quasiconvex, and for all a > inf f the sublevel sets Sa (f) have
nonempty interior.

Let us further show a calculus rule based on the “supremum,” an operation im-
portant in quasiconvex analysis.

Proposition 17. Suppose that ∂ is either the upper Dini subdifferential ∂D
+

or
the Fréchet subdifferential ∂F . Let {fi}i∈I be a family of lsc functions on X, and set
f = supi∈I fi. Then for every x0 ∈ X

cow
∗


 ⋃
i∈I(x0)

∂qfi (x0)


 ⊆ ∂qf (x0),(3.4)

where I(x0) := {i ∈ I : fi(x0) = f(x0)} and cow
∗
(K) denotes the w*-closed convex

hull of K.

Proof. Let x0 ∈ X. If x0 /∈ dom (f), then for all i ∈ I(x0), fi(x0) = f(x0) = +∞
and ∂qf (x0) = ∂qfi (x0) = ∅. Hence we may suppose that x0 ∈ dom (f). Let us
observe that ∂qf (x0) is a w∗-closed and convex subset of X∗. Thus it suffices to
show that if x∗ ∈ ⋃i∈I(x0)

∂qfi (x0), then x∗ ∈ ∂qf (x0). To do so, let i ∈ I(x0)

and x∗ ∈ ∂qfi (x0). Since ∂qfi (x0) �= ∅, we deduce that N<
fi
(x0) �= {0}. Using the

fact that f(x0) = fi(x0) and f(x) ≥ fi(x) for all x ∈ X, we obtain N<
f (x0) �= {0}.

Thus it remains to show (see Definition 5) that x∗ ∈ ∂D+

f (x0) ∩ Nf (x0) (resp.,
x∗ ∈ ∂F f (x0)∩Nf (x0)). But this follows easily from the fact that Nfi (x0) ⊂ Nf (x0)

and ∂D
+

fi (x0) ⊂ ∂D+

f (x0) (resp., ∂
F fi (x0) ⊂ ∂F f (x0)).

Remark. (i) Relation (3.4) holds true whenever ∂ is an abstract subdifferential
satisfying ∂f (x0) ⊂ ∂g (x0), whenever f(x0) = g (x0) and f ≤ g.

(ii) Equality in (3.4) is generally not true, even if f is the supremum of two
continuous quasiconvex functions. Indeed, let

f1(x) =

{ √−x if x ≤ 0,
−√x if x > 0,
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and f2 = −f1. Then f(x) = max{f1(x), f2(x)} =
√|x | and ∂qf(0) = R, while

∂qf1(0) = ∂
qf2(0) = ∅.

Let us give a special case where (3.4) holds with equality. Suppose that {f1, f2, . . . ,
fk} is a finite family of locally Lipschitz quasiconvex functions on X that are regu-

lar (resp., strongly regular) at x0; that is, ∂D
+

fi(x0) = ∂
ofi(x0) (resp., ∂F fi(x0) =

∂ofi(x0)), where ∂ofi(x0) stands for the Clarke subdifferential of fi at x0 [3]. If
f = max fi and x

∗ ∈ ∂qf (x0), then obviously x∗ ∈ ∂of (x0); hence by [3, Proposi-
tion 2.3.12] x∗ ∈ co(

⋃
i∈I(x0)

∂ofi(x0)). Thanks to Corollary 12(ii) and the regularity

(resp., strong regularity) of each fi, we infer that ∂ofi (x0) = ∂
qfi (x0), so equality in

(3.4) follows.
A more general result is given in the following proposition.
Proposition 18. Let f = maxi∈I fi, where {fi}i∈I is a finite set of lsc quasi-

convex functions such that for all a > inf fi the sublevel sets Sa (fi) have nonempty
interior, and let x0 ∈ X. Further, let ∂ be the upper Dini subdifferential, and assume
that for all i ∈ I and d ∈ X

fD
+

i (x0, d) = sup {〈x∗, d〉 : x∗ ∈ ∂fi (x0)} .(3.5)

(This condition is in particular satisfied whenever f is regular, or (Pshenichnyi) qua-
sidifferentiable at x0 with nonempty subdifferential.) Then

cow
∗


 ⋃
i∈I(x0)

∂qfi (x0)


 = ∂qf (x0),(3.6)

where I(x0) := {i ∈ I : fi(x0) = f(x0)}.
Proof. Thanks to Proposition 17, we have only to show the right-hand side inclu-

sion “⊇”. Let us suppose, in seeking a contradiction, that there exists

x∗ ∈ ∂qf (x0) \cow∗


 ⋃
i∈I(x0)

∂qfi (x0)


 .

Then by the Hahn–Banach theorem there exist d ∈ X and ε > 0 such that for all z∗ ∈
cow

∗
(
⋃
i∈I(x0)

∂qfi(x0)) we have 〈x∗, d〉 > 〈z∗, d〉+ ε. Since I is finite, it can be easily

shown that there exists i ∈ I such that fD
+

(x0, d) ≤ fD+

i (x0, d). Our assumptions
imply (see Proposition 8(ii)) that ∂fi (x0) = ∂

qfi (x0). Since ∂qf (x0) ⊆ ∂f (x0), we
get x∗ ∈ ∂f (x0); that is,

fD
+

i (x0, d) ≥ fD+

(x0, d) ≥ 〈x∗, d〉 > 〈z∗, d〉+ ε ∀z∗ ∈ ∂fi (x0).

This clearly contradicts (3.5).
Note that whenever X is finite-dimensional, the assumption on the sublevel sets

is superfluous (see the remark after Proposition 8). The following example shows that
the assumption that the family is finite cannot be overcome, even if all fi are convex
and the supremum is actually a maximum at each point.

Example. Let f : R→ R be the convex function

f(x) =

{
0 if x ≤ 0,
x+ x2 if 0 < x.
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For each n ∈ N, let gn (x) be the equation of the straight line which is tangent to the
graph of f at (1/n, f (1/n)), and let xn ∈ ]0, 1/n[ be the intersection of this tangent
with the x-axis. Let us define

fn (x) =




0 if x ≤ xn,
gn (x) if xn < x ≤ 1

n ,
f (x) if 1

n < x.

Then fn is convex, f (x) = maxn≥1 f (x) for each x ∈ R, and ∂qfn (0) = {0} while
∂qf (0) = [0, 1]. Hence (3.6) does not hold.

In what follows, we shall show that ∂q obeys a chain rule. We start with the
corresponding rule for classical subdifferentials.

Proposition 19. Suppose that ∂ is either ∂D
+

or ∂F , let f : X → R ∪ {+∞},
and suppose that g : R ∪ {+∞} → R ∪ {+∞} is nondecreasing.

(i) If g is differentiable at f (x0) for some x0 ∈ dom(f), then

g′ (f (x0)) ∂f (x0) ⊆ ∂ (g ◦ f) (x0).(3.7)

(ii) If, moreover, f is convex and g′ (f (x0)) > 0, then (3.7) holds with equality.

Proof. (i) Assume first that ∂ = ∂D
+

. Let a < fD
+

(x0, d). It follows from (2.5)
that for any δ > 0 there exists 0 < t < δ satisfying

f (x0 + td)− f (x0)

t
> a.

Hence f (x0 + td) > f (x0) + at and g (f (x0 + td)) ≥ g (f (x0) + at). Since g is differ-
entiable at f (x0) it follows that

g (f (x0) + at) = g (f (x0)) + g
′ (f (x0)) at+ o (at),

where limt→0
o(t)
t = 0. Hence

g (f (x0 + td))− g (f (x0))

t
≥ ag′ (f (x0)) +

o (at)

t
,

which yields (g ◦ f)D+

(x0, d) ≥ ag′ (f (x0)). Consequently,

g′ (f (x0)) f
D+

(x0, d) ≤ (g ◦ f)D+

(x0, d);

hence (3.7) holds.
Assume now that ∂ = ∂F and take any x∗ ∈ ∂F f (x0). Then

lim inf
‖u‖↘0

f (x0 + u)− f (x0)− 〈x∗, u〉
‖u‖ ≥ 0.

Let a < 0. Then there exists δ > 0 such that for all u ∈ X with ‖u‖ < δ
f (x0 + u)− f (x0)− 〈x∗, u〉

‖u‖ > a.

Since g is nondecreasing, the previous inequality implies

g (f (x0 + u)) ≥ g (f (x0) + 〈x∗, u〉+ a ‖u‖),
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and since g is differentiable at f (x0),

g (f (x0 + u)) ≥ g (f (x0)) + g
′ (f (x0)) (〈x∗, u〉+ a ‖u‖) + o (〈x∗, u〉+ a ‖u‖),

where limt→0
o(t)
t = 0. Since (‖x∗‖ − a) ‖u‖ ≥ |〈x∗, u〉+ a ‖u‖| , it follows that

lim inf
‖u‖↘0

(g ◦ f) (x0 + u)− (g ◦ f) (x0)− g′ (f (x0)) 〈x∗, u〉
‖u‖ ≥ ag′ (f (x0)).(3.8)

Since the above relation is true for all a < 0, the left-hand side is nonnegative. This
implies that g′ (f (x0)) x

∗ ∈ ∂F (g ◦ f) (x0); hence (3.7) holds.
(ii) Suppose now that f is convex. Then the function t → f (x0 + td) is right

differentiable; hence the same holds also for the function t → (g ◦ f) (x0 + td). It
follows from the usual chain rule for differentiable functions that

g′ (f (x0)) f
D+

(x0, d) = (g ◦ f)D+

(x0, d).(3.9)

Hence if ∂ = ∂D
+

, then (3.7) holds with equality.
Suppose now that ∂ = ∂F . It is sufficient to show that if x∗ /∈ ∂F f(x0), then

g′(f(x0))x
∗ /∈ ∂F (g ◦ f)(x0). Since f is convex we have ∂F f = ∂FMf ; hence from

(2.1) there exists u ∈ X such that f (x0 + u) − f (x0) < 〈x∗, u〉. Choose a < 0 such
that

f (x0 + u)− f (x0) < 〈x∗, u〉+ a ‖u‖.(3.10)

Convexity of f guarantees that the function t → f(x0+tu)−f(x0)
t is nondecreasing for

all t ≥ 0. Thus for any 0 < t < 1 we infer from (3.10) that

f (x0 + tu)− f (x0) < (〈x∗, u〉+ a ‖u‖) t.
Since g is nondecreasing we obtain

g (f (x0 + tu)) ≤ g (f (x0) + t 〈x∗, u〉+ ta ‖u‖),
and, since g is differentiable at f (x0),

g (f (x0 + tu)) ≤ g(f (x0)) + tg
′ (f (x0)) (〈x∗, u〉+ a ‖u‖) + o (t 〈x∗, u〉+ ta ‖u‖),

where limt→0
o(t)
t = 0. Dividing by t ‖u‖ and letting t→ 0 we deduce

lim inf
t↘0

(g ◦ f) (x0 + tu)− (g ◦ f) (x0)− g′ (f (x0)) 〈x∗, tu〉
‖tu‖ ≤ ag′ (f (x0)).

Since a < 0 and g′ (f (x0)) > 0, it follows that the left-hand side of (3.8) is negative.
Hence g′ (f (x0))x

∗ /∈ ∂F (g ◦ f) (x0).
Proposition 20. Let f : X → R ∪ {+∞} be lsc and g : R ∪ {+∞} → R ∪ {+∞}

be nondecreasing. Assume that the subdifferential ∂ satisfies assertions (i) and (ii) of

Proposition 19 (for instance, ∂ = ∂F or ∂D
+

). If g is differentiable at f (x0) with
g′ (f (x0)) > 0 for some x0 ∈ dom(f), then

g′ (f (x0)) ∂
qf (x0) ⊆ ∂q (g ◦ f) (x0);(3.11)

the above inclusion becomes an equality whenever f is convex.
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Proof. Since g is nondecreasing and g′ (f (x0)) > 0, we can easily deduce that

N<
f (x0) = N

<
g◦f (x0)(3.12)

and

Nf (x0) = Ng◦f (x0).(3.13)

Thus, if x∗ ∈ ∂qf (x0), then (3.12) yields N<
g◦f (x0) �= ∅. Since ∂qf ⊆ ∂f , we infer

from (3.7) that

g′ (f (x0))x
∗ ∈ ∂ (g ◦ f) (x0).

Besides, since x∗ ∈ Nf (x0) and Ng◦f (x0) is a cone, (3.13) implies

g′ (f (x0))x
∗ ∈ Ng◦f (x0).

Hence (3.11) holds.
If now f is convex, then, by Proposition 8, ∂qf = ∂FMf = ∂f. Hence, in order to

show the equality in (3.11), we have to show that ∂q (g ◦ f) (x0) = ∂ (g ◦ f) (x0). It
suffices to show that if x∗ ∈ ∂ (g ◦ f) (x0), then x

∗ ∈ ∂q (g ◦ f) (x0). Since (3.7) holds
with equality, we have

x∗

g′ (f (x0))
∈ ∂f (x0) = ∂

qf (x0).

Hence N<
g◦f (x0) = N<

f (x0) �= {0} and (since Nf (x0) is a cone) x∗ ∈ Nf (x0) =
Ng◦f (x0). It follows that x

∗ ∈ ∂q (g ◦ f) (x0).
Let C ⊆ X and let us define the (upper Dini tangent) cone TD+ (C, x0) of C at

x0 ∈ C as follows:

TD+ (C, x0) = {u ∈ X : ∃δ > 0: ∀t ∈ ]0, δ[, x0 + tu ∈ C}.
We have the following proposition.

Proposition 21. Let f : X → R∪{+∞} and x0 ∈ f−1 (R). Then

{x∗ ∈ X∗ : (x∗,−1) ∈ Nepi f (x0, f (x0))} ⊆ ∂qf (x0)
⊆ {x∗ ∈ X∗ : (x∗,−1) ∈ (TD+ (epi f, (x0, f (x0))))

o} .
Proof. The first inclusion follows from (3.1) and the observation that

∂FMf (x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nepi f (x0, f (x0))}.

To prove the second inclusion, since ∂q ⊆ ∂ ⊆ ∂D+

it suffices to show that

∂D
+

f (x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ (TD+ (epi f, (x0, f (x0))))
o}.

To this end, let x∗ ∈ ∂D+

f (x0). For any (u, v) ∈ TD+ (epi f, (x0, f (x0))) there exists
δ > 0 such that

f (x0 + tu) ≤ f (x0) + tv

for all t ∈]0, δ[. It follows that

〈x∗, u〉 ≤ lim sup
t↘0

f (x0 + tu)− f (x0)

t
≤ v,



420 A. DANIILIDIS, N. HADJISAVVAS, J.-E. MARTÍNEZ-LEGAZ

i.e., (x∗,−1) ∈ (TD+ (epi f, (x0, f (x0))))
o
.

Conversely, let x∗ ∈ X∗ be such that (x∗,−1) ∈ (TD+ (epi f, (x0, f (x0))))
o
. For

each u ∈ X, set v = fD
+

(x0, u). Then for any λ ∈]v,+∞[ we can find δ > 0 such
that for all t ∈ ]0, δ[

f (x0 + tu)− f (x0)

t
≤ λ.

It follows that (u, λ) ∈ TD+ (epi f, (x0, f (x0))) , and hence 〈x∗, u〉 ≤ λ. Since this is

true for all λ ∈]v,+∞[, we deduce that 〈x∗, u〉 ≤ v; hence x∗ ∈ ∂D+

f (x0).
Let us finally state the following corollary.
Corollary 22. Let A ⊆ X and denote by δA : X → R∪{+∞} the indicator

function of A defined by

δA(x) =

{
0 if x ∈ A,

+∞ if x /∈ A.
For all x0 ∈ A we have

∂qδA (x0) = NA (x0).

Proof. We have the following equivalencies:

x∗ ∈ ∂FMδA (x0)⇔ ∀x ∈ X, 〈x∗, x− x0〉 ≤ δA (x)− δA (x0)

⇔ ∀x ∈ A, 〈x∗, x− x0〉 ≤ 0⇔ x∗ ∈ NA (x0).

Hence (3.1) implies that NA (x0) ⊆ ∂qδA (x0). Conversely, if x
∗ ∈ ∂qδA (x0), then

x∗ ∈ NδA (x0). It is very easy to see that NδA (x0) = NA (x0), and the corollary
follows.
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Abstract. For a lower semicontinuous (l.s.c.) inequality system on a Banach space, it is
shown that error bounds hold, provided every element in an abstract subdifferential of the constraint
function at each point outside the solution set is norm bounded away from zero. A sufficient condition
for a global error bound to exist is also given for an l.s.c. inequality system on a real normed linear
space. It turns out that a global error bound closely relates to metric regularity, which is useful for
presenting sufficient conditions for an l.s.c. system to be regular at sets. Under the generalized Slater
condition, a continuous convex system on Rn is proved to be metrically regular at bounded sets.
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1. Introduction. Let X be a real normed linear space and C a nonempty closed
subset of X. Let fi, |gj | : X → (−∞,+∞] be lower semicontinuous (l.s.c.) for each
i = 1, . . . , r and j = 1, . . . , s. Denote the solution set of an l.s.c. (inequality) system
by

S := {x ∈ C : f1(x) ≤ 0, . . . , fr(x) ≤ 0; g1(x) = 0, . . . , gs(x) = 0},
which is assumed to be nonempty. The distance function dS : X → R is defined by

dS(x) = inf{‖x− s‖ : s ∈ S}.
The set S is said to have a global error bound if there exists a constant µ > 0 such
that

dS(x) ≤ µ( ‖F (x)+‖+ ‖G(x)‖ ) ∀x ∈ C,

where F (x)+ = (f1(x)+, . . . , fr(x)+) ∈ Rr with fi(x)+ := max{fi(x), 0} for i =
1, . . . , r, G(x) = (g1(x), . . . , gs(x)) ∈ Rs and ‖ · ‖ is the usual Euclidean norm. The
set S is said to have a local error bound if there exist constants µ > 0 and δ > 0 such
that

dS(x) ≤ µ( ‖F (x)+‖+ ‖G(x)‖ ) ∀x ∈ C with ‖(F (x)+, G(x) )‖ < δ.

Apparently if the set S has a global (local) error bound, then functions involved
provide a global (local) error estimate for the distance from any point x to the so-
lution set S. Because this kind of estimation has many important applications in
optimization, many sufficient conditions for error bounds to exist have been given
since Hoffman [10] proved that a global error bound always holds for any linear in-
equality systems on Rn. The reader is referred to [1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16,
17, 18, 21, 22, 23] and the references therein for the results on error bounds.

∗Received by the editors April 25, 2000; accepted for publication (in revised form) April 12, 2001;
published electronically December 14, 2001.

http://www.siam.org/journals/siopt/12-2/37155.html
†Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W

3P4 (ziliwu@joymail.com, janeye@math.uvic.ca). The work of the second author was supported by
NSERC and a University of Victoria internal research grant.

421



422 ZILI WU AND JANE J. YE

It is worth pointing out that there are two important classes of conditions in these
results. One contains the Slater condition (explicitly or implicitly), which closely
relates to the points inside the solution set S of a system, while the other is expressed
by various subdifferentials of functions at the points outside S. Since the latter includes
subdifferentials, one can use the knowledge of nonsmooth analysis to study this issue
more effectively.

To the authors’ knowledge, it is Ioffe [11] who first used Ekeland’s variational
principle and the sum rule to prove the existence of a global error bound (as well as
metric regularity at a point) for a Lipschitz continuous equality system under the con-
dition that any element in the Clarke subdifferential of the constraint function at each
point outside the solution set be norm bounded away from zero. Using Ioffe’s method,
Ye [22] and Jourani [13] have sharpened the result of Ioffe by replacing the Clarke
subdifferential with the limiting subdifferential in Rn and a partial subdifferential in
a general Banach space, respectively. In a Hilbert space, Clarke et al. [4, Theorem
3.3.1] have weakened Ioffe’s condition using the proximal subdifferential instead of
the Clarke subdifferential (see also Ye [23, Claim]). Since the proximal subdifferential
does not satisfy the sum rule, the result of Clarke et al. was proved not by Ioffe’s
method but by the decrease principle. We note that Wu [21] has used a different
tool, that is, the fuzzy sum rule (instead of the sum rule), to prove that the Clarke
subdifferential in Ioffe’s condition can be replaced by the proximal subdifferential for
an l.s.c. system on Rn. This method is in fact suitable for various subdifferentials on
a Banach space no matter whether they satisfy the fuzzy sum rule or the sum rule
since the latter always implies the former. Therefore in this paper, we introduce an
abstract subdifferential which satisfies the fuzzy sum rule and then take advantage
of this method to show that the Clarke subdifferential in Ioffe’s condition can really
be replaced by such an abstract subdifferential which includes many subdifferentials
in the nonsmooth analysis literature. These results unify and extend those stated in
this paragraph. In fact, for an l.s.c. system they have provided sufficient conditions
not only for a global error bound but also for a local error bound as well as for metric
regularity.

This paper is organized as follows. In section 2, we introduce the concept of ∂ω-
subdifferential and show that several common subdifferentials in nonsmooth analysis
are ∂ω-subdifferentials. In section 3, we use the ∂ω-subdifferential to present sufficient
conditions for error bounds to exist for l.s.c. inequality systems on Banach spaces.
Section 4 is devoted to a sufficient condition for a global error bound to hold for a
general inequality system on a real normed linear space. With this result we extend
those of Deng [5, 6] to an l.s.c. convex system on a real normed linear space. In
section 5, relations between error bound and metrical regularity are revealed, and
some sufficient conditions are given for a continuous convex system to be metrically
regular at a nonempty set. In particular, we prove that a generalized Slater condition
is sufficient for a continuous convex system to be metrically regular at any bounded
sets in Rn.

Throughout this paper, B and B, respectively, denote the open unit ball and its
closure of X, while B∗ and B∗ are, respectively, the open unit ball and its closure of
the dual space X∗. For a nonempty closed subset C of X, ψC and NC(x) denote the
indicator function of C and the (Clarke) normal cone to C at x ∈ C, respectively. For
an extended real-valued function f defined on X, its epigraph is written as

epi f := {(x, r) ∈ domf ×R : f(x) ≤ r},
where domf := {x ∈ X : f(x) < +∞}.
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2. ∂ω-subdifferentials. Here we introduce the concept of ∂ω-subdifferentials
for l.s.c. functions, which unifies that of several common subdifferentials in the non-
smooth analysis literature.

Definition 2.1. Let X be a Banach space and f : X → (−∞,+∞] be l.s.c. at
x ∈ domf. A subset of X∗, denoted by ∂ωf(x), is called a ∂ω-subdifferential of f at
x if it has the following properties:

(ω1) ∂ωg(x) = ∂ωf(x) if g = f in a neighborhood of x.
(ω2) 0 ∈ ∂ωf(x) when f attains a local minimum at x.
(ω3) If f is convex and Lipschitz of rank L near x, then ∂ωf(x) ⊆ LB∗.
(ω4) The fuzzy sum rule holds; that is, if g : X → (−∞,+∞] is Lipschitz near x,

then for any ξ ∈ ∂ω(f +g)(x) and any δ > 0, there exist x1, x2 ∈ x+ δB such
that

f(x1) ∈ f(x) + δB1, g(x2) ∈ g(x) + δB1, and ξ ∈ ∂ωf(x1) + ∂ωg(x2) + δB∗,

where B1 = (−1, 1).
The following commonly used subdifferentials turn out to be ∂ω-subdifferentials.
Example 2.1. Let X be a Banach space and f : X → (−∞,+∞] be l.s.c. at

x ∈ domf. The Clarke–Rockafellar generalized derivative of f at x in the direction
v ∈ X is defined as follows:

f◦(x; v) := lim
ε→0+

lim sup

y
f→x

t→0+

inf
w∈v+εB

f(y + tw)− f(y)

t
,

where y
f→x signifies that y and f(y) converge to x and f(x), respectively. The gener-

alized gradient of f at x is the subset of X∗ given by

∂f(x) =

{ {ξ ∈ X∗ : f◦(x; v) ≥ 〈ξ, v〉 ∀v ∈ X} if f◦(x; 0) �= −∞;
∅ if f◦(x; 0) = −∞.

By the above definition (see Clarke [3, Proposition 2.1.2 (a) and Corollary 1 of The-
orem 2.9.8]), ∂f(x) satisfies properties (ω1)–(ω4).

Example 2.2. Let X be an Asplund space, i.e., a Banach space such that every
continuous convex function is Fréchet differentiable at each point of some Gδ dense
subset of this space (which includes all reflexive Banach spaces). Let f : X →
(−∞,+∞] be l.s.c. at x ∈ domf. The Fréchet subdifferential of f at x, denoted by
∂F f(x), is the set{

ξ ∈ X∗ : lim inf
‖h‖→0

f(x + h)− f(x)− 〈ξ, h〉
‖h‖ ≥ 0

}
.

Based on the definition, Ioffe [12, Proposition 1], and Fabian [8, Theorem 3], ∂F f(x)
is a ∂ω-subdifferential of f at x.

Example 2.3. Let H be a Hilbert space and f : H → (−∞,+∞] be l.s.c. at
x ∈ domf. A vector ξ ∈ H∗ is called a proximal subgradient of f at x provided that
there exist positive numbers M and δ such that

f(y) ≥ f(x) + 〈ξ, y − x〉 −M‖y − x‖2 ∀y ∈ x + δB.

The set of all such ξ is denoted by ∂πf(x) and is referred to as the proximal subdiffer-
ential of f at x. It follows that ∂πf(x) satisfies properties (ω1)–(ω4) from the above
inequality and Clarke et al. [4, Theorems 1.7.3 and 1.8.3].
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Remark 2.1. (i) For a convex function, all subdifferentials in Examples 2.1–2.3
coincide with the subdifferentials in the sense of convex analysis.

(ii) The Fréchet subdifferential contains only the Fréchet derivative whenever a
function is Fréchet differentiable, and the proximal subdifferential includes only the
Fréchet derivative when a function is Fréchet differentiable and its Fréchet derivative
is locally Lipschitz continuous.

(iii) In an Asplund space, one has

∂F f(x) ⊆ ∂f(x),

while in a Hilbert space, the following inclusions hold:

∂πf(x) ⊆ ∂F f(x) ⊆ ∂f(x).

3. Sufficient conditions for an l.s.c. system. Consider a simple inequality
system

f(x) ≤ 0,

where f is a locally Lipschitz function defined on R. If the solution set S := {x ∈
R : f(x) ≤ 0} is nonempty, then the inequality dS(x) ≤ µf(x)+ holds automatically
for any x ∈ S and any µ > 0. To look for a sufficient condition for this inequality to
hold for some µ > 0 and any point x ∈ R\S, we can take one point x0 ∈ S such that
f(x0) = 0 and f(y) > 0 for any y ∈ (x0, x] = {tx0 + (1 − t)x : t ∈ [0, 1)}. By the
Lebourg mean-value theorem [3, Theorem 2.3.7], there exist z ∈ (x0, x] and ξ ∈ ∂f(z)
such that

f(x)− f(x0) = ξ · (x− x0),

from which f(x)+ = ‖ξ‖ · ‖x−x0‖ ≥ ‖ξ‖dS(x). Therefore if ‖ξ‖ ≥ µ−1 holds for some
µ > 0 and any ξ ∈ ∂f(x) for each x ∈ R\S, then dS(x) ≤ µf(x)+ holds for any x ∈ R.

For an l.s.c. function f defined on a Banach space X, will the existence of a
positive constant µ such that

‖ξ‖ ≥ µ−1 ∀ξ ∈ ∂ωf(x) ∀x ∈ X\S

also imply the existence of a global error bound? The following theorem gives an
affirmative answer.

Theorem 3.1. Let f : X → (−∞,+∞] be an l.s.c. function on a Banach space
X. Suppose that x0 ∈ S := {x ∈ X : f(x) ≤ 0} and there exist µ > 0 and 0 < ε ≤ ∞
such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂ωf(x)

for any x with 0 < f(x) < ε (or ‖x− x0‖ < ε and 0 < f(x) < +∞). Then we have

dS(x) ≤ µf(x)+ ∀x ∈ X with f(x) < ε/2 ( or ‖x− x0‖ < ε/2).

Proof. We need only to prove the conclusion for the case where 0 < ε < +∞,
since for the case ε = +∞ we can obtain the corresponding result by taking the limit
from the former one.

Suppose that there were u such that f(u) < ε/2 (or u ∈ x0 + (ε/2)B) and

dS(u) > µf(u)+.
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Then u �∈ S and hence 0 < f(u) < +∞. Besides, we can choose α > 0 and t > 1 such
that

f(u) ≤ ε

2 + α
<

ε

2

(
or ‖u− x0‖ ≤ ε

2 + α
<

ε

2

)
and dS(u) > tµf(u) := γ.(3.1)

Thus f(u)+ = f(u) = γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying Ekeland’s
variational principle [7] to f(·)+ with σ = γ(tµ)−1 and λ = γ, we find x ∈ X satisfying

‖x− u‖ ≤ γ,(3.2)

f(v)+ + (tµ)−1h(v) ≥ f(x)+ ∀v ∈ X,(3.3)

where h(v) := ‖v − x‖.
From (3.1), (3.2), and (3.3), we have

x ∈ X,x �∈ S and 0 < f(x) < +∞.(3.4)

On the other hand, (3.3) implies that the function

f(v)+ + (tµ)−1h(v)

attains its minimum on X at x. Hence by property (ω2) in Definition 2.1,

0 ∈ ∂ω[f(x)+ + (tµ)−1h(x)].(3.5)

Since f is l.s.c. and 0 < f(x), there exists δ1 > 0 such that

0 < f(y) ∀y ∈ x + δ1B.

Thus by property (ω1) in Definition 2.1 and (3.5),

0 ∈ ∂ω(f + (tµ)−1h)(x).(3.6)

Let δ := min{f(x), (1 − t−1)µ−1, δ1, αε(2 + α)−1}. Then by property (ω4) in
Definition 2.1 and (3.6), there exist x1 and x2 both in x + δB such that

f(x)− δ < f(x1) < f(x) + δ

and

0 ∈ ∂ωf(x1) + ∂ω((tµ)−1h)(x2) + δB∗.

The inequalities mean that x1 ∈ x + δB and 0 < f(x1) < +∞. The inclusion, by
property (ω3) in Definition 2.1, implies that there exists

ξ ∈ ∂ωf(x1)

such that

‖ξ‖∗ < (tµ)−1 + δ ≤ (tµ)−1 + (1− t−1)µ−1 = µ−1,
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which contradicts the assumption since

0 < f(x1) < f(x) + δ ≤ f(u)+ + (tµ)−1‖u− x‖+ δ

≤ f(u) + (tµ)−1γ + δ = 2f(u) + δ

≤ 2ε

2 + α
+

αε

2 + α
= ε(

or ‖x1 − x0‖ ≤ ‖x1 − x‖+ ‖x− u‖+ ‖u− x0‖ < δ + γ +
ε

2 + α

≤ αε

2 + α
+ dS(u) +

ε

2 + α
≤ (1 + α)ε

2 + α
+ ‖u− x0‖

≤ (1 + α)ε

2 + α
+

ε

2 + α
= ε

)
.

Remark 3.1. In terms of the proximal subdifferential in a Hilbert space, Clarke
et al. [4, Theorem 3.3.1] indicates that the inequality dS(x) ≤ µf(x)+ holds if x is
sufficiently near x0 and 0 < f(x) is sufficiently small. (For more discussion about
Clarke et al. [4, Theorem 3.3.1], see Ye [23, Claim].) Theorem 3.1 guarantees the
inequality to be true if x is sufficiently near x0 (or 0 < f(x) is sufficiently small).

If X is an Asplund space and f is Fréchet differentiable, the Fréchet subdifferential
can be taken as ∂ωf. Theorem 3.1 applied in this case gives the following corollary.
Note that a Fréchet differentiable function may not be Lipschitz continuous. The
result cannot obtained by Ioffe [11, Theorem 1 or Corollary 1.1].

Corollary 3.2. Let f : X → (−∞,+∞] be l.s.c. on an Asplund space X.
Assume that x0 ∈ S := {x ∈ X : f(x) ≤ 0} and that there exist µ > 0 and 0 < ε ≤ ∞
such that f is Fréchet differentiable at any x with 0 < f(x) < ε (or ‖x− x0‖ < ε and
0 < f(x) < +∞), and

‖∇f(x)‖∗ ≥ µ−1.

Then we have

dS(x) ≤ µf(x)+ ∀x ∈ X with f(x) < ε/2 (or ‖x− x0‖ < ε/2).

The result in Theorem 3.1 for a single inequality system can easily be extended
to a system including equalities, inequalities, and an abstract constraint x ∈ C as
follows.

Theorem 3.3. Let C be a closed subset of X and each fi, |gj | : X → (−∞,+∞]
be l.s.c. for i = 1, . . . , r and j = 1, . . . , s. Assume that

x0 ∈ S := {x ∈ C : f1(x) ≤ 0, . . . , fr(x) ≤ 0; g1(x) = 0, . . . , gs(x) = 0},
and denote

f(x) = max{f1(x), . . . , fr(x); |g1(x)|, . . . , |gs(x)|}.
Suppose that there exist µ > 0 and 0 < ε ≤ ∞ such that

‖ξ‖∗ ≥ µ−1

whenever ξ ∈ ∂ω(f + ψC)(x) for any x ∈ C with 0 < f(x) < ε (or ‖x − x0‖ < ε and
0 < f(x) < +∞). Then we have

dS(x) ≤ µf(x)+ ≤ µ(‖F (x)+‖+ ‖G(x)‖)
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for any x ∈ C with f(x) < ε/2 (or ‖x− x0‖ < ε/2).
Proof. By Theorem 3.1, it suffices to check that f is l.s.c.
For any x ∈ X, denote Fi(x) = fi(x) for i = 1, . . . , r, and Fi(x) = |gi−r(x)| for

i = r + 1, . . . , r + s. Then for each 1 ≤ i ≤ r + s, Fi(x) is l.s.c.,

lim inf
y→x

f(y) = lim inf
y→x

max{Fi(y) : 1 ≤ i ≤ r + s}
≥ lim inf

y→x
Fi(y) ≥ Fi(x),

and hence

lim inf
y→x

f(y) ≥ f(x) ∀x ∈ X,

which implies that f is l.s.c.
Remark 3.2. (i) We have proved Theorem 3.3 based on Theorem 3.1, while

Theorem 3.1 can be obtained from Theorem 3.3 by taking C = X, r = 1, and s = 0
in it. Therefore they are equivalent to each other. Besides, for the cases ε = +∞ and
ε < +∞, Theorems 3.1 and 3.3 both give the corresponding sufficient conditions for
global error bounds and local error bounds, respectively.

(ii) Theorem 3.3 has extended Ioffe [11, Theorem 1 and Corollary 1.1] from a
Lipschitz equality system to an l.s.c. inequality system. It is also an extension of Wu
[21, Theorem 4.19] in which X = Rn, r = 1, s = 0, ε = +∞, and ∂ω = ∂π.

Theorem 3.3 is stated in terms of any ∂ω-subdifferentials; however, to simplify
checking the conditions, we often try to use smaller ∂ω-subdifferentials (such as
the proximal subdifferential in a Hilbert space and the Fréchet subdifferential in an
Asplund space) or some ∂ω-subdifferentials with better properties (for example, the
Clarke subdifferential). Besides, in Theorem 3.3, only |gi| is required to be l.s.c. no
matter whether g is. These points are illustrated in the following example.

Example 3.1. Consider the function g : R→ R given by

g(x) =

{
1− |x| if x is a rational number ;
−1 + |x| if x is a irrational number.

Take C = R. Then S = {x ∈ R : g(x) = 0} = {−1, 1}, ψC(x) = 0, and

|g(x)| = |1− |x|| =
{

1− |x| if |x| ≤ 1;
|x| − 1 if |x| > 1

is l.s.c. (in fact it is Lipschitz of rank 1). It is easy to find

∂π|g(x)| = {−1} for x < −1 or 0 < x < 1,

∂π|g(x)| = {1} for − 1 < x < 0 or 1 < x, and

∂π|g(0)| = ∅.

For any x ∈ C with g(x) �= 0, since

∂π(|g|+ ψC)(x) = ∂π|g(x)| ⊆ {−1, 1},

we have ‖ξ‖ = 1 for any ξ ∈ ∂π(|g|+ ψC)(x). Thus, by Theorem 3.3,

dS(x) ≤ |g(x)| = |1− |x|| ∀x ∈ R.
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Remark 3.3. Note dS(0) = 1 = |g(0)| in this example. Thus µ = 1 is the
smallest constant such that the above inequality holds for any x in R. Besides, to use
Theorem 3.3 to find a global error bound, we cannot use the Clarke subdifferential
since if we choose it as a ∂ω-subdifferential, then ∂ωg(0) = ∂g(0) = [−1, 1] and it is
impossible to find a µ to satisfy the condition in Theorem 3.3.

Let Y be a real normed linear space and F : X × Y → (−∞,+∞] be l.s.c. For
any fixed y ∈ Y, the partial subdifferential ∂xF (x, y) at (x, y) ∈ X × Y in x defined
in Jourani [13] is in fact a ∂ω-subdifferential of F (x, y) at x (denoted by ∂xωF (x, y))
when F (x, y) is considered as a function of the first variable. Since we use the fuzzy
sum rule in the definition of ∂ω-subdifferential instead of the sum rule as in that of the
partial subdifferential, ∂ω-subdifferentials include more subdifferentials in nonsmooth
analysis than partial subdifferentials. For example, for the case F (x, y) = f(x) ∀y ∈ Y
the proximal subdifferential ∂πF (x, y) = ∂πf(x) is a ∂ω-subdifferential but not a
partial subdifferential.

Now applying Theorem 3.3 to a function F defined on X×Y , we have the following
result of which Jourani [13, Theorem 2.4] is a special case when we take C = X × Y
and ε = +∞.

Theorem 3.4. Let F : X × Y → (−∞,+∞] satisfy that for each y ∈ Y the
function F (·, y) is l.s.c. Let C be a nonempty closed subset of X×Y. Assume that for
y ∈ Y the set

S(y) := {x ∈ X : (x, y) ∈ C and F (x, y) ≤ 0}
is nonempty and that there exist µ > 0 and 0 < ε ≤ ∞ such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂xω(F + ψC)(x, y)

for any x ∈ X with (x, y) ∈ C and 0 < F (x, y) < ε. Then we have

dS(y)(x) ≤ µF (x, y)+ ∀x ∈ X with (x, y) ∈ C and F (x, y) < ε/2.

Proof. For y ∈ Y in the assumption, denote

f(·) := F (·, y) and C(y) := {x ∈ X : (x, y) ∈ C}.
Upon applying Theorem 3.3 to the solution set

S(y) = {x ∈ C(y) : f(x) ≤ 0}
we obtain the inequality desired.

4. Sufficient conditions for a general system. In this section we suppose
that X is a real normed linear space. Motivated by a note of a referee of Deng [6,
Corollary 2], we present the following condition to guarantee the existence of a global
error bound for a general inequality system.

Theorem 4.1. Let f be an extended real-valued function on a subset C of X and
S = {x ∈ C : f(x) ≤ 0} be nonempty. Suppose that there exist a unit vector u in X
and a constant µ > 0 such that for any λ > 0,

x + λu ∈ C and sup
λ>0

f(x + λu)− f(x)

λ
≤ −µ−1(4.1)

for any x ∈ C\S with f(x) < +∞. Then

dS(x) ≤ µf(x)+ ∀x ∈ C.
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Proof. It suffices to show that the inequality holds for x ∈ C\S with f(x) < +∞.
Now for such an x, 0 < f(x) < +∞, x + λu ∈ C, and f(x + λu) ≤ f(x) − µ−1λ for
any λ > 0, so by taking λ = µf(x), we have f(x + λu) ≤ 0, i.e., x + λu ∈ S. Thus
dS(x) ≤ ‖λu‖ = µf(x).

Remark 4.1. It is easy to see that C in Theorem 4.1 must be unbounded since
for x ∈ C with f(x) < +∞ and any λ > 0, x + λu must be in C.

Recall that for a nonempty closed convex subset C of X, the recession cone of C,
denoted by C∞, is the set

C∞ =
{
x ∈ X : ∃{µi} ⊆ (0,+∞) & {xi} ⊆ C s.t. lim

i→∞
µi = 0 and lim

i→∞
µixi = x

}
.

According to Rockafellar [19, Theorem 2A(c)], C∞ can equivalently be expressed as

C∞ = {x ∈ X : C + {x} ⊆ C}.
For an l.s.c. and proper convex function f : X → (−∞,+∞], since its epigraph

is a closed convex subset of X × R, one can use the recession cone of epi f to define
the recession function of f , denoted by f∞, i.e.,

epi(f∞) = (epi f)∞.

We refer to [20] for examples of recession functions.
Similar to Deng [5, 6], we use the recession function to give the following sufficient

condition for a global error bound.
Corollary 4.2. Let C be a closed convex subset of X and each fi : X →

(−∞,+∞] be l.s.c. proper convex for i ∈ I = {1, . . . , r}. Assume that S = {x ∈ C :
fi(x) ≤ 0, i ∈ I} is nonempty and denote f(x) := max{fi(x) : i ∈ I}. Suppose that
there exist a unit vector u ∈ C∞ and a constant µ > 0 such that f∞

i (u) ≤ −µ−1 for
each i ∈ I. Then for any 1 ≤ p ≤ +∞,

dS(x) ≤ µf(x)+ ≤ µ‖F (x)+‖p ∀x ∈ C,

where ‖ · ‖p denotes the p-norm on Rr.
Proof. Since S = {x ∈ C : f(x) ≤ 0}, we need only to check that the conditions

in Theorem 4.1 are satisfied for C and f.
First, by Rockafellar [19, Theorem 2A(a)], the inclusion u ∈ C∞ implies that

x+ λu must be in C for each x ∈ C and any λ ≥ 0. Besides, according to Rockafellar
[19, Corollary 3C(a)], for each i ∈ I,

f∞
i (u) = sup

λ>0

fi(x + λu)− fi(x)

λ
∀x ∈ domfi.

So if f∞
i (u) ≤ −µ−1, then for any λ > 0,

fi(x + λu) ≤ fi(x)− λµ−1 ∀x ∈ domfi.

Hence for any x ∈ domf and any λ > 0,

f(x + λu) ≤ f(x)− λµ−1.

In particular, for any x ∈ C\S with f(x) < +∞,

sup
λ>0

f(x + λu)− f(x)

λ
≤ −µ−1.
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Therefore, for any 1 ≤ p ≤ +∞, by Theorem 4.1,

dS(x) ≤ µf(x)+ ≤ µ‖F (x)+‖p ∀x ∈ C.

Remark 4.2. Note that each fi in Corollary 4.2 is an l.s.c. and convex function
on a real normed linear space. So it is an improvement on Deng [5, Theorem 2.3], in
which X is a reflexive Banach space and each fi is a continuous and convex function
for i = 1, . . . , r. Besides, Deng [6, Corollary 2] can be obtained as a special case of
Corollary 4.2 where p = 1 and f1 is a continuous and convex function on a Banach
space X. Furthermore, Corollary 4.2 not only extends Jourani [13, Theorem 3.3] but
also proves that condition (i) in it is redundant.

5. Global error bounds and metric regularity. In Deng [6] close relations
between global error bounds and metric regularity are revealed for a continuous and
convex inequality system. Most of them turn out to be true for an l.s.c. convex
inequality system, and some of them can further be refined. To show this we recall
the concept of metric regularity and introduce that of uniformly metric regularity.

Definition 5.1. Let f be an extended real-valued function on X, C be a subset
of X, and S = {x ∈ C : f(x) ≤ 0} be nonempty. The system

f(x) ≤ 0, x ∈ C,(5.1)

is said to be metrically regular at a nonempty set S1 ⊆ S if there exist constants δ > 0
and µ(δ) > 0 such that

dS(x) ≤ µ(δ)f(x)+ ∀x ∈ C with dS1
(x) ≤ δ.

When S1 = {z} ⊆ S, we simply say that the system (5.1) is metrically regular at z.
In particular, the system (5.1) is said to be uniformly metrically regular at S if it is
metrically regular at each point of S with the same δ > 0 and µ(δ) > 0.

Obviously for any ∅ �= S1 ⊆ S2 we have dS1(x) ≥ dS2(x) for any x ∈ X, so if the
system (5.1) is metrically regular at S2, then it must also be metrically regular at S1.

As the referees of this paper pointed out, the notion of metric regularity is related
to moving sets, and the equivalence between error bound and (the very definition of)
metric regularity usually fails to hold. The following result states the relations between
global error bounds and metric regularity for an l.s.c. inequality system.

Theorem 5.2. Let f be an l.s.c. extended real-valued function on X and S =
{x ∈ X : f(x) ≤ 0} be nonempty. Consider the following statements:

(a) There is a constant µ > 0 such that dS(x) ≤ µf(x)+ for any x ∈ X.
(b) The system (5.1) is metrically regular at any nonempty set S1 ⊆ S.
(c) The system (5.1) is metrically regular at S.
(d) The system (5.1) is uniformly metrically regular at S.
(e) The system (5.1) is metrically regular at each point of S.

Then the following implications hold:
(i) (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒(e).
(ii) If f is convex, (a) ⇔ (b) ⇔ (c) ⇔ (d).

(iii) If f is convex and S is compact, (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e).
Proof. Since the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) in (i) are obvious,

it suffices to show (d) ⇒ (b) for (i), (d) ⇒ (a) for (ii), and (e) ⇒ (a) for (iii). But
since the last implication was proved in Deng [6, Corollary 4] (assuming that X = Rn,
f is continuous and convex, and S is bounded) and the proof is still valid with the
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hypothesis in this theorem, it remains to prove (d) ⇒ (b) for (i) and (d) ⇒ (a) for
(ii).

(d)⇒ (b) for (i): We suppose that statement (d) is true. Then there are constants
δ > 0 and µ(δ) > 0 such that for each z ∈ S,

dS(x) ≤ µ(δ)f(x)+ whenever ‖x− z‖ ≤ δ.

Hence for any nonempty subset S1 of S, we have dS(x) ≤ µ(δ)f(x)+ for any x with
dS1

(x) ≤ δ/2 since for such an x we can find a point x1 ∈ S1 such that ‖x− x1‖ ≤ δ.
This proves that statement (b) holds.

(d) ⇒(a) for (ii): Suppose that f is an l.s.c. proper convex function, that (d)
holds, and that δ > 0 is the constant in the definition of uniformly metric regularity.
Then S is closed, dS(x) > 0 for any x ∈ X\S. Thus for any fixed x ∈ X\S and any
ε > 0, there exists x ∈ S such that ‖x − x‖ ≤ dS(x) + ε. If ‖x − x‖ ≤ δ, we already
have the inequality dS(x) ≤ µ(δ)f(x)+. If ‖x − x‖ > δ, taking λ := δ/‖x − x‖ and
y = λx + (1− λ)x, we have

‖y − x‖ = λ‖x− x‖ = δ,

which implies dS(y) ≤ µ(δ)f(y)+. Besides, by the convexity of f , f(y) ≤ λf(x). Hence

dS(x) ≤ ‖x− x‖ = ‖y − x‖/λ = [‖x− x‖ − ‖y − x‖]/λ
≤ [dS(x) + ε− ‖y − x‖]/λ ≤ [dS(y) + ε]/λ

≤ [µ(δ)f(y)+ + ε]/λ ≤ [µ(δ)λf(x) + ε]/λ

= µ(δ)f(x)+ + ε/λ = µ(δ)f(x)+ + ε[dS(x) + ε]/δ.

This explains that statement (a) is true since ε > 0 and x are arbitrary.
Remark 5.1. Deng [6] proved the implications (a) ⇔ (b) ⇔ (c) for a continuous

convex system on a Banach space, and the implication (e)⇒ (a) when X = Rn and S
is bounded. Theorem 5.2 has extended these results to an l.s.c. system and contains
the new equivalent statement (d). Furthermore Theorem 5.2 is allowed to be applied
to an l.s.c. extended real-valued function f defined on a closed convex subset C of X
to obtain an equivalent result whose statement is the same as that of Theorem 5.2
with the set {x ∈ X : f(x) ≤ 0} and the inequality “dS(x) ≤ µf(x)+ for any x ∈ X”
replaced by {x ∈ C : f(x) ≤ 0} and “dS(x) ≤ µf(x)+ for any x ∈ C,” respectively.

In the rest of this paper, we use Theorems 3.1 and 5.2 to give some sufficient
conditions for l.s.c. systems to be metrically regular at sets.

Proposition 5.3. Let f : X → R be l.s.c. Assume that S = {x ∈ X : f(x) ≤ 0}
is nonempty and that there exist µ > 0 and 0 < ε ≤ ∞ such that for each z ∈ S,

‖ξ‖∗ ≥ µ−1

whenever ξ ∈ ∂ωf(x) for any x ∈ X with 0 < f(x) and ‖x − z‖ < ε. Then the
system (5.1) is metrically regular at S. If f is in addition convex, then there is a
constant µ > 0 such that

dS(x) ≤ µf(x)+ ∀x ∈ X.

Proof. According to Theorem 5.2, it suffices to show that the system (5.1) is
metrically regular at S.
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By Theorem 3.1, the inequality

dS(x) ≤ µf(x)+

holds for each z ∈ S and any x ∈ X with ‖x − z‖ < ε/2, i.e., the system (5.1)
is uniformly metrically regular at S. Hence by implication (i) of Theorem 5.2, the
system (5.1) is metrically regular at S.

The following proposition indicates that if the solution set is compact and contains
no stationary points for ∂ω-subdifferentials with some limiting property, then the
system is metrically regular at the solution set.

Proposition 5.4. Let f : X → R be continuous. Assume that

S = {x ∈ X : f(x) ≤ 0}
is nonempty and compact and that for each z ∈ S, 0 �∈ ∂ωf(z) and ∂ωf satisfies that
ξ ∈ ∂ωf(z) if xn → z, ξn ∈ ∂ωf(xn), and ξn → ξ. Then the system (5.1) is metrically
regular at S, and hence there is a constant µ > 0 such that

dS(x) ≤ µf(x)+ ∀x ∈ X.

Proof. Based on relation (iii) in Theorem 5.2, we need only to prove statement
(e) in Theorem 5.2. Let z ∈ S be fixed. Then by Theorem 3.1 it is enough to show
that there exist µ > 0 and ε > 0 such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂ωf(x)

for any x with ‖x − z‖ < ε and 0 < f(x) < +∞. In fact, if this were not true, then
there would exist sequences {xn} and {ξn} such that xn → z, ξn ∈ ∂ωf(xn), and
ξn → 0. But this would lead to 0 ∈ ∂ωf(z), which contradicts the assumption.

We now consider a convex system which also includes an abstract constraint. In
the following proposition we prove that the generalized Slater condition is sufficient
for metric regularity.

Proposition 5.5. Let fi : X → R be locally Lipschitz and convex for i ∈ I =
{1, . . . , r}, and let C be a closed and convex subset of X. Let N ∪ L be a partition of
the index set I such that fi is linear for each i ∈ L. Denote

f(x) = max{fi(x), |fj(x)| : i ∈ N, j ∈ L}.
Suppose that there exist

x∗, x0 ∈ S := {x ∈ C : fi(x) ≤ 0, i ∈ N ; fj(x) = 0, j ∈ L}
such that fi(x

∗) < 0 for each i ∈ N and {−∇fi(x0) : i ∈ L} is C-linearly independent,
i.e.,

−
∑
i∈L

λi∇fi(x0) ∈ NC(x0) implies λi = 0 ∀i ∈ L.

Then there exist positive numbers δ and µ such that
(i) ‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂f(x) + NC(x) for any x ∈ C with ‖x − x0‖ < δ and

0 < f(x);
(ii) dS(x) ≤ µf(x)+ for any x ∈ C with ‖x− x0‖ < δ/2, i.e., the system (5.1) is

metrically regular at x0.
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Moreover, if X = Rn and {−∇fi(x) : i ∈ L} is C-linearly independent for each x ∈ S,
then for any bounded subset Ω ⊆ Rn there exist δ > 0 and µ > 0 such that

dS(x) ≤ µf(x)+ for any x ∈ C ∩ (Ω + δB),

i.e., the system (5.1) is metrically regular at Ω.
Proof. Since f is Lipschitz near x and ψC is finite at x and both functions are

convex, by Clarke [3, Corollary 1 of Theorem 2.9.8 and Proposition 2.4.12],

∂(f + ψC)(x) = ∂f(x) + ∂ψC(x) = ∂f(x) + NC(x).

Hence by applying Theorem 3.1 to the function f + ψC , statement (ii) follows from
statement (i). So for statements (i) and (ii), it suffices to prove statement (i).

Suppose that statement (i) were not true. Then there would exist sequences
{xk} ⊆ C and ξk ∈ ∂f(xk) + NC(xk) such that xk → x0, ξk → 0, and 0 < f(xk) for
each k. By Clarke [3, Proposition 2.3.12 and Theorem 2.3.9], for each xk there exists

a set of numbers λ
(k)
i such that

λ
(k)
i ≥ 0 ∀i ∈ N,

∑
i∈N

λ
(k)
i +

∑
i∈L
|λ(k)
i | = 1,

ξk ∈
∑
i∈N

λ
(k)
i ∂fi(xk) +

∑
i∈L

λ
(k)
i ∇fi(xk) + NC(xk), and

λ
(k)
i (fi(xk)− f(xk)) = 0 ∀i ∈ N, λ

(k)
i (|fi(xk)| − f(xk)) = 0 ∀i ∈ L.

Since each sequence {λ(k)
i } is bounded by 1 for each i, we can assume that λ

(k)
i → λi

for each i ∈ N ∪ L as k → +∞. We denote the index of binding constraints at x0 by
I(x0) = {i ∈ N : fi(x0) = 0}. Taking the limit as k →∞ gives

λi ≥ 0 ∀ i ∈ I(x0), λi = 0 ∀i ∈ N\I(x0),∑
i∈N

λi +
∑
i∈L
|λi| = 1, and

0 ∈
∑

i∈I(x0)

λi∂fi(x0) +
∑
i∈L

λi∇fi(x0) + NC(x0),

where the inclusion follows from the fact that ∂fi(xk) is the subdifferential of fi at
xk and NC(xk) is the normal cone to C at xk in the sense of convex analysis. Since
by assumption {−∇fi(x0) : i ∈ L} is C-linearly independent, this inclusion implies
that there is at least one i0 ∈ I(x0) such that λi0 > 0, from which we would obtain a
contradiction.

In fact, if we use the above λi to define the function

g(y) =
∑

i∈I(x0)

λifi(y) +
∑
i∈L

λifi(y) + ψC(y),

then g is convex, and by the sum rule of subdifferentials (in the sense of convex
analysis) we have

0 ∈
∑

i∈I(x0)

λi∂fi(x0) +
∑
i∈L

λi∇fi(x0) + NC(x0) = ∂g(x0),
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which means that g attains its global minimum at x0. Therefore this together with
the continuity of g yields

0 = g(x0) ≤ g(x∗) ≤ λi0fi0(x∗) < 0.

This is a contradiction.
Now suppose that X = Rn. Let δ > 0 be the positive number stated in (i). Then

for any fixed bounded set Ω we can take ε > δ such that Ω + δB ⊆ B(x0, ε/2). By
Theorem 3.3, it suffices to show that there exists µ > 0 such that ‖ξ‖ ≥ µ−1 ∀ξ ∈
∂f(x) + NC(x) for any x ∈ C with δ ≤ ‖x− x0‖ ≤ ε and 0 < f(x).

Suppose that there exist sequences {xk} ⊆ C and ξk ∈ ∂f(xk)+NC(xk) such that
δ ≤ ‖xk − x0‖ ≤ ε, 0 < f(xk), and ξk → 0 as k → +∞. Since {xk} lies in a compact
set, we can assume that xk converges to some point x ∈ C with δ ≤ ‖x − x0‖ ≤ ε.
Taking the limit for ξk ∈ ∂f(xk)+NC(xk), we have 0 ∈ ∂f(x)+NC(x) ⊆ ∂(f+ψC)(x)
by the sum rule of subdifferentials in the sense of convex analysis. This means that
f attains its global minimum over C at x since f + ψC is convex. Note that f is
continuous and f(xk) is positive. Thus

0 = f(x∗) ≥ f(x) = lim
k→+∞

f(xk) ≥ 0.

Thus x ∈ S. But by statement (i) there exist positive numbers δ and µ such that

‖ξ‖ ≥ µ−1 ∀ξ ∈ ∂f(x) + NC(x)

for any x ∈ C with ‖x − x‖ < δ and 0 < f(x). This contradicts the properties of
subsequences {xk} and {ξk}.

Remark 5.2. In Proposition 5.5, the Slater condition fi(x
∗) < 0 for i ∈ N is

important to guarantee that (i) and (ii) hold. Without this condition, (i) and (ii)
may fail. One simple example is the function f(x) = x2 with S = {x ∈ R : f(x) ≤
0} = {0}. On the other hand, statement (i) is a local property, i.e., without addi-
tional conditions, property (i) cannot generally be extended to all points outside the
neighborhood. For example, for any n ≥ 2, the function

f(x) =




x− 1 if x ≥ 0;

−√2− (x + 1)2 if −1−
√

2
n2+1 < x < 0;

− x
n −

1+
√

2(n2+1)

n if x ≤ −1−
√

2
n2+1

is differentiable and convex with f(0) = −1 and f(1) = 0. The inequality in statement
(i) of Proposition 5.5 holds for x0 = 1, δ = 1, and µ = 1. But for any x < −1 −√

2(n2 + 1), f(x) > 0 and |f ′(x)| = 1/n < 1/µ.
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Abstract. Smoothing functions have been much studied in the solution of optimization and
complementarity problems with nonnegativity constraints. In this paper, we extend smoothing
functions to problems in which the nonnegative orthant is replaced by the direct product of second-
order cones. These smoothing functions include the Chen–Mangasarian class and the smoothed
Fischer–Burmeister function. We study the Lipschitzian and differential properties of these functions
and, in particular, we derive computable formulas for these functions and their Jacobians. These
properties and formulas can then be used to develop and analyze noninterior continuation methods
for solving the corresponding optimization and complementarity problems. In particular, we establish
the existence and uniqueness of the Newton direction when the underlying mapping is monotone.

Key words. second-order cone, complementarity problem, smoothing function, Jordan algebra
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1. Introduction. The second-order cone (SOC) in �n (n ≥ 1), also called the
Lorentz cone, is defined to be

Kn = {(x1, x2) ∈ � × �n−1 | ‖x2‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm. If n = 1, then Kn is the set of nonnegative
reals �+. We are interested in optimization and complementarity problems whose
constraints involve the direct product of SOCs. In particular, we wish to find vectors
x, y ∈ �n and ζ ∈ �� satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K, F (x, y, ζ) = 0,(1.1)

where 〈·, ·〉 denotes the Euclidean inner product, F : �n × �n × �� → �n × �� is a
continuously differentiable mapping, and

K = Kn1 × · · · × Knm ,(1.2)

with � ≥ 0, m,n1, . . . , nm ≥ 1, and n1 + · · · + nm = n. We will refer to (1.1), (1.2)
as the second-order-cone complementarity problem (SOCCP). This problem has wide
applications and, in particular, includes a large class of quadratically constrained
problems as special cases [14]. It also includes as a special case the well-known non-
linear complementarity problem (NCP), corresponding to ni = 1 for all i; i.e., K is
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the nonnegative orthant �n+. In particular, when � = 0 and the mapping F has the
form

F (x, y, ζ) = F0(x) − y(1.3)

for some F0 : �n → �n, the SOCCP (1.1) becomes

〈x, F0(x)〉 = 0, x ∈ K, F0(x) ∈ K,
which is a natural generalization of the ordinary NCP corresponding to K = �n+.

Optimization problems with SOC constraints have been the focus of several recent
studies. It is known that Kn, like �n+ and the cone Sn of n×n real symmetric positive
semidefinite matrices, belongs to the class of symmetric cones, to which a Jordan
algebra may be associated [9]. Using this connection, interior-point methods have
been developed for solving linear programs with SOC constraints [14, 15, 23] and, more
generally, linear programs with symmetric cone constraints [1, 18]. An alternative
approach based on reformulating SOC constraints as smooth convex constraints was
studied in [24]. It is also known that Kn may be viewed as a linear section of Sn. In
particular, it is easily verified that

(x1, x2) ∈ Kn ⇐⇒
[
x1 xT2
x2 x1I

]
∈ Sn,(1.4)

where I denotes the identity matrix and superscript T denotes transpose. Thus,
Kn = Sn ∩ A for some subspace A of �n×n. Using this fact, we can reformulate any
problem with SOC constraints as a problem with semidefinite cone constraints plus an
additional subspace constraint. However, this increases the problem dimension from
n to n(n + 1)/2 and it is not known whether this increase can be mitigated by, say,
exploiting the structure of A when carrying out the linear algebra in computation.

In this paper, we consider a (noninterior) smoothing approach to solving prob-
lems with SOC constraints. In this approach, we choose a continuously differentiable
function φµ : �n × �n → �n, parameterized by µ > 0, such that the pointwise limit
φ0(x, y) = limµ→0+ φµ(x, y) satisfies

〈x, y〉 = 0, x ∈ K, y ∈ K ⇐⇒ φ0(x, y) = 0.(1.5)

We note that φ0 is typically nonsmooth. The smoothing function φµ leads to the
following noninterior continuation method for solving (1.1): Starting with an initial
µ > 0, we solve approximately the smooth equations

φµ(x, y) = 0, F (x, y, ζ) = 0(1.6)

by, say, applying a few Newton steps; then we decrease µ and repeat the iteration.
This noninterior approach offers an attractive alternative to the interior approach and
it has been much studied in the case of NCP. In this case, one popular choice of φµ
is a smooth approximation of the “min” function suggested by Chen and Harker [3],
Kanzow [13], and Smale [19], and further generalized by Chen and Mangasarian [4, 5]
(also see [2, 7, 8, 10, 11, 16, 22, 25] and references therein). Another popular choice is a
smooth approximation of the Fischer–Burmeister function suggested by Kanzow [13].
Recently, these smoothing functions and their nonsmooth analogues were extended to
the setting of semidefinite complementarity problems (SDCP) [6, 20, 21]. Analogous to
the semidefinite setting, our definition of smoothing functions is based on the spectral
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factorization of vectors in �n, as specified by the Jordan algebra associated with
SOC. This appears to be the most natural and convenient way to extend a function
defined for NCP to one defined for SOCCP, while preserving essential differential and
Lipschitzian properties. The latter properties are needed in analyzing the convergence
properties of the corresponding continuation method; see, e.g., [2, 7, 8, 22] for such
analysis in the case of NCP, and [6] for an analysis in the setting of SDCP. Unlike the
semidefinite setting, the simpler structure of an SOC allows for a more direct analysis
of its differential properties. In particular, we do not need to invoke a local upper
Lipschitzian property of the spectral factorization, as is done in [6].

In what follows, �n (n ≥ 1) denotes the space of n-dimensional real column
vectors, �n1×· · ·×�nm is identified with �n1+···+nm . Thus, (x1, . . . , xm) ∈ �n1×· · ·×
�nm is viewed as a column vector in �n1+···+nm . For any x, y ∈ �n we write x �K y
or y �K x (respectively, x �K y or y ≺K x) if x− y is in K (respectively, the interior
of K, denoted by int K). For any square matrices A,B ∈ �n×n, we write A � B
(respectively, A � B) if the symmetric part of A−B, namely (A−B +AT −BT )/2,
is positive definite (respectively, positive semidefinite). Also, �+ and �++ denote
the nonnegative and positive reals. For any x, y ∈ �n, the Euclidean inner product
and norm are denoted 〈x, y〉 = xT y and ‖x‖ =

√
xTx. For any Fréchet-differentiable

mapping G : �n → �m, we denote its (transposed) Jacobian at x ∈ �n by ∇G(x) ∈
�n×m, i.e., (G(x + u) −G(x) −∇G(x)Tu)/‖u‖ → 0 as u → 0.

2. Jordan algebra associated with the SOC. For any x = (x1, x2) ∈ � ×
�n−1 and y = (y1, y2) ∈ � × �n−1, we define their Jordan product as

x · y =
(
xT y, y1x2 + x1y2

)
.(2.1)

We will write x2 to mean x · x and write x + y to mean the usual componentwise
addition of vectors. Then, ·, +, together with

e = (1, 0, . . . , 0) ∈ �n,
have the following basic properties (see [9, Chapter II]).

Property 2.1.
1. e · x = x ∀x ∈ �n. (Identity)
2. x · y = y · x ∀x, y ∈ �n. (Commutativity 1)
3. x · (x2 · y) = x2 · (x · y) ∀x, y ∈ �n. (Commutativity 2)
4. (x + y) · z = x · z + y · z ∀x, y, z ∈ �n. (Distributivity)

Notice that the Jordan product is not associative in general. For example, for
n = 3 and x = (1,−1, 1), y = z = (1, 0, 1), we have

(x · y) · z = (4,−1, 4) �= x · (y · z) = (4,−2, 4).

In fact, this example shows that (x · y) · y �= x · y2 in general. On the other hand, it
can be verified that associativity holds under the inner product in the sense that

〈x, y · z〉 = 〈y, z · x〉 = 〈z, x · y〉 ∀x, y, z ∈ �n.
The Jordan product (2.1) is associated with the SOC Kn via the following useful

facts.
1. For each x = (x1, x2) ∈ � × �n−1, the determinant and the trace of x are

defined by

det(x) = x2
1 − ‖x2‖2 and tr(x) = 2x1,
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respectively. Unlike matrices, we have in general det(x · y) �= det(x) det(y) unless
αx2 + βy2 = 0 for some (α, β) �= (0, 0) ∈ �2.

2. A vector x = (x1, x2) ∈ � × �n−1 is said to be invertible if det(x) �= 0. If x is
invertible, then there exists a unique y = (y1, y2) ∈ �×�n−1 satisfying x · y = e. We
shall call this y the inverse of x and denote it by x−1. Direct calculation yields

x−1 =
1

x2
1 − ‖x2‖2

(x1,−x2) =
tr(x) e− x

det(x)
.(2.2)

From (2.2), it is clear that x ∈ int Kn if and only if x−1 ∈ int Kn.
3. If x ∈ Kn, then there exists a unique vector in Kn, which we denote by x1/2,

such that (x1/2)2 = x1/2 · x1/2 = x. Direct calculation yields

x1/2 =
(
s,
x2

2s

)
, where s =

√(
x1 +

√
x2

1 − ‖x2‖2

)
/2.(2.3)

In the above formula, the term x2/s is defined to be the zero vector if x2 = 0 and
s = 0, i.e., x = 0.

4. For any x ∈ �n, we have x2 ∈ Kn. Hence there exists a unique vector
(x2)1/2 ∈ Kn, which we denote by |x|. Clearly we have x2 = |x|2.

Notice that the SOC Kn is not closed under the Jordan product. For example,

x = (
√

2, 1, 1) ∈ K3, y = (
√

2, 1,−1) ∈ K3, but x · y = (2, 2
√

2, 0) �∈ K3.

For any x = (x1, x2) ∈ � × �n−1, we define the symmetric matrix

Lx =

[
x1 xT2
x2 x1I

]
,(2.4)

viewed as a linear mapping from �n to �n. It is easily verified that

Lxy = x · y ∀y ∈ �n.
Moreover, Lx is positive definite (and hence invertible) if and only if x ∈ int Kn (see
(1.4)). Notice, however, that in general L−1

x y �= x−1 · y for x ∈ int Kn and y ∈ �n.
We next introduce the spectral factorization of vectors in �n associated with Kn.

Let x = (x1, x2) ∈ � × �n−1. Then x can be decomposed as

x = λ1u
(1) + λ2u

(2),(2.5)

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors
of x given by

λi = x1 + (−1)i‖x2‖,(2.6)

u(i) =




1
2

(
1, (−1)i

x2

‖x2‖
)

if x2 �= 0,

1
2

(
1, (−1)iw

)
if x2 = 0,

(2.7)

for i = 1, 2, with w being any vector in �n−1 satisfying ‖w‖ = 1. If x2 �= 0, decom-
position (2.5) is unique.

Some interesting properties of λ1, λ2 and u(1), u(2) are summarized below. Notice
that the identity element e is uniquely identified by its two spectral values which are
exactly equal to 1.

Property 2.2. For any x = (x1, x2) ∈ �×�n−1, the spectral values λ1, λ2 and
spectral vectors u(1), u(2), as given by (2.6) and (2.7), have the following properties:
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1. u(1) and u(2) are orthogonal under the Jordan product and have length 1/
√

2,
i.e.,

u(1) · u(2) = 0, ‖u(1)‖ = ‖u(2)‖ = 1/
√

2.

2. u(1) and u(2) are idempotent under the Jordan product, i.e.,

u(i) · u(i) = u(i), i = 1, 2.

3. λ1 and λ2 are nonnegative (respectively, positive) if and only if x ∈ Kn
(respectively, x ∈ int Kn).

4. The determinant, the trace, and the Euclidean norm of x can all be repre-
sented in terms of λ1 and λ2:

det(x) = λ1λ2, tr(x) = λ1 + λ2, 2‖x‖2 = λ2
1 + λ2

2.

It can be verified that λ1, λ2 are in fact the eigenvalues of the n × n matrix Lx
(see (2.4)), with u(1), u(2) being the corresponding eigenvectors. The remaining n− 2
eigenvalues of this matrix are identically x1, with corresponding eigenvectors of the
form (0, v), where v lies in the subspace of �n−1 orthogonal to x2. A corollary of this
is the equivalence (1.4). It can also be verified that λ1, λ2 are Lipschitz continuous
in x, with Lipschitz constant

√
2, and that u(1), u(2) have a local upper Lipschitzian

property. However, we will not need these properties in the subsequent analysis.
The next proposition shows that, in the case of K = Kn, the SOCCP (1.1) can

be equivalently stated as

x · y = 0, x ∈ K, y ∈ K, F (x, y, ζ) = 0.

This equivalence also extends to the general case in which K has the direct product
structure (1.2), provided that the Jordan product is defined according to this structure
(see Section 6).

Proposition 2.1. For any x and y in �n, we have
〈x, y〉 = 0, x ∈ Kn, y ∈ Kn ⇐⇒ x · y = 0, x ∈ Kn, y ∈ Kn.

Proof. The “⇐” direction is obvious from the definition of a Jordan product. To
prove the “⇒” direction, suppose 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn. Then,

〈x, y〉 = x1y1 + xT2 y2 = 0, x1 ≥ ‖x2‖, y1 ≥ ‖y2‖,
implying −xT2 y2 = x1y1 ≥ ‖x2‖‖y2‖. Since −xT2 y2 ≤ ‖x2‖‖y2‖, this shows that x2,
y2 make an angle of 180◦ and, moreover, x1 = ‖x2‖, y1 = ‖y2‖. Thus,

x · y = (〈x, y〉, x1y2 + y1x2) = (0, ‖x2‖y2 + ‖y2‖x2) = 0.

This completes the proof.

3. Functions associated with the SOC. For any function ĝ : � → �, we
define a function on �n associated with Kn (n ≥ 1) by

g(x) = ĝ(λ1)u
(1) + ĝ(λ2)u

(2) ∀x = (x1, x2) ∈ � × �n−1,(3.1)

where λ1, λ2, u
(1), u(2) are the spectral values and vectors of x (see (2.5), (2.6), (2.7)).

If ĝ is defined on only a subset of �, then g is defined on the corresponding subset
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of �n. The definition (3.1) is clearly unambiguous when x2 �= 0, since u(1), u(2) are
unique. When x2 = 0, we see from (2.6), (2.7) that g(x) = ĝ(x1)e, and thus the
definition is again unambiguous. The cases of g(x) = x1/2, x2, exp(x) are discussed
in the book of Faraut and Korányi [9]. The above definition (3.1) is analogous to
one associated with the semidefinite cone Sn; see [6, 20]. In fact, if a function g̃
associated with Sn has the property that it maps the subspace A of matrices of the
form (2.4) into A, then g = L−1 ◦ g̃ ◦ L is a function associated with Kn, where
L : �n → A is the linear mapping such that L(x) is the matrix Lx given by (2.4) for
all (x1, x2) ∈ �×�n−1. However, the functions considered in [6, 20] do not have this
property.

For any x ∈ �n and integer k ≥ 1, we can take the Jordan product of x with itself
k times to obtain the kth power of x, denoted by xk. We define x0 = e. If x ∈ int Kn,
then x−k = (xk)−1 is also well defined. The spectral factorization (2.5)–(2.7) and
its properties (see Property 2.2) provide a very useful tool for evaluating functions
defined using powers. For example, for any x ∈ �n, the spectral factorization of x
yields

x2 = (λ1u
(1) + λ2u

(2)) · (λ1u
(1) + λ2u

(2))

= λ2
1(u

(1))2 + λ2
2(u

(2))2 + 2λ1λ2u
(1) · u(2)

= λ2
1u

(1) + λ2
2u

(2),(3.2)

where we used the orthogonal and idempotent properties of u(1) and u(2) (see Prop-
erty 2.2). Notice that this is consistent with (3.1). The above formula shows that
squaring a vector is the same as squaring the spectral values in its spectral factor-
ization. A corollary of this formula is that, for any x ∈ �n, the spectral values of
x2 are nonnegative and hence x2 ∈ Kn. Conversely, when x ∈ Kn, we have from
Property 2.2 that λ1 ≥ 0 and λ2 ≥ 0, and thus w =

√
λ1u

(1) +
√
λ2u

(2) is defined and
in Kn. Moreover, analogous to (3.2), w2 = x. Thus, x1/2 = w, i.e.,

x1/2 =
√
λ1u

(1) +
√
λ2u

(2).(3.3)

The above derivation can be extended beyond powers to any function admitting
a power series expansion. This is shown in the following proposition.

Proposition 3.1. Suppose ĝ : � → � admits a power series expansion ĝ(α) =∑∞
k=0 akα

k for some real coefficients a0, a1, . . .. Then the function g : �n → �n given
by (3.1) satisfies

g(x) =

∞∑
k=0

ak(λ
k
1u

(1) + λk2u
(2)) =

∞∑
k=0

akx
k ∀ x ∈ �n,

where λ1, λ2, u
(1), u(2) are the spectral values and vectors of x given by (2.6), (2.7).

Proof. Using Property 2.2, we have for all k ≥ 1

(u(i))k = u(i), u(i) · u(j) = 0,

where i, j = 1, 2, and i �= j. Using the binomial expansion, this yields

xk = (λ1u
(1) + λ2u

(2))k = λk1u
(1) + λk2u

(2).

Substituting this into the definition of g(x) yields
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g(x) = ĝ(λ1)u
(1) + ĝ(λ2)u

(2)

=

( ∞∑
k=0

akλ
k
1

)
u(1) +

( ∞∑
k=0

akλ
k
2

)
u(2)

=

∞∑
k=0

ak(λ
k
1u

(1) + λk2u
(2))

=

∞∑
k=0

akx
k.

Define

exp(x) =
∞∑
k=0

xk

k!
∀x ∈ �n.

Also, define ln(x) to be the unique w ∈ �n satisfying exp(w) = x for each x ∈ int Kn.
In the proposition below, we use Proposition 3.1 to derive a simple formula for exp(x).
This in turn is used to show that ln(x) is well defined and has a simple formula.

Proposition 3.2.
(a) For any x = (x1, x2) ∈ � × �n−1,

exp(x) =




1
2exp(x1)

(
cosh(‖x2‖), sinh(‖x2‖) x2

‖x2‖
)

if x2 �= 0,

exp(x1) (1, 0) if x2 = 0,

where cosh(α) = (exp(α) + exp(−α))/2 and sinh(α) = (exp(α)− exp(−α))/2
for α ∈ �.

(b) For any x = (x1, x2) ∈ int Kn, ln(x) is well defined and

ln(x) =




1
2

(
ln
(
x2

1 − ‖x2‖2
)
, ln

(
x1 + ‖x2‖
x1 − ‖x2‖

)
x2

‖x2‖
)

if x2 �= 0,

ln(x1) (1, 0) if x2 = 0.

Proof. (a) By Proposition 3.1, exp(x) = g(x) with ĝ(α) = exp(α). Using (3.1)
with λ1, λ2 and u(1), u(2) given by (2.6) and (2.7), we have

exp(x) = exp(λ1)u
(1) + exp(λ2)u

(2)

= exp(x1 − ‖x2‖)u(1) + exp(x1 + ‖x2‖)u(2)

= exp(x1)(exp(−‖x2‖)u(1) + exp(‖x2‖)u(2)).

We consider only the case of x2 �= 0. The case of x2 = 0 can be argued analogously.
Using (2.7), we have

u(i) =
1

2

(
1,

(−1)ix2

‖x2‖
)
, i = 1, 2.

The previous expression simplifies to

exp(x) =
1

2
exp(x1)

(
exp(‖x2‖) + exp(−‖x2‖), (exp(‖x2‖) − exp(−‖x2‖)) · x2

‖x2‖
)
.



SECOND-ORDER-CONE COMPLEMENTARITY PROBLEMS 443

(b) Fix any x = (x1, x2) ∈ int Kn, i.e., ‖x2‖ < x1. We will prove by construction
that there is a unique w ∈ �n satisfying exp(w) = x, which will show that ln(x) is well
defined. We have from part (a) that w = (w1, w2) ∈ �×�n−1 satisfies exp(w) = x if
and only if

x1 =
1

2
exp(w1) (exp(‖w2‖) + exp(−‖w2‖)) ,

x2 =
1

2
exp(w1) (exp(‖w2‖) − exp(−‖w2‖)) w2

‖w2‖ .
(3.4)

Letting a = exp(w1) and b = exp(‖w2‖), we obtain from (3.4) that

x1 =
a

2
(b + b−1), ‖x2‖ =

a

2
(b− b−1).

We can solve these equations uniquely for a and b to yield

b =

√
x1 + ‖x2‖
x1 − ‖x2‖ , a =

2x1

b + b−1
=
√
x2

1 − ‖x2‖2.

Suppose x2 �= 0, so that b �= 1. We obtain w1 = ln(a), ‖w2‖ = ln(b), and we have
from (3.4) that w2 = 2a−1‖w2‖x2/(b− b−1). Thus,

w = (w1, w2) =
(
ln(a), 2a−1ln(b)x2/(b− b−1)

)
.

Using the above formulas for a and b and then simplifying expressions, we obtain the
desired formula for w. Suppose instead x2 = 0, so that a = x1 and b = 1. We then
obtain w1 = ln(x1), ‖w2‖ = ln(1) = 0, and thus w2 = 0.

It can be verified that ln(x) is alternatively given by (3.1) with ĝ(α) = ln(α). For
any x ∈ �n, we define [x]+ to be the nearest-point (in the Euclidean norm) projection
of x onto Kn. For α ∈ �, let [α]+ = max{0, α}. The following proposition shows
that |x| and [x]+ have the form (3.1) and are related to each other as in the cases of
nonnegative orthant �n+ and positive semidefinite cone Sn.

Proposition 3.3. For any x = (x1, x2) ∈ �×�n−1, let λ1, λ2, u
(1), u(2) denote

the spectral values and vectors of x, i.e., (2.5)–(2.7). Then the following results hold.
(a) |x| = (x2)1/2 = |λ1|u(1) + |λ2|u(2).
(b) The projection onto the SOC Kn can be written as

[x]+ = [λ1]+u
(1) + [λ2]+u

(2) = (x + |x|)/2.(3.5)

Proof. (a) By using (3.2) and (3.3), we have

(x2)1/2 = (λ2
1u

(1) + λ2
2u

(2))1/2

= (λ2
1)

1/2u(1) + (λ2
2)

1/2u(2)

= |λ1|u(1) + |λ2|u(2).

(b) Since [α]+ = (α + |α|)/2 for all α ∈ �, the second equality in (3.5) follows
from part (a) and (2.5). We now prove the first equality in (3.5). First, consider the
case of x ∈ Kn. Then [x]+ = x. Also, λ1 ≥ 0 and λ2 ≥ 0, and thus [λ1]+ = λ1 and
[λ2]+ = λ2. Thus the first equality in (3.5) holds. Next, consider the case of x �∈ Kn.
Then, x1 < ‖x2‖ so that [λ1]+ = [x1 − ‖x2‖]+ = 0. Consider the projection problem:

min
1

2
‖y − x‖2 subject to ‖y2‖ − y1 ≤ 0.
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This problem is convex, its inequality constraint can be satisfied strictly, and its unique
optimal solution y = [x]+ satisfies the inequality constraint with equality. Hence this
optimal solution satisfies the following necessary conditions for optimality (see [17,
Theorem 28.2]):

y − x + µ(−1, ν) = 0, ‖y2‖ = y1,(3.6)

for some nonnegative µ ∈ � (µ is a Lagrange multiplier) and some subgradient ν ∈
�n−1 of ‖ · ‖ at y2, i.e.,

ν = y2/‖y2‖ if y2 �= 0, ‖ν‖ ≤ 1 if y2 = 0.(3.7)

Suppose y2 �= 0. Then, solving (3.6) and (3.7) for y and µ and using x1 < ‖x2‖ yield

y1 =
1

2
[x1 + ‖x2‖]+ and y2 =

{
1
2 [x1 + ‖x2‖]+x2/‖x2‖ if x2 �= 0,

0 if x2 = 0.

If x2 = 0, then x1 < 0, and thus [x1 + ‖x2‖]+ = 0 and y2 = 0, a contradiction of
y2 �= 0. Thus x2 �= 0, and we obtain

(y1, y2) =
1

2
[x1 + ‖x2‖]+

(
1,

x2

‖x2‖
)

= [λ2]+u
(2).

Since [λ1]+ = 0, this proves the first equality in (3.5). Suppose instead y2 = 0. Then,
(3.6) implies y1 = 0 and x1 = −µ, x2 = µν. Since µ ≥ 0 and ‖ν‖ ≤ 1, we have
‖x2‖ = µ‖ν‖ ≤ µ = −x1. Thus x1 + ‖x2‖ ≤ 0, implying [λ2]+ = 0. Since [λ1]+ = 0,
this proves the first equality in (3.5).

A corollary of Proposition 3.3 is the third part of Property 2.2. Another corollary
is

|x| �Kn x ∀x ∈ �n.
Using this corollary, we now prove the following proposition, which establishes some
order-preserving properties of x2 and L2

x relative to Kn and Sn, respectively. These
properties, though difficult to prove, are crucial to some of our subsequent analyses.
We speculate that these properties may be useful in other contexts.

Proposition 3.4. For any x, y in �n and any w �Kn 0, we have

w2 �Kn x2 + y2 =⇒ L2
w � L2

x + L2
y,(3.8)

w2 �Kn x2 =⇒ w �Kn x.(3.9)

Moreover, the implications (3.8) and (3.9) remain true when “�” is replaced by “�”
everywhere.

Proof. First, we prove (3.8) for the case in which w has the form

w = (x2 + y2 + δe)1/2(3.10)

for some δ > 0. Fix any x = (x1, x2), y = (y1, y2) in � × �n−1, and any δ > 0. Let
w = (x2 + y2 + δe)1/2. Since w2 = x2 + y2 + δe �Kn 0, we have w �Kn 0. Moreover,
(2.3) yields

w = (s, w2) with w2 = (x1x2 + y1y2)/s,(3.11)
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where

s =

√
‖x‖2 + ‖y‖2 + δ +

√
(‖x‖2 + ‖y‖2 + δ)2 − 4‖x1x2 + y1y2‖2/

√
2.

Since δ > 0, we have s > 0. Since w �Kn 0, we have from (3.11) that ‖w2‖ < s. Since
w2 − x2 − y2 = δe �Kn 0, we have

Lw2 − Lx2 − Ly2 � 0.

Direct calculation using (3.11) shows that Lw2 −Lx2 −Ly2 = (‖w‖2 −‖x‖2 −‖y‖2)I,
so it must be that

‖x‖2 + ‖y‖2 < ‖w‖2.(3.12)

Using (3.11), the inequality (3.12) expands out to

x2
1 + ‖x2‖2 + y2

1 + ‖y2‖2 < s2 + x2
1‖x2‖2/s2 + y2

1‖y2‖2/s2 + 2x1y1x
T
2 y2/s

2,

which, upon multiplying both sides by s2 and rearranging terms, can be rewritten
equivalently as

‖y1x2 − x1y2‖2 < (s2 − x2
1 − y2

1)(s2 − ‖x2‖2 − ‖y2‖2).

Thus, either both s2−x2
1−y2

1 and s2−‖x2‖2−‖y2‖2 are positive or both are negative.
If both are negative, then we would have x2

1 + y2
1 > s2 and ‖x2‖2 + ‖y2‖2 > s2,

contradicting the fact that ‖x‖2 + ‖y‖2 < ‖w‖2 = s2 + ‖w2‖2 < 2s2 (recall (3.12) and
‖w2‖ < s). Thus, we must instead have

x2
1 + y2

1 < s2 and ‖x2‖2 + ‖y2‖2 < s2.(3.13)

By direct calculation using (3.11), we have

L2
w−L2

x−L2
y = diag

{‖w‖2 − ‖x‖2 − ‖y‖2, (s2 − x2
1 − y2

1)I + w2w
T
2 − x2x

T
2 − y2y

T
2

}
.

Our goal is to show that this matrix is positive definite. In view of (3.12), it suffices
to prove

(s2 − x2
1 − y2

1)I + w2w
T
2 − x2x

T
2 − y2y

T
2 � 0.(3.14)

For any d ∈ �n−1, we have from (3.11) that

dT (w2w
T
2 − x2x

T
2 − y2y

T
2 )d

= (wT2 d)2 − (xT2 d)2 − (yT2 d)2

= (x1x
T
2 d + y1y

T
2 d)2/s2 − (xT2 d)2 − (yT2 d)2

=
(
x2

1(x
T
2 d)2 + y2

1(yT2 d)2 + 2(y1x
T
2 d)(x1y

T
2 d)
)
/s2 − (xT2 d)2 − (yT2 d)2

≤ (x2
1(x

T
2 d)2 + y2

1(yT2 d)2 + (y1x
T
2 d)2 + (x1y

T
2 d)2

)
/s2 − (xT2 d)2 − (yT2 d)2

=
(
x2

1 + y2
1 − s2

) (
(xT2 d)2 + (yT2 d)2

)
/s2,

where the inequality uses the fact that 2αβ ≤ α2 + β2 for α, β ∈ �. By (3.13), the
right-hand side is always nonpositive, which implies that 0 � w2w

T
2 − x2x

T
2 − y2y

T
2

and hence

w2w
T
2 − x2x

T
2 − y2y

T
2 � tr(w2w

T
2 − x2x

T
2 − y2y

T
2 )I = (‖w2‖2 − ‖x2‖2 − ‖y2‖2)I.
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This in turn implies

(s2 − x2
1 − y2

1)I + w2w
T
2 − x2x

T
2 − y2y

T
2 � (s2 − x2

1 − y2
1 + ‖w2‖2 − ‖x2‖2 − ‖y2‖2)I

= (‖w‖2 − ‖x‖2 − ‖y‖2)I.

Using (3.12), this proves (3.14), as desired.
We have proven that the implication (3.8) holds true for any x, y in �n and any

w of the form (3.10) for some δ > 0. We will now use this result to prove (3.8) for
any x, y in �n and any w �Kn 0. Suppose w2 �Kn x2 + y2. Then, there exists some
δ > 0 such that

w2 �Kn x2 + y2 + 2δe.

Let w̄ = (x2 + y2 + δe)1/2. Then w2 �Kn w̄2 + δe, and so z = (w2 − w̄2 − δe)1/2 is
defined and w = (w̄2 + z2 + δe)1/2. Thus,

w̄2 �Kn x2 + y2, w2 �Kn w̄2 + z2.

Since w̄ has the form (3.10) with “w” replaced by “w̄”, (3.8) holds true with this
replacement. Similarly, since w has the form (3.10) with “x”, “y” replaced by “w̄”,
“z”, respectively, (3.8) holds true with this replacement. Thus, the above relations
imply

L2
w̄ � L2

x + L2
y, L2

w � L2
w̄ + L2

z.

These two relations combine to yield L2
w � L2

x + L2
y. Thus (3.8) holds true.

We now use (3.8) to prove (3.9) for any x, y in �n and any w �Kn 0. Suppose
w2 �Kn x2. Let y = 0. Then w2 �Kn x2 + y2 = |x|2 + y2 and, by (3.8), we have
L2
w � L2

|x| +L2
y and hence L2

w−L2
|x| � 0. Since w �Kn 0 and |x| �Kn 0 so that Lw � 0

and L|x| � 0, we also have Lw + L|x| � 0 and, in particular, (Lw + L|x|)1/2 is defined
and invertible. Finally, we have

(Lw − L|x|)(Lw + L|x|) = (L2
w − L2

|x|) + (LwL|x| − L|x|Lw) � 0,(3.15)

where the last step follows from L2
w − L2

|x| � 0 and the fact that LwL|x| − L|x|Lw is

antisymmetric. Thus, the matrix (Lw − L|x|)(Lw + L|x|) is positive definite, though

not necessarily symmetric. Since (Lw + L|x|)1/2 is invertible, the symmetric matrix

(Lw +L|x|)1/2(Lw−L|x|)(Lw +L|x|)1/2 has the same eigenvalues as the matrix (Lw−
L|x|)(Lw+L|x|). It follows that the eigenvalues of the latter matrix must be real, and in

view of (3.15), positive. As a result, we have (Lw+L|x|)1/2(Lw−L|x|)(Lw+L|x|)1/2 � 0
and hence Lw − L|x| � 0 or, equivalently, w �Kn |x|. Since |x| �Kn x, this yields
w �Kn x. Thus (3.9) holds true.

Finally, it can be shown by a standard continuity argument that the implications
(3.8) and (3.9) remain true when “�” is replaced by “�” everywhere.

The converses of both (3.8) and (3.9) are false. In particular, take n = 3 and let

x = (
√

2.5, 1, 1), y = (0, 0, 0), w = (2
√

2.5, 2, 0).

Then, it can be checked that w �Kn x �Kn 0 and L2
w � L2

x = L2
x + L2

y, while
w2 ��Kn x2 = x2 + y2. The property that w �Kn x whenever w �Kn 0 and w2 �Kn x2

has a matrix counterpart. In particular, it can be shown that W � X whenever
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W � 0 and W 2 � X2, where W , X are n × n real symmetric matrices [21, Lemma
6.1(c)]. The converse of this implication is false, much like its vector counterpart.

By using Proposition 3.4, we have the following lemma on the positive definite
property of certain matrices. This lemma, analogous to a result in the semidefinite
setting [6, proof of Lemma 6], will be needed to establish the existence of Newton
direction when a smoothing approach based on (4.6) is applied to solve the SOCCP
(see Proposition 6.2).

Lemma 3.5. For any x, y in �n and any w �Kn 0, we have

w2 �Kn x2 + y2

=⇒ (Lw − Lx)(Lw − Ly) � 0, Lw − Lx � 0, Lw − Ly � 0.
(3.16)

Moreover, (3.16) remains true when “�” is replaced by “�” everywhere.
Proof. Fix any x, y in �n and any w �Kn 0. Suppose w2 �Kn x2 + y2. Then,

w2 �Kn x2 and w2 �Kn y2, and thus it follows from Proposition 3.4 that

L2
w � L2

x + L2
y, Lw � Lx, Lw � Ly.

Thus, it suffices to prove that (Lw − Lx)(Lw − Ly) � 0. Since the matrix (Lw −
Lx)(Lw −Ly) is not necessarily symmetric, we need to prove that its symmetric part
is positive definite. Let S denote the symmetric part of (Lw − Lx)(Lw − Ly). Then

S = L2
w − Lx + Ly

2
Lw − Lw

Lx + Ly
2

+
LxLy + LyLx

2

=

(
1

2
L2
w +

1

2
L2
x +

1

2
L2
y −

Lx + Ly
2

Lw − Lw
Lx + Ly

2
+

LxLy + LyLx
2

)

+
1

2

(
L2
w − L2

x − L2
y

)
=

1

2
(Lw − Lx − Ly)

2
+

1

2

(
L2
w − L2

x − L2
y

) � 0,

where the third equality follows from completing the square, and the last step is due
to the fact that L2

w − L2
x − L2

y � 0.
An analogous argument shows that the implication (3.16) remains true when “�”

is replaced by “�” everywhere.
We note that (Lw − Lx)(Lw − Ly) � 0 is false if w is replaced more generally by

any vector w such that Lw − Lx � 0 and Lw − Ly � 0. In other words, the product
of two positive definite matrices of the form (2.4) may not be positive definite. Thus,
the specific form of w (as it relates to x and y) appears to be crucial.

4. Smoothing functions for the SOCCP. In this and the next section, we
use the results of the previous section to define and analyze smoothing functions for
SOCCP (1.1). The first class of smoothing functions that we consider is a natural
generalization of a proposal of Chen and Mangasarian [4, 5] in the case of NCP:

φµ(x, y) = x− µg((x− y)/µ),(4.1)

where µ > 0 and g ∈ CM. Here CM denotes the class of functions g : �n →
�n defined by (3.1) with ĝ : � → �+ a continuously differentiable convex function
satisfying limα→−∞ ĝ(α) = 0, limα→∞(ĝ(α) − α) = 0 and 0 < ĝ′(α) < 1 for all α ∈ �
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(see [22]). A special case of this smoothing function is a proposal of Chen and Harker
[3], Kanzow [13], and Smale [19], corresponding to

ĝ(α) =
(√

α2 + 4 + α
)
/2.

Another choice of ĝ is obtained by integrating the sigmoid function α  → 1/(1 +
exp(−α)) used in neural networks [4]:

ĝ(α) = ln(exp(α) + 1).

Using Proposition 3.3, we derive below some simple formulas for φµ and φ0, and
we show that φ0 satisfies (1.5).

Proposition 4.1. For any g ∈ CM and µ > 0, let φµ : �n × �n → �n be the
smoothing function given by (4.1). Then the following results hold.

(a) For any x = (x1, x2), y = (y1, y2) ∈ � × �n−1, φµ(x, y) has the formula

φµ(x, y) = x− µ(ĝ(λ1/µ)u(1) + ĝ(λ2/µ)u(2)),(4.2)

where, for i = 1, 2,

λi = x1 − y1 + (−1)i‖x2 − y2‖,(4.3)

u(i) =




1
2

(
1, (−1)i

x2 − y2

‖x2 − y2‖
)

if x2 �= y2,

1
2

(
1, (−1)iw

)
if x2 = y2,

(4.4)

with w ∈ �n−1 being an arbitrary vector satisfying ‖w‖ = 1.
(b) The pointwise limit φ0 = limµ→0+ φµ has the formula

φ0(x, y) = x− ([λ1]+u
(1) + [λ2]+u

(2)) = x− [x− y]+,(4.5)

where, for i = 1, 2, λi and u(i) are given by (4.3) and (4.4), respectively, with
w ∈ �n−1 being an arbitrary vector satisfying ‖w‖ = 1. Moreover, φ0 satisfies
(1.5) with K = Kn.

Proof. Part (a) follows from (4.1), (3.1), and (2.5)–(2.7). We prove part (b)
below.

Since limα→−∞ ĝ(α) = 0 and limα→∞(ĝ(α)−α) = 0, we have limµ→0+ µĝ(λi/µ) =
[λi]+ for i = 1, 2. It then follows from (4.2) that

lim
µ→0+

φµ(x, y) = x− lim
µ→0+

µ(ĝ(λ1/µ)u(1) + ĝ(λ2/µ)u(2))

= x− ([λ1]+u
(1) + [λ2]+u

(2))

= x− [x− y]+,

where λi, i = 1, 2, are given by (4.3), and the last equality follows from (3.5). This
proves (4.5).

Finally, Kn is a closed convex cone that is self-dual, i.e., Kn = {x ∈ �n|〈x, y〉 ≥
0 ∀y ∈ Kn}. Then, it is known [26, Lemma 2.2] that two vectors x, y in �n satisfy
x = [x−y]+ if and only if x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0. This together with (4.5) proves
(1.5).
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A second type of smoothing function that we consider is a generalization of a
proposal of Kanzow [4] in the case of the NCP, based on smoothing the Fischer–
Burmeister function:

φµ(x, y) = x + y − (x2 + y2 + 2µ2e)1/2.(4.6)

Notice that φµ(x, y) = 0 if and only if x ∈ int Kn, y ∈ int Kn, and x · y = µ2e. Analo-
gous to Proposition 4.1, we derive below simple formulas for φµ and the corresponding
φ0, and we show that φ0 satisfies (1.5).

Proposition 4.2. For any µ > 0, let φµ : �n × �n → �n be given by (4.6).
Then the following results hold.

(a) For any x = (x1, x2), y = (y1, y2) ∈ � × �n−1, φµ(x, y) has the formula

φµ(x, y) = x + y −
(√

λ1u
(1) +

√
λ2u

(2)
)
,(4.7)

where, for i = 1, 2,

λi = ‖x‖2 + ‖y‖2 + 2µ2 + 2(−1)i‖x1x2 + y1y2‖,(4.8)

u(i) =




1
2

(
1, (−1)i

x1x2 + y1y2

‖x1x2 + y1y2‖
)

if x1x2 + y1y2 �= 0,

1
2

(
1, (−1)iw

)
if x1x2 + y1y2 = 0,

(4.9)

with w ∈ �n−1 being an arbitrary vector satisfying ‖w‖ = 1.
(b) The pointwise limit φ0 = limµ→0+ φµ has the formula

φ0(x, y) = x + y −
(√

λ1u
(1) +

√
λ2u

(2)
)

= x + y − (x2 + y2)1/2,(4.10)

where, for i = 1, 2,

λi = ‖x‖2 + ‖y‖2 + 2(−1)i‖x1x2 + y1y2‖(4.11)

and u(i) is given by (4.9), with w ∈ �n−1 being an arbitrary vector satisfying
‖w‖ = 1. Moreover, φ0 satisfies (1.5) with K = Kn.

Proof. Part (a) follows from (4.6), (3.3), and the observation that λ1, λ2 given by
(4.8) are the spectral values of x2 + y2 + 2µ2e. We prove part (b) below.

Fix any x = (x1, x2), y = (y1, y2) ∈ � × �n−1. For i = 1, 2, we have that λi
given by (4.8) converges to λi given by (4.11) as µ → 0+. Since u(i) given by (4.9) is
independent of µ, then φµ(x, y) given by (4.7) converges to the second term in (4.10),
thus proving the first equality in (4.10). Using (3.3) and the observation that λ1, λ2

given by (4.11) are the spectral values of x2 + y2, we obtain the second equality in
(4.10).

To show that (1.5) holds, let us first suppose 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn.
Then, by Proposition 2.1, we have x · y = 0, implying (x + y)2 = x2 + y2 and
hence x + y = (x2 + y2)1/2, i.e., φ0(x, y) = 0. Conversely, suppose x and y satisfy
φ0(x, y) = 0. Then, x+y = (x2 +y2)1/2, so that, upon squaring both sides, we obtain
x ·y = 0. Let w = (x2 +y2)1/2. Then, w �Kn 0 and w2 = x2 +y2, implying w2 �Kn x2

and w2 �Kn y2. Thus, it follows from Proposition 3.4 that w �Kn x and w �Kn y.
As a result, x = w − y �Kn 0 and y = w − x �Kn 0, or equivalently, x, y ∈ Kn.
Since x · y = 0 as shown above, this together with Proposition 2.1 completes the
proof.
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5. Differential and Lipschitzian properties of smoothing functions. In
this section we study differential and Lipschitzian properties of the smoothing func-
tions (4.1) and (4.6) introduced in the previous section.

Proposition 5.1. For any µ > 0, let φµ : �n×�n → �n be given by either (4.1)
with g ∈ CM or (4.6). Then, for any x, y ∈ �n and any µ > ν > 0, we have

ρ(µ− ν)e �Kn φν(x, y) − φµ(x, y) �Kn 0,(5.1)

ρµe �Kn φ0(x, y) − φµ(x, y) �Kn 0,(5.2)

where ρ = ĝ(0) if φµ is given by (4.1), and ρ =
√

2 if φµ is given by (4.6).
Proof. Fix any x = (x1, x2), y = (y1, y2) in �× �n−1.
Suppose that φµ is given by (4.1) with g ∈ CM. Then, for any µ > ν > 0,

Proposition 4.1(a) yields

φν(x, y) − φµ(x, y) = (µĝ(λ1/µ) − νĝ(λ1/ν))u(1) + (µĝ(λ2/µ) − νĝ(λ2/ν))u(2),(5.3)

where λi and u(i) are given by (4.3) and (4.4) for i = 1, 2. By [22, Lemma 3.1], we
have 0 < µĝ(λi/µ) − νĝ(λi/ν) ≤ ĝ(0)(µ − ν) for i = 1, 2. This, together with (5.3)
and Property 2.2 and u(i) �Kn 0 for i = 1, 2, yields

0 �Kn φν(x, y) − φµ(x, y)

�Kn ĝ(0)(µ− ν)u(1) + ĝ(0)(µ− ν)u(2)

= ĝ(0)(µ− ν)e.

This proves (5.1) with ρ = ĝ(0).
Suppose that φµ is given by (4.6). Then, for any µ > ν > 0, Proposition 4.2(a)

yields that

φν(x, y) − φµ(x, y) =
(√

λ1(µ) −
√
λ1(ν)

)
u(1) +

(√
λ2(µ) −

√
λ2(ν)

)
u(2)

=
2(µ2 − ν2)√

λ1(µ) +
√
λ1(ν)

u(1) +
2(µ2 − ν2)√

λ2(µ) +
√
λ2(ν)

u(2),(5.4)

where we define

λi(µ) = ‖x‖2 + ‖y‖2 + 2µ2 + 2(−1)i‖x1x2 + y1y2‖,
and u(i) is given by (4.9) for i = 1, 2. Since µ > ν > 0, and so µ2 − ν2 > 0, we obtain
from (5.4) and u(i) �Kn 0 for i = 1, 2, that

φν(x, y) − φµ(x, y) �Kn 0.

Moreover, since

λi(µ) ≥ 2µ2, λi(ν) ≥ 2ν2, i = 1, 2,

we have

2(µ2 − ν2)√
λi(µ) +

√
λi(ν)

≤
√

2(µ− ν), i = 1, 2.

Then, we obtain from (5.4) and Property 2.2 that

φν(x, y) − φµ(x, y) �Kn

√
2(µ− ν)u(1) +

√
2(µ− ν)u(2)

=
√

2(µ− ν)e.
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This proves (5.1) with ρ =
√

2.

We have shown for either choice of φµ that (5.1) holds for any µ > ν > 0. This
implies that −φν is monotone in ν > 0 with respect to the partial ordering �Kn .
Then, taking ν → 0+ in (5.1) yields

ρµe �Kn lim
ν→0+

φν(x, y) − φµ(x, y) = φ0(x, y) − φµ(x, y) �Kn 0.

This proves (5.2).

Next, we analyze the differential properties of the smoothing functions given
by (4.1) and (4.6). We begin with the following key proposition showing that the
smoothness property of ĝ is inherited by the corresponding function g associated with
an SOC.

Proposition 5.2. For any ĝ : � → � that is Fréchet-differentiable (respectively,
continuously differentiable), the function g : �n → �n defined by (3.1) is Fréchet-
differentiable (respectively, continuously differentiable), and its Jacobian at z = (z1, z2)
∈ �×�n−1 is given by the formula ∇g(z) = ĝ′(z1)I if z2 = 0, and otherwise is given
by

∇g(z) =

[
b c zT2 /‖z2‖

c z2/‖z2‖ aI + (b− a)z2z
T
2 /‖z2‖2

]
,(5.5)

where

a =
ĝ(λ2) − ĝ(λ1)

λ2 − λ1
, b =

1

2
(ĝ′(λ2) + ĝ′(λ1)) , c =

1

2
(ĝ′(λ2) − ĝ′(λ1)) ,(5.6)

with λi = z1 + (−1)i‖z2‖, i = 1, 2. If ĝ′(α) > 0 for all α ∈ �, then ∇g(z) is positive
definite for all z ∈ �n.

Proof. Assume that ĝ is Fréchet-differentiable. Fix any z = (z1, z2) ∈ � × �n−1.
First, we consider the case of z2 �= 0. By (3.1), we have

g(z) = ĝ(λ1)u
(1) + ĝ(λ2)u

(2),(5.7)

where

λi = z1 + (−1)i‖z2‖, u(i) =
1

2

(
1, (−1)i

z2
‖z2‖

)
, i = 1, 2.

Using the fact that

∇w

(
w

‖w‖
)

=
1

‖w‖
(
I − wwT

‖w‖2

)
∀w �= 0,

we obtain that u(i) is Fréchet-differentiable with respect to z, with

∇zu
(i) =

(−1)i

2‖z2‖
[

0 0
0 I − z2z

T
2 /‖z2‖2

]
, i = 1, 2.(5.8)

Similarly, λi is Fréchet-differentiable with respect to z, with

∇zλi = 2u(i), i = 1, 2.(5.9)
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Since ĝ is Fréchet-differentiable, using the chain rule and product rule for differentia-
tion, we obtain from (5.7) that

∇g(z) = ĝ(λ1)∇zu
(1) + u(1)(∇z ĝ(λ1))

T + ĝ(λ2)∇zu
(2) + u(2)(∇z ĝ(λ2))

T

= ĝ(λ1)∇zu
(1) + ĝ(λ2)∇zu

(2) + u(1)ĝ′(λ1)(∇zλ1)
T + u(2)ĝ′(λ2)(∇zλ2)

T

=
ĝ(λ2) − ĝ(λ1)

2‖z2‖
[

0 0
0 I − z2z

T
2 /‖z2‖2

]
+ 2ĝ′(λ1)u

(1)(u(1))T + 2ĝ′(λ2)u
(2)(u(2))T

= a

[
0 0
0 I − z2z

T
2 /‖z2‖2

]
+ 2ĝ′(λ1)u

(1)(u(1))T + 2ĝ′(λ2)u
(2)(u(2))T ,

where the third equality uses (5.8) and (5.9), and the last equality uses the definition
of a and the fact that λ2 − λ1 = 2‖z2‖. Notice that

u(i)(u(i))T =
1

4

[
1 (−1)izT2 /‖z2‖

(−1)iz2/‖z2‖ z2z
T
2 /‖z2‖2

]
, i = 1, 2.

Substituting this into the previous expression and simplifying yields

∇g(z) = a

[
0 0
0 I − z2z

T
2 /‖z2‖2

]
+

[
b c zT2 /‖z2‖

c z2/‖z2‖ b z2z2
T /‖z2‖2

]

=

[
b c zT2 /‖z2‖

c z2/‖z2‖ aI + (b− a)z2z
T
2 /‖z2‖2

]
,

where we have used the definitions of b and c. This proves the proposition for the
case of z2 �= 0.

Next we consider the case of z2 = 0. We calculate the Jacobian matrix ∇g at z by
perturbing z by ∆z = (∆z1,∆z2) ∈ �×�n−1 and considering the resulting variation
in g. First consider the case of ∆z2 �= 0. We have from (3.1) that

g(z + ∆z) = ĝ(λ + ∆λ1)u
(1) + ĝ(λ + ∆λ2)u

(2), g(z) = ĝ(λ)u(1) + ĝ(λ)u(2),

where we define

λ = z1, ∆λi = ∆z1 + (−1)i‖∆z2‖, u(i) =
1

2

(
1, (−1)i

∆z2
‖∆z2‖

)
, i = 1, 2.

We also have from the Taylor expansion of ĝ at λ that

ĝ(λ + ∆λi) − ĝ(λ) = ĝ′(λ)∆λi + o(∆λi) = ĝ′(λ)∆λi + o(‖∆z‖),
where o(·) is the usual “little o” notation, i.e., β = o(α) means β/α → 0 as α → 0.
Combining the preceding two relations, we obtain

g(z + ∆z) − g(z) = (ĝ(λ + ∆λ1)u
(1) + ĝ(λ + ∆λ2)u

(2)) − (ĝ(λ)u(1) + ĝ(λ)u(2))

= (ĝ(λ + ∆λ1) − ĝ(λ))u(1) + (ĝ(λ + ∆λ2) − ĝ(λ))u(2)

= ĝ′(λ)∆λ1u
(1) + ĝ′(λ)∆λ2u

(2) + o(‖∆z‖)
=

ĝ′(λ)

2

(
∆λ2 + ∆λ1, (∆λ2 − ∆λ1)

∆z2
‖∆z2‖

)
+ o(‖∆z‖)

= ĝ′(λ) (∆z1,∆z2) + o(‖∆z‖)
= ĝ′(λ)∆z + o(‖∆z‖),
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where the fourth equality follows from the definition of u(i), and the fifth equality
uses the fact that

∆λ2 + ∆λ1 = 2∆z1, ∆λ2 − ∆λ1 = 2‖∆z2‖.
In the case of ∆z2 = 0, the same argument applies except that ∆z2/‖∆z2‖ is replaced
by any w ∈ �n−1 satisfying ‖w‖ = 1. This shows that g is Fréchet-differentiable at z
and

∇g(z) = ĝ′(λ)I.

Assume that ĝ is continuously differentiable. It is readily seen from (5.5) and (5.6)
that ∇g is continuous (entrywise) at every z with z2 �= 0. To argue the continuity of
∇g at every z with z2 = 0, fix any x = (x1, 0) ∈ �n and consider the limit of ∇g(z)
as z = (z1, z2) approaches x. Let λi = z1 + (−1)i‖z2‖, i = 1, 2, and let a, b, c be given
by (5.6). Then, since limz→x λ1 = limz→x λ2 = x1, we have

lim
z→x

a = lim
z→x

ĝ(λ2) − ĝ(λ1)

λ2 − λ1
= ĝ′(x1), lim

z→x
b = ĝ′(x1), lim

z→x
c = 0.

Thus, taking the limit in (5.5) as z → x yields

lim
z→x

∇g(z) = ĝ′(x1)I = ∇g(x).

Last, assume that ĝ′(α) > 0 for all α ∈ �. Fix any z = (z1, z2). We will show
that ∇g(z) is positive definite. If z2 �= 0, then ∇g(z) is given by (5.5) with a, b, c
given by (5.6) and λi = z1 + (−1)i‖z2‖, i = 1, 2. Since b > 0, it suffices to show that
the Schur complement of b in ∇g(z) is positive definite. This Schur complement has
the form

aI + (b− a)
z2z

T
2

‖z2‖2
− c2z2z

T
2

b‖z2‖2
= a

(
I − z2z

T
2

‖z2‖2

)
+ b

(
1 − c2

b2

)
z2z

T
2

‖z2‖2
.

Since a > 0, b > 0, and b > c ≥ 0, the right-hand side is a linear positive combination
of the matrices I − z2z

T
2 /‖z2‖2 and z2z

T
2 /‖z2‖2, and thus it is positive definite. If

z2 = 0, then ∇g(z) = ĝ′(z1)I, which is positive definite due to ĝ′(z1) > 0.
Notice that the Jacobian ∇g(z) is symmetric. Moreover, it can be seen that

Proposition 5.2 still holds if “ĝ : � → �” is replaced by “ĝ : �++ → �” and “z ∈ �n”
is replaced by “z ∈ int Kn.” By using Proposition 5.2 and this observation, we obtain
the following differentiability results for the smoothing functions given by (4.1) and
(4.6).

Corollary 5.3. For any µ > 0 and any g ∈ CM, the Chen–Mangasarian
smoothing function φµ : �n × �n → �n given by (4.1) is continuously differentiable,
and its Jacobian is given by

∇φµ(x, y) =

[
I −∇g(z)
∇g(z)

]
,

where z = (x− y)/µ and ∇g(z) has the formula in Proposition 5.2.
Corollary 5.4. For any µ > 0, the smoothed Fischer–Burmeister function

φµ : �n×�n → �n given by (4.6) is continuously differentiable, and its Jacobian can
be written as

∇φµ(x, y) =

[
I − 2Lx∇g(z)
I − 2Ly∇g(z)

]
=

[
I − LxL

−1
w

I − LyL
−1
w

]
,
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where z = x2 + y2 + 2µ2e, w = z1/2, and ∇g(z) has the formula in Proposition 5.2
with ĝ(α) = α1/2 for all α ∈ �++.

Proof. Fix any µ > 0. Define the mapping Z : �n × �n → �n by Z(x, y) =
x2 + y2 + 2µ2e. Direct calculation yields

Z(x, y) = (‖x‖2 + ‖y‖2 + 2µ2, 2(x1x2 + y1y2)),

from which we see that Z is continuously differentiable and that

∇xZ(x, y) = 2

[
x1 xT2
x2 x1I

]
= 2Lx, ∇yZ(x, y) = 2

[
y1 yT2
y2 y1I

]
= 2Ly.(5.10)

Also, since x2 �Kn 0, y2 �Kn 0, e �Kn 0, we have that Z(x, y) �Kn 0 for all (x, y) ∈
�n × �n, i.e., Z maps �n × �n into int Kn. Since ĝ(·) = (·)1/2 is continuously
differentiable on �++, it follows from Proposition 5.2 and the subsequent remark that
g is continuously differentiable on int Kn. Thus, by the chain rule for differentiation,
the composite mapping ψµ = g ◦ Z is continuously differentiable and

∇xψµ(x, y) = ∇xZ(x, y)∇g(Z(x, y)), ∇yψµ(x, y) = ∇yZ(x, y)∇g(Z(x, y)).

This together with (5.10) and the fact that

∇g(z) =
1

2
L−1
w with w = z1/2(5.11)

yields the desired Jacobian formula.
It remains to verify (5.11). Although this can be verified by using (5.5), (5.6),

and ĝ(α) = α1/2 to calculate ∇g(z)−1 explicitly and by comparing it with Lw, the
algebra becomes quite involved. Instead we will use the following simpler argument:
Since z �Kn 0, there exists scalar δ > 0 such that z + d �Kn 0 for all d ∈ �n with
‖d‖ < δ. For any such d we have, upon letting u = (z+d)1/2 −w and using w = z1/2,
that

d = (w + u)2 − w2 = 2w · u + u2 = 2Lwu + u2.

Since w �Kn 0, Lw is invertible, applying L−1
w to both sides yields

L−1
w d = 2u + L−1

w u2.

This shows that ‖u‖ is in the order of ‖d‖ whenever ‖d‖ is sufficiently small. Moreover,

g(z + d) − g(z) = u =
1

2
L−1
w d− 1

2
L−1
w u2,

and it follows that ∇g(z) = 1
2L

−1
w .

For simplicity, we have considered in this section only the case of a single SOC.
Extension of the results in this section to the case of a direct product of SOCs, i.e.,
(1.2), is straightforward and is omitted.

6. A smoothing approach to solving the SOCCP. In this section, we study
the use of smoothing functions in a smoothing approach to solving the SOCCP (1.1),
where F : �n × �n × �� → �n × �� is continuously differentiable and K is given by
(1.2) with m,n1, . . . , nm ≥ 1 and n1 + · · ·+nm = n. Our study bears some similarity
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with that given in [6] for the SDCP, though our analysis is quite different due to the
different structures of the SOC.

In what follows, we write

x = (x1, . . . , xm) ∈ �n

to implicitly mean xi ∈ �ni , i = 1, . . . ,m. Then, using the direct product structure
of (1.2), the SOCCP (1.1) may be written equivalently as

〈xi, yi〉 = 0, xi ∈ Kni , yi ∈ Kni , i = 1, . . . ,m, F (x, y, ζ) = 0.

We choose, for each i ∈ {1, . . . ,m}, a continuously differentiable function φiµ : �ni ×
�ni → �ni , parameterized by µ > 0, such that the pointwise limit φi0(xi, yi) =
limµ→0+ φiµ(xi, yi) satisfies

〈xi, yi〉 = 0, xi ∈ Kni , yi ∈ Kni ⇐⇒ φi0(xi, yi) = 0.

Then the function φµ : �n ×�n → �n defined by

φµ(x, y) = (φ1
µ(x1, y1), . . . , φ

m
µ (xm, ym)) ∀x, y ∈ �n(6.1)

is continuously differentiable and satisfies (1.5). The system of smooth equations (1.6)
decomposes accordingly.

In the smoothing approach to solving (1.1), we fix µ > 0 and solve (1.6) approxi-
mately by applying a few Newton steps; then we decrease µ and repeat this iteration.
For the Newton direction to be well defined and unique, it is essential that the Jaco-
bian matrix of the left-hand side of (1.6), viewed as a mapping from �2n+� to �2n+�,
be invertible. To this end, consider the following rank and monotonicity assumptions
on ∇F (x, y, ζ):

rank∇ζF (x, y, ζ) = �,(6.2)

(u, v,∆) ∈ �n ×�n ×��, ∇F (x, y, ζ)T (u, v,∆) = 0 =⇒ uT v ≥ 0.(6.3)

These assumptions are reasonable and, in particular, hold for convex programs with
linear and SOC constraints (see the next section). When F (x, y, ζ) has the form (1.3),
the above assumptions reduce to the assumption that ∇F0(x) is positive semidefinite.
The following proposition shows that if (6.2) and (6.3) hold and each φiµ is given by
(4.1), then the aforementioned Jacobian is invertible for any µ > 0, and thus the
corresponding Newton direction is well defined.

Proposition 6.1. Assume that F : �n × �n × �� → �n × �� is continuously
differentiable. Let φµ : �n ×�n → �n be defined by (6.1) with

φiµ(xi, yi) = xi − µg((xi − yi)/µ) ∀xi, yi ∈ �ni

and g ∈ CM. Then, for each µ > 0 and (x, y, ζ) ∈ �n ×�n ×�� satisfying (6.2) and
(6.3), the matrix Jµ(x, y, ζ) is invertible, where

Jµ(x, y, ζ) =

[
I − diag{∇g(zi)}mi=1 diag{∇g(zi)}mi=1 0

∇xF (x, y, ζ)T ∇yF (x, y, ζ)T ∇ζF (x, y, ζ)T

]
,(6.4)

zi = (xi − yi)/µ, and ∇g(zi) ∈ �ni×ni is specified as in Proposition 5.2.
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Proof. Fix any µ > 0 and any (x, y, ζ) ∈ �n ×�n ×�� satisfying (6.2) and (6.3).
By using (6.1) and Corollary 5.3, it is readily verified that Jµ(x, y, ζ) given by (6.4)
is indeed the Jacobian matrix for the left-hand side of (1.6) with φµ as defined. We
show below that Jµ(x, y, ζ) is invertible.

Let (u, v,∆) ∈ �n ×�n ×�� be a vector in the null space of Jµ(x, y, ζ). We will
show that u = v = 0, ∆ = 0. By (6.4),

(I −B)u + Bv = 0, ∇F (x, y, ζ)T (u, v,∆) = 0,(6.5)

where for simplicity we denote B = diag{B1, B2, . . . , Bm} and Bi = ∇g(zi), with
zi = (xi−yi)/µ. In what follows, we write zi = (zi1, zi2) ∈ �×�ni−1 for i = 1, . . . ,m.

We claim that I � B � 0. To see this, fix any i ∈ {1, . . . ,m}. Suppose zi2 = 0.
Then Proposition 5.2 yields Bi = ĝ′(zi1)I. Since g ∈ CM so that 1 > ĝ′(zi1) > 0,
this implies I � Bi � 0. Suppose zi2 �= 0. Then Proposition 5.2 yields that Bi is
symmetric and

I −Bi =




1 − bi −cizi2
T

‖zi2‖
− cizi2
‖zi2‖ (1 − ai)I + (ai − bi)

zi2zi2
T

‖zi2‖2


 ,

where

ai =
ĝ(λi2) − ĝ(λi1)

λi2 − λi1
, bi =

1

2
(ĝ′(λi2) + ĝ′(λi1)), ci =

1

2
(ĝ′(λi2) − ĝ′(λi1)),

with λij = zi1 + (−1)j‖zi2‖ for j = 1, 2. Since g ∈ CM, we have 1 > ĝ′(α) > 0 for all
α ∈ �. Also, λi2 > λi1 and the convexity of ĝ imply ĝ′(λi2) ≥ ĝ′(λi1). Thus,

1 > ai > 0, bi > ci ≥ 0, 1 − bi > ci ≥ 0.(6.6)

Since 0 < bi < 1, it suffices to show that the Schur complement of bi in I − Bi is
positive definite (see [12]). This Schur complement has the form

(1 − ai)I + (ai − bi)
zi2zi2

T

‖zi2‖2
− c2i zi2zi2

T

(1 − bi)‖zi2‖2

= (1 − ai)

(
I − zi2zi2

T

‖zi2‖2

)
+ (1 − bi)

(
1 − c2i

(1 − bi)2

)
zi2zi2

T

‖zi2‖2
,

which, by (6.6), is a linear positive combination of I−zi2zi2T /‖zi2‖2 and zi2zi2
T /‖zi2‖2

and hence is positive definite. Thus, I � Bi. Also, Proposition 5.2 shows that Bi � 0.
Thus, we have shown that I � Bi � 0 for all i or, equivalently, I � B � 0.

Since B is invertible, multiplying both sides of the first equation in (6.5) by uTB−1

yields

uT (B−1 − I)u + uT v = 0.(6.7)

Since B is symmetric and I � B � 0, it follows that B−1 is symmetric and B−1 � I,
and so uT (B−1 − I)u ≥ 0. Also, by the assumption (6.3), we have from the sec-
ond equation in (6.5) that uT v ≥ 0. Thus, (6.7) implies uT (B−1 − I)u = 0 and
hence u = 0. Since B is invertible, the first equation in (6.5) then implies v = 0.
Since ∇ζF (x, y, ζ) has rank �, the second equation in (6.5) then implies ∆ = 0. Thus,
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the null space of Jµ(x, y, ζ) comprises only the origin, and thus Jµ(x, y, ζ) is
invertible.

The next proposition shows that, when the smoothed Fischer–Burmeister function
is used, the Jacobian matrix for the left-hand side of (1.6) is invertible. The proof
uses Corollary 5.4 and Lemma 3.5.

Proposition 6.2. Assume that F : �n × �n × �� → �n × �� is continuously
differentiable. Let φµ : �n ×�n → �n be defined by (6.1) with

φiµ(xi, yi) = xi + yi − (x2
i + y2

i + 2µ2e)1/2 ∀xi, yi ∈ �ni .

Then, for each µ > 0 and (x, y, ζ) ∈ �n × �n × �� satisfying (6.2) and (6.3), the
matrix Jµ(x, y, ζ) is invertible, where

Jµ(x, y, ζ)(6.8)

=

[
diag{∇xi

φiµ(xi, yi)
T }mi=1 diag{∇yiφ

i
µ(xi, yi)

T }mi=1 0
∇xF (x, y, ζ)T ∇yF (x, y, ζ)T ∇ζF (x, y, ζ)T

]
;

∇xi
φiµ(xi, yi) and ∇yiφ

i
µ(xi, yi) are given as in Corollary 5.4, with x, y, w, z replaced

by xi, yi, wi, zi, respectively; and ∇g(zi) ∈ �ni×ni is specified as in Proposition 5.2
with ĝ(α) = α1/2 for all α ∈ �++.

Proof. Fix any µ > 0 and (x, y, ζ) ∈ �n × �n × �� satisfying (6.2) and (6.3).
From (6.1), it is easily seen that Jµ(x, y, ζ) given by (6.8) is the Jacobian matrix
of the left-hand side of (1.6) with φµ as defined. We show below that Jµ(x, y, ζ) is
invertible.

Let (u, v,∆) ∈ �n ×�n ×�� be a vector in the null space of Jµ(x, y, ζ). We will
show that u = v = 0, ∆ = 0. By Corollary 5.4, we have ∇xiφ

i
µ(xi, yi)

T = I −L−1
wi

Lxi

and ∇yiφ
i
µ(xi, yi)

T = I − L−1
wi

Lyi , where wi = z
1/2
i and zi = x2

i + y2
i + 2µ2e. Then,

by (6.8),

(I − L−1
w Lx)u + (I − L−1

w Ly)v = 0, ∇F (x, y, ζ)T (u, v,∆) = 0,(6.9)

where for simplicity we define

Lw = diag {Lw1
, . . . , Lwm

}, Lx = diag {Lx1
, . . . , Lxm

}, Ly = diag {Ly1 , . . . , Lym}.
Applying Lw to both sides of the first equation in (6.9) yields

(Lw − Lx)u + (Lw − Ly)v = 0.

Since w2
i = x2

i +y2
i +2µ2e �Kni x2

i +y2
i , Lemma 3.5 shows that Lwi −Lyi is invertible

for all i, and hence Lw − Ly is invertible. Then, multiplying both sides of the above
equation by uT (Lw − Ly)

−1 from the left yields

uT (Lw − Ly)
−1(Lw − Lx)u + uT v = 0.(6.10)

Lemma 3.5 shows that (Lwi −Lxi)(Lwi −Lyi) � 0 for all i, and hence (Lw−Lx)(Lw−
Ly) � 0. Then uT (Lw − Ly)

−1(Lw − Lx)u = dT (Lw − Lx)(Lw − Ly)d ≥ 0, where we
let d = (Lw − Ly)

−1u. Also, by assumption (6.3), we have from the second equation
in (6.9) that uT v ≥ 0. Thus, (6.10) implies dT (Lw − Lx)(Lw − Ly)d = 0 and hence
d = 0. Then u = 0 and since I−L−1

w Ly is invertible, the first equation in (6.9) implies
v = 0. Since ∇ζF (x, y, ζ) has rank �, the second equation in (6.9) then implies ∆ = 0.
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Thus, the null space of Jµ(x, y, ζ) comprises only the origin, and thus Jµ(x, y, ζ) is
invertible.

Thus far we have not specified an algorithm for solving the SOCCP. This is inten-
tional, since algorithm design and analysis is not a focus of this paper. In some cases
and respects, a smoothing algorithm designed for solving an NCP can be extended to
solve an SOCCP in a relatively straightforward manner. For example, the algorithm
in [22], which was extended in [6] to solve an SDCP, can also be extended to solve an
SOCCP. Its global convergence analysis [22, Proposition 3.1] then extends accordingly
using Propositions 6.1 and 6.2.

7. Applications to optimization with SOC constraints. Consider the fol-
lowing optimization problem with SOC constraints:

minimize f(ζ)
subject to h(ζ) − x = 0, x ∈ K,(7.1)

where f : �� → � and h : �� → �n are twice continuously differentiable functions
and K has the form (1.2). In the special case in which both f and g are affine,
this problem reduces to that studied in [14]. We discuss below how results from the
previous section can be applied to solving this problem.

By attaching the Lagrange multiplier vector y ∈ �n to the equality constraints
in (7.1) and introducing the Lagrangian

l(x, y, ζ) = f(ζ) − h(ζ)T y + xT y,

we can write the first-order necessary optimality conditions for (7.1) in the form of
SOCCP (1.1) with

F (x, y, ζ) =

( ∇yl(x, y, ζ)
∇ζ l(x, y, ζ)

)
=

(
x− h(ζ)

∇f(ζ) −∇h(ζ)y

)
.(7.2)

Notice that F is continuously differentiable. Moreover, it is straightforward to verify
that ∇F (x, y, ζ) satisfies the rank and monotonicity assumptions (6.2) and (6.3) if

rank∇h(ζ) = � and ∇2
ζζ l(x, y, ζ) � 0.

In particular, this is satisfied if f is convex and h is affine with ∇h having linearly
independent columns.

Using (7.2), it can be seen that the Newton equation associated with (1.6) has
the form

∇xφµ(x, y)Tu + ∇yφµ(x, y)T v = −φµ(x, y),

u−AT∆ = h(ζ) − x,

Q∆ −Av = −∇ζ l(x, y, ζ),

where for simplicity we denote A = ∇h(ζ) ∈ ��×n and Q = ∇2
ζζ l(x, y, ζ) ∈ ��×�.

Upon eliminating u and v from these equations, we obtain the reduced system(
Q + A(∇yφµ(x, y)T )−1∇xφµ(x, y)TAT

)
∆ = r,

where

r = −∇ζ l(x, y, ζ) −A(∇yφµ(x, y)T )−1
(
φµ(x, y) + ∇xφµ(x, y)T (h(ζ) − x)

)
.
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Upon writing A = [A1 · · · Am], with Ai ∈ ��×ni for i = 1, . . . ,m, and using the
product structure (6.1), we can rewrite the above reduced system as(

Q +

m∑
i=1

AiDiA
T
i

)
∆ = r,(7.3)

where for simplicity we define

Di = (∇yiφ
i
µ(xi, yi)

T )−1∇xi
φiµ(xi, yi)

T .

Here and throughout, our notations are as in the previous section. We show below
that the left-hand matrix of (7.3) can be efficiently computed for the choices of φiµ
specified in Proposition 6.1 or 6.2. In particular, we show that Di can be efficiently
computed and has a sparsity structure.

For φiµ as specified in Proposition 6.1, we have

Di = ∇g(zi)
−1 − I

with zi = (xi − yi)/µ. If zi2 = 0, then Proposition 5.2 yields ∇g(zi)
−1 = ĝ′(zi1)−1I.

If zi2 �= 0, then Proposition 5.2 together with aibi = b2i − c2i yields

∇g(zi)
−1 =

1

ai

[
1 −cizTi2/(bi‖zi2‖)

−cizi2/(bi‖zi2‖) I

]
,

where ai, bi, ci are as defined in the proof of Proposition 6.1. Thus Di is almost
diagonal, except for a dense first row and first column.

For φiµ as specified in Proposition 6.2, we have by Corollary 5.4

Di = (I − L−1
wi

Lyi)
−1(I − L−1

wi
Lxi)

= (Lwi
− Lyi)

−1(Lwi
− Lxi

)

= (Lwi−yi)
−1Lwi−xi ,

where wi = (x2
i + y2

i + 2µ2e)1/2. When calculating Lwi−xi , we only need to compute
and store the vector wi − xi, since it can be used to easily determine Lwi−xi . The
main computational effort therefore lies in computing and storing the matrix L−1

wi−yi .
Since Lwi−yi is the sum of the matrix (wi1 − yi1)I, whose inverse is easily obtained,
and a symmetric rank two matrix, we can store only the vector wi − yi and use the
well-known Sherman–Morrison–Woodbury updating formula to evaluate L−1

wi−yi . The
total number of such updates required to compute all of the Di’s is then proportional
to m, and the total storage requirement is proportional to n.
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Abstract. In this paper we show that in several important classes of optimization problems,
like mathematical programming with k-smooth data, quadratic programming in a Hilbert space,
convex programming in a Banach space, semi-infinite programming, and optimal control of linear
systems with quadratic cost, most of the problems (in the Baire category sense) are well-posed. This
is derived from a general variational principle for problems with functional constraints.

Key words. variational principle, well-posed optimization problem, mathematical program-
ming, control problems, genericity, Baire category
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1. Introduction and preliminaries. Existence results for optimization prob-
lems are usually based on the classical Weierstrass theorem claiming that a lower
semicontinuous function attains its minimal value on a compact set. But it has been
noticed that in certain classes of optimization problems, solutions may typically exist
(and even have some additional good properties like uniqueness, stability, etc.) even if
the compactness condition of the Weierstrass theorem is not satisfied for most of the
problems. The terms “typically exists” and “most of the problems” are understood
here in the sense of the Baire category: Given a class of problems P, endowed with
a complete metric, there exists a dense Gδ-subset P ′ of P such that every problem
P ∈ P ′ has a solution (or is well-posed; see the definition below). In other words, the
existence of the solution is a generic property in the class P. We can refer, e.g., to
[BL, CK, CKR1, CKR2, LP, R1, R2], where it was shown that for different classes
of optimization problems a typical problem is well-posed in one or another sense.
Surveys of the results obtained at this stage can be found in [DoZo] and [KR].

At the abstract level, the fact that a typical minimization problem in some class
is well-posed under certain conditions is obtained either by involving set-valued map-
pings and their continuity-like properties (see, e.g., [CKR1, CKR2]) or, more di-
rectly, by using some variational principle, for instance that of Deville–Godefroy–Zizler
[DGZ] and its recent modifications by Deville–Revalski [DR] and Ioffe–Zaslavski [IZa]
(see also [IT]). The first of these modifications concerns what is meant by “typi-
cal” (“dense Gδ” is replaced by the stronger property of being the complement of a
σ-porous set), while the principle from [IZa] has been recently used in several new
situations (e.g., calculus of variations [IZa] or convex and quasi-convex programming
[IL]). In this paper we use the Ioffe–Zaslavski principle to get another principle suited
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to a general infinite dimensional problem of the form

(P) minimize f(x) subject to F (x) ∈ C, G(x) = 0,

where f, F,G are continuous maps.

The list of known results concerning the generic well-posedness of (P) with respect
to variations of “natural data” such as (f, F,G) is rather short: we can mention
just [R1, IL], where convex and quasi-convex minimization under only inequality
constraints was considered, and an earlier paper by Spingarn and Rockafellar [SRo],
which was concerned with the question of the generic regularity of necessary optimality
conditions.

The main result of this paper is a variational principle for problems with con-
straints as in (P). It is stated in the next section and proved in the concluding sec-
tion 4. In section 3 we consider several important classes of problems (mathematical
programming with k-smooth data, quadratic programming in a Hilbert space, convex
programming in a Banach space, semi-infinite programming, and optimal control of
linear systems with quadratic cost) and show that generically, in the set of “mean-
ingful data,” they all are well-posed with respect to some natural metrics in the data
space.

We begin by explaining what kind of well-posedness we are going to consider and
by giving a suitable formulation of the variational principle of Ioffe–Zaslavski on which
our main result is based.

Let (X, ‖ · ‖) be a real Banach space and (A, d) be a metric space which is a
Baire space. (The latter means that a countable intersection of open dense subsets
is dense in the space.) We shall call X the domain space. The space A will serve
as a data space. Assume that a lower semicontinuous extended real-valued function
fa : X → R ∪ {+∞} is associated with each a ∈ A, and consider the problem of
minimizing fa on X. Denote by inf fa the infimum of fa on the space X.

We say that this problem (for a given a) is well-posed, provided that the following
are true:

1. inf fa is finite and attained at a unique point x0 ∈ X;
2. for any sequence {an} converging to a, inf fan is finite for large n and any

sequence {zn} ⊂ X such that fan(zn)− inf fan → 0 strongly converges to x0;
3. if an converges to a, then inf fan → inf fa = fa(x0).

The first two conditions are called “well-posedness by perturbations” in [Zo1, Zo2],
while the third one is known in the literature as value Hadamard well-posedness (see,
e.g., [DoZo]).

Now, consider the following condition.

(H) There is a dense subset B ⊂ A such that for any a ∈ B, any ε > 0, γ > 0,
there exist a nonempty open set V ⊂ A, x̄ ∈ X, α ∈ R, and λ > 0 such that for every
b ∈ V we have the following:

(i) d(a, b) < ε and inf fb > −∞;
(ii) if z ∈ X is such that fb(z) < inf fb+λ, then ‖z− x̄‖ ≤ γ and |fb(z)−α| ≤ γ.
The variational principle from [IZa] can now be stated as follows.

Theorem 1.1 (see [IZa]). Let X be a real Banach space and (A, d) be a Baire
space. Suppose that (H) holds. Then there exists a dense Gδ-subset A1 of (A, d) such
that for every a ∈ A1 the corresponding minimization problem is well-posed.

Finally, we mention that some of the results contained in this paper were an-
nounced in [ILR].
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2. Statement of the main results.

2.1. The abstract framework. We begin by introducing the main classes of
objects which are involved in the formulation of optimization problems of the (P)
type. Throughout the paper, X, Y , Z are real Banach spaces and C ⊂ Y is a closed
convex cone with a nonempty interior. We shall use the same symbol ‖ · ‖ for the
norms in all three spaces without indicating which specific norm is considered; this
will always be clear from the context. We shall also fix an element e ∈ Int C (the
interior of C).

Next we introduce the space C of all triples (f, F,G), where f , F , and G are
continuous mappings from X into R, Y , and Z, respectively. We assume that this
space is a complete metric space with respect to a metric whose properties will be
specified later (see hypothesis (A1) below). We shall call C the cost-constraint space.
Occasionally, we shall denote by C0, C≤, and C= the component spaces of elements
of C corresponding to the mappings f , F , and C, respectively, with the projection
topologies. To be more precise, we shall consider as the cost component C0 of C the
factor space of the space of continuous functions by the subspace of constants (as the
problem obviously does not change if we add a constant to the cost function). But we
shall always deal with representatives of the classes and therefore shall treat elements
of C0 as functions.

Finally, we shall consider one more metric space (D, d), which will be called the
data space, along with a continuous mapping π : D → C. We shall not assume the
data space to be complete and will require only that it is a Baire space. Now given
a ∈ D, we consider the problem
(P)a minimize f(x) subject to F (x) ∈ C, G(x) = 0,

where (f, F,G) = π(a). The idea of having the mapping π is (as will be seen in the
examples) to put different types of problems into the above scheme of triples. But we
stress the fact that all genericity results will be proved in the original class (D, d).

Every problem (P)a can be equivalently represented as an unconstrained mini-
mization of the extended real-valued function

fa(x) =

{
f(x) if F (x) ∈ C, G(x) = 0,
∞, otherwise.

Certainly, the feasible set of (P)a coincides with the domain of fa:

domfa = {x ∈ X : F (x) ∈ C, G(x) = 0}.
Two subsets of the data space will be of special importance: the set of feasible

data

F = {a ∈ D : domfa �= ∅}
and the set of meaningful data

M = {a ∈ D : | inf fa| <∞}.
Clearly, M⊂ F .

Example 2.1. The scheme we have just described typically occurs in the formula-
tion of concrete problems. Indeed, consider for instance the following simple problem
of quadratic programming with linear equality constraints:

minimize (Qx|x) + (c|x) subject to Ax = b,
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where (·|·) is the scalar product in Rn, Q is an n×n symmetric matrix, A is an m×n
matrix, c ∈ Rn, and b ∈ Rm.

It is natural to consider the set of all quadruples (Q,A, c, b) as the data space,
with the mapping π defined (for any a = (Q,A, c, b)) by π(a) = (f,G), where f(x) =
(Qx|x)+(c|x) and G(x) = Ax−b. We shall consider the natural product metric on the
data space D while the space C is endowed by the topology of uniform convergence
on bounded sets of Rn. Clearly, π is continuous. (To be very formal, we are also
assuming that the space Y is Y = {0}.)

It is possible to consider other data spaces for the same problem, for instance
the collection of all quadruples (Q,B, c, b) with Q positive semidefinite, etc. We shall
consider this example in more detail in the next section (Example 3.6).

2.2. Assumptions. In what follows we adopt the following convention: For
R0 ∈ {0,∞} (i.e., either R0 = 0 or R0 = ∞), the expression R ≥ R0 means that
either R = ∞ if R0 = ∞, or R is a nonnegative real number if R0 = 0. The main
assumptions concerning the cost constraint and the data spaces follow.

There is R0 ∈ {0,∞} such that the following four conditions hold:
(A1) (a) The metric topology in C is the topology of uniform convergence on balls,

centered at zero, of radius R ≥ R0.
(b) Any function f such that π(a) = (f, F,G) for some a ∈ D is bounded

from below on every ball, centered at zero, of radius R ≥ R0.
(A2) There is a continuous function q(·) on X with the following properties:

(a) 0 = q(0) = min q; q(x) ≥ 1 if ‖x‖ ≥ 1.
(b) For any a ∈ D with π(a) = (f, F,G), any sufficiently small t, τ ≥ 0, every

z ∈ Z with sufficiently small norm, and every γ > 0 and w ∈ X, there
is an element ã = ã(t, τ, γ, w, z) ∈ D such that π(ã) = (ftγw, Fτ , Gz),
where ftγw(x) = f(x)+tq(γ

−1(x−w)), Fτ (x) = F (x)+τe, and Gz(x) =
G(x) + z, x ∈ X. Moreover, for each fixed γ, d(ã, a) → 0 uniformly for
w on every ball, centered at zero, with radius R ≥ R0, as t, τ , and z
tend to zero.

(A3) For any a ∈ D with π(a) = (f, F,G), any x ∈ X with G(x) = 0, and every
ε > 0, there is an open set U ⊂ C= such that for each Ĝ ∈ U the following
are true:
(a) There is u ∈ X with ‖u− x‖ < ε such that Ĝ(u) = 0.

(b) There exists â ∈ D with π(â) = (f̂ , F̂ , Ĝ) for some f̂ , F̂ , so that d(a, â) <
ε.

(A4) There is a dense subset M̂ of M such that for every a ∈ M̂ there exist an
open (in D) neighborhood Na of a, ξ > 0, and R ≥ R0 so that for every
b ∈ Na,
(a) inf fb > −∞;
(b) if fb(x) < inf fb + ξ, then ‖x‖ < R.

We shall briefly comment on these hypotheses. (A1) says that there are two types
of topologies considered in C: the topology of uniform convergence on bounded subsets
ofX (if R0 = 0) and the topology of uniform convergence on the wholeX (if R0 =∞).
Although these two topologies are very different, it is possible to give a unified proof
of the genericity of the well-posedness for both topologies, which is mainly a proof for
the first (more difficult) case R0 = 0 with a few stipulations concerning the second.
We shall call R0 the index of the topology in the cost-constraint space. The second
part of (A1) states that we (have to) consider lower bounded functions in the case of
uniform convergence on the whole space, and functions which are lower bounded on
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the bounded sets when R0 = 0, which is quite natural.

Hypotheses (A2) and (A3) describe the types of perturbations in the components
of the data space which we have to allow to reach the desired conclusion. They
impose certain limitations on the range of the problems covered by our results. In
particular, linear programming and quasi-convex programming are not covered, as
the perturbations required in (A2) are not possible in these settings. But we shall see
in the next section that the assumptions allow quite a bit of flexibility and are not
difficult to verify.

Finally, the last hypothesis (A4): It is clear, in view of (A1), that (A4) is auto-
matically satisfied if R0 =∞. If R0 = 0, then (A4) is a sort of coercivity assumption
needed to get an amount of boundedness of minimizing sequences. Observe that it
does not follow from (A4) that all elements of Na belong to F . If domfb = ∅, then
the implication fb(x) < inf fb + ξ ⇒ ‖x‖ < R holds trivially, as the set of such x is
empty.

2.3. Statement of the main theorem. Here we state our main result followed
by a short comment. The proof itself is found in section 4.

Theorem 2.2. Under (A1)–(A4), either M = ∅ or M is a Baire space which
contains a dense Gδ-subset M′ such that (MP)a is well-posed for every a ∈M′.

We would like to emphasize once again that we prove our genericity result in the
original data space D, not in the cost-constraint space. This is the natural point of
view, as will be seen also by the examples, since one usually deals with the data of a
problem as they are given; thus one wants to be sure that for most of these data the
corresponding optimization problem is well-posed.

3. Applications. In this section we shall give several examples of how our prin-
ciple can be applied.

Example 3.1 (Nonlinear programming: Uniform convergence on the domain space).
Let X = Rn, Y = Rm, Z = Rl be Euclidean spaces of dimensions n, m, and l, respec-
tively. We assume n ≥ l. Denote by Ck(X), k ≥ 0, the linear space of all real-valued
functions in X which are continuous along with all of their derivatives up to the order
k. We endow it with the (obviously complete) metric

dk(f, g) =

k∑
i=0

sup

{ |f (i)(x)− g(i)(x)|
1 + |f (i)(x)− g(i)(x)| : x ∈ X

}
.(3.1)

The corresponding topology is the topology of uniform convergence on the whole space
X of functions and all their derivatives up to the order k. Let Ckb (X) be the subspace
of Ck(X) containing all functions bounded from below. Clearly, this is a closed
subspace, and hence a complete metric space in the same metric dk. Consider the
linear spaces Ck(X,Y ) and Ck(X,Z) of k-times continuously differentiable mappings
from X into Y and Z, respectively, which we consider here with standard metrics (as
above in (3.1)) defining the topology of uniform convergence on X of the mappings
and their derivatives up to the order k.

As a first example we consider the standard mathematical programming problem:
(MP)
minimize f(x) subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0, g1(x) = 0, . . . , gl(x) = 0,

where f ∈ Ck(X), F (·) = (f1(·), . . . , fm(·)) ∈ Ck(X,Y ), andG(·) = (g1(·), . . . , gl(·)) ∈
Ck(X,Z).
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We define the data space as

D = Ckb (X)× Ck(X,Y )× Ck(X,Z),
with some product metric generated by dk-metrics in the coordinate spaces, which for
simplicity we again denote by dk. The cost-constraint space is

C = C0(X)× C0(X,Y )× C0(X,Z),

again with some product metric d0 generated by the d0-metrics on the coordinate
spaces. The mapping π is the embedding of D into C. Since on D the metric dk is
stronger than d0, the mapping π is continuous. The cone C is the negative orthant
in Rm, and as e we take the vector (−1, . . . ,−1).

To apply our theorem, we have to verify (A1)–(A4). Here R0 = ∞ and (A1)
is obvious. (A2) is also valid: just take a bounded function q ∈ Ck(X) satisfying
condition (a) of (A2) and, in addition, that q(x) = 1 for every x ∈ X so that ‖x‖ ≥ 1.
(Such functions are called bump functions and always exist in finite dimensions.)

To verify (A3), suppose we are given ε > 0 and a mapping

G(u) = (g1(·), . . . , gl(·)) ∈ Ck(X,Z)
such that G(x) = 0 at a given x ∈ X. We shall first approximate G by another
mapping Ḡ as follows.

(i) If k ≥ 1, then let

H(u) := G′(x)(u− x)−G(u), u ∈ X.
Obviously H ∈ Ck(X,Z), H(x) = 0, and H ′(x) = 0. Take a function λ ∈ Ck(X)
with values in [0, 1] and such that

λ(u) = 1 if ‖u− x‖ ≤ 1
2 , λ(u) = 0 if ‖u− x‖ > 1.

Let ‖λ‖∞ be the usual sup-norm of λ in Ck(X). Consider now a full rank l×n matrix
A such that ‖A − G′(x)‖ < ε

2k+1‖λ‖∞
(where the norm for the matrices is the usual

one) and set

Ḡ(u) = λ(u)A(u− x) + (1− λ(u))G′(x)(u− x)−H(u), u ∈ X.
(ii) If k = 0, we take an arbitrary full rank l×n matrix A and fix δ > 0 such that

‖G(u)‖ < ε

2
if ‖u− x‖ < δ, ‖A‖δ < ε

2

and take a continuous function λ with values in [0, 1] and such that

λ(u) = 1 if ‖u− x‖ ≤ δ
2 , λ(u) = 0 if ‖u− x‖ > δ.

Then set

Ḡ(u) = (1− λ(u))G(u) + λ(u)A(u− x), u ∈ X.
In both cases we have Ḡ(x) = 0, the distance in C= between Ḡ and G is less than or
equal to (ε/2), and Ḡ is continuously differentiable around x with Ḡ′(x) = A being a
full rank matrix. Therefore, there is c > 0 such that for sufficiently small t > 0 the
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image of the t-ball around x by Ḡ covers the ct-ball around 0 ∈ Z. Then a standard
degree argument shows that every continuous mapping Ĝ sufficiently close to Ḡ (in
the uniform metric) on the t-ball around x will cover the ct

2 -ball around zero ∈ Z.
Consequently, there is u with ‖u − x‖ ≤ t such that Ĝ(u) = 0. This shows (A3).
Finally, (A4) does not need to be verified in this case (R0 =∞).

For the next examples we need the following auxiliary result. Its proof is given
in section 4.

Proposition 3.2. Assume (A1)–(A3). Then F contains a dense set F̂ such that
F̂ is open in D and for every a ∈ F̂ there are an open (in D) neighborhood N of a
and a real number K with inf fb < K for all b ∈ N .

Observe that the above result is true only supposing the first three assumptions.
It will be used below for verification of (A4).

Example 3.3 (Nonlinear programming: Uniform convergence on bounded sets).
As a second example we consider the same standard (MP) problem as in the previous
one, but with a different data space and with the topology in cost-constraint space
changed to the topology of uniform convergence on bounded sets. Suppose we are
given a function ψ : X → R, continuous and coercive, i.e., ψ(x) → ∞ as ‖x‖ → ∞.
Consider the set

Ckψ(X) = {f ∈ Ck(X) : f ≥ ψ}

with the distance

dkb(f, g) =

∞∑
j=0

1

2j
ρjk(f, g),(3.2)

where the pseudometric ρjk(f, g) is defined as

ρjk(f, g) =

k∑
i=0

sup

{ |f (i)(x)− g(i)(x)|
1 + |f (i)(x)− g(i)(x)| : ‖x‖ ≤ j

}
.(3.3)

This distance defines the topology of the uniform convergence of functions and their
derivatives up to the order k on the bounded subsets of X. As to the constraint
mappings, we shall take them from the same spaces Ck(X,Y ), Ck(X,Z), supplied
this time with similar metrics defining the topology of uniform convergence of them
and their derivatives on the bounded sets.

Thus the data space is now

D = Ckψ(X)× Ck(X,Y )× Ck(X,Z),

with some product metric (which we denote by dkb) obtained by the metrics dkb in the
component spaces. The cost-constraint space is the same as in the previous example,
but this time endowed with a product metric d0b. The map π is again the embedding
and, by similar argument as above, it is continuous.

We claim that in this case the main theorem can also be applied, giving generic
well-posedness in the set of meaningful data (which is obviously nonempty). The only
condition we need to check is (A4), as in this case R0 = 0 and (A1) is clearly satisfied,
while (A2) and (A3) are verified exactly in the same way as above.

To check (A4), first observe that because of the assumptions (coercivity of ψ and
the fact that the underlying space is finite dimensional), M = F . Set M̂ = F̂ , where
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the dense set F̂ is provided by Proposition 3.2. We have that for every a ∈ F̂ there
exists a neighborhood N of a (we may think that N ⊂ M = F) such that inf fb is
bounded above by a certain constant K <∞ for all b ∈ N .

With N so chosen, (A4)(a) is clear. For (b), take any x ∈ domfb with fb(x) <
inf fb + 1. Then we have ψ(x) ≤ K + 1, and the coercivity of ψ implies that there
must be R <∞ such that ‖x‖ < R.

Remark . The first two examples can be extended to the case in which the domain
space X is infinite dimensional, provided that there exists a Ck-bump function q(·)
(which will satisfy property (a) of (A2)). This is certainly the case in any Banach
space if k = 0. If k = 1, a sufficient condition for the existence of such q is that X has
an equivalent Fréchet differentiable norm. For more details concerning the existence
of smooth bump functions (also for bigger k), we refer the reader to [DGZ].

In this infinite dimensional case, as far as the second example is concerned, we
must take only those cost functions satisfying f ≥ ψ which are also bounded from
below on the bounded sets. Then the verification of (A4) is the same, since one easily
sees that again M = F .

Example 3.4 (Convex programming). Now let X be a real Banach space, and
let Conv(X) be the collection of all convex continuous functions on X equipped with
the metric db of uniform convergence on bounded sets given by (3.2) and (3.3) with
k = 0. As is well known, (Conv(X), db) is a complete metric space. Given f, fi ∈
Conv(X), i = 1, . . . ,m, we consider the problem of convex programming on X with
only inequality constraints

(CP) minimize f(x) subject to fi(x) ≤ 0, i = 1, . . . ,m.

Here the data space is the product of m + 1 copies of Conv(X) with some product
metric db. The cost-constraint space is C0(X) × C0(X,Y ), with the same product
metric db, where, as in the previous example, Y = Rm with the same negative cone
C and e = (−1, . . . ,−1). The mapping π is again the embedding, which is obviously
continuous. Generic well-posedness of (CP) in this case was derived in [IL] directly
from Theorem 1.1. We get it here, in a simpler way, from Theorem 2.2.

Indeed, we have R0 = 0, and (A1) is satisfied. (Remember that any convex
continuous function is bounded below on bounded sets.) To get (A2), we set q(x) =
‖x‖; the rest of (A2) is easily checked. We need not verify (A3), as the equality
constraint is absent. Finally, to prove that (A4) also holds, we consider the collection
D′ of data with coercive cost function: the family of coercive functions is dense in
(Conv(X), db), as it is easy to verify (see also [IL]). Hence, D′ is dense in D. Set
M̂ := D′ ∩ F̂ , the latter set being the one provided by Proposition 3.2. Observe that
M̂ ⊂M and that M̂ is dense in M.

Now, it is also known that if the convex function h ∈ Conv(X) is coercive, then
there are constants α > 0, β, and a neighborhood V (in (Conv(X), db)) of h such
that, for all h′ ∈ V , one has h′(x) ≥ α‖x‖+ β for each x ∈ X. Then the rest of (A4)
is checked as in Example 3.3 by using Proposition 3.2.

Before giving the next example we prove a simple regularity lemma on which
verification of (A3) in the following examples is based. Let, as above, X and Z be
Banach spaces and A : X → Z a linear bounded operator which is onto. The latter
entails that the Banach constant of A is positive:

C(A) = sup{r ≥ 0 : rBZ ⊂ A(BX)}
(where BZ and BX stand for the unit balls in the spaces Z and X, respectively). Then
(see, e.g., [DuMO, Theorem 1.3]) for any other bounded linear operator A′ from X
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into Z, we have

C(A′) ≥ C(A)− ‖A−A′‖.
Lemma 3.5. Let A be a bounded linear operator from X onto Z, and let Ax = z.

Then for any ε > 0 there is δ > 0 such that whenever an operator A′ : X → Z and a
vector z′ ∈ Z satisfy ‖A−A′‖ < δ, ‖z− z′‖ < δ, the equation A′x′ = z′ has a solution
x′ satisfying ‖x− x′‖ < ε.

Proof. Set C(A) = 2c > 0, and suppose that ‖A−A′‖ < c. Set further for a given
z′ ∈ Z, v = z′ − A′x (where Ax = z). Then C(A′) > c and we can find u ∈ X such
that A′u = v and ‖u‖ ≤ c−1‖v‖. The equality means that for x′ = u + x we have
A′x′ = z′, whereas the inequality gives

‖x′ − x‖ ≤ c−1‖A′x− z′‖ ≤ c−1(‖A−A′‖‖x‖+ ‖z − z′‖).
Thus, it is enough to take δ so small that δ < c and δ(‖x‖+ 1) < cε.

Example 3.6 (Quadratic programming in Hilbert space). In this example, X is
a real Hilbert space with inner product (·|·). The class of problems to be considered
is described by the following scheme:

minimize (Qx|x)+ (c|x) subject to (Qix|x)+ (ci|x) ≤ αi, i = 1, . . . , k, Ax = u.

Here Q,Qi are symmetric bounded linear operators in X, A is a bounded linear
operator in X, c, c1, . . . , ck and u are elements of X, and αi are real numbers. Thus
the data space D is a collection of (3k + 4)-tuples

a = (Q,Q1, . . . , Qk, A, c, c1, . . . , ck, u, α1, . . . , αk),

which we shall consider with the natural product topology corresponding to the norm
convergences of operators and vectors of X and the usual convergence of numbers.
The main (and only) assumption on the components of the data we adopt is that A
must be an operator with full range: A(X) = X. Such operators form an open set in
the space of bounded operators with the usual operator norm, which means that D
is an open set in the space of all (3k+4)-tuples having such structure. Hence, D is a
Baire space in the product topology.

The definition of the cost-constraint space and the mapping π is equally straight-
forward. The cost-constraint space C is the collection of triples (f, F,G), where f is
a continuous function on X, F is a continuous mapping from X into Rk, and G is a
continuous mapping from X into itself with the topology of uniform convergence on
bounded sets, π(a) = (f, F,G), where f(x) = (Qx|x) + (c|x), F = (f1, . . . , fk) with
fi(x) = (Qix|x) + (ci|x)− αi and G(x) = Ax− u, the cone C is the negative orthant
in Rk, and e = (−1, . . . ,−1). The verification that π is continuous in the just-defined
topologies in D and C is straightforward.

We have in this case R0 = 0. (A1) is clear, (A2) holds with q(x) = ‖x‖2, (A3)
holds by Lemma 3.5, and so it remains to verify (A4). It is clear that M �= ∅. We
define the set M̂ by replacing every a ∈ M by a sequence an of data, each having
the same components as a with the exception of the first component, which for an is
Q + (1/n)I, where I is the identity map and Q is the first component of a. Clearly,
the collection of data so obtained is dense in M. The feasible set domfan is the same
as domfa, and fan(x) = fa(x) + (1/n)‖x‖2, x ∈ X. This function is coercive, and an
argument similar to that used in the proof of (A4) in Example 3.4 gives the desired
conclusion.
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Remark . Note that our argument does not apply for the “pure” quadratic problem
of minimizing (Qx|x) subject to (Qix|x) ≤ αi; condition (b) in (A2) forces us to add
the linear term in the cost function. But the argument applies without changes to
problems

minimize (Qx|x) + (c|x) subject to (Qix|x) ≤ αi.

Example 3.7 (Semi-infinite programming). Let X = Rn, let T be a Hausdorff
compact space, and consider the problem:

minimize (Ax|x) + (c|x) subject to (B(t)|x) + b(t) ≤ 0,

where A is a real, symmetric n × n matrix, while B : T → Rn, b : T → R are
continuous functions on X. With the previous notations, the Banach space Y is the
space C(T ) of the continuous functions from T to the reals (with the usual max norm),
C is the cone of the functions which are nonpositive everywhere, and e is such that
e(t) = 1 for all t ∈ T . The cost-constraint space is C := C0(X) × C0(X,C(T )) with
the topology of uniform convergence on the bounded sets. The data space consists of
4-tuples a = (A,B, c, b), considered with some product metric generated by the usual
metrics on matrices A and vectors c and by the sup-norms for B in C(T,Rn) and for
b in C(T ). The mapping π is defined by π(a) = (f, F ) with f(x) = (Ax|x) + (c|x),
and F (x) = (B(·)x|x) + b(·), and is continuous. In this example R0 = 0, and (A1) is
easily verified. As function q we take q(x) = ||x||2, and (A2) is verified as well. For
(A4), we can use exactly the same argument as in Examples 3.4 and 3.6.

Example 3.8 (Linear optimal control with quadratic cost). This is the class of
problems covered by the following scheme:

minimize

∫ 1

0

[(Pu(t)|u(t)) + (Qx(t)|x(t)) + (c0(t)|u(t)) + (b(t)|x(t))]dt
subject to ẋ(t) = Ax(t) +Bu(t), x(0) = x0, x(1) = x1.

Here (·|·) stands for the inner product in the corresponding space; P and Q are
symmetric matrices of orders m and n, respectively, with P positive semidefinite; A is
a square matrix of order n; B is a matrix n×m; x0, x1 ∈ Rn; and c0(t) and b(t) are
square integrable mappings from [0, 1] into Rm and Rn, respectively. Thus the data
space of the problem consists of 8-tuples a = (P,Q, c0(·), b(·), A,B, x0, x1); that is to
say, it can be identified with the product SL+(m) × SL(n) × Lm2 (0, 1) × Ln2 (0, 1) ×
L(n)× L(m,n)×Rn ×Rn endowed with a natural product metric.

Next, we have to identify the domain and the cost-constraint spaces. To this end,
we first note that, given a data tuple a, the trajectory x(t) is completely defined by
the control u(t):

x(t) = eAt
[
x0 +

∫ t

0

e−AτBu(τ)dτ
]
.(3.4)

This means that the space Lm2 (0, 1) of Rm-valued square integrable functions with
the standard norm can be considered as the domain space. Substituting (3.4) into
the functional and the constraint, we reduce the problem to the standard form

minimize f(u(·)) subject to G(u(·)) = 0,
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with

f(u(·)) =
∫ 1

0

[(Pu(t)|u(t)) + (c(t)|u(t))]dt+K(u(·))(3.5)

and

G(u(·)) = x0 − e−Ax1 +

∫ 1

0

e−AtBu(t)dt,(3.6)

where

c(t) = c0(t) +B
∗e−A

∗t
∫ 1

t

[
eAτ b(τ) + 2QeAτx0

]
dτ,(3.7)

K is a quadratic functional on Lm2 (0, 1) defined by

K(u(·)) =
∫ 1

0

(QK[u(·)](t)|K[u(·)](t))dt,(3.8)

and K is the following integral operator in Lm2 (0, 1):

K[u(·)](t) = eAt
∫ t

0

e−AτBu(τ)dτ.(3.9)

(In other words, K[u(·)](t) is the solution of the equation ẋ = Ax + Bu with zero
initial condition.)

Accordingly, we define the cost-constraint space as the product of the space of
continuous functions on Lm2 (0, 1) and the space of continuous mappings from Lm2 (0, 1)
into Rn with the topology of uniform convergence on bounded sets. Equalities (3.4)–
(3.9) above define the mapping π from the data space to the cost-constraint space,
which is obviously continuous. Here again the index R0 is zero, and it follows imme-
diately that (A1) is satisfied. The second assumption (A2) is also easy to verify: It

is enough to take q(u(·)) = ‖u(·)‖2 =
∫ 1

0
|u(t)|2dt. Then the element ã = ã(t, γ, w, z)

corresponds, for example, to

P̃ = P + (t/γ)I, Q̃ = Q, c̃0(t) = c0(t) + (t/γ)Pw(t), b̃(t) = b(t),

Ã = A, B̃ = B, x̃0 = x0 + z, x̃1 = x1.

Verification of the other two assumptions requires a bit more work. Let us start
with (A3). Fix some data a and suppose that G(u(·)) = 0. Consider the operator
Λa : L

m
2 (0, 1)→ Rn defined by

Λa(u(·)) = K[u(·)](1) = eA
∫ 1

0

e−AtBu(t)dt.

Observe that

G(u) = e−A(Λa(u)− x1) + x0.

Assume for the moment that m = 1, that is, that B is a one column matrix. As is
well known, in this case Λa is onto if and only if the vectors B,AB,A2B, . . . , An−1B
are linearly independent. It is clear that the collection of all pairs (A,B) ∈ L(n)×Rn
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with this property is open and dense in L(n)×Rn. Coming back to the general case,
suppose that Λa is not onto. Then, appealing to the previous remark, we can construct
a new element b, close to a, in the following way. We start by slightly changing A and
B to make Λb onto, and then we correct x0 in order to satisfy the equality Ĝ(u(·)) = 0,
where by Ĝ we denote the equality constraint mapping relative to b. In such a way
we are able to apply Lemma 3.5 to the new data and this proves (A3).

Let us prove (A4). It is clear that M �= ∅. For any a denote by qa the quadratic
component of the cost function

qa(u(·)) =
∫ 1

0

(Pu(t)|u(t))dt+K(u(·)),

and by Sa the intersection of KerΛa with the unit sphere in Lm2 (0, 1). Finally, set

ra = inf
Sa

qa(u(·)).

Then ra > 0 means that qa is positive definite on KerΛa.
We define M̂ ⊂M as the collection of all data a ∈M with Λa onto and ra > 0.
To prove that M̂ is dense inM we first note that ra ≥ 0 for any a ∈M (otherwise

inf fa = −∞). It follows that the collection of a ∈ M with ra > 0 is dense in M.
(Indeed, replace, if necessary, P by P + εI.) Now to see that M̂ is dense in M we
only need to verify that ra as a function of a is lower semicontinuous. Indeed, in this
case, given an a ∈M with ra > 0, we can slightly change a to make Λa onto (as was
done above) and keep ra positive.

The lower semicontinuity property of ra follows in turn from the estimate

dist(u(·),KerΛa) ≤M‖Λa(u(·)‖ ∀u(·) ∈ Lm2 (0, 1)(3.10)

(with some positive M), following from the fact that the orthogonal complement of
KerΛa is isomorphic to the image of Λa (as the latter, being a subspace of a finite
dimensional space, is closed).

Assume now that an → a and un(·) are such that ‖un(·)‖ = 1, Λan(un(·)) = 0,
and qan(un(·)) ≤ ran + εn, where εn → 0. By (3.10), ‖Λa(un(·))‖ → 0 and therefore
there are vn(·) ∈ KerΛa such that ‖vn(·) − un(·)‖ → 0. We can assume that the
norms of all vn(·) are also equal to one, and so qa(vn(·)) ≥ ra. On the other hand,
it is obvious that qan(un(·)) − qa(vn(·)) → 0 (because of the equicontinuity of the
functions on bounded subsets), whence lim inf ran ≥ ra.

Let a ∈ M̂ and set π(a) = (f,G). We can choose δ > 0 so small that rb ≥ ε > 0
for all b with d(a, b) < δ. Then fb(u(·)) →∞ as ‖u(·)‖ → ∞ uniformly on the δ-ball
around a. Therefore it is possible to find an R so big that

fb(u(·)) ≥ inf fa + 1 if ‖u(·)‖ ≥ R/2, d(a, b) < δ.(3.11)

Next choose an arbitrary ξ ∈ (0, 1/4) and, if necessary, take a smaller δ to make sure
that the following hold whenever d(a, b) < δ:

(a) For any u(·) with ‖u(·)‖ < R/2 there is a v(·) ∈ Lm2 (0, 1) such that ‖v(·) −
u(·)‖ < ξ with v ∈ dom fb. This is possible by Lemma 3.5 as Λa is onto.

(b) |f(u(·))− f̂(u(·))| < ξ if ‖u(·)‖ ≤ R, where f̂ is the cost component of π(b).
This is clearly possible, as the cost function (as a function of the data) is
continuous uniformly on the bounded subsets of Lm2 (0, 1).
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Observe that from (a) and (b) it also follows that inf fb < inf fa + 1/2 for all b
such that d(a, b) < δ (taking again a smaller δ, if necessary). Finally, let N be the
δ-ball around a. It follows from (3.11)(a) and (b) that

inf fb < inf{fa(u(·)) : ‖u(·)‖ ≤ R}+ 2ξ ≤ inf fa + 1/2

for any b ∈ N . On the other hand, if ‖u(·)‖ ≥ R, then

fb(u(·)) ≥ inf fa + 1 > inf fb + 1/2,

so that for u(·) with fb(u(·)) ≤ inf fb + ξ we have ‖u(·)‖ < R. This completes
verification of (A4).

4. Proofs. In this section we prove our main Theorem 2.2 as well as the auxiliary
Proposition 3.2. Before we start, we need two conventions which will be used several
times in what follows.

First, since π is continuous, the following property holds. Let R0 be the index of
the topology in the cost-constraint space. Then for every R ≥ R0, a ∈ D, and σ > 0
there exists r > 0 so that

b ∈ D and d(a, b) < r implies

sup{|f(x)− f̂(x)|+ ‖F (x)− F̂ (x)‖+ ‖G(x)− Ĝ(x)‖ : ‖x‖ ≤ R} < σ,(4.1)

where π(a) = (f, F,G) and π(b) = (f̂ , F̂ , Ĝ).
Second, we may also assume, without loss of generality, that the unit ball in Y

around e belongs to the cone C:

B(e, 1) ⊂ C (and hence B(y + te, t) ⊂ C ∀ y ∈ C).(4.2)

In any of the examples given in section 3 this last condition was fulfilled.
We continue now with the proof of Proposition 3.2. For this we need the follow-

ing lemma.
Lemma 4.1. Assume (A1)–(A3). Let ā ∈ F , x̄ ∈ domfā, and ε > 0. Then there

is a nonempty open set N of D such that for every a ∈ N
(i) d(ā, a) < ε;
(ii) there is u ∈ domfa such that ||u− x̄|| < ε.
Proof. Let π(ā) = (f̄ , F̄ , Ḡ). By (A2) there is t ∈ (0, ε/2) such that π(at) =

(f̄ , F̄t, Ḡ) for some at ∈ D with d(a, at) < ε/2.
Fix such t and at, and using the continuity of F̄ , let δ ∈ (0, t/2) be so that

‖F̄ (x)− F̄ (x̄)‖ < t/2 if ‖x− x̄‖ < δ. We may think that δ is also chosen in order that
(4.1) holds for R := max{R0, ‖x̄‖ + t}, a = at, σ = t/2, and r = δ. Further, since
x̄ ∈ domfat (remember that F̄t(x̄) = F̄ (x̄) + te), by (A3) (applied to at and δ) there
is a nonempty open set U ⊂ C= so that for any G ∈ U we can find a ∈ D and u ∈ X
with ‖u− x̄‖ < δ, G(u) = 0, π(a) = (f, F,G), and d(a, at) < δ. In particular, for any
such a, ‖F (x)− F̄t(x)‖ < t/2 for every x ∈ X with ‖x‖ ≤ R. But then

‖F (u)− F̄t(x̄)‖ ≤ ‖F (u)− F̄t(u)‖+ ‖F̄t(u)− F̄t(x̄)‖ < t/2 + ‖F̄ (u)− F̄ (x̄)‖ < t,

which by (4.2) implies that F (u) ∈ C and, consequently, u ∈ domfa.
The above means that the set

N = {a ∈ D : π(a) = (f, F,G), G ∈ U, d(a, at) < δ}
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is nonempty and for every a ∈ N there is u ∈ domfa such that ‖u− x̄‖ < ε. Since by
construction any a ∈ N obviously satisfies part (i) of the lemma, it remains only to
mention that N is open because of the continuity of π. The proof is complete.

Proof of Proposition 3.2. For every ā ∈ F , fix some x̄ ∈ domfā. Let f̄ be the
cost component of π(ā). Since f̄ is continuous at x̄, there is some ε̄ ∈ (0, 1) such that
‖x− x̄‖ < ε̄ implies |f̄(x)− f̄(x̄)| ≤ 1. Let further

F̂ :=
⋃
{Nā,x̄,ε : ā ∈ F , 0 < ε ≤ ε̄},

where the set Nā,x̄,ε is given by Lemma 4.1. By condition (ii) of this lemma, F̂ lies

entirely in F . Obviously F̂ is open in D and dense in F . Take some a ∈ F̂ and let
a ∈ N := Nā,x̄,ε for some ā, x̄ and 0 < ε ≤ ε̄ as above. Set K := f̄(x̄) + 2, take an
arbitrary b ∈ N , and let u ∈ domfb be the point provided by Lemma 4.1. We have
‖u − x̄‖ < ε ≤ ε̄ < 1. We may think that, given ā, x̄, the number ε̄ was chosen so
that (4.1) holds for R := max{R0, ‖x̄‖+ 1}, a = ā, σ = 1, and r = ε̄. Hence we get

inf fb ≤ fb(u) ≤ f̄(u) + 1 ≤ f̄(x̄) + 2 = K,

which completes the proof.
Corollary 4.2. Suppose (A1)–(A4) and M �= ∅. Then M contains a dense set

O which is open in D. In particular, (M, d) is a Baire space.
Proof. Let O′ := ∪{Na : a ∈ M̂}, where M̂ is the set provided by (A4) and for

each a ∈ M̂, Na is the open set from the same assumption. Set O := O′ ∩ F̂ , where
the set F̂ is given by Proposition 3.2. By (a) of (A4), we have O ⊂M. Clearly, O is
open in D and dense in M.

Further, in order to prove the main result, we need the following auxiliary lemma.
Lemma 4.3. Assume (A1) and (A4). Then for any a ∈ M̂ (the set from (A4))

there is a ball U around a and a real number N such that inf fb ≥ N for all b ∈ U .
Proof. If the index R0 = +∞, the conclusion is immediate. So suppose R0 = 0

and a ∈ M̂. Then by (A4) there exist an open set N = Na containing a, ξ > 0, and

R > 0 such that for any b ∈ N , inf fb > −∞ and ‖x‖ < R if f̂(x) < inf fb + ξ, where

f̂ is the cost component of π(b).
Let f be the cost component of π(a). By (A1), f is bounded below on the ball of

radius R. So let N := inf‖x‖≤R f − ξ − 1. Take a sufficiently small ball U around a

contained in N to be sure (by (4.1) applied to R, a, and σ = 1) that |f(x)− f̂(x)| ≤ 1
if ‖x‖ ≤ R. Let b ∈ U . If domfb = ∅, then we obviously have inf fb > N . So
suppose domfb �= ∅. Then (since inf fb > −∞) there is some x ∈ domfb with

fb(x) = f̂(x) < inf fb + ξ. This entails ‖x‖ ≤ R, and therefore

inf fb > f̂(x)− ξ ≥ f(x)− ξ − 1 ≥ inf
‖x‖≤R

f(x)− ξ − 1 = N,

as claimed.
Now we move to the proof of Theorem 2.2. Suppose M �= ∅. Then, by Corol-

lary 4.2, (M, d) is a Baire space. Therefore, to derive the conclusion of our main
result we will use Theorem 1.1. We have to verify that the hypothesis (H) holds for
(M, d). To this end the proof will be divided into several steps which correspond
to the construction of the ingredients of (H) and the verification of its conditions (i)
and (ii).

Step 1: Construction of B. We set B = M̂∩O, where M̂ is the dense set provided
by (A4) and O is the set given by Corollary 4.2, which is open in D and dense in M.
Clearly, B is dense in M.
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In what follows, we fix a ∈ B, ε > 0, and γ > 0 and set π(a) = (f, F,G).
Step 2: Choice of x̄. For any collection s = (t, τ, γ, w, z), t, τ > 0, γ > 0, w ∈ X,

z ∈ Z, we put bs = ã(t, τ, γ, w, z)—the element introduced in (A2). Remember that
π(bs) = (ftγw, Ft, Gz), where ftγw(·) = f(·) + tq(γ−1(· − w)), Ft(·) = F (·) + te, and
Gz(·) = G(·) + z. Further, given η > 0, let

Aη := {x ∈ X : Ft(x) ∈ C for some t ∈ (0, η); ‖G(x)‖ < η}.
We shall choose a sufficiently small η > 0 to make sure, in particular, that f is
bounded below on Aη (this is automatic in the case R0 = ∞) and then fix as x̄ any
point of Aη satisfying

f(x̄) ≤ inf
x∈Aη

f(x) + η/5.(4.3)

We show how to find a suitable η. First, since a ∈ M̂ ∩ O, we have from (A4) and
Lemma 4.3 that there exist an open set N ⊂ D containing a (we may think that
N ⊂ M, because a ∈ O), ξ > 0, R ≥ R0, and a real number N such that whenever
â ∈ N one has

(i) d(a, â) < ε;
(ii) fâ(x) < inf fâ + ξ implies ‖x‖ < R;
(iii) inf fâ ≥ N.

(4.4)

Now choose η > 0 to satisfy the following requirements:

(a) η < min
{ε
2
, γ, ξ

}
;

(b) t, τ, ‖z‖ ≤ η and w ∈ X with ‖w‖ ≤ R implies bs ∈ N .
(4.5)

The choice of η to satisfy (b) is ensured by (A2)(b).
To see that f is bounded below on Aη, take any x ∈ Aη. Then Fτ (x) ∈ C for

some τ < η and ‖G(x)‖ < η. Set z = −G(x) and take b such that π(b) = (f, Fτ , Gz).
Clearly, x ∈ domfb, and, on the other hand, b ∈ N by (4.5)(b). Therefore, by
(4.4)(iii), f(x) ≥ inf fb ≥ N .

This shows that the choice of x̄ as in (4.3) is correct. We claim finally that

‖x̄‖ < R.(4.6)

Indeed, set z̄ = −G(x̄) and let t̄ ∈ (0, η) be so that Ft̄(x̄) ∈ C. We see, as above, that
x̄ ∈ domfb̄, where b̄ ∈ N is such that π(b̄) = (f, Ft̄, Gz̄). Moreover, domfb̄ ⊂ Aη, and
hence inf fb̄ ≥ inf fAη . Therefore, by (4.3) and (4.5)(a) we have f(x̄) < inf fb̄ + ξ,
whence (4.6).

Step 3: Construction of V. We first define an element ā ∈ N , around which the
set V will be built. Namely, as above let z̄ = −G(x̄) and take t̄ so that (4/5)η < t̄ < η
and Ft̄(x̄) ∈ C. Now set ā = bs̄ with s̄ = (t̄, t̄, γ, x̄, z̄). We have π(ā) = (f̄ , F̄ , Ḡ),
where

f̄(x) = ft̄γx̄, F̄ (x) = Ft̄(x), Ḡ(x) = G(x) + z̄.

Since ‖G(x̄)‖ < η, by (4.5)(b) and (4.6) we deduce that ā ∈ N . In particular, ā ∈M.
Observe also that x̄ ∈ domfā. Further, we have by (A2)

f̄(x) ≥ f(x) ∀x,
f̄(x̄) = f(x̄),
f̄(x) ≥ f(x) + t̄ if ‖x− x̄‖ ≥ γ.

(4.7)
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Next we choose a positive δ so small that any b with d(ā, b) < δ belongs to N and

δ < min
{ η
10
, η − t̄, η − ‖G(x̄)‖, R− ‖x̄‖

}
,

‖x− x̄‖ < δ ⇒ |f̄(x)− f̄(x̄)| < η

10
, and y ∈ C, provided ‖y − F̄ (x)‖ < δ.

(4.8)

The choice of δ as in the second row is possible because of the continuity of f̄
and F̄ and (4.2). Let r ∈ (0, δ) be so small that (4.1) is satisfied for R, ā, and σ = δ.
By (A3), applied for ā, x̄, and r, there is a nonempty open set U of C= such that for
every Ĝ ∈ U there is u ∈ X with ‖u− x̄‖ < r < δ and Ĝ(u) = 0. We now define V as
follows:

V = {b ∈ D : π(b) = (f̂ , F̂ , Ĝ) : d(ā, b) < r, Ĝ ∈ U}.

Then V �= ∅ by (A3), V is open (in D) because π is continuous, and V lies in N and
hence in M.

With x̄ and V so defined, we verify (i) and (ii) of (H) for certain λ and α given
below.

Step 4: Verification of (i). This is immediate from (4.4) and the fact that V ⊂ N .

Step 5: Verification of (ii). Take an arbitrary b ∈ V and let π(b) = (f̂ , F̂ , Ĝ).
Then there is u ∈ X with ‖u− x̄‖ < δ such that Ĝ(u) = 0. We have ‖u‖ < R by the
definition of δ, and hence by (4.1) and (4.8) we get F̂ (u) ∈ C. Thus u ∈ domfb and,
consecutively using (4.1), (4.8), and (4.7), we get

inf fb ≤ f̂(u) < f̄(u) + η

10
< f̄(x̄) +

η

5
= f(x̄) +

η

5
.(4.9)

Next, let w ∈ X be such that

fb(w) ≤ inf fb +
η

5
.(4.10)

By (4.4)(ii), ‖w‖ < R, since b ∈ N and η/5 < ξ. We further observe that w ∈ Aη.
Indeed, by the definition of Ḡ, G(x) = Ḡ(x)+G(x̄) for all x ∈ X. This, together with
the inequality ‖Ḡ(w)− Ĝ(w)‖ < δ (which follows from (4.1)), (4.8), and the definition
of V, gives (as Ĝ(w) = 0)

‖G(w)‖ ≤ ‖G(x̄)‖+ ‖Ḡ(w)‖ = ‖G(x̄)‖+ ‖Ḡ(w)− Ĝ(w)‖ < ‖G(x̄)‖+ δ < η.

Likewise, as F̂ (w) ∈ C, it follows from (4.1) and the definition of V that F (w)+
(t̄+ δ)e ∈ C. Since, by (4.8), t̄+ δ < η, we conclude that w ∈ Aη.

Finally, we claim that actually ‖w− x̄‖ ≤ γ. If this were not true, then we would
have by (4.7), f̄(w) ≥ f(w) + t̄, so that by (4.10), (4.1), the fact that δ < η/5, the
choice of t̄, and (4.3), we get

inf fb ≥ f̂(w)− η/5 ≥ f̄(w)− 2η/5
≥ f(w)− 2η/5 + t̄ > inf

Aη

f + 2η/5 ≥ f(x̄) + η/5,(4.11)

in contradiction with (4.9).
Furthermore, as follows from (4.9) and (4.10),

f̂(w) < f(x̄) + 2η/5,
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whereas a calculation similar to that in (4.11) (but using the first inequality in (4.7))
gives

f̂(w) ≥ f̄(w)− η/5 ≥ f(w)− η/5 ≥ inf
Aη

f − η/5 ≥ f(x̄)− 2η/5.

Thus

|f̂(w)− f(x̄)| ≤ 2η/5 < γ,

which shows that (ii) holds with α = f(x̄) and λ = η/5. This completes the proof of
the theorem.
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Abstract. In this paper we study a Monte Carlo simulation–based approach to stochastic
discrete optimization problems. The basic idea of such methods is that a random sample is generated
and the expected value function is approximated by the corresponding sample average function. The
obtained sample average optimization problem is solved, and the procedure is repeated several times
until a stopping criterion is satisfied. We discuss convergence rates, stopping rules, and computational
complexity of this procedure and present a numerical example for the stochastic knapsack problem.

Key words. stochastic programming, discrete optimization, Monte Carlo sampling, law of large
numbers, large deviations theory, sample average approximation, stopping rules, stochastic knapsack
problem
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1. Introduction. In this paper we consider optimization problems of the form

min
x∈S
{g(x) := EPG(x,W )} .(1.1)

Here W is a random vector having probability distribution P , S is a finite set (e.g.,
S can be a finite subset of R

n with integer coordinates), G(x,w) is a real valued
function of two (vector) variables x and w, and EPG(x,W ) =

∫
G(x,w)P (dw) is the

corresponding expected value. We assume that the expected value function g(x) is well
defined, i.e., for every x ∈ S the function G(x, ·) is measurable and EP {|G(x,W )|} <
∞.

We are particularly interested in problems with the following characteristics:
1. The expected value function g(x) := EPG(x,W ) cannot be written in a closed

form, and/or its values cannot be easily calculated.
2. The function G(x,w) is easily computable for given x and w.
3. The set S of feasible solutions, although finite, is very large, so that enumer-

ation approaches are not feasible. For instance, in the example presented in
section 4, S = {0, 1}k and hence |S| = 2k; i.e., the size of the feasible set
grows exponentially with the number of variables.

It is well known that many discrete optimization problems are hard to solve.
Another difficulty here is that the objective function g(x) can be complicated and/or
difficult to compute even approximately. Therefore stochastic discrete optimization
problems are difficult indeed and little progress in solving such problems numerically
has been reported so far. There is an extensive literature addressing stochastic discrete
optimization problems in which the number of feasible solutions is sufficiently small to
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allow estimation of g(x) for each solution x. Examples of this literature are Hochberg
and Tamhane [12]; Bechhofer, Santner, and Goldsman [2]; Futschik and Pflug [7, 8];
and Nelson et al. [17]. Another approach that has been studied consists of modifying
the well-known simulated annealing method in order to account for the fact that the
objective function values are not known exactly. Work on this topic includes Gelfand
and Mitter [9], Alrefaei and Andradóttir [1], Fox and Heine [6], Gutjahr and Pflug [10],
and Homem-de-Mello [13]. A discussion of two-stage stochastic integer programming
problems with recourse can be found in Birge and Louveaux [3]. A branch and
bound approach to solving stochastic integer programming problems was suggested
by Norkin, Ermoliev, and Ruszczyński [18] and Norkin, Pflug, and Ruszczyński [19].
Schultz, Stougie, and Van der Vlerk [20] suggested an algebraic approach to solving
stochastic programs with integer recourse by using a framework of Gröbner basis
reductions.

In this paper we study a Monte Carlo simulation–based approach to stochastic
discrete optimization problems. The basic idea is simple indeed—a random sample of
W is generated and the expected value function is approximated by the corresponding
sample average function. The obtained sample average optimization problem is solved,
and the procedure is repeated several times until a stopping criterion is satisfied. The
idea of using sample average approximations for solving stochastic programs is a
natural one and was used by various authors over the years. Such an approach was
used in the context of a stochastic knapsack problem in a recent paper of Morton and
Wood [16].

The organization of this paper is as follows. In the next section we discuss a
statistical inference of the sample average approximation method. In particular, we
show that with probability approaching 1 exponentially fast with increase of the sam-
ple size, an optimal solution of the sample average approximation problem provides
an exact optimal solution of the “true” problem (1.1). In section 3 we outline an algo-
rithm design for the sample average approximation approach to solving (1.1), and in
particular we discuss various stopping rules. In section 4 we present a numerical ex-
ample of the sample average approximation method applied to a stochastic knapsack
problem, and section 5 gives conclusions.

2. Convergence results. As mentioned in the introduction, we are interested in
solving stochastic discrete optimization problems of the form (1.1). Let W 1, . . . ,WN

be an independently and identically distributed (i.i.d.) random sample of N realiza-
tions of the random vector W . Consider the sample average function

ĝ
N
(x) :=

1

N

N∑
j=1

G(x,W j)

and the associated problem

min
x∈S

ĝ
N
(x).(2.1)

We refer to (1.1) and (2.1) as the “true” (or expected value) and sample average
approximation (SAA) problems, respectively. Note that E[ĝ

N
(x)] = g(x).

Since the feasible set S is finite, problems (1.1) and (2.1) have nonempty sets of
optimal solutions, denoted S∗ and Ŝ

N
, respectively. Let v∗ and v̂

N
denote the optimal

values,

v∗ := min
x∈S

g(x) and v̂
N
:= min

x∈S
ĝ
N
(x),
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of the respective problems. We also consider sets of ε-optimal solutions. That is, for
ε ≥ 0, we say that x̄ is an ε-optimal solution of (1.1) if x̄ ∈ S and g(x̄) ≤ v∗ + ε. The
sets of all ε-optimal solutions of (1.1) and (2.1) are denoted by Sε and Ŝε

N
, respectively.

Clearly for ε = 0 set Sε coincides with S∗, and Ŝε
N
coincides with Ŝ

N
.

2.1. Convergence of objective values and solutions. The following propo-
sition establishes convergence with probability one (w.p.1) of the above statistical
estimators. By the statement “an event happens w.p.1 for N large enough” we mean
that for P—almost every realization ω = {W 1,W 2, . . .} of the random sequence—
there exists an integer N(ω) such that the considered event happens for all samples
{W 1, . . . ,Wn} from ω with n ≥ N(ω). Note that in such a statement the integer
N(ω) depends on the sequence ω of realizations and therefore is random.
Proposition 2.1. The following two properties hold: (i) v̂

N
→ v∗ w.p.1 as

N → ∞, and (ii) for any ε ≥ 0 the event {Ŝε
N
⊂ Sε} happens w.p.1 for N large

enough.
Proof. It follows from the (strong) law of large numbers that for any x ∈ S, ĝ

N
(x)

converges to g(x) w.p.1 as N →∞. Since the set S is finite and the union of a finite
number of sets each of measure zero also has measure zero, it follows that, w.p.1,
ĝ
N
(x) converges to g(x) uniformly in x ∈ S. That is,

δ
N
:= max

x∈S
|ĝ

N
(x)− g(x)| → 0, w.p.1 as N →∞.(2.2)

Since |v̂
N
− v∗| ≤ δ

N
, it follows that, w.p.1, v̂

N
→ v∗ as N →∞.

For a given ε ≥ 0 consider the number

ρ(ε) := min
x∈S\Sε

g(x)− v∗ − ε.(2.3)

Since for any x ∈ S \ Sε it holds that g(x) > v∗ + ε and the set S is finite, it follows
that ρ(ε) > 0.

Let N be large enough such that δ
N

< ρ(ε)/2. Then v̂
N

< v∗ + ρ(ε)/2, and for
any x ∈ S \Sε it holds that ĝ

N
(x) > v∗+ε+ρ(ε)/2. It follows that if x ∈ S \Sε, then

ĝ
N
(x) > v̂

N
+ ε and hence x does not belong to the set Ŝε

N
. The inclusion Ŝε

N
⊂ Sε

follows, which completes the proof.
Note that if δ is a number such that 0 ≤ δ ≤ ε, then Sδ ⊂ Sε and Ŝδ

N
⊂ Ŝε

N
.

Consequently it follows by the above proposition that for any δ ∈ [0, ε] the event
{Ŝδ

N
⊂ Sε} happens w.p.1 for N large enough. It also follows that if Sε = {x∗} is

a singleton, then Ŝε
N

= {x∗} w.p.1 for N large enough. In particular, if the true
problem (1.1) has a unique optimal solution x∗, then w.p.1 for sufficiently large N
the approximating problem (2.1) has a unique optimal solution x̂

N
and x̂

N
= x∗. Also

consider the set A := {g(x) − v∗ : x ∈ S}. The set A is a subset of the set R+ of
nonnegative numbers and |A| ≤ |S|, and hence A is finite. It follows from the above
analysis that for any ε ∈ R+ \ A the event {Ŝε

N
= Sε} happens w.p.1 for N large

enough.

2.2. Convergence rates. The above results do not say anything about the rates
of convergence of v̂

N
and Ŝδ

N
to their true counterparts. In this section we investigate

such rates of convergence. By using the theory of large deviations (LD), we show that,
under mild regularity conditions and δ ∈ [0, ε], the probability of the event {Ŝδ

N
⊂ Sε}

approaches 1 exponentially fast as N →∞. Next we briefly outline some background
of the LD theory.
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Consider a random (real valued) variable X having mean µ := E[X]. Its moment-
generating function M(t) := E[etX ] is viewed as an extended valued function, i.e., it
can take value +∞. It holds that M(t) > 0 for all t ∈ R, M(0) = 1, and the domain
{t : M(t) < +∞} of the moment-generating function is an interval containing zero.
The conjugate function

I(z) := sup
t∈R

{tz − Λ(t)},(2.4)

of the logarithmic moment-generating function Λ(t) := logM(t), is called the (LD)
rate function of X. It is possible to show that both functions Λ(·) and I(·) are convex.

Consider an i.i.d. sequence X1, . . . , XN of replications of the random variable X,
and let ZN := N−1

∑N
i=1 Xi be the corresponding sample average. Then for any real

numbers a and t ≥ 0 it holds that P (ZN ≥ a) = P (etZN ≥ eta), and hence it follows
from Chebyshev’s inequality that

P (ZN ≥ a) ≤ e−taE
[
etZN

]
= e−ta[M(t/N)]N .

By taking the logarithm of both sides of the above inequality, changing variables
t′ := t/N , and minimizing over t′ ≥ 0, it follows for a ≥ µ that

1

N
log [P (ZN ≥ a)] ≤ −I(a).(2.5)

Note that for a ≥ µ it suffices to take the supremum in the definition (2.4) of I(a)
for t ≥ 0, and therefore this constraint is omitted. Inequality (2.5) corresponds to the
upper bound of Cramér’s LD theorem.

The constant I(a) in (2.5) gives, in a sense, the best possible exponential rate at
which the probability P (ZN ≥ a) converges to zero for a > µ. This follows from the
lower bound

lim inf
N→∞

1

N
log [P (ZN ≥ a)] ≥ −I(a)(2.6)

of Cramér’s LD theorem. A simple sufficient condition for (2.6) to hold is that the
moment-generating function M(t) is finite valued for all t ∈ R. For a thorough
discussion of the LD theory, the interested reader is referred to Dembo and Zeitouni [5].

The rate function I(z) has the following properties: The function I(z) is convex
and attains its minimum at z = µ, and I(µ) = 0. Moreover, suppose that the moment-
generating function M(t) is finite valued for all t in a neighborhood of t = 0. Then X
has finite moments, and it follows by the dominated convergence theorem that M(t),
and hence the function Λ(t), are infinitely differentiable at t = 0, and Λ′(0) = µ.
Consequently for a > µ the derivative of ψ(t) := ta − Λ(t) at t = 0 is greater than
zero, and hence ψ(t) > 0 for t > 0 small enough. In that case it follows that I(a) > 0.
Also, I ′(µ) = 0 and I ′′(µ) = σ−2, and hence by Taylor’s expansion

I(a) =
(a− µ)2

2σ2
+ o(|a− µ|2).(2.7)

Consequently, for a close to µ one can approximate I(a) by (a−µ)2/(2σ2). Moreover,
for any ε̃ > 0 there is a neighborhood N of µ such that

I(a) ≥ (a− µ)2

(2 + ε̃)σ2
∀ a ∈ N .(2.8)
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In particular, one can take ε̃ = 1.
Now we return to problems (1.1) and (2.1). Consider numbers ε ≥ 0, δ ∈ [0, ε],

and the event {Ŝδ
N
⊂ Sε}. It holds that{
Ŝδ
N
�⊂ Sε

}
=

⋃
x∈S\Sε

⋂
y∈S
{ĝ

N
(x) ≤ ĝ

N
(y) + δ} ,(2.9)

and hence

P
(
Ŝδ
N
�⊂ Sε

)
≤

∑
x∈S\Sε

P


⋂
y∈S
{ĝ

N
(x) ≤ ĝ

N
(y) + δ}


 .(2.10)

Consider a mapping u : S \ Sε �→ S. It follows from (2.10) that

P
(
Ŝδ
N
�⊂ Sε

)
≤

∑
x∈S\Sε

P
(
ĝ
N
(x)− ĝ

N
(u(x)) ≤ δ

)
.(2.11)

We assume that the mapping u(x) is chosen in such a way that for some ε∗ > ε

g(u(x)) ≤ g(x)− ε∗ for all x ∈ S \ Sε.(2.12)

Note that if u(·) is a mapping from S \ Sε into the set S∗, i.e., u(x) ∈ S∗ for all
x ∈ S \ Sε, then (2.12) holds with

ε∗ := min
x∈S\Sε

g(x)− v∗,(2.13)

and that ε∗ > ε since the set S is finite. Therefore a mapping u(·) that satisfies
condition (2.12) always exists.

For each x ∈ S \ Sε, let
H(x,w) := G(u(x), w)−G(x,w).

Note that E[H(x,W )] = g(u(x))−g(x), and hence E[H(x,W )] ≤ −ε∗. LetW 1, . . . ,WN

be an i.i.d. random sample of N realizations of the random vector W , and consider
the sample average function

ĥ
N
(x) :=

1

N

N∑
j=1

H(x,W j) = ĝ
N
(u(x))− ĝ

N
(x).

It follows from (2.11) that

P
(
Ŝδ
N
�⊂ Sε

)
≤

∑
x∈S\Sε

P
(
ĥ
N
(x) ≥ −δ

)
.(2.14)

Let Ix(·) denote the LD rate function ofH(x,W ). Inequality (2.14) together with (2.5)
implies that

P
(
Ŝδ
N
�⊂ Sε

)
≤

∑
x∈S\Sε

e−NIx(−δ).(2.15)

It is important to note that the above inequality (2.15) is not asymptotic and is valid
for any random sample of size N .
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Assumption (A). For every x ∈ S the moment-generating function of the random
variable H(x,W ) is finite valued in a neighborhood of 0.

The above assumption (A) holds, for example, if H(x,W ) is a bounded random
variable, or if H(x, ·) grows at most linearly and W has a distribution from the
exponential family.
Proposition 2.2. Let ε and δ be nonnegative numbers such that δ ≤ ε. Then

P
(
Ŝδ
N
�⊂ Sε

)
≤ |S \ Sε|e−Nγ(δ,ε),(2.16)

where

γ(δ, ε) := min
x∈S\Sε

Ix(−δ).(2.17)

Moreover, if Assumption (A) holds, then γ(δ, ε) > 0.
Proof. Inequality (2.16) is an immediate consequence of inequality (2.15). It

holds that −δ > −ε∗ ≥ E[H(x,W )], and hence it follows by Assumption (A) that
Ix(−δ) > 0 for every x ∈ S \ Sε. This implies that γ(δ, ε) > 0.

The following asymptotic result is an immediate consequence of inequality (2.16),

lim sup
N→∞

1

N
log

[
1− P (Ŝδ

N
⊂ Sε)

]
≤ −γ(δ, ε).(2.18)

Inequality (2.18) means that the probability of the event {Ŝδ
N
⊂ Sε} approaches 1

exponentially fast as N → ∞. This suggests that Monte Carlo sampling, combined
with an efficient method for solving the deterministic SAA problem, can efficiently
solve the type of problems under study, provided that the constant γ(δ, ε) is not “too
small.”

It follows from (2.7) that

Ix(−δ) ≈ (−δ − E[H(x,W )])
2

2σ2
x

≥ (ε∗ − δ)2

2σ2
x

,(2.19)

where ε∗ is defined in (2.13) and

σ2
x := Var[H(x,W )] = Var[G(u(x),W )−G(x,W )].

Therefore the constant γ(δ, ε), given in (2.17), can be approximated by

γ(δ, ε) ≈ min
x∈S\Sε

(−δ − E[H(x,W )])2

2σ2
x

≥ (ε∗ − δ)2

2σ2
max

>
(ε− δ)2

2σ2
max

,(2.20)

where

σ2
max := max

x∈S\Sε
Var[G(u(x),W )−G(x,W )].(2.21)

A result similar to the one of Proposition 2.2 was derived in [14] by using slightly
different arguments. The LD rate functions of the random variables G(x,W ) were
used there, which resulted in estimates of the exponential constant similar to the
estimate (2.20) but with σ2

x replaced by the variance of G(x,W ). Due to a positive
correlation between G(x,W ) and G(u(x),W ), the variance of G(x,W )−G(u(x),W )
tends to be smaller than the variance of G(x,W ), thereby providing a smaller upper
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bound on P (Ŝδ
N
�⊂ Sε), especially when u(x) is chosen to minimize Var[G(x,W ) −

G(u(x),W )]/[g(x)− g(u(x))]2. This suggests that the estimate given in (2.20) could
be more accurate than the one obtained in [14].

To illustrate some implications of the bound (2.16) for issues of the complexity of
solving stochastic problems, let us fix a significance level α ∈ (0, 1), and estimate the
sample size N which is needed for the probability P (Ŝδ

N
⊂ Sε) to be at least 1 − α.

By requiring that the right-hand side of (2.16) be less than or equal to α, we obtain
that

N ≥ 1

γ(δ, ε)
log

( |S \ Sε|
α

)
.(2.22)

Moreover, it follows from (2.8) and (2.17) that γ(δ, ε) ≥ (ε− δ)2/(3σ2
max) for all ε ≥ 0

sufficiently small. Therefore it holds that for all ε > 0 small enough and δ ∈ [0, ε), a
sufficient condition for (2.22) is that

N ≥ 3σ2
max

(ε− δ)2
log

( |S|
α

)
.(2.23)

It appears that the bound (2.23) may be too conservative for practical estimates
of the required sample sizes (see the discussion in section 4.2). However, the esti-
mate (2.23) has interesting consequences for complexity issues. A key characteristic
of (2.23) is that N depends only logarithmically both on the size of the feasible set S
and on the tolerance probability α. An important implication of such behavior is the
following. Suppose that (i) the size of the feasible set S grows at most exponentially
in the length of the problem input, (ii) the variance σ2

max grows polynomially in the
length of the problem input, and (iii) the complexity of finding a δ-optimal solution
for (2.1) grows polynomially in the length of the problem input and the sample size
N . Then a solution can be generated in time that grows polynomially in the length of
the problem input such that, with probability at least 1−α, the solution is ε-optimal
for (1.1). A careful analysis of these issues is beyond the scope of this paper, and
requires further investigation.

Now suppose for a moment that the true problem has unique optimal solution
x∗, i.e., S∗ = {x∗} is a singleton, and consider the event that the SAA problem (2.1)
has unique optimal solution x̂

N
and x̂

N
= x∗. We denote that event by {x̂

N
= x∗}.

Furthermore, consider the mapping u : S \ Sε �→ {x∗}, i.e., u(x) ≡ x∗, and the
corresponding constant γ∗ := γ(0, 0). That is,

γ∗ = min
x∈S\{x∗}

Ix(0),(2.24)

with Ix(·) being the LD rate function of G(x∗,W )−G(x,W ). Note that E[G(x∗,W )−
G(x,W )] = g(x∗) − g(x), and hence E[G(x∗,W ) − G(x,W )] < 0 for every x ∈ S \
{x∗}. Therefore, if Assumption (A) holds, i.e., the moment-generating function of
G(x∗,W )−G(x,W ) is finite valued in a neighborhood of 0, then γ∗ > 0.
Proposition 2.3. Suppose that the true problem has unique optimal solution x∗

and the moment-generating function of each random variable G(x∗,W ) − G(x,W ),
x ∈ S \ {x∗}, is finite valued on R. Then

lim
N→∞

1

N
log [1− P (x̂

N
= x∗)] = −γ∗.(2.25)
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Proof. It follows from (2.18) that

lim sup
N→∞

1

N
log [1− P (x̂

N
= x∗)] ≤ −γ∗.(2.26)

Consider the complement of the event {x̂
N
= x∗}, which is denoted {x̂

N
�= x∗}. The

event {x̂
N
�= x∗} is equal to the union of the events {ĝ

N
(x) ≤ ĝ

N
(x∗)}, x ∈ S \ {x∗}.

Therefore, for any x ∈ S \ {x∗},

P (x̂
N
�= x∗) ≥ P (ĝ

N
(x) ≤ ĝ

N
(x∗)) .

By using the lower bound (2.6) of Cramér’s LD theorem, it follows that the inequality

lim inf
N→∞

1

N
log [1− P (x̂

N
= x∗)] ≥ −Ix(0)(2.27)

holds for every x ∈ S \ {x∗}. Inequalities (2.26) and (2.27) imply (2.25).
Suppose that S∗ = {x∗} and consider the number

κ := max
x∈S\{x∗}

Var[G(x,W )−G(x∗,W )]

[g(x)− g(x∗)]2
.(2.28)

It follows from (2.7) and (2.24) that κ ≈ 1/(2γ∗). One can view κ as a condition
number of the true problem. That is, the sample size required for the event {x̂

N
= x∗}

to happen with a given probability is roughly proportional to κ. The number defined
in (2.28) can be viewed as a discrete version of the condition number introduced in [22]
for piecewise linear continuous problems.

For a problem with a large feasible set S, the number minx∈S\{x∗} g(x)− g(x∗),
although positive if S∗ = {x∗}, tends to be small. Therefore the sample size required
to calculate the exact optimal solution x∗ with a high probability could be very
large, even if the optimal solution x∗ is unique. For ill-conditioned problems it makes
sense to search for approximate (ε-optimal) solutions of the true problem. In that
respect the bound (2.16) is more informative since the corresponding constant γ(δ, ε)
is guaranteed to be at least of the order (ε− δ)2/(2σ2

max).
It is also insightful to note the behavior of the condition number κ for a discrete

optimization problem with linear objective function G(x,W ) :=
∑k
i=1 Wixi and fea-

sible set S given by the vertices of the unit hypercube in R
k, i.e., S := {0, 1}k. In

that case the corresponding true optimization problem is

min
x∈{0,1}k

{
g(x) =

k∑
i=1

w̄ixi

}
,

where w̄i := E[Wi]. Suppose that w̄i > 0 for all i ∈ {1, . . . , k}, and hence the origin
is the unique optimal solution of the true problem, i.e., S∗ = {0}. Let

ϑ2
i :=

Var[Wi]

(E[Wi])2

denote the squared coefficient of variation of Wi, and let

ρij :=
Cov[Wi,Wj ]√

Var[Wi]
√
Var[Wj ]
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denote the correlation coefficient between Wi and Wj . It follows that for any x ∈
{0, 1}k \ {0},

Var
[∑k

i=1 Wixi

]
[∑k

i=1 w̄ixi

]2 =

∑k
i=1

∑k
j=1 ρijϑiw̄ixiϑjw̄jxj∑k

i=1

∑k
j=1 w̄ixiw̄jxj

≤ max
i∈{1,...,k}

ϑ2
i .

Thus

κ = max
x∈{0,1}k\{0}

Var
[∑k

i=1 Wixi

]
[∑k

i=1 w̄ixi

]2 = max
i∈{1,...,k}

ϑ2
i .

The last equality follows because the maximum is attained by setting xi = 1 for the
index i for which Wi has the maximum squared coefficient of variation ϑ2

i , and setting
xj = 0 for the remaining variables. Thus, in this example the condition number κ is
equal to the maximum squared coefficient of variation of the Wi’s.

2.3. Asymptotics of sample objective values. Next we discuss the asymp-
totics of the SAA optimal objective value v̂

N
. For any subset S ′ of S the inequal-

ity v̂
N
≤ minx∈S′ ĝ

N
(x) holds. In particular, by taking S ′ = S∗, it follows that

v̂
N
≤ minx∈S∗ ĝ

N
(x), and hence

E[v̂
N
] ≤ E

{
min
x∈S∗

ĝ
N
(x)

}
≤ min

x∈S∗
E[ĝ

N
(x)] = v∗.

That is, the estimator v̂
N
has a negative bias (cf. Norkin, Pflug, and Ruszczyński [19]

and Mak, Morton, and Wood [15]).
It follows from Proposition 2.1 that w.p.1, for N sufficiently large, the set Ŝ

N
of

optimal solutions of the SAA problem is included in S∗. In that case it holds that

v̂
N

= min
x∈Ŝ

N

ĝ
N
(x) ≥ min

x∈S∗
ĝ
N
(x).

Since the opposite inequality always holds, it follows that, w.p.1, v̂
N
−minx∈S∗ ĝ

N
(x) =

0 for N large enough. Multiplying both sides of this equation by
√
N it follows that,

w.p.1,
√
N [v̂

N
−minx∈S∗ ĝ

N
(x)] = 0 for N large enough, and hence

lim
N→∞

√
N

[
v̂
N
− min
x∈S∗

ĝ
N
(x)

]
= 0 w.p.1.(2.29)

Since convergence w.p.1 implies convergence in probability, it follows from (2.29) that√
N [v̂

N
−minx∈S∗ ĝ

N
(x)] converges in probability to zero, i.e.,

v̂
N

= min
x∈S∗

ĝ
N
(x) + op(N

−1/2).

Furthermore, since v∗ = g(x) for any x ∈ S∗, it follows that
√
N

[
min
x∈S∗

ĝ
N
(x)− v∗

]
=
√
N min

x∈S∗
[ĝ

N
(x)− v∗] = min

x∈S∗

{√
N [ĝ

N
(x)− g(x)]

}
.

Suppose that for every x ∈ S the variance

σ2(x) := Var[G(x,W )](2.30)
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exists. Then it follows by the central limit theorem (CLT) that, for any x ∈ S,√
N [ĝ

N
(x) − g(x)] converges in distribution to a normally distributed variable Z(x)

with zero mean and variance σ2(x). Moreover, again by the CLT, random variables
Z(x) have the same covariance function as G(x,W ), i.e., the covariance between
Z(x) and Z(x′) is equal to the covariance between G(x,W ) and G(x′,W ) for any
x, x′ ∈ S. Hence the following result is obtained (it is similar to an asymptotic result
for stochastic programs with continuous decision variables which was derived in [21]).
We use “⇒” to denote convergence in distribution.
Proposition 2.4. Suppose that variances σ2(x), defined in (2.30), exist for every

x ∈ S∗. Then
√
N(v̂

N
− v∗) ⇒ min

x∈S∗
Z(x),(2.31)

where Z(x) are normally distributed random variables with zero mean and the co-
variance function given by the corresponding covariance function of G(x,W ). In
particular, if S∗ = {x∗} is a singleton, then

√
N(v̂

N
− v∗) ⇒ N(0, σ2(x∗)).(2.32)

Although for any given x the mean (expected value) of Z(x) is zero, the expected
value of the minimum of Z(x) over a subset S ′ of S can be negative and tends to be
smaller for a larger set S ′. Therefore, it follows from (2.31) that for ill-conditioned
problems, where the set of optimal or nearly optimal solutions is large, the estimate
v̂
N
of v∗ tends to be heavily biased. Note that convergence in distribution does not

necessarily imply convergence of the corresponding means. Under mild additional
conditions it follows from (2.31) that

√
N [E(v̂

N
)− v∗]→ E[minx∈S∗ Z(x)].

3. Algorithm design. In the previous section we established a number of con-
vergence results for the SAA method. The results describe how the optimal value v̂

N

and the set Ŝε
N
of ε-optimal solutions of the SAA problem converge to their true coun-

terparts v∗ and Sε, respectively, as the sample size N increases. These results provide
some theoretical justification for the proposed method. When designing an algorithm
for solving stochastic discrete optimization problems, many additional issues have to
be addressed. Some of these issues are discussed in this section.

3.1. Selection of the sample size. In an algorithm, a finite sample size N or
a sequence of finite sample sizes has to be chosen, and the algorithm has to stop after
a finite amount of time. An important question is how these choices should be made.
Estimate (2.23) gives a bound on the sample size required to find an ε-optimal solution
with probability at least 1−α. This estimate has two shortcomings for computational
purposes. First, for many problems it is not easy to compute the estimate, because
σ2

max and in some problems also |S|may be hard to compute. Second, as demonstrated
in section 4.2, the bound may be far too conservative to obtain a practical estimate
of the required sample size. To choose N , several trade-offs should be taken into
account. With larger N , the objective function of the SAA problem tends to be a
more accurate estimate of the true objective function, an optimal solution of the SAA
problem tends to be a better solution, and the corresponding bounds on the optimality
gap, discussed later, tend to be tighter. However, depending on the SAA problem (2.1)
and the method used for solving the SAA problem, the computational complexity for
solving the SAA problem increases at least linearly, and often exponentially, in the
sample size N . Thus, in the choice of sample size N , the trade-off between the quality
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of an optimal solution of the SAA problem and the bounds on the optimality gap,
on the one hand, and computational effort, on the other hand, should be taken into
account. Also, the choice of sample size N may be adjusted dynamically, depending
on the results of preliminary computations. This issue is addressed in more detail
later.

Typically, estimating the objective value g(x) of a feasible solution x ∈ S by the
sample average ĝ

N
(x) requires much less computational effort than solving the SAA

problem (for the same sample size N). Thus, although computational complexity
considerations motivate one to choose a relatively small sample size N for the SAA
problem, it makes sense to choose a larger sample size N ′ to obtain an accurate
estimate ĝ

N′ (x̂N
) of the objective value g(x̂

N
) of an optimal solution x̂

N
of the SAA

problem. A measure of the accuracy of a sample average estimate ĝ
N′ (x̂N

) of g(x̂
N
)

is given by the corresponding sample variance S2
N′ (x̂N

)/N ′, which can be calculated
from the same sample of size N ′. Again the choice of N ′ involves a trade-off between
computational effort and accuracy, measured by S2

N′ (x̂N
)/N ′.

3.2. Replication. If the computational complexity of solving the SAA problem
increases faster than linearly in the sample size N , it may be more efficient to choose
a smaller sample size N and to generate and solve several SAA problems with i.i.d.
samples, that is, to replicate generating and solving SAA problems.

With such an approach, several issues have to be addressed. One question is
whether there is a guarantee that an optimal (or ε-optimal) solution for the true
problem will be produced if a sufficient number of SAA problems, based on indepen-
dent samples of size N , are solved. One can view such a procedure as Bernoulli trials
with probability of success p = p(N). Here “success” means that a calculated optimal
solution x̂

N
of the SAA problem is an optimal solution of the true problem. It follows

from Proposition 2.1 that this probability p tends to 1 as N →∞, and, moreover, by
Proposition 2.2 it tends to 1 exponentially fast if Assumption (A) holds. However, for
a finite N the probability p can be small or even zero. The probability of producing
an optimal solution of the true problem at least once in M trials is 1 − (1 − p)M ,
and this probability tends to one as M →∞, provided p is positive. Thus a relevant
question is whether there is a guarantee that p is positive for a given sample size N .
The following example shows that the sample size N required for p to be positive is
problem-specific, cannot be bounded by a function that depends only on the number
of feasible solutions, and can be arbitrarily large.

Example. Suppose that S := {−1, 0, 1}, that W can take two values w1 and w2

with respective probabilities 1 − γ and γ, and that G(−1, w1) := −1, G(0, w1) := 0,
G(1, w1) := 2, and G(−1, w2) := 2k, G(0, w2) := 0, G(1, w2) := −k, where k is
an arbitrary positive number. Let γ = 1/(k + 1). Then g(x) = (1 − γ)G(x,w1) +
γG(x,w2), and thus g(−1) = k/(k + 1), g(0) = 0, and g(1) = k/(k + 1). Therefore
x∗ = 0 is the unique optimal solution of the true problem. If the sample does not
contain any observations w2, then x̂

N
= −1 �= x∗. Suppose the sample contains at

least one observation w2. Then ĝ
N
(1) ≤ [2(N − 1)− k] /N . Thus ĝ

N
(1) < 0 = ĝ

N
(0)

if N ≤ k/2, and x̂
N
= 1 �= x∗. Thus a sample of size N > k/2 at least is required,

in order for x∗ = 0 to be an optimal solution of the SAA problem. (Note that
Var[G(−1,W ) − G(0,W )] and Var[G(1,W ) − G(0,W )] are Θ(k), which causes the
problem to become harder as k increases.)

Another issue that has to be addressed is the choice of the number M of replica-
tions. In a manner similar to the choice of sample sizeN , the numberM of replications
may be chosen dynamically. One approach to doing this is discussed next. For sim-
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plicity of presentation, suppose that each SAA replication produces one candidate
solution, which can be an optimal (ε-optimal) solution of the SAA problem. Let x̂m

N

denote the candidate solution produced by the mth SAA replication (trial). The opti-
mality gap g(x̂m

N
)−v∗ can be estimated, as described in the next section. If a stopping

criterion based on the optimality gap estimate is satisfied, then no more replications
are performed. Otherwise, additional SAA replications with the same sample size N
are performed, or the sample size N is increased. The following argument provides a
simple guideline as to whether an additional SAA replication with the same sample
size N is likely to provide a better solution than the best solution found so far.

Note that, by construction, the random variables g(x̂m
N
), m = 1, . . . , are i.i.d.,

and their common probability distribution has a finite support because the set S is
finite. Suppose that M replications with sample size N have been performed so far.
If the probability distribution of g(x̂

N
) were continuous, then the probability that the

(M+1)th SAA replication with the same sample size would produce a better solution
than the best of the solutions produced by the M replications so far would be equal
to 1/(M + 1). Because in fact the distribution of g(x̂

N
) is discrete, this probability is

less than or equal to 1/(M + 1). Thus, when 1/(M + 1) becomes sufficiently small,
additional SAA replications with the same sample size are not likely to be worth the
effort, and either the sample size N should be increased or the procedure should be
stopped.

3.3. Performance bounds. To assist in making stopping decisions, as well as
for other performance evaluation purposes, one would like to compute the optimality
gap g(x̂) − v∗ for a given solution x̂ ∈ S. Unfortunately, the very reason for the
approach described in this paper implies that both terms of the optimality gap are
hard to compute. As before,

ĝ
N′ (x̂) :=

1

N ′

N ′∑
j=1

G(x̂,W j)

is an unbiased estimator of g(x̂), and the variance of ĝ
N′ (x̂) is estimated by S2

N′ (x̂)/N
′,

where S2
N′ (x̂) is the sample variance of G(x̂,W

j), based on the sample of size N ′.
An estimator of v∗ is given by

v̄M

N
:=

1

M

M∑
m=1

v̂m
N
,

where v̂m
N

denotes the optimal objective value of the mth SAA replication. Note
that E[v̄M

N
] = E[v̂

N
], and hence the estimator v̄M

N
has the same negative bias as v̂

N
.

Proposition 2.4 indicates that this bias tends to be bigger for ill-conditioned problems
with larger sets of optimal, or nearly optimal, solutions. Consider the corresponding
estimator ĝ

N′ (x̂)− v̄M

N
of the optimality gap g(x̂)− v∗, at the point x̂. Since

E
[
ĝ
N′ (x̂)− v̄M

N

]
= g(x̂)− E[v̂

N
] ≥ g(x̂)− v∗,(3.1)

it follows that on average the above estimator overestimates the optimality gap g(x̂)−
v∗. It is possible to show (Norkin, Pflug, and Ruszczyński [19], and Mak, Morton,
and Wood [15]) that the bias v∗ − E[v̂

N
] is monotonically decreasing in the sample

size N .
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The variance of v̄M

N
is estimated by

S2
M

M
=

1

M(M − 1)

M∑
m=1

(
v̂m
N
− v̄M

N

)2
.(3.2)

If the M samples, of size N , and the evaluation sample, of size N ′, are independent,
then the variance of the optimality gap estimator ĝ

N′ (x̂) − v̄M

N
can be estimated by

S2
N′ (x̂)/N

′ + S2
M
/M .

An estimator of the optimality gap g(x̂) − v∗ with possibly smaller variance is
ḡM

N
(x̂)− v̄M

N
, where

ḡM

N
(x̂) :=

1

M

M∑
m=1

ĝm
N
(x̂)

and ĝm
N
(x̂) is the sample average objective value at x̂ of the mth SAA sample of size

N ,

ĝm
N
(x̂) :=

1

N

N∑
j=1

G(x̂,Wmj).

The variance of ḡM

N
(x̂)− v̄M

N
is estimated by

S̄2
M

M
=

1

M(M − 1)

M∑
m=1

[(
ĝm
N
(x̂)− v̂m

N

)− (
ḡM

N
(x̂)− v̄M

N

)]2
.

Which estimator of the optimality gap has the least variance depends on the cor-
relation between ĝm

N
(x̂) and v̂m

N
, as well as on the sample sizes N , N ′, and M . For

many applications, one would expect positive correlation between ĝm
N
(x̂) and v̂m

N
. The

additional computational effort to compute ĝm
N
(x̂) for m = 1, . . . ,M should also be

taken into account when evaluating any such variance reduction. Either way, the
CLT can be applied to the optimality gap estimators ĝ

N′ (x̂) − v̄M

N
and ḡM

N
(x̂) − v̄M

N
,

so that the accuracy of an optimality gap estimator can be taken into account by
adding a multiple zα of its estimated standard deviation to the gap estimator. Here
zα := Φ−1(1−α), where Φ(z) is the cumulative distribution function of the standard
normal distribution. For example, if x̂ ∈ S denotes the candidate solution with the
best value of ĝ

N′ (x̂) found after M replications, then an optimality gap estimator
taking accuracy into account is given by either

ĝ
N′ (x̂)− v̄M

N
+ zα

(
S2
N′ (x̂)

N ′ +
S2
M

M

)1/2

or

ḡM

N
(x̂)− v̄M

N
+ zα

S̄
M√
M

.

For algorithm control, it is useful to separate an optimality gap estimator into its
components. For example,

ĝ
N′ (x̂)− v̄M

N
+ zα

(
S2
N′ (x̂)

N ′ +
S2
M

M

)1/2

=
(
ĝ
N′ (x̂)− g(x̂)

)
+ (g(x̂)− v∗) +

(
v∗ − v̄M

N

)
+ zα

(
S2
N′ (x̂)

N ′ +
S2
M

M

)1/2

.

(3.3)
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In the four terms on the right-hand side of the above equation, the first term has
expected value zero; the second term is the true optimality gap; the third term is the
bias term, which has positive expected value decreasing in the sample size N ; and the
fourth term is the accuracy term, which is decreasing in the number M of replications
and the sample size N ′. Thus a disadvantage of these optimality gap estimators is
that the gap estimator may be large if M , N , or N ′ is small, even if x̂ is an optimal
solution, i.e., g(x̂)− v∗ = 0.

3.4. Postprocessing, screening, and selection. Suppose a decision has been
made to stop, for example when the optimality gap estimator has become small
enough. At this stage the candidate solution x̂ ∈ S with the best value of ĝ

N′ (x̂)
can be selected as the chosen solution. However, it may be worthwhile to perform a
more detailed evaluation of the candidate solutions produced during the replications.
There are several statistical screening and selection methods for selecting subsets of
solutions or a single solution, among a (reasonably small) finite set of solutions, using
samples of the objective values of the solutions. Many of these methods are described
in Hochberg and Tamhane [12] and Bechhofer, Santner, and Goldsman [2]. In the
numerical tests described in section 4, a combined procedure was used, as described
in Nelson et al. [17]. During the first stage of the combined procedure, a subset S ′′
of the candidate solutions S ′ := {

x̂1
N
, . . . , x̂M

N

}
is chosen (called screening) for further

evaluation, based on its sample average values ĝ
N′ (x̂

m
N
). During the second stage,

sample sizes N ′′ ≥ N ′ are determined for more detailed evaluation, based on the
sample variances S2

N′ (x̂
m
N
). Then N ′′ −N ′ additional observations are generated, and

the candidate solution x̂ ∈ S ′′ with the best value of ĝ
N′′ (x̂) is selected as the chosen

solution. The combined procedure guarantees that the chosen solution x̂ has objec-
tive value g(x̂) within a specified tolerance δ of the best value minx̂m

N
∈S′ g(x̂m

N
) over

all candidate solutions x̂m
N

with probability at least equal to specified confidence level
1− α.

3.5. Algorithm. Next we state a proposed algorithm for the type of stochastic
discrete optimization problem studied in this paper.
SAA Algorithm for Stochastic Discrete Optimization.
1. Choose initial sample sizes N and N ′, a decision rule for determining the

number M of SAA replications (possibly involving a maximum number M ′ of
SAA replications with the same sample size, such that 1/(M ′+1) is sufficiently
small), a decision rule for increasing the sample sizes N and N ′ if needed,
and tolerance ε.

2. For m = 1, . . . ,M , do steps 2.1 through 2.3.
2.1 Generate a sample of size N and solve the SAA problem (2.1) with

objective value v̂m
N

and ε-optimal solution x̂m
N
.

2.2 Estimate the optimality gap g(x̂m
N
) − v∗ and the variance of the gap

estimator.
2.3 If the optimality gap and the variance of the gap estimator are suffi-

ciently small, go to step 4.
3. If the optimality gap or the variance of the gap estimator is too large, increase

the sample sizes N and/or N ′, and return to step 2.
4. Choose the best solution x̂ among all candidate solutions x̂m

N
produced, using

a screening and selection procedure. Stop.

4. Numerical tests. In this section we describe an application of the SAA
method to an optimization problem. The purposes of these tests are to investigate



SAMPLE AVERAGE APPROXIMATION 493

the viability of the SAA approach, as well as to study the effects of problem param-
eters, such as the number of decision variables and the condition number κ, on the
performance of the method.

4.1. Resource allocation problem. We apply the method to the following
resource allocation problem. A decision maker has to choose a subset of k known
alternative projects to take on. For this purpose a known quantity q of relatively low-
cost resource is available to be allocated. Any additional amount of resource required
can be obtained at a known incremental cost of c per unit of resource. The amount
Wi of resource required by each project i is not known at the time the decision has
to be made, but we assume that the decision maker has an estimate of the proba-
bility distribution of W = (W1, . . . ,Wk). Each project i has an expected net reward
(expected revenue minus expected resource use times the lower cost) of ri. Thus the
optimization problem can be formulated as follows:

max
x∈{0,1}k




k∑
i=1

rixi − cE

[
k∑
i=1

Wixi − q

]+

 ,(4.1)

where [x]+ := max{x, 0}. This problem can also be described as a knapsack problem,
where a subset of k items has to be chosen, given a knapsack of size q into which to
fit the items. The size Wi of each item i is random, and a per unit penalty of c has
to be paid for exceeding the capacity of the knapsack. For this reason the problem is
called the static stochastic knapsack problem (SSKP).

This problem was chosen for several reasons. First, expected value terms similar
to that in the objective function of (4.1) occur in many interesting stochastic opti-
mization problems. One such example is airline crew scheduling. An airline crew
schedule is made up of crew pairings, where each crew pairing consists of a number of
consecutive days (duties) of flying by a crew. Let {p1, . . . , pk} denote the set of pair-
ings that can be chosen from. Then a crew schedule can be denoted by the decision
vector x ∈ {0, 1}k, where xi = 1 means that pairing pi is flown. The cost Ci(x) of a
crew pairing pi is given by

Ci(x) = max



∑
d∈pi

bd(x), fti(x), gni


 ,

where bd(x) denotes the cost of duty d in pairing pi, ti(x) denotes the total time
duration of pairing pi, ni denotes the number of duties in pairing pi, and f and g
are constants determined by contracts. Even ignoring airline recovery actions such as
cancellations and rerouting, bd(x) and ti(x) are random variables. The optimization
problem is then

min
x∈X⊂{0,1}k

k∑
i=1

E[Ci(x)]xi,

where X denotes the set of feasible crew schedules. Thus the objective function of
the crew pairing problem can be written in a form similar to that of the objective
function of (4.1).

Another example is a stochastic shortest path problem, where travel times are
random and a penalty is incurred for arriving late at the destination. In this case,
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the cost C(x) of a path x is given by

C(x) =
∑

(i,j)∈x
bij + c


 ∑

(i,j)∈x
tij − q




+

,

where bij is the cost of traversing arc (i, j), tij is the time of traversing arc (i, j), q
is the available time to travel to the destination, and c is the penalty per unit time
late. The optimization problem is then

min
x∈X

E[C(x)],

where X denotes the set of feasible paths in the network from the specified origin to
the specified destination.

A second reason for choosing the SSKP is that objective functions with terms such
as E[

∑k
i=1 Wixi−q]+ are interesting for the following reason. For many stochastic op-

timization problems good solutions can be obtained by replacing the random variables
W by their means and then solving the resulting deterministic optimization problem
maxxG(x,E[W ]), called the expected value problem (Birge and Louveaux [3]). It
is easy to see that this may not be the case if the objective contains an expected
value term as in (4.1). For a given solution x, this term may be very large but may
become small if W1, . . . ,Wk are replaced by their means. In such a case, the ob-
tained expected value problem may produce very bad solutions for the corresponding
stochastic optimization problem.

The SSKP was also chosen because it is of interest by itself. One application
is the decision faced by a contractor who can take on several contracts, such as an
electricity supplier who can supply power to several groups of customers or a building
contractor who can bid on several construction projects. The amount of work that will
be required by each contract is unknown at the time the contracting decision has to be
made. The contractor has the capacity to do work at a certain rate at relatively low
cost, for example to generate electricity at a low-cost nuclear power plant. However,
if the amount of work required exceeds the capacity, additional capacity has to be
obtained at high cost, for example additional electricity can be generated at high-cost
oil or natural gas–fired power plants. Norkin, Ermoliev, and Ruszczyński [18] also
give several interesting applications of stochastic discrete optimization problems.

Note that the SAA problem of the SSKP can be formulated as the following
integer linear program:

maxx,z
∑k
i=1 rixi − c

N

∑N
j=1 zj

subject to zj ≥
∑k
i=1 W

j
i xi − q, j = 1, . . . , N,

xi ∈ {0, 1}, i = 1, . . . , k,
zj ≥ 0, j = 1, . . . , N.

(4.2)

This problem can be solved with the branch and bound method, using the linear
programming relaxation to provide upper bounds.

4.2. Numerical results. We present results for two sets of instances of the
SSKP. The first set of instances has 10 decision variables, and the second set has
20 decision variables each. For each set we present one instance (called instances
10D and 20D, respectively) that was designed to be hard (large condition number κ),
and one randomly generated instance (called instances 10R and 20R, respectively).
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Table 4.1
Condition numbers κ, optimal values v∗, and values g(x̄) of optimal solutions x̄ of expected

value problems maxxG(x,E[W ]), for instances presented.

Instance Condition number κ Optimal value v∗ Expected value g(x̄)
10D 107000 42.7 26.2
10R 410 46.3 28.2
20D 954000 96.5 75.9
20R 233 130.3 109.0

Table 4.1 shows the condition numbers, the optimal values v∗, and the values g(x̄) of
the optimal solutions x̄ of the associated expected value problems maxxG(x,E[W ])
for the four instances.

For all instances of the SSKP, the size variables Wi are independent normally
distributed, for ease of evaluation of the results produced by the SAA method, as
described in the next paragraph. For the randomly generated instances, the rewards
ri were generated from the uniform (10, 20) distribution, the mean sizes µi were
generated from the uniform (20, 30) distribution, and the size standard deviations σi
were generated from the uniform (5, 15) distribution. For all instances, the per unit
penalty c = 4.

If Wi ∼ N(µi, σ
2
i ), i = 1, . . . , k, are independent normally distributed random

variables, then the objective function of (4.1) can be written in closed form. That

is, the random variable Z(x) :=
∑k
i=1 Wixi − q is normally distributed with mean

µ(x) =
∑k
i=1 µixi − q and variance σ(x)2 =

∑k
i=1 σ

2
i x

2
i . It is also easy to show, since

Z(x) ∼ N(µ(x), σ(x)2), that

E[Z(x)]+ = µ(x)Φ

(
µ(x)

σ(x)

)
+

σ(x)√
2π

exp

(−µ(x)2
2σ(x)2

)
,

where Φ denotes the standard normal cumulative distribution function. Thus, it
follows that

g(x) =
k∑
i=1

rixi − c

[
µ(x)Φ

(
µ(x)

σ(x)

)
+

σ(x)√
2π

exp

(
− µ(x)2

2σ(x)2

)]
.(4.3)

The benefit of such a closed form expression is that the objective value g(x) can be
computed quickly and accurately, which is useful for solving small instances of the
problem by enumeration or branch and bound (cf. Cohn and Barnhart [4]) and for
evaluation of solutions produced by the SAA Algorithm. Good numerical approxi-
mations are available for computing Φ(x), such as Applied Statistics Algorithm AS66
(Hill [11]). The SAA Algorithm was executed without the benefit of a closed form
expression for g(x), as would be the case for most probability distributions; (4.3) was
used only to evaluate the solutions produced by the SAA Algorithm.

The first numerical experiment was conducted to observe how the exponential
convergence rate established in Proposition 2.2 applies in the case of the SSKP, and
to investigate how the convergence rate is affected by the number of decision variables
and the condition number κ. Figures 4.1 and 4.2 show the estimated probability that
an SAA optimal solution x̂

N
has objective value g(x̂

N
) within relative tolerance d

of the optimal value v∗, i.e., P̂ [v∗ − g(x̂
N
) ≤ d v∗], as a function of the sample size

N , for different values of d. The experiment was conducted by generating M =
1000 independent SAA replications for each sample size N , computing SAA optimal
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Fig. 4.1. Probability of SAA optimal solution x̂N having objective value g(x̂N ) within relative

tolerance d of the optimal value v∗, P̂ [v∗−g(x̂N ) ≤ d v∗], as a function of sample size N for different
values of d, for instance 20D.
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Fig. 4.2. Probability of SAA optimal solution x̂N having objective value g(x̂N ) within relative

tolerance d of the optimal value v∗, P̂ [v∗−g(x̂N ) ≤ d v∗], as a function of sample size N for different
values of d, for instance 20R.
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solutions x̂m
N
, m = 1, . . . ,M , and their objective values g(x̂m

N
) using (4.3), and then

counting the number Md of times that v
∗ − g(x̂m

N
) ≤ d v∗. Then the probability was

estimated by P̂ [v∗ − g(x̂
N
) ≤ d v∗] = Md/M , and the variance of this estimator was

estimated by

V̂ar[P̂ ] =
Md(1−Md/M)

M(M − 1)
.

The figures also show error bars of length 2(V̂ar[P̂ ])1/2 on each side of the point
estimate Md/M .

One noticeable effect is that the probability that an SAA replication generates
an optimal solution (d = 0) increases much more slowly with increase in the sample
size N for the harder instances (10D and 20D) with poor condition numbers κ than
for the randomly generated instances with better condition numbers. However, the
probability that an SAA replication generates a reasonably good solution (e.g., d =
0.05) increases quite quickly with increase in the sample size N for both the harder
instances and for the randomly generated instances.

The second numerical experiment demonstrates how the objective values g(x̂m
N
)

of SAA optimal solutions x̂m
N

change as the sample size N increases, and how this
change is affected by the number of decision variables and the condition number κ.
In this experiment, the maximum number of SAA replications with the same sample
size N was chosen as M ′ = 50. Additionally, after M ′′ = 20 replications with the
same sample size N , the variance S2

M′′ of v̂m
N

was computed as in (3.2), because it

is an important term in the optimality gap estimator (3.3). If S2
M′′ was too large, it

indicated that the optimality gap estimate would be too large and that the sample size
N should be increased. Otherwise, if S2

M′′ was not too large, then SAA replications
were performed with the same sample size N until M ′ SAA replications had occurred.
If the optimality gap estimate was greater than a specified tolerance, then the sample
size N was increased and the procedure was repeated. Otherwise, if the optimality gap
estimate was less than a specified tolerance, then a screening and selection procedure
was applied to all the candidate solutions x̂m

N
generated, and the best solution among

these was chosen.

Figures 4.3 and 4.4 show the objective values g(x̂m
N
) of SAA optimal solutions x̂m

N

produced during the course of the algorithm. There were several noticeable effects.
First, good and often optimal solutions were produced early in the execution of the al-
gorithm, but the sample size N had to be increased several times thereafter before the
optimality gap estimate became sufficiently small for stopping, without any improve-
ment in the quality of the generated solutions. Second, for the randomly generated
instances a larger proportion of the SAA optimal solutions x̂m

N
were optimal or had

objective values close to optimal, and optimal solutions were produced with smaller
sample sizes N than were required for the harder instances. For example, for the
harder instance with 10 decision variables (instance 10D), the optimal solution was
first produced after m = 6 replications with sample size N = 120; and for instance
10R, the optimal solution was first produced after m = 2 replications with sample size
N = 20. Also, for the harder instance with 20 decision variables (instance 20D), the
optimal solution was not produced in any of the 270 total number of replications (but
the second-best solution was produced 3 times); and for instance 20R, the optimal
solution was first produced after m = 15 replications with sample size N = 50. Third,
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for each of the instances, the expected value problem maxxG(x,E[W ]) was solved,
with its optimal solution denoted by x̄. The objective value g(x̄) of each x̄ is shown in
Table 4.1. It is interesting to note that even with small sample sizes N , every solution
x̂m
N

produced had a better objective value g(x̂m
N
) than g(x̄).

As mentioned above, in the second numerical experiment it was noticed that often
the optimality gap estimate is large, even if an optimal solution has been found, i.e.,
v∗−g(x̂) = 0. (This is also a common problem in deterministic discrete optimization.)
Consider the components of the optimality gap estimator ĝ

N′ (x̂)− v̄M

N
given in (3.3).

The first component g(x̂) − ĝ
N′ (x̂) can be made small with relatively little compu-

tational effort by choosing N ′ sufficiently large. The second component, the true
optimality gap v∗ − g(x̂), is often small after only a few replications m with a small
sample size N . The fourth component zα(S

2
N′ (x̂)/N

′ + S2
M
/M)1/2 can also be made

small with relatively little computational effort by choosing N ′ and M sufficiently
large. The major part of the problem seems to be caused by the third term v̄M

N
− v∗

and by the fact that E[v̄M

N
]− v∗ ≥ 0, as identified in (3.1). It was also mentioned that

the bias E[v̄M

N
] − v∗ decreases as the sample size N increases. However, the second

numerical experiment indicated that a significant bias can persist even if the sample
size N is increased far beyond the sample size needed for the SAA method to produce
an optimal solution.

The third numerical experiment demonstrates the effect of the number of decision
variables and the condition number κ on the bias in the optimality gap estimator.
Figures 4.5 and 4.6 show how the relative bias v̄M

N
/v∗ of the optimality gap estimate

changes as the sample size N increases, for different instances. The most noticeable
effect is that the bias decreases much more slowly for the harder instances than for the
randomly generated instances as the sample size N increases. This is in accordance
with the asymptotic result (2.31) of Proposition 2.4.

Two estimators of the optimality gap v∗ − g(x̂) were discussed in section 3.3,
namely, v̄M

N
− ĝ

N′ (x̂) and v̄M

N
− ḡM

N
(x̂). It was mentioned that the second estimator may

have smaller variance than the first, especially if there is positive correlation between
ĝm
N
(x̂) and v̂m

N
. It was also pointed out that the second estimator requires additional

computational effort, because after x̂ is produced by solving the SAA problem for one
sample, the second estimator requires the computation of ĝm

N
(x̂) for all the remaining

samples m = 1, . . . ,M . The fourth numerical experiment compares the optimality
gap estimates and their variances. Sample sizes of N = 50 and N ′ = 2000 were used,
and M = 50 replications were performed.

Table 4.2 shows the optimality gap estimates v̄M

N
− ĝ

N′ (x̂) and v̄M

N
− ḡM

N
(x̂), with

their variances V̂ar[v̄M

N
− ĝ

N′ (x̂)] = S2
N′ (x̂)/N

′+S2
M
/M and V̂ar[v̄M

N
− ḡM

N
(x̂)] = S̄2

M
/M ,

respectively; the correlation Ĉor[v̄M

N
, ḡM

N
(x̂)]; and the computation times of the gap

estimates. In each case, the bias v̄M

N
− v∗ formed the major part of the optimality

gap estimate; the standard deviations of the gap estimators were small compared
with the bias. There was positive correlation between v̄M

N
and ḡM

N
(x̂), and the second

gap estimator had smaller variances, but this benefit is obtained at the expense of
relatively large additional computational effort.

In section 2.2, an estimate N ≈ 3σ2
max log(|S|/α)/(ε− δ)2 of the required sample

size was derived. For the instances presented here, using ε = 0.5, δ = 0, and α = 0.01,
these estimates were of the order of 106 and thus much larger than the sample sizes
that were actually required for the specified accuracy. The sample size estimates
using σ2

max were smaller than the sample size estimates using maxx∈S Var[G(x,W )]
by a factor of approximately 10.
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Table 4.2
Optimality gap estimates v̄M

N
− ĝ

N′ (x̂) and v̄
M
N

− ḡM
N
(x̂), with their variances and computation

times.

Opt. gap Estimate V̂ar[v̄M
N

− ĝ
N′ (x̂)] CPU

Instance v∗ − g(x̂) v̄M
N

− ĝ
N′ (x̂) = S2

N′ (x̂)/N
′ + S2

M
/M time

10D 0 3.46 0.200 0.02
10R 0 1.14 0.115 0.01
20D 0.148 8.46 0.649 0.02
20R 0 3.34 1.06 0.02

Opt. gap Estimate V̂ar[v̄M
N

− ḡM
N
(x̂)] Correlation CPU

Instance v∗ − g(x̂) v̄M
N

− ḡM
N
(x̂) = S̄2

M
/M Ĉor[v̄M

N
, ḡM

N
(x̂)] time

10D 0 3.72 0.121 0.203 0.24
10R 0 1.29 0.035 0.438 0.24
20D 0.148 9.80 0.434 0.726 0.49
20R 0 3.36 0.166 0.844 0.47

Several variance reduction techniques can be used. Compared with simple random
sampling, Latin hypercube sampling reduced the variances by factors varying between
1.02 and 2.9 and increased the computation time by a factor of approximately 1.2.
Also, to estimate g(x) for any solution x ∈ S, it is natural to use

∑k
i=1 Wixi as a

control variate, because
∑k
i=1 Wixi should be correlated with [

∑k
i=1 Wixi − q]+, and

the mean of
∑k
i=1 Wixi is easy to compute. Using this control variate reduced the

variances of the estimators of g(x) by factors between 2.0 and 3.0 and increased the
computation time by a factor of approximately 2.0.

5. Conclusion. We proposed a sample average approximation method for solv-
ing stochastic discrete optimization problems, and we studied some theoretical as well
as practical issues important for the performance of this method. It was shown that
the probability that a replication of the SAA method produces an optimal solution
increases at an exponential rate in the sample size N . It was found that this conver-
gence rate depends on the conditioning of the problem, which in turn tends to become
poorer with an increase in the number of decision variables. It was also shown that the
sample size required for a specified accuracy increases proportional to the logarithm
of the number of feasible solutions. It was found that for many instances the SAA
method produces good and often optimal solutions with only a few replications and a
small sample size. However, the optimality gap estimator considered here was in each
case too weak to indicate that a good solution had been found. Consequently the
sample size had to be increased substantially before the optimality gap estimator in-
dicated that the solutions were good. Thus, a more efficient optimality gap estimator
can make a substantial contribution toward improving the performance guarantees of
the SAA method during execution of the algorithm. The SAA method has the advan-
tage of ease of use in combination with existing techniques for solving deterministic
optimization problems.

The proposed method involves solving several replications of the SAA prob-
lem (2.1), and possibly increasing the sample size several times. An important issue is
the behavior of the computational complexity of the SAA problem (2.1) as a function
of the sample size. Current research aims at investigating this behavior for particular
classes of problems.
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RANK-TWO RELAXATION HEURISTICS FOR MAX-CUT
AND OTHER BINARY QUADRATIC PROGRAMS∗
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Abstract. The Goemans–Williamson randomized algorithm guarantees a high-quality approx-
imation to the MAX-CUT problem, but the cost associated with such an approximation can be
excessively high for large-scale problems due to the need for solving an expensive semidefinite re-
laxation. In order to achieve better practical performance, we propose an alternative, rank-two
relaxation and develop a specialized version of the Goemans–Williamson technique. The proposed
approach leads to continuous optimization heuristics applicable to MAX-CUT as well as other binary
quadratic programs, for example the MAX-BISECTION problem.

A computer code based on the rank-two relaxation heuristics is compared with two state-of-the-
art semidefinite programming codes that implement the Goemans–Williamson randomized algorithm,
as well as with a purely heuristic code for effectively solving a particular MAX-CUT problem arising
in physics. Computational results show that the proposed approach is fast and scalable and, more
importantly, attains a higher approximation quality in practice than that of the Goemans–Williamson
randomized algorithm. An extension to MAX-BISECTION is also discussed, as is an important
difference between the proposed approach and the Goemans–Williamson algorithm; namely, that the
new approach does not guarantee an upper bound on the MAX-CUT optimal value.

Key words. binary quadratic programs, MAX-CUT and MAX-BISECTION, semidefinite re-
laxation, rank-two relaxation, continuous optimization heuristics

AMS subject classifications. 90C06, 90C27, 90C30
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1. Introduction. Many combinatorial optimization problems can be formulated
as quadratic programs with binary variables, a simple example being the MAX-CUT
problem. Since such problems are usually NP-hard, which means that exact so-
lutions are difficult to obtain, different heuristic or approximation algorithms have
been proposed, often based on continuous relaxations of the original discrete prob-
lems. A relatively new relaxation scheme is called the semidefinite programming
relaxation (or SDP relaxation), in which a vector-valued binary variable is replaced
by a matrix-valued continuous variable, resulting in a convex optimization problem
called a semidefinite program (SDP) that can be solved to a prescribed accuracy in
polynomial time. Some early ideas related to such a relaxation can be found in a
number of works, including [10, 23, 24, 26, 27].

Based on solving the SDP relaxation, Goemans and Williamson [18] proposed
a randomized algorithm for the MAX-CUT problem and established the celebrated
0.878 performance guarantee. Since then, SDP relaxation has become a powerful
and popular theoretical tool for devising polynomial-time approximation algorithms
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for hard combinatorial optimization problems, and even in cases where performance
guarantees are not known, randomized algorithms based on the SDP relaxation can
often give good-quality approximate solutions in practice. It is important to note that
such Goemans–Williamson-type approaches produce both upper and lower bounds on
the optimal value of the underlying discrete problem.

In the meantime, there have been hopes that the SDP relaxation would eventually
lead to practically efficient algorithms for solving large-scale combinatorial optimiza-
tion problems by producing tight lower and upper bounds. In this regard, however,
results thus far have not always been encouraging. The main difficulty lies in the fact
that the number of variables and/or constraints in an SDP relaxation is one order of
magnitude higher than that of the original problem. Hence, the cost of solving such
SDP problems grows quickly as the size of the problems increases. In other words, a
key issue here is the scalability of the SDP relaxation approach with respect to the
problem size.

There has been a great deal of research effort towards improving the efficiency of
SDP solvers, including work on exploiting sparsity in more traditional interior-point
methods [1, 9, 16, 17, 29] and work on alternative methods [5, 6, 7, 20, 21, 30, 31].
Indeed, the efficiency of SDP solvers has been improved significantly in the last few
years. Nevertheless, the scalability problem still remains.

On the other hand, computational studies have continued to affirm that the
quality of bounds produced by the SDP relaxation is quite high. For example, the
Goemans–Williamson approximation algorithm produces lower bounds (i.e., discrete
solutions) that are better than or at least comparable to that of a number of heuristics
(see [11], for example). It is thus natural to investigate whether the quality of the
SDP relaxation can be preserved while somehow extending its use to problems of very
large size.

Can the approaches inspired by Goemans and Williamson, which rely on solving
the SDP relaxation, ever become competitive in attacking large-scale problems? In
this paper, we hope to provide a partial answer to this question. We will argue that
in terms of producing a lower bound, the answer seems to be negative, at least for
some problem classes including the familiar MAX-CUT problem. In other words, if
one is interested only in obtaining a high-quality approximate solution, then the SDP
relaxation does not seem to hold much promise. Our argument is based on strong
empirical evidence showing that on a large set of test problems the performance of
the SDP relaxation approach is clearly inferior to that of a new rank-two relaxation
approach that we will propose and study in this paper. The advantages of this rank-
two approach appear not only in terms of computational costs but, more notably, also
in terms of the approximation quality.

Based on the proposed rank-two relaxation and a specialized version of the
Goemans–Williamson technique, we construct a continuous optimization heuristic
for approximating the MAX-CUT problem and establish some properties for this ap-
proach that are useful in designing algorithms. We then compare a code based on our
heuristic with some state-of-the-art SDP-based approximation codes on a set of MAX-
CUT test problems. We also compare our code with a well-established, heuristic code
for MAX-CUT on a set of test problems from physics. Finally, we consider extensions
to other related problems—in particular, to the MAX-BISECTION problem.

This paper is organized as follows. Section 2 briefly introduces the MAX-CUT
problem and its corresponding SDP relaxation. In section 3, we present the rank-two
relaxation scheme and study its properties, including a useful characterization for a
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maximum cut. In section 4, we present our heuristic algorithm for the MAX-CUT
problem, and computational results on MAX-CUT are given in section 5. We extend
the heuristic to the MAX-BISECTION problem in section 5.3 and give numerical
results as well. Lastly, we conclude the paper in section 7.

2. Max-cut and the semidefinite relaxation. Let an undirected and con-
nected graph G = (V,E), where V = {1, 2, . . . , n} and E ⊂ {(i, j) : 1 ≤ i < j ≤ n},
be given. Let the edge weights wij = wji be given such that wij = 0 for (i, j) /∈ E,
and in particular, let wii = 0. The MAX-CUT problem is to find a bipartition (V1, V2)
of V so that the sum of the weights of the edges between V1 and V2 is maximized. It
is well known that the MAX-CUT problem can be formulated as

max
1

2

∑
1≤i<j≤n

wij(1− xixj)

subect to (s.t.) |xi| = 1, i = 1, . . . , n,
(1)

which has the same solution as the following binary quadratic program:

min
∑

1≤i<j≤n
wijxixj

s.t. |xi| = 1, i = 1, . . . , n.
(2)

Moreover, it is easy to verify that (2) can be rewritten into the matrix optimization
problem

min 1
2 W •X,

s.t. diag(X) = e,
rank(X) = 1,
X 	 0,

(3)

where W = [wij ], W •X =
∑n
i,j=1 wijxij , diag(X) is the vector in 
n consisting of

the diagonal elements of X, e is the vector of all ones, and X 	 0 means that X is
symmetric positive semidefinite.

Since the MAX-CUT problem is NP-hard, various heuristics and approximation
algorithms have been proposed to attack it. Recent ground-breaking work comes
from Goemans and Williamson [18], who replace the “unit scalars” xi in (2) by unit
vectors vi ∈ 
n and the scalar products xixj by the inner products vTi vj . The resulting
problem is the following relaxation of the MAX-CUT problem:

min
∑

1≤i<j≤n
wijv

T
i vj

s.t. ‖vi‖2 = 1, i = 1, . . . , n,
(4)

where vi ∈ 
n. Furthermore, a change of variables X = [vTi vj ] ∈ 
n×n leads to the
following so-called SDP relaxation for the MAX-CUT problem:

min 1
2 W •X,

s.t. diag(X) = e,
X 	 0.

(5)

It is well known that such an SDP problem is approximately solvable in polynomial
time (see [25], for example). Comparing (5) with (3), we clearly see that the SDP
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relaxation is nothing more than the problem obtained from (3) by dropping the rank-
one restriction on X.

It is worth observing that a solution (v1, . . . , vn) of (4) consists of n points on the
surface of the unit sphere in 
n, each representing a node in the graph. Goemans and
Williamson [18] proposed the following randomized algorithm for generating cuts in
the graph: after a solution of (4) is obtained, one randomly partitions the unit sphere
into two half-spheres H1 and H2 (the boundary in-between can be on either side)
and forms the bipartition consisting of V1 = {i : vi ∈ H1} and V2 = {i : vi ∈ H2}.
Furthermore, Goemans and Williamson established the celebrated result that if all
the weights are nonnegative, then the expected value of such randomly generated cuts
is at least 0.878 times the maximum cut value. That result gives a strong performance
guarantee for this randomization procedure. In fact, it has recently been shown in
[13] that the factor 0.878 is indeed the best possible in several senses.

3. A rank-two relaxation. In this section, we present an alternative rank-two
relaxation scheme that leads to a nonlinear optimization problem having only n vari-
ables but also a nonconvex objective function. Since the number of variables is not
increased from the MAX-CUT problem, this approach possesses scalability for relax-
ing large-scale problems. On the other hand, since the relaxation is nonconvex, we
cannot expect to find an optimal solution in practice, and so we can no longer ensure
a computable upper bound on the original problem. For solving this problem to gain
information about the underlying MAX-CUT problem, the trade-off is obviously be-
tween computational efficiency and a theoretical guarantee. When the main objective
is to obtain high-quality approximate solutions, however, we hope to demonstrate
through computational experiments that the gain clearly outweighs the loss.

We replace the “unit scalar” variables xi in (2) by unit vectors vi ∈ 
2 (not 
n),
and the scalar products xixj by the inner products v

T
i vj . As before, the constraint

|xi| = 1 becomes ‖vi‖2 = 1; namely, all the vectors vi should be on the unit circle.
In this way, we obtain a relaxation of the MAX-CUT problem that has exactly the
same form as (4) except that now all vectors vi are in 
2 instead of 
n. Alternatively,
this relaxation can be viewed as replacing the rank-one restriction on X in (3) by the
rank-two restriction rank(X) ≤ 2; hence we call it a rank-two relaxation.

Using polar coordinates, we can represent a set of n unit vectors v1, . . . , vn in 
2

by means of a vector θ = (θ1, . . . , θn)
T ∈ 
n consisting of n angles, namely,

vi =

(
cos θi
sin θi

)
∀ i = 1, . . . , n.

In this case, we have

vTi vj ≡ cos(θi − θj) ∀ i, j = 1, . . . , n.
Let T (θ) be the skew-symmetric matrix-valued function of θ defined by

Tij(θ) = θi − θj ∀ i, j = 1, . . . , n,
and let f : 
n → 
 be the function defined as

f(θ) ≡ 1

2
W • cos(T (θ)) ∀ θ ∈ 
n,(6)

where cos(T (θ)) is the n×n matrix whose entries are the cosine of the corresponding
entries of T (θ). Then, in terms of the polar coordinates, we obtain the following
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relaxation for the MAX-CUT problem:

min
θ∈�n

f(θ).(7)

This is an unconstrained optimization problem with a nonconvex objective function.
In general, it has multiple local, nonglobal minima.

The derivatives of the function f(θ) can be easily computed. Indeed, the first
partial derivatives of f(θ) are given by

∂f(θ)

∂θj
=

n∑
k=1

wkj sin(θk − θj) ∀ j = 1, . . . , n,

and hence,

g(θ) ≡ ∇f(θ) = [W ◦ sin(T (θ))]T e,(8)

where the notation “◦” indicates the Hadamard, i.e., entrywise, product of W and
sin(T (θ)). The second partial derivatives of f(θ) are given by

∂2f(θ)

∂θi∂θj
=

{
wij cos(θi − θj) if i �= j,

−∑k �=j wkj cos(θk − θj) if i = j

for every i, j = 1, . . . , n, and hence the Hessian of f(θ) is given by

H(θ) ≡ ∇2f(θ) =W ◦ cos(T (θ))−Diag ([W ◦ cos(T (θ))]e) ,(9)

where, for any vector v, Diag(v) is the diagonal matrix with v on its diagonal. Note
that the major effort in the evaluation of f, g, and H is the computation of the
quantities W ◦ cos(T (θ)) and W ◦ sin(T (θ)).

There are interesting relationships between cuts in the graph and the function
f(θ), which we will now describe. We call a vector θ̄ ∈ 
n an angular representation
of a cut, or simply a cut, if there exist integers kij such that

θ̄i − θ̄j = kijπ ∀ i, j = 1, . . . , n.(10)

Clearly, in this case cos(θ̄i − θ̄j) = ±1 and there exists a binary vector x̄ ∈ {−1, 1}n
such that

cos(θ̄i − θ̄j) ≡ x̄ix̄j = ±1 ∀ i, j = 1, . . . , n.
Moreover, the cut value corresponding to a cut θ̄ is

ψ(θ̄) ≡ 1

2

∑
i>j

wij [1− cos(θ̄i − θ̄j)].(11)

We note that the function f(θ) is invariant with respect to simultaneous, uniform
rotation on every component of θ, i.e., f(θ) ≡ f(θ+τe) for any scalar τ , and is periodic
with a period of 2π with respect to each variable θi. Modulo the uniform rotation
and the periodicity for each variable, there is an obvious one-to-one correspondence
between the binary and angular representations of a cut; namely,

θ̄i =

{
0 if x̄i = +1,
π if x̄i = −1,



508 SAMUEL BURER, RENATO D. C. MONTEIRO, AND YIN ZHANG

and vice versa. With the above correspondence in mind, in what follows we will use θ̄
and x̄ interchangeably to represent a cut. Moreover, given an angular representation
of a cut θ̄ (or a binary one x̄), we will use the notation x(θ̄) (or θ(x̄)) to denote the
corresponding binary (or angular) representation of the same cut.

Since sin(θ̄i − θ̄j) = 0 for any θ̄ satisfying (10), it follows directly from (8) that
g(θ̄) = 0 at any cut θ̄. We state this simple observation in the following proposition.

Proposition 3.1. Every cut θ̄ ∈ 
n is a stationary point of the function f(θ).
We will now derive in the lemma below a characterization of a maximum (mini-

mum) cut which will be useful in the later development. We first need the following
definition.

Definition 3.2. A matrix M ∈ 
n×n is called nonnegatively summable if the
sum of the entries in every principal submatrix of M is nonnegative, or equivalently,
if uTMu ≥ 0 for every binary vector u ∈ {0, 1}n.

Clearly, every positive semidefinite matrix is nonnegatively summable. On the
other hand, the matrix eeT − I is nonnegatively summable, but not positive semidef-
inite.

Lemma 3.3. Let x̄ ∈ {−1, 1}n be given and consider the matrix M(x̄) ∈ 
n×n
defined as

M(x̄) =W ◦ (x̄x̄T )−Diag([W ◦ (x̄x̄T )]e).(12)

Then, x̄ is a maximum (respectively, minimum) cut if and only if M(x̄) (respectively,
−M(x̄)) is nonnegatively summable.

Proof. Let q : 
n → 
 be the quadratic function defined as q(x) = (xTWx)/2 for
all x ∈ 
n, and note that x̄ is a maximum cut if and only if x̄ minimizes q(x) over
the set of all x ∈ {−1, 1}n. Now, let x ∈ {−1, 1}n be given and observe that

x̄− x = 2δ ◦ x̄,
where “◦” represents the Hadamard product and δ ∈ 
n is defined as

δi ≡
{
0 if xi = x̄i,
1 if xi �= x̄i.(13)

Using this identity and the fact that δT v = δTDiag(v)δ for any v ∈ 
n, we obtain

q(x)− q(x̄) = (Wx̄)T (x− x̄) + 1

2
(x− x̄)TW (x− x̄)

= −2x̄TW (δ ◦ x̄) + 2(δ ◦ x̄)TW (δ ◦ x̄)
= −2δT ([W ◦ x̄x̄T ]e) + 2δT [W ◦ x̄x̄T ]δ
= −2δTDiag ([W ◦ x̄x̄T ]e) δ + 2δT [W ◦ x̄x̄T ]δ = 2δTM(x̄)δ.

Noting that every x ∈ {−1, 1}n corresponds to a unique vector δ ∈ {0, 1}n via (13),
and vice versa, we conclude from the above identity that x̄ minimizes q(x) over x ∈
{−1, 1}n if and only if δTM(x̄)δ ≥ 0 for all δ ∈ {0, 1}n, or equivalently, M(x̄) is
nonnegatively summable.

The proof of the second equivalence is analogous. Hence, the result
follows.

Although every cut is a stationary point of f(θ), the following theorem guarantees
that only the maximum cuts can possibly be local minima of f(θ). In fact, the theorem
gives a complete classification of cuts as stationary points of the function f(θ).
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Theorem 3.4. Let θ̄ be a cut and let x̄ ≡ x(θ̄) be the associated binary cut. If
θ̄ is a local minimum (respectively, local maximum) of f(θ), then x̄ is a maximum
(respectively, minimum) cut. Consequently, if x̄ is neither a maximum cut nor a
minimum cut, then θ̄ must be a saddle point of f(θ).

Proof. Since x̄ix̄j = cos(θ̄i − θ̄j), we have ∇2f(θ̄) ≡ M(x(θ̄)) due to (9) and
(12). If θ̄ is a local minimum of f , then the Hessian ∇2f(θ̄) is positive semidefinite
and hence nonnegatively summable. The first implication of the theorem then follows
from the first equivalence of Lemma 3.3. The second implication of the theorem can
be proved in a similar way using the second equivalence of Lemma 3.3. Hence, the
result follows.

The converses of the two implications in the above theorem do not hold. Indeed,
consider the unweighted graph K3 (the complete graph with three nodes) for which
the cut x̄ = [1 − 1 − 1]T is maximum. From (12), we have

M(x̄) =


 2 −1 −1
−1 0 1
−1 1 0


 ,

which is indeed nonnegatively summable but not positive semidefinite. Hence the
corresponding angular representation θ̄ is not a local minimum of the function f(θ)
in view of the fact that M(x̄) ≡ ∇2f(θ̄).

There are indeed instances where maximum cuts are local minima of f(θ), as
indicated by the following observation.

Proposition 3.5. For a bipartite graph with nonnegative weights, the global
minimum value of f(θ) is attained by a maximum cut.

Proof. A maximum cut is one that cuts through all the edges in the bipartite
graph. For this cut, cos(θi − θj) = −1 for all edges (i, j) ∈ E. Hence the global
minimum value of f(θ) is attained at −eTWe/2.

Obviously, for problems where a maximum cut x̄ corresponds to a local minimum
of f(θ), the optimality of x̄ can be checked in polynomial time by determining whether
M(x̄) is positive semidefinite or not.

Since nonmaximum cuts cannot possibly be local minima of f(θ), a good min-
imization algorithm would not be attracted to stationary points corresponding to
nonmaximum cuts that are either local maxima or saddle points of f(θ). This fact
will play an important role in the construction of our algorithms.

4. A heuristic algorithm for MAX-CUT. To produce an approximate so-
lution to the MAX-CUT problem, we first minimize the function f(θ) and obtain a
local minimum θ corresponding to a distribution of points on the unit circle. Using
periodicity, we may easily assume that θi ∈ [0, 2π) for each i = 1, . . . , n. Any partition
of the unit circle into two equal halves gives a cut as follows. Pick an angle α ∈ [0, π)
and let

xi =

{
+1 if θi ∈ [α, α+ π),
−1 otherwise.

(14)

The corresponding value of the cut x is given by

γ(x) ≡ 1

2

∑
i>j

wij(1− xixj).(15)

An advantage of the rank-two relaxation over the SDP relaxation is that it is straight-
forward and inexpensive to examine all possible cuts generated in the above fashion,
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making it easy to find the best one. The following, deterministic (rather than random)
procedure finds a best possible Goemans–Williamson-type cut associated with a given
θ. Without loss of generality, let us assume that θ satisfies θi ∈ [0, 2π), i = 1, . . . , n,
and that

θ1 ≤ θ2 ≤ · · · ≤ θn,

after a reordering if necessary.
Procedure-CUT (input θ, output x∗).

Let α = 0, Γ = −∞, i = 1. Let j be the smallest index such that
θj > π if there is one; otherwise set j = n+ 1. Set θn+1 = 2π.
While α ≤ π

1. Generate cut x by (14) and compute γ(x).
2. If γ(x) > Γ, then let Γ = γ(x) and x∗ = x.
3. If θi ≤ θj − π, let α = θi and increment i by 1;
otherwise let α = θj − π and increment j by 1.

End
Since our rank-two relaxation has the same form as Goemans and Williamson’s

relaxation (4), except that ours has variables in 
2 rather than 
n, the same analysis
of Goemans and Williamson, with minimal changes, can be applied to show that the
cut value generated by the above procedure is at least 0.878 times the relaxed cut
value ψ(θ) as is defined in (11). That is,

γ(x∗) ≥ 0.878ψ(θ).

However, since we cannot guarantee that ψ(θ) is an upper bound on the maximum
cut value, there is no performance guarantee. Nevertheless, we do have the property
that, in a weak sense and to some extent, the better the local maximum of ψ(θ)
(or, equivalently, local minimum of f(θ)) we obtain, the better a cut will likely be
produced. To see this, let x∗a and x

∗
b be two binary cuts generated by Procedure-CUT

from θa and θb, respectively. If γ(x
∗
a) ≤ ψ(θa) and ψ(θb) > 1

0.878ψ(θa), then since

γ(x∗b) ≥ 0.878 ψ(θb) > ψ(θa) ≥ γ(x∗a),

x∗b is a better cut than x
∗
a.

After we minimize the function f(θ) and obtain a local minimum θ1, we will call
on Procedure-CUT to produce a best possible cut x1 associated with θ1. At this
point, we may stop and return the generated cut x1. On the other hand, if we are
willing to spend more time, we may try to improve the quality of our approximation.

We know that the angular representation of the cut x1, θ(x1), is a stationary
point—most likely a saddle point—of the function f(θ), but not a minimizer unless it
is already a maximum cut. Assuming that θ(x1) is in fact a saddle point, it is probable
that close by there are local minima of f that are deeper than θ1 is. Although we
cannot restart the minimization directly from the stationary point θ(x1), we can
certainly restart from a slight perturbation of θ(x1) and hopefully escape to a better
local minimum θ2, which in turn would hopefully lead to a better cut x2 or θ(x2).
We can continue this process until we reach a cut from which we deem that further
improvement seems unlikely. We state this heuristic as the following algorithm.

Algorithm 1 (input N, θ0, output x∗):
Given θ0 ∈ 
n and integer N ≥ 0, let k = 0 and Γ = −∞.
While k ≤ N
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1. Starting from θ0, minimize f to get θ.
2. Compute a best cut x associated with θ by Procedure-CUT.
3. If γ(x) > Γ, let Γ = γ(x), x∗ = x, and k = 0;
otherwise set k = k + 1.

4. Set θ0 to a random perturbation of the angular representation
of x.

End
The parameter N controls how many consecutive, nonimproving random pertur-

bations are allowed before we stop the algorithm. If so desired, the algorithm can be
runM times with multiple starting points θ0 to increase the chances of achieving bet-
ter cuts. Generally speaking, the larger N and M are, the longer time the algorithm
will take to run, and the better cut it will return.

A geometric interpretation of Algorithm 1 is as follows. After we arrive at a local
minimum of f , we search around this local minimum for a nearby saddle point (i.e.,
a cut) that has the lowest f -value in the neighborhood. We then move to the saddle
point and restart the minimization to locate a nearby local minimum that, hopefully,
has a smaller f -value than the previous one. We repeat this process until we deem
that the search has become unfruitful.

5. Computational results for MAX-CUT. We have implemented Algorithm
1 in a Fortran90 code named “CirCut.” For the minimization of f(θ), we use a
simple gradient algorithm with a backtracking Armijo line-search. Since numerical
experiments indicate that the accuracy of the minimization is not crucial, we stop the
minimization when the relative change in the function value is less than 10−4.

In CirCut, we also include an option for a simple local search in the cut space;
that is, after a cut is returned from Procedure-CUT, one has the option to improve it
through a quick local search that moves one or two nodes at a time, producing a so-
called locally 2-optimal solution. This feature can often slightly improve the quality
of a cut and is therefore set to be a default feature unless specified otherwise.

We compare our code CirCut with two SDP codes, SBmethod and DSDP, both
implementing the Goemans–Williamson randomized algorithm (along with other fea-
tures). Since these codes produce both an upper bound and a lower bound, while
our code only gives the latter, the comparisons should not be taken at face value.
In carrying out such comparisons, we have two objectives in mind. First, since our
heuristic is derived from the Goemans–Williamson randomized algorithm by a rank
restriction, we want to see how our modifications affect the performance, both time-
wise and quality-wise, of generating lower bounds. Second, since the approximation
quality of the Goemans–Williamson randomized algorithm has been shown to be at
least as good as a number of heuristics [11], through the comparisons we hope to get
a good picture of the approximation quality of our heuristic. We select the codes
SBmethod and DSDP for our comparisons because they represent the state of the art
in solving large-scale SDP problems.

We also compare our code with a state-of-the-art heuristic code for MAX-CUT
problems from the Ising spin glass model in physics, developed by Hartmann [19].
The purpose of this comparison is self-evident.

5.1. Comparison with SBmethod. We first report numerical results on the
MAX-CUT problem in comparison with SBmethod, an SDP code developed by Helm-
berg and Rendl [20]. SBmethod solves a large class of semidefinite programs using a
specialized bundle method, the so-called spectral bundle method, and in particular is
one of the fastest codes for solving MAX-CUT SDP relaxations.
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Table 1
Statistics for the torus set of MAX-CUT problems.

Graph name Size Lower bound Upper bound SDP bound

pm3-8-50 (512, 1536) 456 461 527
pm3-15-50 (3375, 10125) 2988 3069.51 3474

g3-8 (512, 1536) 41684814 41684814 45735817
g3-15 (3375, 10125) 2.85790e+8 2.87725e+8 3.1346e+8

Table 2
Comparison with SBmethod on MAX-CUT problems from the torus set.

Graph SBmethod CirCut (N = 4, M = 100)

Name Value Time Avg. value Avg. time Best value

pm3-8-50 434 28.72 443 0.218 452
pm3-15-50 2728 2131.89 2888 2.332 2936

g3-8 4.04736e+7 36.03 4.09098e+7 0.298 4.13946e+7
g3-15 2.73412e+8 3604.54 2.74357e+8 2.835 2.77917e+8

The first set of test problems comes from the DIMACS library of mixed semi-
definite quadratic linear programs [12]. This set contains four MAX-CUT problems,
called the torus problems, which originated from the Ising model of spin glasses in
physics (see section 5.3 for details). In Table 1, we give statistics for this set of
problems; note that the sizes of the graphs are given as (|V |, |E|). In the table, the
columns “Lower bound” and “Upper bound” give the best lower and upper bounds
on the maximum cut value known to us to date, and the column “SDP bound” gives
the SDP upper bounds on the maximum cut values. All the lower and upper bounds
were supplied to us by Michael Jünger and Frauke Liers [22] except for the lower
bounds 2988 for pm3-15-50 and 285790637 for g3-15, which were the best cut values
obtained so far by CirCut on these two problems, respectively. We mention that for
pm3-8-50 and g3-8, the best cut values obtained so far by CirCut are, respectively,
454 and 41684814, and the latter value is optimal.

In Table 2, we present a comparison between the SBmethod and CirCut codes.
Since the latest version of SBmethod does not include the functionality of generating
cuts by the Goemans–Williamson randomized procedure, we used an earlier version
that does. It is quite likely that the latest version of SBmethod would produce better
timings than those presented in the table.

We ran both SBmethod and CirCut on an SGI Origin2000 machine with sixteen
300MHZ R12000 processors at Rice University. Since neither code is parallel, however,
only one processor was used at a time. For both codes, the cut values were obtained
without any postprocessing heuristics, i.e., the simple local search feature of CirCut
was not invoked. The default parameter settings were used for SBmethod. In Table 2,
the cut value and computation time are reported for each problem. For CirCut, the
value of M is the number of times Algorithm 1 was run with random starting points,
and the value of N is the parameter required by Algorithm 1. The average time per
run, the average cut value, and the best value in the M runs are reported in the last
three columns of the table, respectively. All the reported times are in seconds. From
the table, it is clear that an average run of CirCut is much faster and produces better
quality cuts on all four test problems.

More results are reported in Table 3 for CirCut using different values of N . These
results indicate that the variations between the average and best cut values are quite
moderate, and they also show that even with N = 0 (no further improvement at-
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Table 3
More CirCut results on MAX-CUT problems from the torus set.

Graph CirCut (N = 0, M = 100) CirCut (N = 8, M = 100)

Name Avg. val. Avg. time Best val. Avg. val. Avg. time Best val.

pm3-8-50 430 0.031 444 448 0.386 454
pm3-15-50 2792 0.212 2834 2937 4.272 2964

g3-8 37870328 0.024 40314704 40917332 0.538 41684814
g3-15 253522848 0.154 264732800 277864512 7.880 281029888

tempted after minimization), CirCut gives quite respectable cuts in a minimal amount
of time on average. As N increases, CirCut produces better quality cuts and of course
uses more time. However, even forN = 8, CirCut is still faster by orders of magnitude.

We should bear in mind that in every run SBmethod also produces an upper
bound; hence the running times for CirCut and SBmethod are not exactly comparable.
They become totally comparable only when the sole objective of the computation is
to obtain approximate solutions. These comments also apply to the comparisons
presented in the next subsection and in section 6.

5.2. Comparison with DSDP. The second set of test problems are from the
so-called G-set graphs, which are randomly generated. Recently, Choi and Ye [9]
reported computational results on a subset of G-set graphs that were solved as MAX-
CUT problems using their SDP code COPL-DSDP, or simply DSDP. The code DSDP
uses a dual-scaling interior-point algorithm and an iterative linear-equation solver. It
is currently one of the fastest interior-point codes for solving SDP problems.

We ran CirCut on a subset of G-set graphs as MAX-CUT problems and compared
our results with those reported in Choi and Ye [9]. The comparison is given in Table 4,
along with graph name and size information. We emphasize that the timing for DSDP
was obtained on an HP 9000/785/C3600 machine with a 367 MHZ processor [8], while
ours was on the aforementioned SGI Origin2000 machine at Rice University. These
two machines seem to have comparable processing speeds. We did not run DSDP
on the same computer at Rice University for several reasons: (1) the latest version
of DSDP with an iterative linear-equation solver has not yet been made publicly
available, (2) since the speeds of DSDP and CirCut are orders of magnitude apart,
a precise timing is unnecessary in a qualitative comparison, and (3) it would be
excessively time-consuming to rerun DSDP on all the tested problems (as can be see
from Table 4).

The first two columns of Table 4 contain information concerning the tested graphs,
where the sizes are again given as (|V |, |E|), followed by timing (in seconds) and cut
value information. The DSDP results were given as reported in [9]. We ran CirCut
using two sets of parameters: “C1” results were for N = 0 and M = 1 (no further
improvement after minimization and a single starting point), and “C2” for N = 10
and M = 5. Note that in this table the running times listed for C2 include all M = 5
runs; i.e., the times are not averaged as in the previous tables.

We observe that C1 took less than 11 seconds to return approximate solutions
to all the 27 test problems with a quality that, on average, is nearly as good as that
of the DSDP cuts, which required more than 5 days of computation. On the other
hand, C2 took more time to generate the cuts, but the quality of the C2 cuts is almost
uniformly better than those of DSDP, with one exception. Only on problem G50 did
DSDP produce a slightly better cut. We note, however, that CirCut can easily find a
cut of the same value on G50 if M is set to a larger value.
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Table 4
Comparison with DSDP on MAX-CUT problems from the G-set.

Graph Time Value

Name Size DSDP C1 C2 DSDP C1 C2

G11 (800, 1600) 16.6 0.06 3.88 542 524 554
G12 (800, 1600) 17.7 0.06 3.76 540 512 552
G13 (800, 1600) 18.2 0.06 3.45 564 536 572
G14 (800, 4694) 35.2 0.09 5.53 2922 3016 3053
G15 (800, 4661) 32.1 0.09 5.91 2938 3011 3039
G20 (800, 4672) 32.0 0.11 5.56 838 901 939
G21 (800, 4667) 37.6 0.08 5.56 841 887 921
G22 (2000, 19990) 4123.3 0.36 22.31 12960 13148 13331
G23 (2000, 19990) 3233.5 0.37 18.85 13006 13197 13269
G24 (2000, 19990) 3250.7 0.30 27.30 12933 13195 13287
G30 (2000, 19990) 3718.9 0.32 23.77 3038 3234 3377
G31 (2000, 19990) 3835.7 0.33 19.61 2851 3146 3255
G32 (2000, 4000) 142.6 0.18 13.09 1338 1306 1380
G33 (2000, 4000) 132.5 0.14 12.62 1330 1290 1352
G34 (2000, 4000) 156.7 0.12 9.82 1334 1276 1358
G50 (3000, 6000) 264.6 0.17 15.71 5880 5748 5856
G55 (5000, 12498) 1474.8 0.54 39.73 9960 10000 10240
G56 (5000, 12498) 15618.6 0.46 33.52 3634 3757 3943
G57 (5000, 10000) 1819.8 0.48 32.23 3320 3202 3412
G60 (7000, 17148) 58535.1 0.73 56.75 13610 13765 14081
G61 (7000, 17148) 52719.6 0.51 63.57 5252 5429 5690
G62 (7000, 14000) 5187.2 0.47 47.04 4612 4486 4740
G64 (7000, 41459) 102163.9 0.94 67.56 7624 8216 8575
G70 (10000, 9999) 33116.2 0.37 94.39 9456 9280 9529
G72 (10000, 20000) 12838.1 0.72 86.59 6644 6444 6820
G77 (14000, 28000) 32643.4 0.95 109.41 9418 9108 9670
G81 (20000, 40000) 131778.2 1.49 140.46 13448 12830 13662

5.3. Comparison with a heuristic algorithm from physics. An area of
great interest in modern physics is the study of spin glasses [3, 14], and the particular
problem of computing the so-called groundstate of an Ising spin glass can be cast as
the problem of finding a maximum cut in a edge-weighted graph. In this section, we
compare our heuristic CirCut with a successful heuristic by Hartmann [19] for finding
an approximation to the groundstate of specially structured spin glasses.

Roughly speaking, a spin glass is a collection of n magnetic spins that possesses
various interactions between the spins and also exhibits disorder in its frozen, or
low-energy, state. In the collection, each spin can take on one of a finite number of
positions. For example, when there are exactly two possible positions, the two posi-
tions are imagined as “up” and “down” (or +1 and −1). In addition, the interactions
between the spins describe how the positions of a given spin and its “neighbor” spins
affect the overall energy of the spin glass. For example, in Table 5 we show the energy
contributed by two interacting spins i and j for a spin glass in which (i) there are two
possible positions for a spin, (ii) all interactions act pairwise between spins, and (iii)
each interaction is either positive or negative.

The groundstate, or low-energy state, of a spin glass occurs when the positions of
the n spins are chosen so as to minimize the overall energy of the spin glass. Addition-
ally, spin glasses are characterized by the fact that their groundstate is disordered;
that is, all interactions cannot be satisfied with zero energy, and hence the overall
energy of the system is positive. (Note that the standard physics terminology differs
somewhat from—but is equivalent to—our terminology.)
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Table 5
Energy levels of two interacting spins.

i j Interaction Energy

up up + 0
up down + 1

down up + 1
down down + 0
up up − 1
up down − 0

down up − 0
down down − 1

A special subclass of spin glasses, called the Ising spin glasses, has been studied
extensively. Ising spin glasses satisfy items (i) and (ii) of the previous paragraph, and
the so-called ±J model of Ising spin glasses also satisfies item (iii). It is not difficult
to see that this model can be represented by an edge-weighted graph Ḡ = (V,E, W̄ ),
where the vertex set V consists of the n spins, the edge set E describes the pairwise
interactions, and the symmetric weight matrix W̄ = (w̄ij) has w̄ij equal to 1, −1, or
0, respectively, if i and j interact positively, negatively, or not at all. Moreover, if a
variable xi that can take on values +1 or −1 is used to represent the position of spin
i, then the groundstate of the Ising spin glass can be seen to be the optimal solution
of the optimization

min
∑

(i,j)∈E

1

2
(1− w̄ijxixj)

s.t. |xi| = 1, i = 1, . . . , n.
(16)

After some immediate simplifications, (16) can be written in the equivalent form (2),
where wij = −w̄ij , that is, (16) is equivalent to the maximum cut problem on the
graph G = (V,E,W ), where W = −W̄ .

Many approaches for solving (16) have been investigated in both the physics
community and the optimization community (see [2, 28]). Recently, one of the most
successful heuristic approaches for solving (16) has been the approach of Hartmann
[19], which in particular focuses on finding the groundstates of ±J Ising spin glasses
that can be embedded as square or cubic lattices in two or three dimensions, respec-
tively. The interactions are of the type “nearest neighbor” so that each vertex (or
spin) has four neighbors in two dimensions and six in three dimensions. Such lattice
graphs lead to regular graphs having a great deal of structure. In addition, Hart-
mann considers cases in which negative interactions occur as many times as positive
interactions, that is,

∑
(i,j)∈E w̄ij = 0. Hartmann reported strong computational re-

sults with square lattices having side length L = 4, 5, . . . , 30 and cubic lattices having
length L = 4, 5, . . . , 14. Note that the square lattices have a total of L2 vertices and
that the cubic lattices have a total of L3 vertices.

Although we refer the reader to [19] for a full description of Hartmann’s algorithm,
we summarize the basic idea of the method here. Given a feasible solution x to (16),
the algorithm tries to find a new feasible solution x̂ having less energy by using x to
randomly build up a set of nodes V̂ for which the groundstate xV̂ of the induced graph

on V̂ can be found in polynomial time using a max-flow min-cut algorithm. Then x̂
is formed from x by setting x̂i = (xV̂ )i if i ∈ V̂ and x̂i = xi if i �∈ V . The energy of
x̂ is guaranteed to be no worse than that of x, and so this procedure can be iterated
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Table 6
Comparison of CirCut and Hartmann’s algorithm.

Graph Cut values Times

# |V | |E| C1 C2 H1 H2 C1 C2 H1 H2

1 1000 3000 874 880 882 896 5 39 69 9528
2 1000 3000 894 892 892 900 7 47 68 9605
3 1000 3000 878 882 878 892 6 45 68 9537
4 1000 3000 888 894 890 898 7 54 68 9583
5 1000 3000 878 880 876 886 6 48 69 9551
6 1000 3000 866 876 874 888 6 47 68 9555
7 1000 3000 882 894 890 900 8 57 69 9564
8 1000 3000 872 874 870 882 7 53 69 9629
9 1000 3000 884 896 888 902 6 48 68 9551

10 1000 3000 876 888 884 894 5 56 69 9629
11 2744 8232 2396 2410 2382 2446 22 219 236 33049
12 2744 8232 2398 2426 2390 2458 20 170 236 32836
13 2744 8232 2382 2404 2370 2442 20 165 235 33171
14 2744 8232 2398 2418 2394 2450 19 173 236 33136
15 2744 8232 2382 2412 2370 2446 20 177 235 32851
16 2744 8232 2404 2416 2384 2450 23 183 236 33129
17 2744 8232 2390 2406 2384 2444 19 166 234 32999
18 2744 8232 2412 2414 2386 2446 28 171 236 33089
19 2744 8232 2382 2390 2356 2424 31 187 235 32963
20 2744 8232 2410 2422 2388 2458 19 166 236 33140

until the energy exhibits no strict improvement from iteration to iteration. Various
parameters of the algorithm can affect its running time and also the quality of solution
that is returned; these parameters determine the number of iterations allowed with
no improvement, the number of independent times the overall algorithm is run, and,
more generally, the exhaustiveness of the search performed by the algorithm.

We ran both CirCut and the algorithm of Hartmann on the same SGI Origin 2000
used for the computational results in the previous subsections. Hartmann’s code is
written in ANSI C and uses only one processor. In addition, we compiled both codes
with the same compiler optimization option. In Table 6, we compare CirCut with the
algorithm of Hartmann on twenty graphs arising from twenty cubic lattices having
randomly generated interaction magnitudes; these problems are of the same type that
Hartmann investigated in [19]. Ten of the graphs have (L, n, |E|) = (10, 1000, 3000),
and ten have (L, n, |E|) = (14, 2744, 8232). We note that, for comparison purposes,
the output of each algorithm is in terms of the equivalent maximum cut problem.
Two versions of CirCut corresponding to the parameter choices (N,M) = (10, 5) and
(N,M) = (50, 10) were run on all thirty graphs; the versions are named C1 and
C2, respectively. Similarly, two versions H1 and H2 of Hartmann’s algorithm were
run such that H1 performed a less exhaustive search than H2. We remark that H2
represented the default parameters supplied to us by Hartmann.

Table 6 contains data corresponding to the four algorithms’ performance on each
of the twenty graphs. The first three columns give the graph number, the size of V , and
the size of E. The next four columns give the cut value found by the algorithms, and
the final four columns give the times (in seconds) required by each of the algorithms.

It can be seen from the table that on the first ten graphs, C1 had the fastest
speed, but the cuts it returned were in a few cases inferior to those produced by H1.
On the other hand, C2 was able to produce better cuts than H1 in a considerably
shorter amount of time. The overall winner in terms of cut values on graphs 1–10
was H2, but this performance was achieved at the expense of very large computation
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times. For the second set of graphs 11–20, we see that both C1 and C2 outperformed
H1 in terms of cut values and that C1 was much faster than H1 and C2 was notably
faster than H1 as well. Again, H2 returned the best cuts but took a very long time.
In all cases, the differences in the quality of cuts generated by the algorithms are
small, percentage-wise. For example, on average C1 attained over 98 percent of the
cut value of H2 in an amount of time less than one-tenth of a percent of that used by
H2.

Overall, the results seem to indicate that C2 is a good choice when quality cuts
are needed in a short amount of time. In particular, C2 is at least as effective as H1. In
addition, C1 is a good alternative, especially when the size of the graph becomes large.
When high quality cuts are needed and time is not an issue, H2 is the best choice.
Moreover, we remark that, based on some unreported experimentation, CirCut does
not seem to be able to achieve the same cut values as H2 even if CirCut is allowed to
search for a very long time.

6. Some extensions. Conceptually, there is little difficulty in extending the
rank-two relaxation idea to other combinatorial optimization problems in the form of
a binary quadratic program, especially to those arising from graph bipartitioning. For
a given problem, however, whether or not the rank-two relaxation will lead to high-
performance algorithms, like the one we have demonstrated for MAX-CUT, must be
determined by an individual investigation and a careful evaluation. Close attention
must also be paid to the specific structure of each problem in order to obtain good
algorithms.

In this section, we focus on extending the rank-two relaxation idea to a close
relative of MAX-CUT—the MAX-BISECTION problem. MAX-BISECTION is the
same as MAX-CUT except that it has the additional constraint eTx = 0 (i.e., the
number of positive ones in x must equal the number of negative ones, hence implying
that n should be even), which can also be written as

(eTx)2 = (eeT ) • (xxT ) = 0.
After removal of the rank-one restriction, one obtains the following SDP relaxation
of the MAX-BISECTION problem (comparable to (5)):

min 1
2 W •X

s.t. diag(X) = e,
eeT •X = 0,
X 	 0.

(17)

Randomized procedures similar to the Goemans–Williamson technique for MAX-CUT
have been proposed with different performance guarantees for MAX-BISECTION;
see [15, 32], for example.

In an approach analogous to that used for MAX-CUT, using the rank-two relax-
ation and polar coordinates, we obtain a new relaxation for MAX-BISECTION:

min f(θ)
s.t. eT cos(T (θ))e = 0.

(18)

Suppose that we have obtained a (local or global) minimizer θ for (18). How do
we generate a bisection? Without loss of generality, let us assume that n is even and
that θ satisfies θi ∈ [0, 2π), i = 1, . . . , n. We may also assume that, after a reordering,

θ1 ≤ θ2 ≤ · · · ≤ θn.
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Then, to generate a bisection, we pick any integer k ∈ [1, n/2) and let

xi =

{
1 if i ∈ [k, k + n/2),
−1 otherwise.

(19)

The following procedure efficiently considers all possible values of k in (19) and saves
the best resultant bisection.

Procedure-BIS (input θ, output x∗).
Given θ ∈ 
n such that 0 ≤ θ1 ≤ · · · ≤ θn < 2π, let Γ = −∞.
For k = 1, . . . , n/2− 1

1. Generate a cut x by (19) and compute γ(x).
2. If γ(x) > Γ, then let Γ = γ(x) and x∗ = x.

End
Instead of solving the constrained relaxation (18), we have found through nu-

merical experiments that solving the unconstrained relaxation (7) can generate the
same or better quality bisections while taking less time. Intuitively, this is not hard
to understand since the best bisection generated by Procedure-BIS for a given θ is
dependent only on the ordering of the points along the circle and independent of the
actual locations of the points. In fact, it is easy to verify that the constraint in (18) is
equivalent to ‖[v1 · · · vn]e‖2 = 0, where vi = [cos(θi) sin(θi)]T ; that is, the n vectors
on the unit circle must sum up to zero. So by itself, the constraint puts a restriction
on the locations of points but has nothing to do with their ordering. Hence, whether
a given θ satisfies the constraint or not has no bearing on the quality of the bisection
x∗ generated by Procedure-BIS. On the other hand, the quality of x∗ depends greatly
on the objective value f(θ). Since it is more likely to obtain lower function values at
unconstrained local minima than at constrained ones, we are more likely to obtain
better bisections without the constraint.

In view of this, we construct our heuristic algorithm based on minimizing f(θ)
without the additional constraint. We simply replace Procedure-CUT in Algorithm-1
by Procedure-BIS and obtain a heuristic algorithm for the MAX-BISECTION prob-
lem, which we call Algorithm 2. In Algorithm 2, we also have the option of improving
a cut by a minimal local search that allows swapping only a pair of nodes at a time
and is set to be a default feature.

We ran Algorithm-2 of CirCut on a subset of the G-set problems plus two addi-
tional test problems. These extra problems were contained in a test set used by Choi
and Ye [9] and are publicly available.

In Table 7, we compare the results of CirCut with the results of DSDP re-
ported in [9]. Again, we mention that the timing for DSDP was obtained on an
HP 9000/785/C3600 computer with a 367 MHZ processor, while ours was on an SGI
Origin2000 machine with sixteen 300 MHZ processors at Rice University. (Note,
however, that both codes always use a single processor.)

Again, the first two columns of Table 7 contain the information on the tested
graphs, followed by timing (in seconds) and cut value information. We ran CirCut
using two sets of parameters: C1 results were for N = 0 and M = 1 (no further
improvement after minimization and a single starting point); and C2 for N = 5 and
M = 1.

C1 took less than 22 seconds to return approximate solutions to all 13 test prob-
lems with a quality that is on average superior to that of DSDP. While C2 took more
time to generate the bisections, the quality of the bisections generated by C2 is better
than that of DSDP on all but one problem: G50. Again, we mention that if N and



RANK-TWO RELAXATION FOR BINARY QUADRATIC PROGRAMS 519

Table 7
Comparison with DSDP on MAX-BISECTION problems.

Graph Time Value

Name Size DSDP C1 C2 DSDP C1 C2

G50 (3000, 6000) 462.2 0.29 2.29 5878 5690 5830
G55 (5000,12498) 1793.4 0.46 4.32 9958 10007 10171
G56 (5000,12498) 20793.5 0.44 3.36 3611 3672 3835
G57 (5000,10000) 2090.8 0.32 2.98 3322 3146 3382
G60 (7000,17148) 48949.9 0.54 4.66 13640 13759 13945
G61 (7000,17148) 42467.2 0.62 7.16 5195 5312 5545
G62 (7000,14000) 5446.0 0.50 4.98 4576 4402 4706
G64 (7000,41459) 123409.7 0.92 12.05 7700 8056 8431
G72 (10000,20000) 15383.9 0.76 7.34 6628 6314 6736
G77 (14000,28000) 36446.7 1.15 11.38 6560 8980 9638
G81 (20000,40000) 334824.2 1.54 26.87 9450 12582 13618
bm1 (882,4711) 33.9 0.08 0.65 848 857 863

biomedp (6514,629839) 46750.7 13.89 37.55 5355 5575 5593

M are set to larger values, CirCut is able to produce a bisection of the same value on
G50 as that of DSDP’s, within a time still much shorter than that required by DSDP.

6.1. Maximization versus minimization. So far, we have presented only
computational results on maximization problems, i.e., the MAX-CUT and MAX-
BISECTION problems, which are equivalent to minimizing f(θ). Moreover, all of the
graphs in the test sets have had either all positive edge weights or a combination of
both positive and negative weights.

Now let us consider the corresponding minimization problems on these graphs,
equivalent to maximizing f(θ). For those graphs having both positive and negative
weights, one can apply the same algorithms to the minimization problems by simply
minimizing −f(θ) instead of f(θ). Things are not so simple, however, if all the weights
are positive. In this case, it is easy to see that the global minimum of −f(θ) is attained
whenever all n points coincide on the unit circle such that cos(θi−θj) ≡ 1. This result
makes sense for the MIN-CUT problem in that the minimum cut in a graph with all
positive weights is to have all nodes on one side of the cut (i.e., to have no cut at
all). On the other hand, this result does not have a meaningful interpretation for
MIN-BISECTION, creating a challenge for generating a bisection whenever a global
minimum of −f(θ) is attained (although actually finding a global minimum may not
happen often). An obvious possible remedy to this problem is to reinstall the bisection
constraint back into the formulation. Further investigation is clearly needed for the
MIN-BISECTION problem.

7. Concluding remarks. The computational results presented here indicate
that the proposed rank-two relaxation heuristics are effective in approximating the
MAX-CUT and MAX-BISECTION problems. Being able to return high-quality ap-
proximate solutions in a short amount of time, they are particularly useful in situations
where either the problem is very large or time is at a premium.

Several factors have contributed to the performance of the rank-two relaxation ap-
proach: (1) the costs of local optimization are extremely low; (2) desirable properties
relate the discrete problem to its rank-two relaxation, enabling us to locate high-
quality local minima; and (3) good local minima of the rank-two relaxation appear to
be sufficient for generating good approximate solutions to the discrete problem.

The proposed heuristics consistently produce better-quality approximate solutions
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while taking only a tiny amount of time in comparison to the SDP relaxation approach,
particularly on larger problems. This fact suggests that as a practical technique
for producing lower bounds, the SDP relaxation approach does not seem to hold
much promise, at least for the MAX-CUT and the MAX-BISECTION problems. In
addition, the rank-two relaxation heuristic compares favorably to other heuristics, i.e.,
ones that are not based on the SDP relaxation.

It is known that, besides MAX-CUT, a number of other combinatorial optimiza-
tion problems can also be formulated as unconstrained binary quadratic programs in
the form of (2), such as the MAX-CLIQUE problem (see [4], for example). These are
potential candidates for which the rank-two relaxation approach may also produce
high-performance heuristic algorithms. Further investigation in this direction will be
worthwhile.
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A PRIMAL-DUAL ALGORITHM FOR SOLVING POLYHEDRAL
CONIC SYSTEMS WITH A FINITE-PRECISION MACHINE∗
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Abstract. We describe a primal-dual interior-point algorithm that determines which one of two
alternative systems,

Ax = 0, x ≥ 0,

and

ATy ≤ 0,

is strictly feasible, provided that this pair of systems is well-posed. Furthermore, when the second
system is strictly feasible, the algorithm returns a strict solution y; when the first system is strictly
feasible, the algorithm returns a strict forward-approximate solution x. Here A ∈ R

m×n is given.
Our algorithm works with finite-precision arithmetic. The amount of precision required is adjusted
as the algorithm progresses and remains bounded by a measure of well-posedness C(A) of the pair of
systems of constraints. The algorithm halts in at most O((m+n)1/2(log(m+n)+log(C(A))+| log γ|))
interior-point iterations, where γ ∈ (0, 1) is a parameter specifying the desired degree of accuracy of
the forward-approximate solution for the first system. If the feasible system is the second one, the
term | log γ| in the bound on the number of iterations can be dropped.

Key words. linear conic systems, finite-precision algorithms
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1. Introduction.

1.1. Let A ∈ R
m×n be given and consider the two systems

Ax = 0, x ≥ 0,(1.1)

and

ATy ≤ 0.(1.2)

It is well known that one of these systems has a strict solution (one for which the
satisfied inequality is strict) if and only if the other has no nontrivial solutions. (A
solution to (1.2) is nontrivial if it satisfies ATy �= 0.) This is a generic property.
Indeed, except for a set of Lebesgue measure zero, for any A ∈ R

m×n the pair (1.1)–
(1.2) is well-posed: one of the systems has a strict solution, and the same system
continues to have a strict solution even if the matrix A is slightly perturbed. Formally
speaking, the pair (1.1)–(1.2) is well-posed if the distance from A to ill-posedness
(defined below) is strictly positive.
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We propose an algorithm that, for well-posed pairs, will decide which of (1.1) and
(1.2) has a strict solution and produce such a solution. A key feature of our algorithm
is that we do not assume infinite precision for real number arithmetic. These kinds
of computations are to be performed with finite precision. The machine precision,
though, will vary during the computation. It is initially small and subsequently needs
to be gradually sharpened, but remains bounded and is not much larger than the
minimal precision that any algorithm would require.

The assumption of finite precision sets some limitations on the kinds of results we
may obtain. If system (1.2) has strict solutions, then we will obtain, after sufficiently
refining the precision, a strict solution y ∈ R

m of (1.2). On the other hand, if the
system having a strict solution is (1.1), then there is no hope of exactly computing
one such solution x, since the set of solutions is thin in R

n (i.e., has empty interior).
In such a case there is no way to ensure that the errors produced by the use of
finite precision will not move any candidate solution out of this set. We can, however,
compute good approximations, namely, forward-approximate solutions. The following
notion is partly inspired by the discussion of forward solutions in [15, section 5].

Definition 1.1. Let γ ∈ (0, 1). A point x̂ ∈ R
n is a γ-forward solution of the

system Ax = 0, x ≥ 0, if x̂ ≥ 0, x̂ �= 0, there exists x ∈ R
n such that

Ax = 0, x ≥ 0,

and, for i = 1, . . . , n,

|x̂i − xi| ≤ γx̂i.

The point x is said to be an associated solution for x̂. A point is a forward-approximate
solution of Ax = 0, x ≥ 0, if it is a γ-forward solution of the system for some
γ ∈ (0, 1).

In case system (1.1) has a strict solution, our algorithm will find a forward-
approximate solution. Actually, if the desired accuracy γ of this approximation is
given to the algorithm, the returned solution will be a γ-forward solution.

A central theme in numerical analysis (especially in numerical linear algebra) is
the dependence of both the precision and the running time required by an algorithm
to perform a computation on the condition of its input (measured by a positive real
called the condition number). The results of our paper follow this theme. A main
role is played by the condition number for linear programs introduced by Renegar
(cf. [16]), which we now recall. Let ρP (A) and ρD(A) be the distances to infeasibility
of (1.1) and (1.2), defined by

ρP (A) = inf{‖∆A‖1,∞ : (A+∆A)x = 0, x ≥ 0, x �= 0 is infeasible}

and

ρD(A) = inf{‖∆A‖1,∞ : (A+∆A)Ty ≤ 0, (A+∆A)Ty �= 0 is infeasible}.

Here ‖ · ‖1,∞ denotes the operator norm1

‖A‖1,∞ := sup{‖Ax‖1 : ‖x‖∞ ≤ 1}.
1We use this norm to make distances to infeasibility compatible with the norms in our formula-

tion. This choice of norm is not critical, but different norms would complicate most expressions in
our results with additional constants.
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Note that only one of ρD(A) and ρP (A) can be positive. We say that A is ill-
posed when both of them are zero. In this case either system can be made without
nontrivial solutions by taking arbitrarily small perturbations on A. When this occurs,
we do not expect our algorithm to yield any solution. Indeed, if A is ill-posed, then
the algorithm will not halt. If we define

ρ(A) = ρP (A) + ρD(A) = max{ρP (A), ρD(A)},
then it is easy to see that ρ(A) is the distance to ill-posedness, i.e.,

ρ(A) = inf{‖∆A‖1,∞ : A+∆A is ill-posed}.
It is also easy to see that if ρP (A) > 0, then (1.1) has strict feasible solutions. Likewise,
if ρD(A) > 0, then (1.2) has strict feasible solutions. Furthermore, generically one of
these conditions always holds, as it can be shown that the set of matrices A such that
ρ(A) = 0 has Lebesgue measure zero.

Remark 1.1. The implications above can be rephrased as

{A ∈ R
m×n : ρP (A) > 0} ⊆ {A ∈ R

m×n : Ax = 0, x > 0 is feasible}
and

{A ∈ R
m×n : ρD(A) > 0} ⊆ {A ∈ R

m×n : ATy < 0 is feasible}.
It is not difficult to see that the second inclusion is actually an equality. The first one
is strict though. For instance, for the matrix[

1 −1
1 −1

]

system (1.1) has strict solutions while ρP (A) = 0. Actually, it follows from [19] that

{A : ρP (A) > 0} = {A : Ax = 0, x > 0 is feasible, and A has full rank}.
We note, however, that the difference between the two sets in the first inclusion has
measure zero, and the matrices in such difference are ill-posed.

The condition number C(A) of the pair (1.1)–(1.2) is defined to be C(A) =
‖A‖1,∞/ρ(A) if ρ(A) > 0 and C(A) = ∞ otherwise. It satisfies C(A) ≥ 1 and is
invariant under positive scaling of A. For a detailed discussion on the distance to
ill-posedness and condition numbers, see [16, 14].

The round-off unit or machine precision of a machine is a number u ∈ R, 0 <
u < 1, such that real numbers x in the machine are systematically replaced by ap-
proximations r(x) satisfying |r(x)− x| ≤ u|x|. Roughly, | log u| corresponds with the
number of digits of the mantissa in the floating-point representation of r(x).

In our analysis we will estimate both the number of iterations of the algorithm
and the precision required as functions of m,n, and C(A). Our main result can be
stated as follows.

Theorem 1.2. There exists a round-off machine which, with input of a matrix
A ∈ R

m×n and a number γ ∈ (0, 1), finds either a strict γ-forward solution x ∈ R
n

of Ax = 0, x ≥ 0, or a strict solution y ∈ R
m of the system ATy ≤ 0. The machine

precision varies during the execution of the algorithm. The finest required precision is

u =
1

c(m+ n)12C(A)2
,
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where c is a universal constant. The number of main (interior-point) iterations of the
algorithm is bounded by

O((m+ n)1/2(log(m+ n) + log(C(A)) + | log γ|))
if ρP (A) > 0, and by the same expression without the | log γ| term if ρD(A) > 0.

The complexity bound in Theorem 1.2 cannot be written as a function of m
and n solely, due to the unboundedness of C(A). One can eliminate the occurrence
of logC(A) in the bound above at the cost of trading worst-case for average-case
complexity. In [5] it is shown that, for Gaussian matrices (i.e., matrices whose entries
are independently and identically distributed (i.i.d.) normal random variables), the
expected value of logC(A) is O(min{n,m log n}) if n > m, and O(logm) if n ≤ m.
Using this result, the following corollary follows.

Corollary 1.3. For Gaussian m × n matrices, the expected number of main
(interior-point) iterations of the algorithm in Theorem 1.2 is bounded by{ O ((m+ n)1/2m(log(m+ n) + | log γ|)) if n > m,

O ((m+ n)1/2(log(m+ n) + | log γ|)) if n ≤ m.

Although our results do not make any assumption about which of m and n is
greater, the case n > m is the interesting one. Not only is this the case that naturally
arises in practice, but also it is the one in which both (1.1) and (1.2) may be strictly
feasible. If n ≤ m, then system (1.2) has strict solutions except when A is ill-posed.
Hence the situation of n ≤ m is much simpler and relatively uninteresting.

Remark 1.2. At this stage some observations about complexity are necessary.
Most of the work related to finite precision assumes that this precision is fixed. This
implies a fixed cost for each arithmetic operation and therefore a total cost for the
algorithm, which is, up to a constant, the number of arithmetic operations performed
during the computation. This is the so-called algebraic complexity and is the measure
underlying the complexity theory developed in [3]. In this fixed-precision context,
every instance of algorithm analysis includes (or should include) a result bounding
the accuracy of the solution as a function of the input size, the input condition, and
the machine precision.

Theorem 1.2 does not belong to the context above, since the algorithm therein
works with variable precision. This allows the algorithm (as long as C(A) < ∞) to
return a true strict solution of (1.2), if (1.2) is strictly feasible, or a γ-forward solution
of (1.1) for a prespecified γ, if (1.1) is strictly feasible. Needless to say, this is at the
cost of increasing the precision. Thus, to be fair, one needs to associate some cost
measure with this precision increase. At this point one notices that the fixed cost
for each arithmetic operation is no longer a reasonable model for variable precision.
A more realistic assumption assigns cost (log u)2 to any multiplication or division
between two floating-point numbers with round-off unit u, since this is roughly the
number of elementary operations performed by the computer to multiply or divide
these numbers. For an addition, subtraction, or comparison the cost is | log u|. The
cost of the integer arithmetic necessary for computing variables’ addresses and other
quantities related with data management may be (and is customarily) ignored.

A closer look at our algorithm shows that at each iteration the algorithm per-
forms O((m+ n)3) arithmetic operations. Therefore, the algebraic complexity of the
algorithm is bounded by O((m + n)3.5(log(m + n) + logC(A) + | log γ|)). Using the
cost model described above we obtain a bound for the total cost of the algorithm of

O((m+ n)3.5(log(m+ n) + logC(A) + | log γ|)3).
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Also, if we consider A to be Gaussian, then the expected cost is bounded by{ O ((m+ n)3.5m3(log(m+ n) + | log γ|)3) if n > m,
O ((m+ n)3.5(log(m+ n) + | log γ|)3) if n ≤ m.

1.2. The effects of finite precision when solving linear programming problems
have been noticed for many years. In [24], Wolfe suggested some strategies to control
round-off errors for the simplex method. Other papers (e.g., [6, 20]) also dealt with
the issue of round-off errors for the simplex method, but without providing rigorous
results. A first formal treatment of this issue appears in [1], which shows some form
of stabilization for the simplex method when replacing the Gauss–Jordan elimination
without pivot selection by the Hessenberg-LU decomposition. Other papers related
to round-off or inexact computations and linear programming include [19, 13].

The usual round-off analysis, however, as it is done in numerical linear algebra,
has been scarce for linear programming (LP). This is only natural since it was not until
very recently that condition numbers for LP problems were proposed (e.g., [16, 21, 4]).
These condition numbers have been shown to control the size of solution sets and of
particular solutions and speed of convergence of some iterative algorithms. They have
been little used, however, for round-off analysis. A recent paper dealing with inexact
computations, but not with round-off errors, in LP is [8]. As far as we are aware, the
only round-off analysis for LP as described above is a recent paper by Vera [22].

Vera analyzes the computational complexity of using a logarithmic barrier method
to solve

min cTx

s.t. Ax ≤ b

under finite-precision arithmetic. This is along the lines of our work. However, his
work relies on the availability of the following information: (1) the condition number
of the linear program (or an upper bound on it) and (2) an initial point x satisfying
Ax < b. Vera’s complexity bounds depend on the estimate of the condition number
and the centrality of the initial point. In contrast, our algorithm requires no further
knowledge of the problem beyond the input matrix A. The precision required is
learned and adjusted as the algorithm progresses.

2. Main ideas.

2.1. Reformulating the problem. Our algorithm is based on a relaxation
scheme introduced by Peña and Renegar [15]. The primal-dual perspective is partly
motivated by Vavasis and Ye’s formulation in [21].

We approach the feasibility problems Ax = 0, x ≥ 0, and ATy ≤ 0 by studying
the related pair of optimization problems

min ‖x̃‖1
s.t. Ax+ x̃ = 0,

x ≥ 0,
‖x‖∞ ≤ 1,

(2.1)

and

min ‖ỹ‖1
s.t. ATy + ỹ ≤ 0,

ỹ ≤ 0,
‖y‖∞ ≤ 1.

(2.2)
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We can recast these problems as the following primal-dual pair of linear programs:

min eTx′ + eTx′′

s.t.

[
A Im −Im
In In

]
x
x′

x′′

x′′′


 =

[
0
e

]
,

x, x′, x′′, x′′′ ≥ 0,

(2.3)

and

max eTy′

s.t.




AT In
Im
−Im

In



[

y
y′

]
+




s
s′

s′′

s′′′


 =




0
e
e
0


 ,

s, s′, s′′, s′′′ ≥ 0.

(2.4)

We shall apply a primal-dual interior-point method to the pair (2.3)–(2.4). A
basic feature of interior-point methods is to generate iterates that are pushed away
from the boundary of the feasible region. In addition, for the pair (2.3)–(2.4), it is
obvious that at any optimal solution the variables x′, x′′, y′ are all zero. Hence it
is intuitively clear that an interior-point algorithm applied to (2.3)–(2.4) will yield
a strict solution for either Ax = 0, x ≥ 0, or ATy ≤ 0, provided that the pair of
systems is well-posed (i.e., ρ(A) > 0). Propositions 3.6 to 3.9 in section 3 formalize
this statement.

In order to simplify our exposition, we will use the following notation:

�x =




x
x′

x′′

x′′′


 , �s =




s
s′

s′′

s′′′


 , �y =

[
y
y′

]

and

A =

[
A Im −Im
In In

]
, �b =

[
0
e

]
, �c =




0
e
e
0


 .

Thus, we can write our primal-dual pair (2.3)–(2.4) in the more compact and standard
LP form

min �cT�x

s.t. A�x = �b,
�x ≥ 0,

(2.5)

and

max �b
T
�y

s.t. AT�y + �s = �c,
�s ≥ 0.

(2.6)
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Remark 2.1. Problem (2.1) is closely related to the formulation

min δ
s.t. Ax+ x̃ = 0,

x ≥ 0,
‖x‖ ≤ 1,
‖x̃‖ ≤ δ,

which is a particular case—the one obtained for the nonnegative orthant cone—of the
formulation proposed by Peña and Renegar in [15] for general conic systems. Indeed,
many of the ideas and arguments in this paper rely on results developed in [15] and
the related work by Renegar [17]. The approach in [15, 17] is purely primal and in
principle only applies to the primal constraints Ax = 0, x ≥ 0. One of the main
features of this paper is the primal-dual approach, which yields a unified treatment
for the dual system ATy ≤ 0 as well.

Unlike the formulation in [15], where the Euclidean norm is used to bound the
primal and relaxation variables, we here choose the ‖ · ‖1 and ‖ · ‖∞ norms. This
choice of norms yields two main advantages. On the one hand, it allows us to state
the formulation as a standard linear program. On the other hand, it readily yields a
primal-dual formulation for both Ax = 0, x ≥ 0, and ATy ≤ 0.

For some time we will make the following assumption on the input matrix A.
Assumption 1. For i = 1, . . . , n

‖Aei‖1 = 1.

This is equivalent to the assumption that, if AT
i denotes the ith row of AT, ‖AT

i ‖1 = 1
for i = 1, . . . , n. This assumption is trivial from a computational viewpoint; it takes
a few operations to reduce the matrix to this form. The condition number of the new
matrix may have changed, however. Most of this paper will be devoted to proving
Theorem 1.2 for matrices satisfying the above assumption. In section 11 we will
extend the result to arbitrary matrices.

Notice that, as a consequence of Assumption 1, 1 ≤ ‖A‖1,∞ ≤ n.

2.2. The central path. The primal-dual pair (2.5)–(2.6) can be straightfor-
wardly solved via a primal-dual interior-point algorithm. For our purposes, we shall
apply a short-step path-following algorithm (cf. [12, 25]). Our primary goal is to
analyze such an algorithm in the presence of finite-precision arithmetic. Traditional
convergence analyses of interior-point methods do not address this issue. We shall
show that, in spite of the presence of finite precision, the fundamental steps of a
typical convergence analysis can still be carried through.

Recall that the central path C of the pair (2.5)–(2.6) is the set of solutions of the
nonlinear system of equations

A�x = �b,
AT�y + �s = �c,

�X �Se = µe,

(2.7)

with �x,�s ≥ 0 for all values of the parameter µ > 0. We have used here the following
common notational convention. If a lowercase letter denotes a point in R

n, then the
corresponding uppercase letter will denote the n× n diagonal matrix whose diagonal
elements are the coordinates of the given point. Thus, �X denotes the diagonal matrix
with �x in the diagonal. We shall use this convention throughout the paper.
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Let w denote a generic point (�x, �y,�s), and for such a point define

µ(w) :=
eT �X�Se

2(m+ n)
=

1

2(m+ n)

2(m+n)∑
i=1

�xi�si.

Note that if w ∈ C for a certain value of µ, then µ(w) = µ. We may sometimes write
µ for µ(w) when w is clear from the context.

2.3. The algorithm. We are now ready to describe our primal-dual algorithm.
This is essentially a standard primal-dual short-step algorithm (cf. [12] or [25, Chapter
5]) enhanced with two additional features. One of these features is the stopping
criteria and the other one is the presence of finite precision and the adjustment of this
precision as the algorithm progresses. To ensure the correctness of the algorithm, the
precision will be set to

φ(µ(w)) := min{µ(w)2, 1} 1

c(m+ n)12

at each iteration. Here c is a universal constant.
Let β = 1/4 and ξ = 1/12.

Algorithm FPPD(A, γ).
(i) Set the machine precision to u := 1/c(m+ n)12,

K := 2mn
β ,

w :=
(

1
2e,Ke, 1

2Ae+Ke, 1
2e, 0,−2Ke, 2Ke, e, e, 2Ke

)
.

(ii) Set the machine precision to u := φ(µ(w)).
(iii) If ATy < −2u (�log2 m�+ 1) e, then HALT and

return y as a feasible solution for ATy < 0.

(iv) If σmin(X
1/2S−1/2AT) > 3(m+n)µ(w)1/2

γ(1−2β) , then HALT and

return x as a γ-forward solution for Ax = 0, x > 0.
(v) Set µ :=

(
1− ξ√

2(m+n)

)
µ(w).

(vi) Update w by solving a linearization of (2.7) for µ = µ.
(vii) Go to (ii).

Remark 2.2.
(i) The expression FPPD stands for Finite Precision Primal Dual.
(ii) We already remarked that when n ≤ m, the system (1.2) has strict solutions

except when A is ill-posed. Therefore, in this case, Algorithm FPPD will
systematically skip step (iv).

(iii) The choice of β and ξ above is somehow arbitrary. Any constants β, ξ ∈
(0, 1/4] satisfying

(1− β)3

2(m+ n) + 1
≥ 1

10(m+ n)
,(2.8)

(β + ξ)2√
2(1− 2β)

≤
(
1− 3ξ

2
√
2(m+ n)

)
β − 5ξ

6
,(2.9)

ξ ≤ β ≤ 10ξ,(2.10)

will ensure the correctness of our algorithm.
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2.4. Plan of the paper. The rest of this paper is organized as follows. In
section 3 we present several results that show the correctness of Algorithm FPPD, i.e.,
Theorem 1.2. This section develops two crucial pieces in our work. The first one
is the way in which the update of w in step (vi) is performed. The second one is
Theorem 3.3, which encapsulates the essence of the effects of finite precision in our
computations.

Sections 3 to 6 mostly deal with convergence properties of Algorithm FPPD. Ar-
guments here are of the kind used in convergence analysis of interior-point methods.
Round-off analysis is delayed until sections 7 to 9. In this way, that part of the
paper is clearly separated from the convergence analysis mentioned before, and the
reader can get the conceptual content of the latter without being encumbered with
the technicalities of the former.

Section 11 concludes the paper with some final remarks and details.

3. Proof of the main theorem.

3.1. On the update of w. A key step in the analysis of our algorithm is
understanding the properties of the update of w performed at step (vi). The update
w+ is defined as w+ = w −∆w, where ∆w = (∆�x,∆�y,∆�s) solves the linear system

 A AT I
�S �X




 ∆�x

∆�y
∆�s


 =


 0

0
�X�Se− µe


 .(3.1)

Via some elementary row operations, the solution of (3.1) can be obtained as
follows. First, solve the reduced system

(A�S−1 �XAT)∆�y = −A�S−1( �X�Se− µe).(3.2)

Then set

∆�s = −AT∆�y(3.3)

and

∆�x = �S−1 �XAT∆�y + �S−1( �X�Se− µe).(3.4)

If (3.2), (3.3), and (3.4) were performed with exact arithmetic, then (∆�x,∆�y,∆�s)
would solve (3.1) exactly. In such an ideal case, the convergence of Algorithm FPPD

would readily follow from an analysis that is fairly standard and well-documented
today; see, e.g., [12] or [25, Chapter 5]. Due to the use of finite precision we will have
to proceed a bit differently.

Because of round-off errors, the computed ∆w might not satisfy the first two
constraints in (3.1). To circumvent this difficulty we exploit the role of some of the
variables in our formulation as slack variables. The following construction formalizes
this idea.

Given a point w = (�x, �y,�s), let us denote by w := (�x, �y,�s) the exact vector

(x, x′, Ax+ x′, e− x, y, y′,−ATy − y′, e− y, e+ y,−y′).
Notice that although this mathematical object is perfectly defined, we would not be
able to explicitly represent all of its components in a finite-precision machine. Our
analysis, however, will crucially rely on w and its properties.
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An immediate consequence of this construction is that for any w, w := (�x, �y,�s)

satisfies A�x = �b and AT�y + �s = �c.
The precise way in which we update w in step (vi) will be as follows. (All com-

putations below are performed with precision φ(µ(w)).)
(a) Compute a solution ∆�y of

(A�S−1 �XAT)∆�y = −A�S−1( �X�Se− µe)

and let �y := �y −∆�y.
(b) Let [

∆x
∆x′

]
:=

[
XS−1

X ′(S′)−1

] [
AT I
I 0

]
∆�y

+

[
S−1

(S′)−1

]([
XSe
X ′S′e

]
− µe

)
,

x := x−∆x,
x′ := x′ −∆x′.

(c) Let
x′′ := Ax+ x′,
x′′′ := e− x,
s := −ATy − y′,
s′ := e− y,
s′′ := e+ y,
s′′′ := −y′.

If (c) were carried out with exact arithmetic, then the new iterate w+ would
satisfy w+ = w+. This will not be the case because of the finite precision on the
computations. However, the difference between these vectors can be bounded com-
ponentwise, as the following proposition states.

Proposition 3.1. If (c) above is performed with precision φ(µ(w)), then the new
iterate w+ satisfies

‖w+ − w+‖∞ ≤ βmin{µ(w+), 1}
20(m+ n)2

.(3.5)

Proof. For the proof of this proposition, see section 10.
The considerations above suggest defining the following two enlargements of the

central path. They will play a central role in our development.
Definition 3.2. Given β ∈ (0, 1

4 ], the central neighborhood Nβ is defined as the
set of points w = (�x, �y,�s), with �x, �s > 0, such that the following constraints hold:

A�x = �b,
AT�y + �s = �c,

‖ �X�Se− µ(w)e‖ ≤ βµ(w).

The extended central neighborhood Nβ is thus defined by

Nβ :=

{
w : w ∈ Nβ and ‖w − w‖∞ ≤ βmin{µ(w), 1}

20(m+ n)2

}
.

Remark 3.1. Ideally, one would like to generate a sequence of points on the
central path C with values of µ decreasing to zero. Limitations on our ability to solve



532 FELIPE CUCKER AND JAVIER PEÑA

nonlinear systems have led interior-point methods to generate the sequence above in
the central neighborhood Nβ . The additional limitations arising from the use of finite
precision lead us to generate this sequence in the extended central neighborhood Nβ .

We are now ready to present stepping stones towards the proof of Theorem 1.2.
Theorem 3.3. Let w ∈ Nβ, suppose w+ = w − ∆w is obtained using steps

(a)–(c) above, and let ∆w = (∆�x,∆�y,∆�s) := w − w+. Then

A∆�x = 0,
AT∆�y +∆�s = 0,
�S∆�x+ �X∆�s = �X�Se− µe+ r,

with ‖r‖ ≤ ξµ(w)
3 .

Proof. For the proof see section 4.
Proposition 3.4. Let w ∈ Nβ and suppose that w+ = w−∆w is obtained using

steps (a)–(c) above. Then
(i) (

1− 3ξ

2
√
2(m+ n)

)
µ(w) ≤ µ(w+) ≤

(
1− ξ

2
√
2(m+ n)

)
µ(w)

and
(ii) w+ ∈ Nβ.
Proof. For the proof see section 10.
Proposition 3.5. For K ≥ 2mn

β the point w0 = (�x, �y,�s), defined as follows,
belongs to Nβ:

x = x′′′ =
1

2
e, x′ = Ke, x′′ =

1

2
Ae+Ke,

y = 0, s′ = s′′ = e, s = s′′′ = −y′ = 2Ke.

In addition, if this point is computed with precision c(m+ n)−12, then the computed
point fl(w0) belongs to Nβ.

Proof. For the proof see section 7.
Proposition 3.6. If in step (iii) the algorithm above yields (with round-off

errors) ATy < −2u (�log2 m�+ 1) e, then y is a strict solution of (1.2), i.e., ATy <
0.

Proof. The proof can be found in section 7.
Proposition 3.7. Assume w ∈ Nβ. If in step (iv) the algorithm above yields

(with round-off errors)

σmin(X
1/2S−1/2AT) >

3(m+ n)µ(w)1/2

γ(1− 2β)
,

then x is a γ-forward solution of (1.1), and the projection

x = x−XS−1AT(AXS−1AT)−1Ax

is an associated solution for x.
Proof. The proof can be found in section 9.
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Proposition 3.8. Assume ρD(A) > 0 and w ∈ Nβ. If µ(w) ≤ ρD(A)
20(n+m)2 , then

ATy < −4u(�log2 m�+ 1)e holds exactly and the algorithm halts in step (iii).
Proof. For the proof see section 7.
Proposition 3.9. Let γ ∈ (0, 1), assume w ∈ Nβ and ρP (A) > 0. If

µ(w) ≤ (1− 2β)2ρP (A)

20(m+ n)5/2

(
1 +

1

γ

)−1

,

then σmin(X
1/2S−1/2AT) > 4(m+n)µ(w)1/2

γ(1−2β) holds exactly and the algorithm halts in

step (iv).
Proof. For the proof see section 9.

3.2. Proof of Theorem 1.2. Propositions 3.6 to 3.9 show that, for w ∈ Nβ
with µ(w) sufficiently small, the algorithm halts and yields a solution. Propositions 3.4
and 3.5 show that the algorithm generates such a point w ∈ Nβ in at most

O((m+ n)1/2(log(m+ n) + log(C(A)) + | log γ|))
iterations when ρP (A) > 0, and in at most

O((m+ n)1/2(log(m+ n) + log(C(A))))

iterations when ρD(A) > 0.

4. Proof of Theorem 3.3. Recall that in section 3.1 we defined ∆�y to be the
solution of

(A�S−1 �XAT)∆�y = −A�S−1( �X�Se− µe)

computed with precision φ(µ(w)). Therefore, ∆�y does not actually satisfy the equality
above. To prove Theorem 3.3, however, we do not need this equality to be satisfied.
It suffices that both sides of it are close enough. The following proposition quantifies
this closeness.

Proposition 4.1. Let w ∈ Nβ. With precision u = φ(µ) in all arithmetic
operations, we can obtain a vector ∆�y such that

‖(A�S−1 �XAT)∆�y +A�S−1( �X�Se− µe)‖ ≤ ξ min{1/(m+ n), µ}
7

.

We will prove Proposition 4.1 in section 8. Its proof is the heart of our round-off
analysis.

Remark 4.1. We next prove Theorem 3.3. The proof we give ignores the round-
off error present in the computation of ∆x,∆x′. Formally speaking, ∆x,∆x′ do not
satisfy (b) exactly. Instead we actually have[

∆x
∆x′

]
=

[
XS−1

X ′(S′)−1

] [
AT I
I 0

]
∆�y

+

[
S−1

(S′)−1

]([
XSe
X ′S′e

]
− µe

)
+ η

for some error vector η. However, it is easy to show (see section 11.1) that this error
vector satisfies ∥∥∥∥�S

[
η
0

]∥∥∥∥ ≤ ξµ(w)

10
,
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and hence the proof below can readily be amended. We ignore this minor detail to
avoid obscuring the essence of the argument.

Proof of Theorem 3.3. By construction, (∆�x,∆�y,∆�s) satisfies

A∆�x = 0,
AT∆�y +∆�s = 0.

In addition, simple algebraic manipulations show that the construction of (∆�x,∆�y,∆�s)
also imposes the condition that ∆�x be equal to

�S−1(− �X∆�s+ ( �X�Se− µe)) +




0
0[

I
−I

]
((A�S−1 �XAT)∆�y +A�S−1( �X�Se− µe))


 .

Hence,

�S∆�x+ �X∆�s− ( �X�Se− µe) =




0
0[

S′′

−S′′′

]
((A�S−1 �XAT)∆�y +A�S−1( �X�Se− µe))


 .

Therefore, by Proposition 4.1,∥∥∥�S∆�x+ �X∆�s− ( �X�Se− µe)
∥∥∥ ≤ ∥∥∥∥

[
S′′

S′′′

]∥∥∥∥ ξ min{1/(m+ n), µ}
7

.

But ‖s′′‖∞ ≤ 1 + ‖y‖∞ + ‖s′′ − s′′‖∞ ≤ 2 + β/20(m + n)2, and therefore ‖S′′‖ =
‖s′′‖∞ ≤ 7/3. Also, s′′′ = −y′ implies ‖S′′′‖ = ‖s′′′‖∞ = ‖y′‖∞ ≤ −�b

T
�y = 2(m +

n)µ− �cT�x ≤ 2(m+ n)µ. Thus

‖r‖ = ‖�S∆�x+ �X∆�s− ( �X�Se− µe)‖
≤ max{‖S′′‖, ‖S′′′‖}ξ min{1/(m+ n), µ}

7

≤ max{7/3, 2(m+ n)µ}ξ min{1/(m+ n), µ}
7

≤ ξµ

3
.

5. Some useful bounds. The following proposition states a key property of the
points in the neighborhood Nβ in connection with the systems Ax = 0, x ≥ 0, and
ATy ≤ 0.

Proposition 5.1. Let w = (�x, �y,�s) ∈ Nβ. Then

x ≥ max{ρP (A), mµ(w)}
10(n+m)

e

and

s ≥ max{ρD(A), nµ(w)}
10(n+m)

e.

To prove Proposition 5.1 we will rely on the following characterization of ρP (A),
ρD(A) due to Renegar. (For a detailed discussion, see [14, 16].)
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Proposition 5.2. Let A ∈ R
m×n. Then

ρP (A) = inf{‖y‖1 : �x such that Ax = y, x ≥ 0, ‖x‖∞ ≤ 1}
and

ρD(A) = inf{‖x‖1 : �y such that ATy − x ≤ 0, ‖y‖∞ ≤ 1}.
We will also use the following two technical lemmas. The first one summarizes

some basic properties satisfied by the points in Nβ and Nβ . These bounds will be
used throughout the rest of the paper.

Lemma 5.3. Let w ∈ Nβ. Then
(i) For i = 1, . . . , 2(n+m), �xi�si ≥ (1− β)µ(w);
(ii) �cT�x ≥ (1− β)mµ(w);

(iii) −�bT�y ≥ (1− β)nµ(w);

(iv) ‖x′‖1 + ‖x′′‖1 = �cT�x ≤ 2(m+ n)µ(w).
Furthermore, if w ∈ Nβ, then similar bounds hold with (1− 2β) instead of (1− β) in
(i), (ii), and (iii).

Proof. Since w ∈ Nβ , ‖ �X�Se − µ(w)e‖ ≤ βµ(w). Thus, for i = 1, . . . , 2(n +m),
|�xi�si − µ(w)| ≤ βµ(w). From here it follows that �xi�si ≥ µ(w) − βµ(w), and hence
we obtain (i).

For part (ii) suppose �cT�x < (1− β)mµ; then by the pigeonhole principle

xi <
(1− β)µ

2

for some i ∈ {n+ 1, . . . , n+ 2m}. Since xisi ≥ (1− β)µ,

si ≥ (1− β)µ

xi
> 2.

But this is a contradiction, since w ∈ Nβ implies si ≤ 1 + ‖y‖∞ ≤ 2. Thus �cT�x ≥
(1− β)mµ.

A similar argument shows part (iii).
Finally, from the two equality constraints in the definition of Nβ it follows that

�cT�x− �bT�y = �sT�x. Since �b
T
�y = −‖y′‖1, we have �cT�x ≤ �sT�x. Part (iv) then follows

since �sT�x = 2(m+ n)µ(w) by definition of µ(w).
The statements for w ∈ Nβ are readily obtained by applying (i)–(iv) to the point

w ∈ Nβ and using Claim 1 below.
Claim 1. Suppose that w = (�x, �y,�s) is such that �x, �s > 0, and ‖w−w‖∞ ≤ ε <

1. Then

‖x‖∞, ‖x′′′‖∞ ≤ 1

1− ε
, ‖s′‖∞, ‖s′′‖∞ ≤ 2

1− ε
,

‖x′‖∞, ‖x′′‖∞, ‖s′′′‖∞ ≤ 2(m+ n)µ(w)

1− ε
, ‖s‖∞ ≤ 2 + 2(m+ n)µ(w)

1− ε
,

and

|µ(w)− µ(w)| < max{2, 2(m+ n)µ(w)} (2 + ε)ε

1− ε
.
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Proof. This readily follows by using the facts that A�x = �b and AT�y + �s = �c
together with Assumption 1.

The following lemma is simply a particular version of a result that holds for
self-scaled barrier functions (cf. [18, Theorem 3.5.9]).

Lemma 5.4. Let u, v ∈ R
d, with u > 0, v ≥ 0. If

〈
v − u, U−1e

〉 ≤ 0, then

‖U−1(v − u)‖ ≤ d.

Proof of Proposition 5.1. Let us first assume w ∈ Nβ . We shall show a slightly
stronger inequality in this case.

Let i ∈ {1, . . . , n} and ε > 0 be given. Choosing y as an appropriate multiple of
Aei and applying Proposition 5.2, it is easy to see that there exists z such that

zi ≥ ρP (A)− ε

and

Az = 0, z ≥ 0, ‖z‖∞ ≤ 1.

Hence we can readily get �z ≥ 0 such that

A�z = �b, �z ≥ 0, �cT�z ≤ �cT�x, and zi ≥ max{�cT�x, ρP (A)− ε}.
Thus,〈
�z − µ(w)�S−1e,

�s

µ(w)

〉
=

1

µ(w)
〈�z − �x,�s 〉 = 〈�z − �x,�c−ATy

〉
=

1

µ(w)
〈�z − �x,�c〉 ≤ 0.

Hence Lemma 5.4 implies that ‖ 1
µ(w)

�S(�z − µ(w)�S−1e)‖ ≤ 2(m+ n). A bit of algebra

and Lemma 5.3 yield

xi ≥ (1− β)max{�cT�x, ρP (A)− ε}
2(m+ n) + 1

≥ (1− β)max{(1− β)mµ(w), ρP (A)− ε}
2(m+ n) + 1

.

Since i ∈ {1, . . . , n} and ε > 0 are arbitrary,

x ≥ (1− β)max{ρP (A), (1− β)mµ(w)}
2(m+ n) + 1

e.(5.1)

Now notice that, by Claim 1 and since w ∈ Nβ , µ(w) ≥ (1−β)µ(w). Hence (5.1)
(applied to w) and (2.8) yield the first inequality in the proposition.

The second inequality is proven by a “dual” argument. Again assume w ∈ Nβ
and let i ∈ {1, . . . , n} and ε > 0 be given. Choosing x as an appropriate multiple of
ei and applying Proposition 5.2, it is easy to see that there exist v and z such that

zi ≥ ρD(A)− ε

and

ATv + z = 0, z ≥ 0, ‖v‖∞ ≤ 1.

Hence we can readily get �y and �z such that

A�v + �z = �c, �z ≥ 0, �b
T
�v ≥ �b

T
�y, and zi ≥ max{−�bT�y, ρD(A)− ε}.
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Thus〈
�z − µ(w) �X−1e,

�x

µ(w)

〉
=

1

µ(w)
〈�z − �s, �x〉 = 〈−AT(�v − �y), �x

〉
=

1

µ(w)

〈
�y − �v,�b

〉
≤ 0.

Hence Lemma 5.4 implies that ‖ 1
µ(w)

�X(�z − µ(w) �X−1e)‖ ≤ 2(m+ n). In particular,∣∣∣∣zi − µ(w)

xi

∣∣∣∣ ≤ 2(m+ n)
µ(w)

xi
⇒ µ(w)

xi
≥ zi

2(m+ n) + 1
,

but xisi ≥ (1− β)µ(w), zi ≥ max{−�bT�y, ρD(A)− ε}, and −�bT�y ≥ (1− β)nµ(w) (by
Lemma 5.3), and so

si ≥ (1− β)max{−�bT�y, ρD(A)− ε}
2(m+ n) + 1

≥ (1− β)max{(1− β)nµ(w), ρD(A)− ε}
2(m+ n) + 1

.

Since i ∈ {1, . . . , n} and ε > 0 are arbitrary, we conclude

s ≥ (1− β)max{ρD(A), (1− β)nµ(w)}
2(m+ n) + 1

e.(5.2)

The corresponding statement for w ∈ Nβ again follows as before. By Claim 1 and
since w ∈ Nβ , µ(w) ≥ (1 − β)µ(w). Hence (5.2) (applied to w) and (2.8) yield the
second inequality in the proposition.

A first consequence of Proposition 5.1, formally stated in the corollary below, is
that if ρD(A) > 0, then the algorithm will eventually produce iterates that satisfy
ATy < 0.

Corollary 5.5. Let w = (�x, �y,�s) ∈ Nβ. If ρD(A) ≥ 20(m+ n)2µ(w), then

ATy < − nµ(w)

10(n+m)
.

On the other hand, Proposition 5.1 implies that if ρP (A) > 0, then x is a forward-
approximate solution of Ax = 0, x ≥ 0, when w ∈ Nβ with µ(w) sufficiently small.
The next result proves a first step in this direction, showing that x is a forward-
approximate solution if the singular values of X1/2S−1/2AT are large enough. In the
next section we prove that the latter is actually the case if µ(w) is sufficiently small.

Proposition 5.6. Let w = (�x, �y,�s) ∈ Nβ and γ ∈ (0, 1). If

σmin(X
1/2S−1/2AT) ≥ 2(m+ n)µ(w)1/2

(1− 2β)γ
,

then x is a γ-forward solution of Ax = 0, x ≥ 0, and

x = x−XS−1AT(AXS−1AT)−1Ax

is an associated solution for x.
Proof. The bound on σmin(X

1/2S−1/2AT) implies

‖X1/2S−1/2AT(AXS−1AT)−1Ax‖ ≤ ‖Ax‖
σmin(X1/2S−1/2AT)

≤ 2(m+ n)µ(w)

σmin(X1/2S−1/2AT)

≤ γ(1− 2β)µ(w)1/2,
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the second inequality by Lemma 5.3 since

‖Ax‖ = ‖x′ + x′′‖ ≤ ‖x′‖1 + ‖x′′‖1 ≤ 2(m+ n)µ(w).

On the other hand, since w ∈ Nβ , it follows easily from Lemma 5.3 that x
1/2
i s

−1/2
i ≤

xi

(1−2β)µ(w)1/2 for i = 1, . . . , n. Thus

|(XS−1AT(AXS−1AT)−1Ax)i| ≤ γxi < xi, i = 1, . . . , n.

In consequence, the point

x = x−XS−1AT(AXS−1AT)−1Ax

satisfies Ax = 0, x > 0, and, for i = 1, . . . , n, |xi − xi| ≤ γxi.

6. On the singular values of X1/2S−1/2AT. The following two technical
results are crucial in our round-off analysis. They are in the same spirit as [15,
Theorems 5, 6, 10] and [17, Corollaries 1.3, 1.7].

Proposition 6.1. Let w = (�x, �y,�s) ∈ Nβ and γ ∈ (0, 1). If

ρP (A) ≥ 20(m+ n)5/2µ(w)

(1− 2β)2

(
1 +

1

γ

)
,

then

σmin(X
1/2S−1/2AT) ≥ 4(m+ n)µ(w)1/2

(1− 2β)γ
.

Proposition 6.2. Assume w ∈ Nβ and let B = �X1/2�S−1/2AT. Then

σmin(µ(w)
1/2B) ≥ min{mµ(w) + ρP (A), 1}

20(m+ n)3/2

and

σmax(µ(w)
1/2B) = µ(w)1/2‖B‖ ≤ 3max{2(m+ n)µ(w), 1}√n

2(1− 2β)
.

In particular,

κ(B) :=
σmax(B)

σmin(B)
≤ 60

√
n(m+ n)3/2 max

{
1

mµ(w)
, 2(m+ n)µ(w)

}
.

The proof of Proposition 6.2 relies on the following technical lemma, which is a
modification of [15, Theorem 12].

Lemma 6.3. Assume w = (�x, �y,�s ) ∈ Nβ. Let b ∈ R
2(m+n) be such that for any

�x′ ∈ R
2(m+n) with A�x′ = b one has∥∥∥∥ 1

µ1/2
�X−1/2�S1/2�x′

∥∥∥∥ ≥ 1.

If α >
2(m+n)+2

√
2(m+n)β

1−2β , then for either ∆b = αb or ∆b = −αb the optimal value
of the perturbed problem

min �cT�z

s.t. A�z = �b+∆b,
�z ≥ 0,

(6.1)

is greater than �cT�x− µ(w)
4 .
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Proof. Assuming
〈
�y, b
〉 ≥ 0, we will prove the lemma with ∆b = αb. (If

〈
�y, b
〉 ≤ 0,

we would instead prove it for ∆b = −αb.)
If (6.1) is infeasible, then its optimal value is ∞ and there is nothing to prove.

Hence assume (6.1) is feasible. We proceed by contradiction: suppose that �z is feasible
and

〈�c, �z〉 ≤ 〈�c, �x〉 − µ(w)

4
.(6.2)

Because �z is feasible and satisfies (6.2),

〈�z − �x,�s〉 = 〈�z − �x,�s〉+ 〈�x− x,�s〉+ 〈�z − �x,�s− �s〉 .

Now, since w ∈ Nβ and z is feasible for (6.1), it can easily be shown that

| 〈�x− x,�s〉+ 〈�z − �x,�s− �s〉 | ≤ µ(w)

4
.

Hence

〈�z − �x,�s〉 ≤ 〈�z − �x, c+AT�y
〉
+
µ(w)

4

≤ 〈�z − �x,AT�y
〉
= 〈A(�z − �x), �y 〉

= −α 〈b, �y〉 ≤ 0.

Thus 〈
�z − µ(w)�S−1e,

1

µ(w)
s

〉
=

1

µ(w)
〈�z − �x,�s 〉 ≤ 0.

Hence Lemma 5.4 implies that∥∥∥∥ 1

µ(w)
�S
(
�z − µ(w)�S−1e

)∥∥∥∥ ≤ 2(m+ n).(6.3)

On the other hand, since w ∈ Nβ , for each i = 1, . . . , 2(m+n), |x1/2
i s

1/2
i −µ(w)1/2| ≤

2βµ(w)1/2 ⇒ 1− 2β ≤ s/µ
x−1/2s1/2/µ1/2 ≤ 1 + 2β,

∥∥∥∥ 1

µ(w)1/2
�X−1/2�S1/2

(
�z − µ(w)�S−1e

)∥∥∥∥ ≤ 2(m+ n)

1− 2β
,(6.4)

and ∥∥∥∥ 1

µ(w)1/2
�X−1/2�S1/2

(
�x− µ(w)�S−1e

)∥∥∥∥ ≤ 2
√
2(m+ n)β

1− 2β
.(6.5)

However, since A(�z − �x) = αb, our hypothesis implies that∥∥∥∥ 1

µ(w)1/2
�X−1/2�S1/2(�x− �z)

∥∥∥∥ ≥ α.(6.6)

But (6.4), (6.5), and (6.6) are contradictory, assuming α >
2(m+n)+2

√
2(m+n)β

1−2β .
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6.1. Proof of Proposition 6.2. From Proposition 5.2, it follows that for any
∆bI ∈ R

m with ‖∆bI‖1 < ρP (A) there exists a z such that

A�z = ∆bI , z ≥ 0, ‖z‖∞ ≤ 1.

Hence for any ∆bI ∈ R
m and α ≥ 0 with ‖∆bI‖1 < α + ρP (A), there exists �z such

that

A�z = �b+

[
∆bI

0

]
, �z ≥ 0, and �cT�z ≤ α.

Consequently, if ∆b ∈ R
(m+n) satisfies ‖∆b‖1 < min{�cT�x − µ(w)

4 + ρP (A)
2 , 1

2}, then
there exists �z such that

A�z = �b+∆b, �z ≥ 0, and �cT�z ≤ �cT�x− µ(w)

4
.

On the other hand, for any given ε > 0, Lemma 6.3 implies that there exists a ∆b
satisfying

‖∆b‖ ≤ 2(m+ n) +
√
2(m+ n)β + ε

1− 2β
σmin(µ(w)

1/2B)(6.7)

and such that the optimal value of the following problem exceeds �cT�x− µ(w)
4 :

min �cT�z

s.t. A�z = �b+∆b,
�z ≥ 0.

Thus, such a ∆b must satisfy

‖∆b‖1 ≥ min

{
�cT�x− µ(w)

4
+
ρP (A)

2
,
1

2

}
≥ min{(1− β)mµ(w) + ρP (A), 1}

2
,(6.8)

the last inequality by Lemma 5.3.
Putting (6.7) and (6.8) together, we get

σmin(µ(w)
1/2B) ≥ min{(1− β)mµ+ ρP (A), 1}(1− 2β)

2
√
2(m+ n)(2(m+ n) +

√
2(m+ n)β + ε)

.

Since this holds for any ε > 0, we get the bound on σmin(µ(w)
1/2B).

Now the bound on σmax(µ(w)
1/2B) = µ(w)1/2‖B‖:

‖µ(w)1/2B‖ = ‖µ(w)1/2 �X1/2�S−1/2A‖ ≤ µ(w)1/2 ‖ �X1/2�S−1/2‖ ‖A‖.
Because w ∈ Nβ , for each i = 1, . . . , 2(m+ n),

x
1/2
i s

−1/2
i ≤ xi

(1− 2β)µ(w)1/2
.

Thus

‖ �X1/2�S−1/2‖ = max{x1/2
i s

−1/2
i } ≤ 1

(1− 2β)µ(w)1/2
max{xi}.

But by Claim 1, ‖�x‖∞ ≤ 3
2 max{1, 2(m+n)µ(w)}; and by Assumption 1, ‖A‖ ≤ √n.

Consequently,

‖µ(w)1/2B‖ ≤ µ(w)1/2‖ �X1/2�S−1/2‖ ‖A‖ ≤ 3max{2(m+ n)µ(w), 1}√n
2(1− 2β)

.
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6.2. Proof of Proposition 6.1. We will prove the following bound first:

σmin


µ(w)1/2


 X1/2S−1/2AT

(X ′)1/2(S′)−1/2

(X ′′)1/2(S′′)−1/2




 ≤ ρP (A)

5(m+ n)3/2
.(6.9)

To see this, proceed again as in the first part of the proof of Proposition 6.2: by
Proposition 5.2, for any ∆bI ∈ R

m with ‖∆bI‖1 < ρP (A) there exists �z such that

A�z = �b+

[
∆bI

0

]
, �z ≥ 0, and �cT�z ≤ �cT�x− µ(w)

4
.

On the other hand, given ε > 0, Lemma 6.3 implies that there exists ∆b = [∆b
I

0 ]
satisfying

‖∆bI‖ ≤ 2(m+ n) +
√
2(m+ n)β + ε

1− 2β
σmin


µ(w)1/2


 X1/2S−1/2AT

(X ′)1/2(S′)−1/2

(X ′′)1/2(S′′)−1/2






(6.10)

and such that the optimal value of the following problem exceeds �cT�x− µ(w)
4 :

min �cT�z

s.t. A�z = �b+∆b,
�z ≥ 0.

Thus, such ∆bI must satisfy

‖∆bI‖1 ≥ ρP (A).(6.11)

Putting (6.10) and (6.11) together, we get

σmin


µ(w)1/2


 X1/2S−1/2AT

(X ′)1/2(S′)−1/2

(X ′′)1/2(S′′)−1/2




 ≥ ρP (A)(1− 2β)√

2(m+ n)(2(m+ n) +
√
2(m+ n)β + ε)

.

Since this holds for any ε > 0, we get (6.9).

To finish, notice that

σmin




 X1/2S−1/2AT

(X ′)1/2(S′)−1/2

(X ′′)1/2(S′′)−1/2




 ≤ σmin(X

1/2S−1/2AT) + ‖(X ′)1/2(S′)−1/2‖

+ ‖(X ′′)1/2(S′′)−1/2‖,

and because w ∈ Nβ ,

(x′j)
1/2(s′j)

−1/2 ≤ x′j
(1− 2β)µ(w)1/2

≤ 2(m+ n)µ(w)1/2

1− 2β
,
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and

(x′′j )
1/2(s′′j )

−1/2 ≤ x′′j
(1− 2β)µ(w)1/2

≤ 2(m+ n)µ(w)1/2

1− 2β
.

Here we used x′j , x
′′
j ≤ �cT�x ≤ 2(m+ n)µ(w).

Therefore

σmin(X
1/2S−1/2AT) ≥ ρP (A)(1− 2β)

5(m+ n)3/2µ(w)1/2
− 4(m+ n)µ(w)1/2

1− 2β

≥ 4(m+ n)µ(w)1/2

(1− 2β)γ
.

The second inequality follows from the hypothesis

ρP (A) ≥ 20(m+ n)5/2µ(w)

(1− 2β)2

(
1 +

1

γ

)
.

7. Floating-point numbers, floating-point arithmetic. In this section we
recall the basics of a floating-point arithmetic which idealizes the usual IEEE standard
arithmetic. This system is defined by a set F ⊂ R containing 0 (the floating-point
numbers), a transformation r : R→ F (the rounding map), and a constant u ∈ R (the
round-off unit) satisfying 0 < u < 1. The properties we require for such a system are
the following:

(i) For any x ∈ F, r(x) = x. In particular, r(0) = 0.
(ii) For any x ∈ R, r(x) = x(1 + δ) with |δ| ≤ u.

We also define on F arithmetic operations following the classical scheme

x◦̃y = r(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /}, so that

◦̃ : F× F→ F.

Fundamental example. The classical floating-point numbers satisfy all these
properties (see [23, 10]). Let us recall their definition. Let β, t ∈ N be given with
β ≥ 2 (the base) and t ≥ 1 (the precision). The floating-point number set F is given
by the numbers with the form

y = ±βe
(
d1

β
+

d2

β2
+ · · ·+ dt

βt

)
,

with e ∈ Z, di ∈ {0, 1, . . . , β − 1}, and d1 �= 0. The rounding map r associates to any
x ∈ R the element of F nearest to x (or one of them when x is equidistant from two
floating-point numbers). We may take here

u =
1

2
β1−t.

This is a consequence of the distribution of floating-point numbers: in the interval
[βe, βe+1] they are equally spaced with space 2βeu. Thus, for x ∈ [βe, βe+1], the
distance between x and r(x) is at most 2βeu/2 ≤ |x|u, and property (ii) above holds.
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Remark 7.1. In “real life floating-point arithmetic” a limitation is given on the
exponent, emin ≤ e ≤ emax, and consequently there are a smallest and a largest posi-
tive floating-point numbers minF and maxF, respectively. Associated to these numbers
are the concepts of underflow and overflow. To avoid the difficulties associated with
under- and overflow we take, as an admissible exponent, any integer e ∈ Z.

The following is an immediate consequence of property (ii) above.
Proposition 7.1. For any x, y ∈ F we have

x◦̃y = (x ◦ y)(1 + δ), |δ| ≤ u.

When combining many operations in floating-point arithmetic, quantities such as∏n
i=1(1+δi)

ρi naturally appear. The proof of the following propositions can be found
in Chapter 3 of [10]. The notation they introduce, the quantities γn and θn, and the
relations showed therein, will be widely used in our round-off analysis.

Proposition 7.2. If |δi| ≤ u, ρi ∈ {−1, 1}, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤ γn =
nu

1− nu
.

Proposition 7.3. For any positive integer k such that ku < 1, let θk be any
quantity satisfying

|θk| ≤ γk =
ku

1− ku
.

The following relations hold.
1. (1 + θk)(1 + θj) = 1 + θk+j.
2.

1 + θk
1 + θj

=

{
1 + θk+j if j ≤ k,
1 + θk+2j if j > k.

3. If ku, ju ≤ 1/2, then γkγj ≤ γmin{k,j}.
4. iγk ≤ γik.
5. γk + u ≤ γk+1.
6. γk + γj + γkγj ≤ γk+j.

When computing an arithmetic expression q with a round-off algorithm, errors
will accumulate and we will obtain another quantity which we will denote by fl(q).
We will also write Error(q) = |q − fl(q)|.

An example of round-off analysis which will be useful in what follows is given in
the next proposition, whose proof can be found in section 3.1 of [10].

Proposition 7.4. There is a round-off algorithm which, with input x, y ∈ R
n,

computes the dot product of x and y. The computed value fl(〈x, y〉) satisfies

fl(〈x, y〉) = 〈x, y〉+ θ
log2 n�+1〈|x|, |y|〉,
where |x| = (|x1|, . . . , |xn|). In particular, if x = y, the algorithm computes fl(‖x‖2)
satisfying

fl(‖x‖2) = ‖x‖2(1 + θ
log2 n�+1).
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In the next section we will have to deal with square roots. The following result
will help us to do so.

Lemma 7.5. Let θ ∈ R such that |θ| ≤ 1/2. Then,
√
1 + θ = 1+θ′ with |θ′| ≤ |θ|.

Proof. By the intermediate value theorem we have that
√
1 + θ − 1 = |θ|(√ξ)′

with ξ ∈ (1− |θ|, 1) (if θ < 0; ξ ∈ (1, 1 + θ) otherwise). But

∣∣∣(√ξ)′
∣∣∣ = ∣∣∣∣ 1

2
√
ξ

∣∣∣∣ ≤ 1√
2
,

the last since |ξ| ≥ 1/2.
From Lemma 7.5 it follows that

fl
(√

a(1 + θk)
)
=
√
a(1 + θk+1).

We will use this bound often in the next section.
To avoid the accumulation of cumbersome notation and of uninteresting constants,

we will denote by Lg n any expression of the form a+ �log2 n�, where a is a constant
independent of n. Our choice of u = φ(µ(w)) guarantees that ku < 1/2 holds whenever
we encounter θk, and consequently, θk ≤ 2ku. We will therefore not bother the reader
by repeating this fact each time we use it.

A first application of Proposition 7.4 is in proving Propositions 3.6 and 3.8.
Proof of Proposition 3.6. By our choice of u, uθ
log2m�+1 ≤ 2u(�log2 m�+1). On

the other hand, by Proposition 7.4 and Assumption 1, for i = 1, . . . , n,

Error(AT
i · y) ≤ 〈|AT

i |, |y|〉γ
log2m�+1 ≤ ‖y‖∞γ
log2m�+1 ≤ 2u(�log2 m�+ 1).

Hence fl(ATy) < −2u(�log2 m�+ 1)⇒ ATy < 0.

Proof of Proposition 3.8. If µ(w) ≤ ρD(A)
20(n+m)2 , then Corollary 5.5 yields

ATy < − nµ(w)

10(m+ n)
e ≤ −4u(�log2 m�+ 1)e

(the last by our choice of u).
Thus fl(ATy) < −2u(�log2 m� + 1)e because Error(AT

i · y) ≤ 2u(�log2 m� + 1).
Hence the algorithm halts at step (iii).

Proof of Proposition 3.5. This proof is an easy verification.

8. Proof of Proposition 4.1.

8.1. A numerically stable method to solve the reduced system. The
system of equations (3.2) is equivalent to the least squares problem

min
v∈Rm

‖Bv + g‖,

where

B = �X1/2�S−1/2AT and g = �X−1/2�S−1/2( �X�Se− µe).(8.1)

Hence we can apply techniques for least squares problems in order to compute a
solution to (3.2).

Algorithms for linear least squares problems have been extensively studied in the
literature (see, e.g., [2, 7, 9, 11]). For our purposes, we shall use Golub’s method. This
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algorithm is based on computing the QR factorization of the matrix B via Givens
rotations. For details see [2, section 2.4.1] or [7, section 3.4].

In order to compute a solution to (3.2), we proceed as follows. First, form B and
g as in (8.1). Then apply Golub’s method to find a solution ∆�y for the least squares
problem

min
v
‖Bv + g‖.

To study the quality of the solution obtained in this fashion, we will rely on the
following backward stability property for Golub’s method. (See [11, Chapter 16] for
details.)

Proposition 8.1. Let B ∈ R
p×q (p ≥ q) have full rank. Let u denote the

machine precision. If Golub’s method is applied to

min
v∈Rq

‖Bv + f‖,

then the computed solution is the exact solution to a problem

min
v∈Rq

‖(B + δB)v + (f + δf)‖,

where

‖δB‖ ≤ cupq3/2‖B‖, ‖δf‖ ≤ cupq‖f‖,

and c is a universal constant independent of p, q.
We have already bounded the smallest and largest singular values of B in Propo-

sition 6.2. We will also need the following bound on the vector g.
Lemma 8.2. Let g be defined as in (8.1). Then

‖g‖ ≤ µ(w)1/2.

Proof.

‖g‖ = ‖ �X−1/2�S−1/2 ( �X�Se− µe)‖ ≤ ‖ �X−1/2�S−1/2‖‖ �X�Se− µe‖.

But, for i = 1, . . . , 2(n+m), �xi�si ≥ (1− 2β)µ(w) by Lemma 5.3, so

∥∥∥ �X−1/2�S−1/2
∥∥∥ = 1

min
i≤2(n+m)

|�xi�si|1/2
≤ 1

(1− 2β)1/2µ(w)1/2
.

Also,

‖ �X�Se− µe‖ ≤ ‖ �X�Se− µ(w)e‖+ ‖µ(w)e− µe‖ ≤ (
√
2β + ξ)µ(w).

The last inequality follows from w ∈ Nβ and our definition of µ. Multiplying both
bounds and recalling that β, ξ ∈ (0, 1/4], the lemma follows.

8.2. Proof of Proposition 4.1. We need to prove that the computed ∆�y sat-
isfies

‖A�S−1 �XAT∆�y +A�S−1( �X�Se− µ(w)e)‖ = ‖BTB∆�y +BTg‖ ≤ ξ min{1/(m+ n), µ(w)}
7

.
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Let B = fl(B) and f = fl(g). By Proposition 8.1, the computed ∆�y is the exact
solution of

min ‖B̃∆�y + f̃‖
for some B̃ and f̃ satisfying

‖B̃ − B‖ ≤ cu(m+ n)5/2‖B‖, ‖f̃ − f‖ ≤ cu(m+ n)2‖f‖,
where c is a universal constant. Thus, B̃ = B+ δB with δB = (fl(B)−B) + (B̃ −B)
and, by the triangle inequality, ‖δB‖ ≤ ‖fl(B) − B‖ + ‖B̃ − B‖. In this sum, the
second term dominates since B is a diagonal matrix, and a straightforward use of
Propositions 7.2, 7.3, and Lemma 7.5 yields ‖B − fl(B)‖ ≤ ‖B‖ θ4. Therefore,

‖δB‖ ≤ cu(m+ n)5/2‖B‖(8.2)

for some (slightly larger) universal constant c. A similar argument shows that f̃ =
g + δg, with

‖δg‖ ≤ cu(m+ n)2‖g‖,(8.3)

for some universal constant c (which we assume to be the same as above).
Thus,

BTB∆�y +BTg = B̃TB̃∆�y + B̃Tf̃

− (BTδB + δBTB + δBTδB)∆�y −BTδg − δBTg

= − (BTδB + δBTB + δBTδB)∆�y −BTδg − δBTg.

In the last step we used that, since ‖B̃∆�y+ f̃‖ = minv ‖B̃v+ f̃‖, B̃TB̃∆�y+ B̃Tf̃ = 0.
Therefore, to finish the proof it suffices to show that

∥∥(BTδB + δBTB + δBTδB)∆�y +BTδg + δBTg
∥∥ ≤ ξ min{1/(m+ n), µ(w)}

7
.

(8.4)

By (8.2) and (8.3), the left-hand side of (8.4) is bounded above by

(2cu(m+ n)5/2 + c2u2(m+ n)5)‖B‖2 ‖∆�y‖+ 2cu(m+ n)5/2‖B‖ ‖g‖
≤ cu(m+ n)5/2‖B‖((2 + cu(m+ n)5/2)‖B‖ ‖∆�y‖+ 2‖g‖).

Since u ≤ 1
c(m+n)12 , by appropriately choosing c we have cu(m + n)5/2 ≤ 1, and

therefore the above quantity is no larger than

cu(m+ n)5/2‖B‖(3‖B‖ ‖∆�y‖+ 2‖g‖).
Hence we get (8.4) if

cu(m+ n)5/2‖B‖(3‖B‖ ‖∆�y‖+ 2‖g‖) ≤ ξ min{1/(m+ n), µ(w)}
7

.(8.5)

Since ‖B̃∆�y + f̃‖ = minv ‖B̃v + f̃‖,

‖∆�y‖ ≤ ‖f̃‖
σmin(B̃)

.(8.6)
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But by Proposition 6.2

κ(B) ≤ 60
√
n(m+ n)3/2 max

{
1

mµ(w)
, 2(m+ n)µ(w)

}
.

Hence our choice of u = min{1, µ(w)2} 1
c(m+n)12 (with appropriately large c) ensures

that

cu(m+ n)5/2κ(B) ≤ 1/2.(8.7)

Thus, using (8.2),

σmin(B̃) ≥ σmin(B)− ‖δB‖
≥ σmin(B)− cu(m+ n)5/2‖B‖
= σmin(B)(1− cu(m+ n)5/2κ(B)) ≥ σmin(B)

2
.

Now using (8.3), ‖f̃‖ ≤ (1 + cu(m+ n)2)‖g‖. Replacing the bounds for σmin(B̃) and

‖f̃‖ in (8.6), we obtain

‖∆�y‖ ≤ 2(1 + cu(m+ n)2)‖g‖
σmin(B)

.

Consequently,

cu(m+ n)5/2‖B‖(3‖B‖ ‖∆�y‖+ 2‖g‖)
≤ cu(m+ n)5/2‖B‖ ‖g‖ (6(1 + cu(m+ n)2)κ(B) + 2

)
≤ cu(m+ n)5/2‖µ(w)1/2B‖ (6(1 + cu(m+ n)2)κ(B) + 2

)
≤ 9cu(m+ n)5/2‖µ(w)1/2B‖κ(B).

The last two lines follow from Lemma 8.2 and the condition 1 + cu(m + n)2 ≤ 7/6,
that holds by our choice of u.

Finally, Proposition 6.2 and our choice of u = min{1, µ(w)2} 1
c(m+n)12 (with ap-

propriately large c) ensure that this last expression is bounded by

ξ min{1/(m+ n), µ(w)}/7,
thus proving (8.5) as we needed.

9. Proof of Propositions 3.7 and 3.9.

9.1. Proof of Proposition 3.7. Let D = X1/2S−1/2AT. By Proposition 5.6,

it suffices to show that if fl(σmin(D)) > 3(m+n)µ1/2

(1−2β)γ , then σmin(D) ≥ 2(m+n)µ1/2

(1−2β)γ .

We first estimate the errors produced in step (iv). A straightforward use of
Propositions 7.2, 7.3 and Lemma 7.5 shows that E′ = D − fl(D) satisfies

‖E′‖ ≤ ‖D‖θ4.
Now, let D = fl(D). Let us assume that we compute σmin(D) using a backward
stable algorithm (e.g., QR factorization). Then the computed fl(σmin(D)) is the
exact σmin(D + E′′) for a matrix E′′ with

‖E′′‖ ≤ cn2u‖D‖
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for some universal constant c (see, e.g., [9, 10]). Thus,

fl(σmin(D)) = fl(σmin(D)) = σmin(D + E′′) = σmin(D + E′ + E′′)

and, letting E = E′ + E′′,

‖E‖ ≤ ‖E′‖+ ‖E′′‖ ≤ ‖D‖(θ4 + cn2u(1 + θ4)).

Since w ∈ Nβ , ‖X1/2S−1/2‖ = max{x1/2
i s

−1/2
i } ≤ max{xi}

(1−2β)µ1/2 ≤ 1
(1−2β)µ1/2 , and by

Assumption 1, ‖AT‖ ≤ √n. Consequently,

‖D‖ ≤ ‖X1/2S−1/2‖ ‖AT‖ ≤
√
n

(1− 2β)µ1/2
.

In particular,

‖E‖ ≤ ‖D‖(θ4 + cn2u(1 + θ4)) ≤ (m+ n)µ1/2

(1− 2β)γ
.

Therefore,

fl(σmin(D)) = σmin(D + E) ≤ σmin(D) + ‖E‖ < σmin(D) +
(m+ n)µ1/2

(1− 2β)γ
.

From here it follows that if fl(σmin(D)) > 3(m+n)µ1/2

(1−2β)γ , then σmin(D) ≥ 2(m+n)µ1/2

(1−2β)γ ,

as we needed to show.

9.2. Proof of Proposition 3.9. As before,

fl(σmin(D)) = σmin(D + E) ≥ σmin(D)− ‖E‖ > σmin(D)− (m+ n)µ1/2

(1− β)γ
.

Therefore, if σmin(D) ≥ 4(m+n)µ1/2

(1−β)γ , then fl(σmin(D)) > 3(m+n)µ1/2

(1−β)γ .

We now apply Proposition 6.1 to deduce that, since

µ ≤ (1− 2β)2ρP (A)

20(m+ n)5/2

(
1 +

1

γ

)−1

,

we indeed have σmin(D) ≥ 4(m+n)µ1/2

(1−β)γ , and so fl(σmin(D)) > 3(m+n)µ1/2

(1−β)γ .

10. Proof of Proposition 3.4. The arguments in this section are modifications
of the proofs in [12] and [25]. Although they are a bit laborious, they do not really
require any particularly novel insight.

10.1. Some preliminary lemmas. Let w̃ = w −∆w = w − (w − w+). Notice
that w̃ = w+. We will first prove some lemmas regarding the point w̃.

Lemma 10.1. The point w̃ defined above satisfies

|µ(w̃)− µ| ≤ ξµ(w)

3
√
2(m+ n)

.

Proof. By Theorem 3.3,

X̃S̃e = �X�Se− �X∆�s− �S∆�x+∆ �X∆�Se

= ∆ �X∆�Se+ µe− r
(10.1)
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for some r satisfying ‖r‖ ≤ ξµ(w)
3 . In addition,

A∆�x = 0,
AT∆�y +∆�s = 0

implies eT∆ �X∆�Se = 0. Thus eTX̃S̃e = 2(m+ n)µ− eTr, and therefore

|µ(w̃)− µ| = |eTr|
2(m+ n)

≤ ‖r‖√
2(m+ n)

≤ ξµ(w)

3
√
2(m+ n)

.

Lemma 10.2. The point w̃ defined above satisfies

‖X̃S̃e− µ(w̃)e‖ ≤
((

1− 3ξ

2
√
2(m+ n)

)
β − ξ

6

)
µ(w)

and x̃, s̃ > 0.
To prove Lemma 10.2 we shall rely on the following technical lemma, which is the

same as in [12, Lemma 4.1], further strengthened in [25, Lemma 5.3].
Lemma 10.3. Assume that u, v ∈ R

d are such that uTv ≥ 0. Then

‖UV e‖ ≤ ‖u+ v‖2
2
√
2

.

Proof of Lemma 10.2. By (10.1) in the proof of Lemma 10.1,

‖X̃S̃e− µ(w̃)e‖ ≤ ‖∆ �X∆�Se‖+ ‖r‖+ |µ(w̃)− µ|
√
2(m+ n) ≤ ‖∆ �X∆�Se‖+ 2ξµ(w)

3
.

Thus, for the first inequality, it suffices to show that

∥∥∥∆ �X∆�Se
∥∥∥ ≤

((
1− 3ξ

2
√
2(m+ n)

)
β − 5ξ

6

)
µ(w).(10.2)

For this, let �D = �X
−1/2�S

1/2
, and apply Lemma 10.3 to

u = �D∆�x, v = �D−1∆�s

to get

‖∆ �X∆�Se‖ = ‖UV e‖
≤ 1

2
√

2
‖D∆�x+D−1∆�s‖2

= 1
2
√

2
‖ �X−1/2�S

−1/2
( �X�Se− µ e+ r)‖2

≤ 1
2
√

2 min{xisi}‖ �X�Se− µ e+ r‖2.

However,

‖ �X�Se− µ e‖2 = ‖ �X�Se− µ(w)e+ (µ(w)− µ)e‖2
= ‖ �X�Se− µ(w)e‖2 + 2(m+ n)|µ− µ(w)|2
≤ ‖ �X�Se− µ(w)e‖2 + ξ2µ(w)2,
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the second line by the definition of µ. From Claim 1 it easily follows that ‖ �X�Se −
µ(w)e‖2 ≤ 2β2µ(w)2, and thus

‖ �X�Se− µ e+ r‖2 ≤ ‖ �X�Se− µ e‖2 + 2‖ �X�Se− µ e‖ ‖r‖+ ‖r‖2
≤ 2(β + ξ)2µ(w)2.

Therefore, since, by Lemma 5.3, min{xisi} ≥ (1− 2β)µ(w),

‖∆ �X∆�Se‖ = ‖
�X�Se− µ e+ r‖2
(2
√
2min{xisi})

≤ (β + ξ)2√
2(1− 2β)

µ(w).

Applying (2.9) we get (10.2).
To finish, suppose that x̃, s̃ > 0 does not hold. Then for some i, we have x̃i < 0

or s̃i < 0. Since ‖X̃S̃e − µ(w̃)e‖ ≤ βµ(w), x̃is̃i ≥ µ(w̃) − βµ(w) > 0. Hence both
x̃i < 0 and s̃i < 0. Therefore ∆xi∆si > xisi. This implies that

(1− 2β)µ(w)− ξµ(w)

3
√
2(m+ n)

− ξµ(w)

3
≤ xisi + µ− µ(w̃)− ‖r‖

≤ ∆xi∆si + µ− µ(w̃)− ri

= x̃is̃i − µ(w̃)

≤ ‖X̃S̃e− µ(w̃)e‖
≤ βµ(w).

But this yields 1 < 3β + ξ
3 + ξ

3
√

2(m+n)
, which contradicts our choice of β, ξ ∈

(0, 1/4].
Lemma 10.4. w+ = w̃ ∈ Nβ .
Proof. We need to show only that

‖ �X+ �S
+
e− µ(w+)e‖ ≤ βµ(w+)

and �x+ , �s+ > 0.
Notice that

w+ = w̃ = w̃ + δw,

where δw = w − w.

Since w ∈ Nβ , ‖δw‖∞ ≤ βmin{µ(w),1}
20(m+n)2 . Also by Lemma 10.2, x̃, s̃ > 0. Thus,

Claim 1 and Lemma 10.1 yield

|µ(w+)− µ(w̃)| ≤ ξµ(w)

12
√
2(m+ n)

.

Hence,

µ(w+) ≥ µ(w̃)− ξµ(w)

12
√
2(m+ n)

≥ µ− ξµ(w)

2
√
2(m+ n)

≥
(
1− 3ξ

2
√
2(m+ n)

)
µ(w),(10.3)
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the second inequality in the first line by Lemma 10.1. Therefore, by Claim 1,

‖ �X+ �S
+
e− µ(w+)e‖ ≤ ‖ �X+ �S

+
e− X̃S̃e‖+ ‖X̃S̃e− µ(w̃)e‖+ ‖µ(w̃)e− µ(w+)e‖

≤ ξµ(w)

12
+ ‖X̃S̃e− µ(w̃)e‖+ ξµ(w)

12
.

Hence by Lemma 10.2,

‖ �X+ �S
+
e− µ(w+)e‖ ≤

((
1− 3ξ

2
√
2(m+ n)

)
β − ξ

6

)
µ(w) +

ξµ(w)

6

≤
(
1− 3ξ

2
√
2(m+ n)

)
βµ(w) ≤ βµ(w+),

the last inequality by (10.3).

It only remains to show that �x+ , �s+ > 0. Again, ‖ �X+ �S
+
e−µ(w+)e‖ ≤ βµ(w+)

implies that, for all i, we have x+
is

+
i ≥ (1− β)µ(w+) > 0. Furthermore, by Lemma

10.2, x̃i, s̃i > 0 for all i. Since |x+
i− x̃i|, |s+i− s̃i| < (1−β)min{1, µ(w)}/2, we must

have x+
i, s

+
i > 0.

10.2. Proof of Proposition 3.1. Except for (x+)′′ − (x+)′′, the other compo-
nents in �x+ − �x+ clearly satisfy the bound. For j = 1, . . . , n we have, by Proposition
7.4,

|(x+)′′j − (x+)′′j | = Error(Aj(x
+) + (x+)′j) =

〈|Aj |, |x+|〉 θLgn.

But by Assumption 1, ‖Aj‖∞ ≤ n. Hence the proposition follows if we can show
‖x+‖∞ ≤ 1. But this readily follows because x+ = x+ and in Lemma 10.4 we showed
that w+ satisfies x+ > 0, which implies ‖x+‖∞ ≤ 1.

The bound on ‖�s+ − �s+‖∞ follows from a similar argument.

10.3. Proof of Proposition 3.4(i). Notice that

w+ = w̃ + δw,

where δw = (w+ − w+) + (w − w). Hence

µ(w+)− µ(w̃) = eT(X̃δ�S + S̃δ �X + δ �Xδ�S)e.

Now, Proposition 3.1 and w ∈ Nβ yield

‖δw‖∞ ≤ βmin{µ(w), 1}
10(m+ n)2

.

Applying Claim 1 and (2.10), we obtain

|µ(w+)− µ(w̃)| ≤ ξµ(w)

6
√
2(m+ n)

.

Thus by Lemma 10.1

|µ(w+)− µ| ≤ ξµ(w)

2
√
2(m+ n)

.
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10.4. Proof of Proposition 3.4(ii). By Lemma 10.4, w+ ∈ Nβ ; hence we only
need to check that ‖w+ − w+‖∞ ≤ βmin{µ(w+),1}

20(m+n)2 . But this follows from Proposition
3.1.

11. Final details and additional remarks.

11.1. In the proof of Theorem 3.3 we ignored round-off error in the computation
of ∆x,∆x′. Using Propositions 7.2 and 7.3, it is easy to show that

η :=

[
∆x
∆x′

]
− fl

[
∆x
∆x′

]

satisfies

‖η‖ ≤ ξ min{1, µ(w)}
60(m+ n+ 1)

.

Hence, since ‖�s‖∞ ≤ 3 + 3(m+ n)µ(w) (by Claim 1), we have∥∥∥∥�S
[
η
0

]∥∥∥∥ ≤ ξµ(w)

10
.

Thus, as we explained in Remark 4.1, the proof of Theorem 3.3 in section 4 can readily
be amended to make it fully rigorous.

11.2. There is an issue, left open in section 2, which still needs to be dealt with:
the unit norm assumption for the rows of AT. It is computationally straightforward
to modify the matrix A to have this form as long as A does not have a zero column.
Let us first assume that this is the case and let A be the matrix obtained by scaling

each row of AT by a positive number so that ‖AT

i ‖1 = 1. The following result is easy
to prove.

Proposition 11.1. Assume that the matrix A is such that ρ(A) > 0. Then

C(A) ≤ nC(A).

It is immediately clear that any nontrivial solution of A
T
y ≤ 0 is also a nontrivial

solution of ATy ≤ 0. In addition we have the following easy-to-prove result.
Proposition 11.2. If x̂ is a γ-forward solution of Ax = 0, x ≥ 0, with associated

solution x, then

x∗ =
(
x̂1/‖AT

1 ‖1, . . . , x̂n/‖AT
n‖1
)

is a γ-forward solution of Ax = 0, x ≥ 0, with associated solution

x∗ =
(
x1/‖AT

1 ‖1, . . . , xn/‖AT
n‖1
)
.

Propositions 11.1 and 11.2 allow us to extend Theorem 1.2 to the case of arbitrary
matrices without zero columns. One simply modifies Algorithm FPPD so that the

matrix A is replaced by A, and a solution for either Ax = 0, x ≥ 0, or for A
T
y ≤ 0

is found. In the first case, one returns the corresponding x∗, and in the second, the
computed y.

If A has a zero column, then clearly (1.2) will not have strictly feasible solutions.
In fact, in such a case ρD(A) = 0, and so A is well-posed only when ρP (A) > 0.
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Theorem 1.2 still applies (normalizing the nonzero columns of A) but is of somewhat
limited interest, as Algorithm FPPD can only yield solutions to (1.1). More interesting
is to consider the natural reduced problem. Let A′ be the m× (n−1) matrix obtained
by removing that column from A. Consider the pair

A′x = 0, x ≥ 0,(11.1)

and

(A′)Ty ≤ 0.(11.2)

It is easy to see that
1. (11.1) is strictly feasible if and only if (1.1) is as well;
2. (11.2) is feasible (i.e., has nontrivial solutions) if and only if (1.2) is as well;
3. ‖A′‖1,∞ = ‖A‖1,∞, ρP (A

′) = ρP (A), and ρD(A
′) ≥ ρD(A). In particular,

C(A′) ≤ C(A), with possible strict inequality when (1.2) is feasible. (As in
this case, ρ(A) = 0, but it could easily be the case in which ρ(A′) > 0.)

Theorem 1.2 applied to A′ yields a stronger statement than when applied to A.
Both yield the same conclusion when ρP (A) > 0.

11.3. A detail ignored in our exposition is the fact that the successive values of
u and µ are computed with round-off themselves.

This is a minor issue. Note that for u, any value smaller than φ(µ(w)) guaran-
tees the correctness of our analysis. Thus, it is enough to approximate φ(µ(w)) by
defect. Notice that since u is likely to be 2−e or 10−e for some positive integer e, the
approximation above will be done independently of round-off considerations.

A similar consideration applies to µ.

11.4. The issue of the representation of the matrix A deserves some words. When
we write A ∈ R

m×n, we are assuming that the entries of A can be arbitrary real num-
bers. Such numbers, of course, can not be dealt with by finite-precision machines. So,
they are first rounded to floating-point numbers and then given to the machine. This
would be the case, for instance, if some of these entries were physical quantities either
known to us (some known physical constants) or measured in nature. Such numbers
would be calculated up to a certain precision or measured with such precision, re-
spectively. Therefore, there are two instances of rounding in the whole computational
process: rounding the input to fit it into the machine and the rounding taking place
while operating on floating-point numbers. It is a natural assumption to suppose that
both instances are done in the same way, i.e., by the same rounding map r and with
the same the round-off unit u (cf. section 7).

In fixed-precision algorithms, the input is read once and its components are
rounded to floating-point numbers. In Algorithm FPPD, the matrix A is read at
each iteration with the precision set at the beginning of the iteration. Otherwise, if a
poorly conditioned matrix A were read only once with the initial machine precision,
it would be converted into a matrix A′ for which the feasibility status of (1.1), (1.2)
might be different. In such a case, the algorithm would yield a wrong output.

11.5. In scientific computation, fixed precision is used more commonly than vari-
able precision. In this case, there is no guarantee that a γ-forward solution for Ax = 0,
x ≥ 0, or a solution for ATy ≤ 0, can be found. Our development, though, can be
used to estimate bounds for the condition of A (as a function of the machine preci-
sion) within which Algorithm FPPD yields a solution. We remark, however, that these
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bounds are probably too pessimistic, since all of our analysis assumes that round-off
errors accumulate in the worst possible way. Error propagation is, in practice, more
gentle.
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Abstract. This paper deals with a certain class of optimization methods, based on conservative
convex separable approximations (CCSA), for solving inequality-constrained nonlinear programming
problems. Each generated iteration point is a feasible solution with lower objective value than the
previous one, and it is proved that the sequence of iteration points converges toward the set of
Karush–Kuhn–Tucker points. A major advantage of CCSA methods is that they can be applied to
problems with a very large number of variables (say 104–105) even if the Hessian matrices of the
objective and constraint functions are dense.
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of moving asymptotes,
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1. Introduction. The purpose of this paper is to present and investigate a new
class of optimization methods which we call conservative convex separable approx-
imation (CCSA) methods. These methods are intended for inequality-constrained
nonlinear programming problems, which are assumed to be written as minimization
problems with less than or equal to constraints. There are outer and inner iterations
in the methods. An outer iteration starts from the current iterate x(k) and ends up
with a new iterate x(k+1). In each inner iteration, within a given outer iteration, a
convex subproblem is generated and solved. In this subproblem, the original objective
and constraint functions are replaced by certain convex separable functions which ap-
proximate the original functions around x(k). The optimal solution of the subproblem
is either accepted or rejected. If accepted, it becomes x(k+1) and the outer iteration
is completed. If rejected, a new inner iteration is made, with a modified subprob-
lem based on somewhat modified approximating functions. These inner iterations are
repeated until the approximating objective and constraint functions become greater
than or equal to the original functions at the optimal solution of the subproblem.
When this happens, we say that the approximating functions are conservative. This
does not imply that the feasible set of the subproblem is completely contained in the
original feasible set, but it does imply that the optimal solution of the subproblem is a
feasible solution of the original problem, with lower objective value than the previous
iterate. Each new outer iteration requires function values and first order derivatives
of the original objective and constraint functions, calculated at the current iterate
x(k). Each new inner iteration requires function values, but no derivatives, calculated
at the optimal solution of the most recent subproblem.

To use an approach based on solving a sequence of convex subproblems is not
a new idea. It is used also in, e.g., sequential quadratic programming (SQP) where,
at each iteration, a convex quadratic programming (QP) problem is solved and a
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linesearch on a merit function is performed; see, e.g., [5] and [2]. However, the (linear)
constraints in the QP subproblems do not in general force the iteration points to be
feasible with respect to the original constraints, and thus they are not conservative in
the above meaning. In contrast to SQP methods, CCSA methods introduce curvature
both in the objective function and in the constraint functions of the subproblem.
This curvature is updated in the inner iterations until the approximating functions
become conservative, and then there is no need for any linesearch. Another class of
methods which generate feasible iteration points is interior point methods, see, e.g.,
[1], [3], and [4]. But in these methods feasibility is typically preserved by adding a
logarithmic barrier function to the objective function, and not by using conservative
approximations of the constraint functions as in CCSA methods.

It should be emphasized that a major benefit of CCSA methods is that they can
be successfully applied to problems with a very large number of variables, even if the
Hessian matrices of the objective and constraint functions are dense. This property
is to a large extent due to the usage of separable approximations.

One of the CCSA methods presented here, namely the method of moving asymp-
totes (MMA), has a background in the structural optimization field, where function
and gradient evaluations are very time-consuming (involving huge finite element calcu-
lations), and where the users often consider it important that the generated iteration
points are feasible. The original version of MMA, presented in [7], usually worked
quite well in practice but was not globally convergent and sometimes failed on certain
problems. A later version, presented in [8], was globally convergent but turned out
to be too slow in practice. The version of MMA presented in this paper apparently
outperforms both of these earlier versions, in theory as well as in practice. Moreover,
MMA is now just one of several alternative methods within the concept of CCSA
methods, which is introduced here and for which a convergent proof has not appeared
before.

The paper is organized as follows. In section 2, a convenient formulation of
inequality-constrained optimization problems is suggested and shown to have some
important properties. In particular, the set of Karush–Kuhn–Tucker (KKT) points is
nonempty. In sections 3 and 4, a general description of CCSA methods is given, and
then some specific CCSA methods are described in sections 5 and 6. In section 7, it is
proved that CCSA methods are globally convergent in the following sense: From any
starting point, the sequence of generated iteration points converges towards the set
of KKT points. In section 8, finally, numerical results on some large scale problems
are presented.

2. Considered problem and some basic properties. Inequality-constrained
nonlinear programming problems are often written in the following form, where x =
(x1, . . . , xn)T ∈ R

n is the vector of variables, xmin
j and xmax

j are given real numbers,
and f0, f1, . . . , fm are given, typically twice continuously differentiable, real-valued
functions:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n.

(2.1)

In this paper, however, any problem of this type is transformed into a closely related
problem of the following extended form where, in addition to the variables x ∈ R

n,
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there also appear “artificial” variables y = (y1, . . . , ym)T ∈ R
m:

minimize f0(x) +

m∑
i=1

ciyi

subject to fi(x)− yi ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

yi ≥ 0, i = 1, . . . ,m.

(2.2)

If the constants ci are chosen as very large numbers, then typically ŷ = 0 in any
optimal solution (x̂, ŷ) of (2.2), and then the corresponding x̂ is an optimal solution
of (2.1).

We prefer to work with (2.2) instead of (2.1) for several reasons. First, there
always exist feasible solutions of (2.2), and also at least one optimal solution. Further,
each optimal solution (local or global) of (2.2) always satisfies the KKT conditions.
There is also a reason from a modelling point of view: In many applications, the user
should be able to give a rough overestimate (possibly very large) of how much he
would require in improved objective value in order to accept a unit increase of the
right-hand side of a certain constraint in (2.1). Such an overestimate could then be
used as the corresponding coefficient ci in (2.2), and then problem (2.2) would be at
least as relevant as problem (2.1).

As mentioned above, and as will be proved below, there always exists at least one
KKT point of (2.2), i.e., a point which satisfies the KKT conditions of the problem.
The following relations between KKT points of (2.1) and (2.2) can be readily seen by
comparing the KKT conditions for the two problems. First, assume that x̂ is a KKT
point of (2.1) with Lagrange multipliers λi for the constraints fi(x) ≤ 0, and assume
that ci ≥ λi for all i. Then (x, y) = (x̂, 0) is a KKT point of (2.2) with precisely
these values λi on the Lagrange multipliers for the constraints fi(x)− yi ≤ 0. Next,
assume that (x, y) = (x̂, 0) is a KKT point of (2.2) with Lagrange multipliers λi for
the constraints fi(x)−yi ≤ 0 (which will of necessity satisfy λi ≤ ci for all i). Then x̂
is a KKT point of (2.1) with precisely these values λi on the Lagrange multipliers for
the constraints fi(x) ≤ 0. If there happens to be no KKT point of (2.1), then there is
no KKT point of (2.2) with y = 0, no matter how large the coefficients ci are chosen.
In this case, however, there is always at least one KKT point of (2.2) with y �= 0.

For the remainder of this paper, we will in fact consider a further extended prob-
lem formulation, with one more “artificial” variable z ∈ R. This formulation contains
(2.2) as a special case, but also some other important problem classes such as least
squares problems and minimax problems. The (small) price we have to pay for this
generality is that the formulation of the problem may look a bit messy at first sight,
namely as follows:

minimize f0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

z ≥ 0 and yi ≥ 0, i = 1, . . . ,m.

(2.3)

Here, f0, f1, . . . , fm are given, twice continuously differentiable, real-valued functions,
while a0, ai, ci, and di are given real numbers such that a0 > 0, ai ≥ 0, ci ≥ 0, di ≥ 0,
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and ci + di > 0 for i = 1, . . . ,m. Further, aici > a0 for all i such that ai > 0. Finally,
xmin
j and xmax

j are given real numbers such that xmin
j < xmax

j for j = 1, . . . , n.
Problem (2.2) is obtained as a special case of (2.3) by letting ai = di = 0 for

i = 1, . . . ,m and a0 = 1, since then z = 0 in any optimal solution of (2.3).
As will be shown below, the considered problem (2.3) is equivalent to the following,

typically nonsmooth, problem (2.4) in the variables x = (x1, . . . , xn) ∈ R
n:

minimize f0(x) + a0 max
i∈A1

{
f+
i (x)

ai

}
+
∑
i∈A0

(
cif

+
i (x) + 1

2di(f
+
i (x))2

)
subject to x ∈ X,

(2.4)

where we have used the notation

X = {x ∈ R
n | xmin

j ≤ xj ≤ xmax
j , j = 1, . . . , n},

A1 = { i ∈ {1, . . . ,m} | ai > 0 },
A0 = { i ∈ {1, . . . ,m} | ai = 0 }, and

f+
i (x) = max{0, fi(x)}.

This formulation (2.4) will not be used for solving problem (2.3), but it shows
that least squares problems, minimum 1-norm problems, and minimax problems are
all special cases of problem (2.3). It is also used in the proof of Proposition 2.3 below.

Proposition 2.1. If x ∈ X is held fixed in problem (2.3), the corresponding
optimal values of the variables y and z are unique. These unique optimal values are
as follows: If A1 = ∅, then z = 0 and yi = f+

i (x) for i ∈ {1, . . . ,m}. If A1 �= ∅,
then z = maxi∈A1{ f

+
i

(x)

ai
}, yi = 0 for i ∈ A1 , and yi = f+

i (x) for i ∈ A0.

Proof. If A1 = ∅, the result follows from the assumptions that a0 > 0 and
ci + di > 0 for all i. If A1 �= ∅, one also has to use the assumptions that aici > a0 for
all i ∈ A1.

This implies that the variables yi and z can formally be eliminated from problem
(2.3). The resulting problem is precisely (2.4). This gives our next proposition.

Proposition 2.2. The vector (x̂, ŷ, ẑ) is a global optimal solution of problem
(2.3) if and only if x̂ is a global optimal solution of problem (2.4) while ŷ and ẑ are
as in Proposition 2.1.

Proof. The proof follows from Proposition 2.1.
Proposition 2.3. There is at least one global optimal solution of problem (2.3).
Proof. In problem (2.4), the objective function is continuous on the compact set

X. Thus, there is at least one global optimal solution of problem (2.4). But then
Proposition 2.2 implies that there is at least one global optimal solution of problem
(2.3).

Proposition 2.4. If (x̂, ŷ, ẑ) is an optimal solution, local or global, of problem
(2.3), then there are Lagrange multipliers which together with (x̂, ŷ, ẑ) satisfy the KKT
conditions.

Proof. It is well known (see, e.g., section 9.4 in [6]) that if x̂ is an optimal solution
of a problem of the form

minimize h0(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ R
n,

(2.5)
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and if there is a vector ∆x such that ∇hi(x̂)∆x < 0 for all i > 0 such that hi(x̂) = 0
(i.e., the inner product of ∆x and the gradient vector of any active constraint is strictly
negative), then there are Lagrange multipliers λi, i = 1, . . . ,m, which together with
x̂ satisfy the KKT conditions, which in this case are

∂h0

∂xj
(x̂) +

m∑
i=1

λi
∂hi
∂xj

(x̂) = 0, j = 1, . . . , n (∂L/∂xj = 0),

hi(x̂) ≤ 0, i = 1, . . . ,m (primal feasibility),

λi ≥ 0, i = 1, . . . ,m (dual feasibility),

λihi(x̂) = 0, i = 1, . . . ,m (compl slackness).

This result shall now be applied to problem (2.3). Assume that (x̂, ŷ, ẑ) is an opti-
mal solution of problem (2.3) and construct a corresponding vector (∆x,∆y,∆z) as
follows. For j = 1, . . . , n, let ∆xj = 1 if x̂j = xmin

j , ∆xj = −1 if x̂j = xmax
j , ∆xj = 0,

otherwise. For i = 1, . . . ,m, let ∆yi = 1 +
∑n
j=1 | ∂fi∂xj

(x̂)|. Finally, let ∆z = 1.

Then it is easily checked that the inner product of (∆x,∆y,∆z) and the gradient
vector, calculated at (x̂, ŷ, ẑ), of any active constraint in problem (2.3) is strictly
negative.

3. General description of a CCSA method. A CCSA method for solving
problems of the form (2.3) consists of “outer” and “inner” iterations. The index k
is used to denote the outer iteration number, while the index � is used to denote
the inner iteration number. Within each outer iteration, there may be zero, one,
or several inner iterations. The double index (k, �) is used to denote the �th inner
iteration within the kth outer iteration.

The first iteration point (x(1), y(1), z(1)) is obtained by first choosing an x(1) ∈ X,
and then calculating y(1) and z(1) in accordance with Proposition 2.1.

An outer iteration, going from the kth iteration point (x(k), y(k), z(k)) to the
(k + 1)th iteration point (x(k+1), y(k+1), z(k+1)), can be described as follows.

Given (x(k), y(k), z(k)), an approximating subproblem is generated and solved.
This subproblem is obtained from (2.3) by replacing X with a certain convex sub-
set X(k) and by replacing the functions fi(x) with certain strictly convex separable

functions g
(k,0)
i (x) satisfying g

(k,0)
i (x(k)) = fi(x

(k)). The optimal solution of this
subproblem is denoted (x̂(k,0), ŷ(k,0), ẑ(k,0)).

If g
(k,0)
i (x̂(k,0)) ≥ fi(x̂

(k,0)) for all i = 0, 1, . . . ,m, the next iteration point becomes
(x(k+1), y(k+1), z(k+1)) = (x̂(k,0), ŷ(k,0), ẑ(k,0)), and the outer iteration is completed
(without any inner iterations needed).

Otherwise, an inner iteration is made, which means that a new subproblem is

generated and solved at x(k), with new approximating functions g
(k,1)
i (x), still satis-

fying g
(k,1)
i (x(k)) = fi(x

(k)) but more conservative than g
(k,0)
i (x) for those indices i for

which the above inequality was violated. The optimal solution of this new subproblem
is denoted (x̂(k,1), ŷ(k,1), ẑ(k,1)).

If g
(k,1)
i (x̂(k,1)) ≥ fi(x̂

(k,1)) for all i = 0, 1, . . . ,m, the next iteration point be-
comes (x(k+1), y(k+1), z(k+1)) = (x̂(k,1), ŷ(k,1), ẑ(k,1)), and the outer iteration is com-
pleted. Otherwise, another inner iteration is made, with new approximating functions

g
(k,2)
i (x), etc.

These inner iterations are repeated until g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) for all i =
0, 1, . . . ,m, which always happens after a finite number of inner iterations. Then the
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next iteration point becomes (x(k+1), y(k+1), z(k+1)) = (x̂(k,�), ŷ(k,�), ẑ(k,�)), and the
outer iteration is completed (with � inner iterations needed).

4. Requirements on the approximating functions. The CCSA subproblem
looks as follows, for k ∈ {1, 2, 3, . . .} and � ∈ {0, 1, 2, . . .}:

minimize g
(k,�)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to g
(k,�)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m,

x ∈ X(k), y ≥ 0, z ≥ 0,

where the set X(k) and the approximating functions g
(k,�)
i (x) will be specified below.

The set X(k) is chosen as X(k) = X(x(k), σ(k)), where σ(k) = (σ
(k)
1 , . . . , σ

(k)
n )T is

a vector of strictly positive parameters, and X(ξ, σ) is the subset of X defined by

X(ξ, σ) = {x ∈ X | xj ∈ [ξj − 0.9σj , ξj + 0.9σj ], j = 1, . . . , n} .

Thus,

X(k) = {x ∈ X | xj ∈ [x
(k)
j − 0.9σ

(k)
j , x

(k)
j + 0.9σ

(k)
j ], j = 1, . . . , n} .

How to choose values on the parameters σ
(k)
j will be discussed later. For the moment,

it is sufficient to know that each vector σ(k) belongs to a given compact set S of the
form

S = {σ ∈ R
n | σmin

j ≤ σj ≤ σmax
j , j = 1, . . . , n} ,(4.1)

where σmin
j and σmax

j are given real numbers such that 0 < σmin
j < σmax

j <∞.

The approximating functions g
(k,�)
i (x) in the CCSA subproblem are chosen as

g
(k,�)
i (x) = vi(x, x

(k), σ(k)) + ρ
(k,�)
i wi(x, x

(k), σ(k)), i = 0, 1, . . . ,m,(4.2)

where vi(x, ξ, σ) and wi(x, ξ, σ) are real-valued functions defined on the set D defined
by

D = {(x, ξ, σ) | ξ ∈ X, σ ∈ S, x ∈ X(ξ, σ)}.

In order to ensure that the functions g
(k,�)
i (x) in (4.2) have suitable properties, the

following conditions (4.3a)–(4.3k) must be satisfied for i = 0, 1, . . . ,m:

vi and wi are continuous functions on the set D,(4.3a)

∇xvi =

(
∂vi
∂x1

, . . . ,
∂vi
∂xn

)
exists and is continuous on D,(4.3b)

∇xwi =

(
∂wi
∂x1

, . . . ,
∂wi
∂xn

)
exists and is continuous on D,(4.3c)

the n× n Hessian matrix ∇2
xxvi exists and is continuous on D,(4.3d)

the n× n Hessian matrix ∇2
xxwi exists and is continuous on D,(4.3e)

vi(x, ξ, σ) = fi(x) if x = ξ ∈ X,(4.3f)
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wi(x, ξ, σ) = 0 if x = ξ ∈ X,(4.3g)

∇xvi(x, ξ, σ) = ∇fi(x) if x = ξ ∈ X,(4.3h)

∇xwi(x, ξ, σ) = (0, . . . , 0) if x = ξ ∈ X,(4.3i)

∇2
xxvi(x, ξ, σ) is positive semidefinite for all (x, ξ, σ) ∈ D,(4.3j)

∇2
xxwi(x, ξ, σ) is positive definite for all (x, ξ, σ) ∈ D.(4.3k)

Some choices of appropriate function vi and wi will be suggested in section 5. The

parameters ρ
(k,�)
i are strictly positive. The larger the ρ

(k,�)
i , the more conservative the

approximation will be. Within a given outer iteration k, the only differences between

two inner iterations are the values of these ρ
(k,�)
i . How to choose values on these

parameters will be described below.

It follows from the above conditions that the functions g
(k,�)
i are first order ap-

proximations of the original functions fi at the current iteration point, i.e.,

g
(k,�)
i (x(k)) = fi(x

(k)) and ∇g
(k,�)
i (x(k)) = ∇fi(x

(k)) .

Further, the approximating functions g
(k,�)
i are strictly convex since ρ

(k,�)
i > 0. In

addition to the above conditions (4.3a)–(4.3k), the approximating functions should
be separable, i.e., on the form

g
(k,�)
i (x) = g

(k,�)
i0 +

n∑
j=1

g
(k,�)
ij (xj).

This property is not used in the forthcoming theoretical analysis of global convergence,
but it is essential in practice when attacking large scale problems.

5. Four examples of CCSA functions. In this section we give four different
examples of CCSA functions vi and wi. In each of these four examples, and for each
fixed vector λ ≥ 0 ∈ R

m, the Lagrange function L(x, y, z, λ) corresponding to the
CCSA subproblem can easily be minimized analytically with respect to x ∈ X(k),
y ≥ 0, and z ≥ 0. If all di > 0 and a term εz2 is added to the objective function,
this analytical minimization gives a unique point (x̂(λ), ŷ(λ), ẑ(λ)). The concave dual
function ϕ(λ) = L(x̂(λ), ŷ(λ), ẑ(λ), λ) then becomes an explicit function, and the dual
problem of maximizing ϕ(λ) subject to the simple bounds λi ≥ 0, i = 1, . . . ,m, can
be solved by, e.g., a conjugate gradient or a Newton-type method, combined with an
active set strategy to take care of the nonnegativity constraints on the dual variables.
If λ̂ is an optimal solution of this dual problem, then (x, y, z) = (x̂(λ̂), ŷ(λ̂), ẑ(λ̂)) is
the unique optimal solution of the CCSA subproblem.

Example 5.1. Linear and separable quadratic approximations:

vi(x, ξ, σ) = fi(ξ) +∇fi(ξ)(x− ξ), and

wi(x, ξ, σ) =
1

2

n∑
j=1

(
xj − ξj

σj

)2

, so that

g
(k,�)
i (x) = fi(x

(k)) +∇fi(x
(k))(x− x(k)) +

ρ
(k,�)
i

2

n∑
j=1

(
xj − x

(k)
j

σ
(k)
j

)2

.

Example 5.2. Linear and separable logarithm approximations:

vi(x, ξ, σ) = fi(ξ) +∇fi(ξ)(x− ξ), and
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wi(x, ξ, σ) = − 1
2

n∑
j=1

ln
(
1− (xj − ξj)

2/σ2
j

)
, so that

g
(k,�)
i (x) = fi(x

(k)) +∇fi(x
(k))(x− x(k))

− ρ
(k,�)
i

2

n∑
j=1

ln
(

1− (xj − x
(k)
j )2/(σ

(k)
j )2

)
.

Example 5.3. Linear and separable square root approximations:

vi(x, ξ, σ) = fi(ξ) +∇fi(ξ)(x− ξ), and

wi(x, ξ, σ) =

n∑
j=1

(
1−

√
1− (xj − ξj)2/σ2

j

)
, so that

g
(k,�)
i (x) = fi(x

(k)) +∇fi(x
(k))(x− x(k))

+ ρ
(k,�)
i

n∑
j=1

(
1−

√
1− (xj − x

(k)
j )2/(σ

(k)
j )2

)
.

Example 5.4. MMA approximations: Here, the approximating functions are
chosen as

g
(k,�)
i (x) =

n∑
j=1

(
p
(k,�)
ij

u
(k)
j − xj

+
q
(k,�)
ij

xj − l
(k)
j

)
+ r

(k,�)
i ,

where the “moving asymptotes” l
(k)
j and u

(k)
j are given by

l
(k)
j = x

(k)
j − σ

(k)
j and u

(k)
j = x

(k)
j + σ

(k)
j ,

while the coefficients p
(k,�)
ij , q

(k,�)
ij , and r

(k,�)
i are given by

p
(k,�)
ij = (σ

(k)
j )2 max

{
0 ,

∂fi
∂xj

(x(k))

}
+

ρ
(k,�)
i σ

(k)
j

4
,

q
(k,�)
ij = (σ

(k)
j )2 max

{
0 , − ∂fi

∂xj
(x(k))

}
+

ρ
(k,�)
i σ

(k)
j

4
,

r
(k,�)
i = fi(x

(k))−
n∑
j=1

p
(k,�)
ij + q

(k,�)
ij

σ
(k)
j

.

This means that

g
(k,�)
i (x) = vi(x, x

(k), σ(k)) + ρ
(k,�)
i wi(x, x

(k), σ(k)),

where, after some manipulations,

vi(x, ξ, σ) = fi(ξ) +

n∑
j=1

σ2
j
∂fi
∂xj

(ξ)(xj − ξj) + σj | ∂fi∂xj
(ξ)|(xj − ξj)

2

σ2
j − (xj − ξj)2

, and

wi(x, ξ, σ) = 1
2

n∑
j=1

(xj − ξj)
2

σ2
j − (xj − ξj)2

.
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Example 5.4 defines the new globally convergent version of MMA, which is a
further development of [8]. The original MMA, [7], can be considered as a special

case of the above by letting all ρ
(k,�)
i = 0. Consequently, no inner iterations were

performed in the original MMA, and global convergence could not be proved.

6. Rules for updating the parameters ρ
(k,�)
i and σ

(k)
j . We begin with the

parameters ρ
(k,�)
i . For � = 0, the following values are used, where ρmin

i is a fixed,
strictly positive “small” number, e.g., 10−5:

ρ
(1,0)
i = 1,(6.1a)

ρ
(k+1,0)
i = max{0.1ρ(k,�̂(k))

i , ρmin
i },(6.1b)

where �̂(k) is the number of inner iterations needed within the kth outer iteration, so

that ρ
(k,�̂(k))
i is the latest value of ρ

(k,�)
i .

In each inner iteration, the updating of ρ
(k,�)
i is based on the solution of the most

recent subproblem. If g
(k,�)
i (x̂(k,�)) < fi(x̂

(k,�)), it is natural to choose ρ
(k,�+1)
i so that

g
(k,�+1)
i (x̂(k,�)) = fi(x̂

(k,�)),

which in view of (4.2) gives that ρ
(k,�+1)
i = ρ

(k,�)
i + δ

(k,�)
i , where

δ
(k,�)
i =

fi(x̂
(k,�))− g

(k,�)
i (x̂(k,�))

wi(x̂(k,�), x(k), σ(k))
.

In order to get a globally convergent method, this natural value is modified as follows:

ρ
(k,�+1)
i = min{10ρ

(k,�)
i , 1.1(ρ

(k,�)
i + δ

(k,�)
i )} if δ

(k,�)
i > 0,

ρ
(k,�+1)
i = ρ

(k,�)
i if δ

(k,�)
i ≤ 0.

(6.2)

This means that in the beginning of each new inner iteration, the parameters ρi are
increased or unaltered but never decreased. Therefore, it is important that they can
be decreased again in the beginning of each new outer iteration, as they are in (6.1b),
since otherwise the method could be too conservative.

Now to the values of the parameters σ
(k)
j . Updating rules for these parameters

depend on the specific functions vi and wi. In each of the four examples in the previous

section, the n× n Hessian matrix ∇2
xxwi(x, ξ, σ) is diagonal with ∂2wi

∂x2
j

(x, ξ, σ) ≥ 1
σ2
j

for all j and every (x, ξ, σ) ∈ D, with equality if xj = ξj . The curvature of the
function wi in the “xj-direction” thus increases with decreasing values of σj . This
makes the following heuristic rule for updating these parameters reasonable. If a
certain variable xj is oscillating, it should be stabilized by a decreased value of the
corresponding σj . If the variable xj is monotonically increasing, or monotonically
decreasing, it should be released by an increased value of the corresponding σj . One
possible way of implementing this rule is as follows.

In the first two outer iterations, when k = 1 and k = 2,

σ
(k)
j = 0.5(xmax

j − xmin
j ),

while in later outer iterations, when k ≥ 3,

σ
(k)
j = γ

(k)
j σ

(k−1)
j ,
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where

γ
(k)
j =




0.7 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) < 0,

1.2 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) > 0,

1 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) = 0,

provided that this leads to values that satisfy

0.01(xmax
j − xmin

j ) ≤ σ
(k)
j ≤ 10(xmax

j − xmin
j ).

If any of these bounds is violated, the corresponding σ
(k)
j is set to the violated bound.

Thus, σmin
j = 0.01(xmax

j − xmin
j ) and σmax

j = 10(xmax
j − xmin

j ) in the set S defined in
(4.1) above.

7. Theoretical analysis of global convergence. A given point (x, y, z) ∈
R
n×R

m×R is a KKT point of the problem (2.3) if and only if there are Lagrange
multipliers which together with (x, y, z) satisfy the KKT conditions of the problem.

Let Ω be the set of KKT points of the original problem (2.3). Ω is nonempty
by Propositions 2.3 and 2.4. Then let ‖Ω − (x(k), y(k), z(k))‖ denote the Euclidean
distance from the point (x(k), y(k), z(k)) to the set Ω, i.e.,

‖Ω− (x(k), y(k), z(k))‖ = inf
(x,y,z)∈Ω

{ ‖(x, y, z)− (x(k), y(k), z(k))‖ }.

Theorem 7.1. If any of the CCSA methods described above is applied to a
problem of the form (2.3), then ‖Ω− (x(k), y(k), z(k))‖ → 0 as k →∞.

Before the proof of this main theorem, some preparations are needed.

Lemma 7.2. In each outer iteration k, only a finite number � of inner iterations

are needed until g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) for all i.

Proof. A sufficient condition for the inequality g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) to hold is

that ρ
(k,�)
i τi ≥ κi, where

κi = max
x,h
{hT∇2fi(x)h | x ∈ X, h ∈ R

n, hTh = 1}, and

τi = min
x,ξ,σ,h

{hT∇2
xxwi(x, ξ, σ)h | (x, ξ, σ) ∈ D, h ∈ R

n, hTh = 1}.

The number κi is finite since the Hessian matrix ∇2fi(x) is continuous on X. The
number τi is finite and strictly positive since the Hessian matrix ∇2

xxwi(x, ξ, σ) is pos-

itive definite and continuous in all its arguments. But each time that g
(k,�)
i (x̂(k,�)) <

fi(x̂
(k,�)), the corresponding ρ

(k,�)
i is increased by at least a factor 1.1; see (6.2). This

can be done only a finite number of times, for each i, before ρ
(k,�)
i τi ≥ κi is satisfied.

(Note that, for a fixed k, ρ
(k,�)
i is nondecreasing in �.)

As a consequence of this lemma, only outer iterations need to be considered in
the analysis of global convergence. Therefore, the following shorter notations will be
used:

�̂(k) = the number of inner iterations needed within the kth outer iteration,

ρ
(k)
i = ρ

(k,�̂(k))
i , and g

(k)
i (x) = g

(k,�̂(k))
i (x).
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This means that the subproblem used at the kth (outer) iteration to calculate the
next iteration point is the following:

minimize g
(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to g
(k)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m,

x ∈ X(k), y ≥ 0, z ≥ 0.

(7.1)

The optimal solution of (7.1) is the new iteration point (x(k+1), y(k+1), z(k+1)). Note

that g
(k)
i (x(k)) = fi(x

(k)) and g
(k)
i (x(k+1)) ≥ fi(x

(k+1)) for all i = 0, 1, . . . ,m.
Lemma 7.3. For each i = 0, 1, . . . ,m, there is a finite number ρmax

i such that

ρ
(k)
i ≤ ρmax

i for all outer iterations k.
Proof. From the updating rules (6.1b) and (6.2) and the proof of Lemma 7.2, it

follows that ρ
(k)
i ≤ 10(1 + κi/τi) will always hold.

Let the set Q be defined by

Q = {ρ ∈ R
m+1 | ρmin

i ≤ ρi ≤ ρmax
i , i = 0, 1, . . . ,m}.

Let the functions Fi be defined, for x ∈ X, y ∈ R
m, and z ∈ R, by

F0(x, y, z) = f0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i ),

Fi(x, y, z) = fi(x)− aiz − yi, i = 1, . . . ,m.

Then the original problem (2.3) can be written

minimize F0(x, y, z)

subject to Fi(x, y, z) ≤ 0, i = 1, . . . ,m,

x ∈ X, y ≥ 0, z ≥ 0.

(7.2)

Let the functions Gi be defined, for (x, ξ, σ) ∈ D, ρ ∈ Q, y ∈ R
m, and z ∈ R, by

G0(x, y, z, ξ, σ, ρ) = v0(x, ξ, σ) + ρ0w0(x, ξ, σ) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i ),

Gi(x, y, z, ξ, σ, ρ) = vi(x, ξ, σ) + ρiwi(x, ξ, σ)− aiz − yi, i = 1, . . . ,m.

Note that each function Gi is continuous on the set on which it is defined.
Let the problem PSUB(ξ, σ, ρ) be defined, for given (ξ, σ, ρ) ∈ X×S×Q, as the

following problem in the variables (x, y, z):

minimize G0(x, y, z, ξ, σ, ρ)

subject to Gi(x, y, z, ξ, σ, ρ) ≤ 0, i = 1, . . . ,m,

x ∈ X(ξ, σ), y ≥ 0, z ≥ 0.

(7.3)

Then the CCSA subproblem (7.1) is equivalent to the problem PSUB(x(k), σ(k), ρ(k)),
i.e., the problem (7.3) with ξ = x(k), σ = σ(k), and ρ = ρ(k).

Lemma 7.4. For each given ξ ∈ X, σ ∈ S, and ρ ∈ Q, there is a unique optimal
solution of PSUB(ξ, σ, ρ). This solution is also the only KKT point of PSUB(ξ, σ, ρ).
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Proof. The existence of an optimal solution follows by arguments similar to those
in the proof of Proposition 2.3. The uniqueness follows from the fact that the problem
obtained by eliminating y and z is strictly convex in x. Finally, PSUB(ξ, σ, ρ) is a
convex problem for which the Slater’s constraint qualifications are fulfilled. There-
fore, the KKT conditions are both necessary and sufficient conditions for a global
optimum.

Thus, (x(k+1), y(k+1), z(k+1)) is the only KKT point of PSUB(x(k), σ(k), ρ(k)).
Lemma 7.5. For each given σ ∈ S and ρ ∈ Q the following holds: A given point

(x̂, ŷ, ẑ) is a KKT point of the original problem (2.3) if and only if (x̂, ŷ, ẑ) is a KKT
point of the subproblem PSUB(x̂, σ, ρ).

Proof. For a given x̂ ∈ X, let B(x̂, ε) = {x ∈ R
n ; ‖x − x̂‖ < ε}, and note that

there is an ε > 0 such that X ∩B(x̂, ε) = X(x̂, σ)∩B(x̂, ε). This implies that (x̂, ŷ, ẑ)
is the optimal solution of (the strictly convex problem) PSUB(x̂, σ, ρ) if and only if
(x̂, ŷ, ẑ) is the optimal solution of PSUB(x̂, σ, ρ) with the simple bound constraints
x ∈ X(x̂, σ) replaced by the (looser) simple bound constraints x ∈ X. Further, the
following holds for i = 0, 1, . . . ,m:

Gi(x̂, ŷ, ẑ, x̂, σ, ρ) = Fi(x̂, ŷ, ẑ),

∂Gi

∂xj
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi
∂xj

(x̂, ŷ, ẑ),

∂Gi

∂yj
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi
∂yj

(x̂, ŷ, ẑ),

∂Gi

∂z
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi
∂z

(x̂, ŷ, ẑ).

These observations imply that (x̂, ŷ, ẑ) is a KKT point of the subproblem PSUB(x̂, σ, ρ)
if and only if (x̂, ŷ, ẑ) is a KKT point of the problem (7.2).

In particular, if (x(k+1), y(k+1), z(k+1)) = (x(k), y(k), z(k)), then (x(k), y(k), z(k)) is
a KKT point of the original problem (2.3), and then the algorithm should be stopped.
From now on, it is therefore assumed that (x(k+1), y(k+1), z(k+1)) �= (x(k), y(k), z(k))
for all k.

Lemma 7.6. Each generated iteration point is a feasible solution of the prob-
lem (7.2), i.e., Fi(x

(k), y(k), z(k)) ≤ 0 for i ≥ 1 and k ≥ 1. Further, each gener-
ated iteration point has a strictly lower objective value than the previous one, i.e.,
F0(x(k+1), y(k+1), z(k+1)) < F0(x(k), y(k), z(k)) for k ≥ 1.

Proof. The starting point (x(1), y(1), z(1)) is feasible by construction. After
that, Fi(x

(k+1), y(k+1), z(k+1)) ≤ Gi(x
(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) ≤ 0 for i ≥

1. Further, F0(x(k+1), y(k+1), z(k+1)) ≤ G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) <
G0(x(k), y(k), z(k), x(k), σ(k), ρ(k)) = F0(x(k), y(k), z(k)).

Lemma 7.7. All the iteration points (x(k), y(k), z(k)) remain in a compact set.
Proof. First, x(k) ∈ X, which is a compact set. Next, let the functions g̃i be

defined, for (x, ξ, σ) ∈ D and ρ ∈ Q, by

g̃i(x, ξ, σ, ρ) = vi(x, ξ, σ) + ρiwi(x, ξ, σ).

Each function g̃i is continuous on the compact set on which it is defined.

By the same arguments as in Proposition 2.1, it follows that y
(k+1)
i ≤ g

(k)
i (x(k+1)).

But since g
(k)
i (x(k+1)) = g̃i(x

(k+1), x(k), σ(k), ρ(k)), it then follows that y
(k+1)
i ≤

g̃i(x
(k+1), x(k), σ(k), ρ(k)) ≤ max{g̃i(x, ξ, σ, ρ) | (x, ξ, σ) ∈ D, ρ ∈ Q}.
The existence of an upper bound on z(k) is proved in a similar way.
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As a consequence of Lemma 7.7, the sequence {(x(k), y(k), z(k))}∞k=1 has at least
one convergent subsequence. Thus, there is a point (x∗, y∗, z∗) and an infinite subset K
of the positive integers such that (x(k), y(k), z(k))→ (x∗, y∗, z∗) as k ∈ K and k →∞.

Further, since the sequence {(σ(k), ρ(k))}k∈K (with K from above) stays in the

compact set S×Q, there is a point (σ∗, ρ∗) ∈ S×Q and an infinite subset K̃ ⊆ K such

that (σ(k), ρ(k))→ (σ∗, ρ∗) as k ∈ K̃ and k →∞.

Next, the sequence {(x(k+1), y(k+1), z(k+1))}
k∈K̃ (with K̃ from above) also has

at least one convergent subsequence. Thus, there is a point (x̄, ȳ, z̄) and an infinite

subset K ⊆ K̃ ⊆ K such that (x(k+1), y(k+1), z(k+1))→ (x̄, ȳ, z̄) as k ∈ K and k →∞.

In the following, (x∗, y∗, z∗), (σ∗, ρ∗), and (x̄, ȳ, z̄) are these just-described limit
points.

Lemma 7.8. F0(x(k), y(k), z(k))→ F0(x∗, y∗, z∗) as k →∞ (not only for k ∈ K).
Proof. The sequence {F0(x(k), y(k), z(k))}∞k=1 is monotonically decreasing and

bounded below by the global optimal value of the problem (2.3) (which exists and
is finite according to Proposition 2.3). Thus, F0(x(k), y(k), z(k)) → F ∗

0 as k → ∞ for
some real number F ∗

0 . But since F0(x(k), y(k), z(k)) → F0(x∗, y∗, z∗) as k ∈ K and
k →∞, it follows that F ∗

0 = F0(x∗, y∗, z∗).
Lemma 7.9. F0(x̄, ȳ, z̄) = F0(x∗, y∗, z∗).
Proof. From Lemma 7.8, it follows that F0(x(k+1), y(k+1), z(k+1))→ F0(x∗, y∗, z∗)

as k ∈ K and k → ∞. But since (x(k+1), y(k+1), z(k+1)) → (x̄, ȳ, z̄) as k ∈ K and
k → ∞, it also holds that F0(x(k+1), y(k+1), z(k+1)) → F0(x̄, ȳ, z̄) as k ∈ K and
k →∞.

Lemma 7.10. (x̄, ȳ, z̄) is the unique optimal solution of PSUB(x∗, σ∗, ρ∗).

Proof. Since x(k+1) ∈ X(x(k), σ(k)) and Gi(x
(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) ≤

0, it follows, by letting k ∈ K and k →∞, that x̄ ∈ X(x∗, σ∗) and Gi(x̄, ȳ, z̄, x
∗, σ∗, ρ∗)

≤ 0 for i ≥ 1. Thus, (x̄, ȳ, z̄) is a feasible solution of PSUB(x∗, σ∗, ρ∗). Let (x̃, ỹ, z̃)
be an arbitrary feasible solution of PSUB(x∗, σ∗, ρ∗), so that x̃ ∈ X(x∗, σ∗) and
Gi(x̃, ỹ, z̃, x

∗, σ∗, ρ∗) ≤ 0 for i ≥ 1. We must show that G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗) ≤
G0(x̃, ỹ, z̃, x∗, σ∗, ρ∗).

For ν = 1, 2, 3, . . . , let x̃(ν) = x̃ + α(ν)(x∗ − x̃), ỹ(ν) = ỹ + 1
ν (1, . . . , 1)T , and

z̃(ν) = z̃ + 1
ν . If α(ν) = 0, then Gi(x̃

(ν), ỹ(ν), z̃(ν), x∗, σ∗, ρ∗) ≤ − 1
ν for i ≥ 1.

It is therefore possible to choose the scalar α(ν) such that 0 < α(ν) < 1/ν and
Gi(x̃

(ν), ỹ(ν), z̃(ν), x∗, σ∗, ρ∗) ≤ − 1
2ν for i ≥ 1. Then (x̃(ν), ỹ(ν), z̃(ν)) is in the interior

of the feasible set of PSUB(x∗, σ∗, ρ∗). In particular, x̃(ν) is in the interior of X(x∗, σ∗).
This implies that for each ν, there is an integer K(ν) such that, for all k ∈ K with k >
K(ν), x̃(ν) ∈ X(x(k), σ(k)) and Gi(x̃

(ν), ỹ(ν), z̃(ν), x(k), σ(k), ρ(k)) ≤ 0 for i ≥ 1. For
all these k ∈ K with k > K(ν) it then holds that G0(x̃(ν), ỹ(ν), z̃(ν), x(k), σ(k), ρ(k)) ≥
G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) (because (x(k+1), y(k+1), z(k+1)) is the opti-
mal solution of PSUB(x(k), σ(k), ρ(k))).

Now, for each ν, let the integer k(ν) ∈ K satisfy k(ν) > max{ν,K(ν)}, and let
ν −→ ∞. Then (x̃(ν), ỹ(ν), z̃(ν)) −→ (x̃, ỹ, z̃), (x(k(ν)+1), y(k(ν)+1), z(k(ν)+1)) −→
(x̄, ȳ, z̄), and (x(k(ν)), σ(k(ν)), ρ(k(ν))) −→ (x∗, σ∗, ρ∗). Thus, G0(x̃, ỹ, z̃, x∗, σ∗, ρ∗) ≥
G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗).

Lemma 7.11. (x̄, ȳ, z̄) = (x∗, y∗, z∗).
Proof. From Gi(x

(k), y(k), z(k), x(k), σ(k), ρ(k)) = Fi(x
(k), y(k), z(k)) ≤ 0 for i ≥ 1,

it follows, by letting k ∈ K and k → ∞, that Gi(x
∗, y∗, z∗, x∗, σ∗, ρ∗) ≤ 0 for i ≥ 1.

Further, by definition, x∗ ∈ X(x∗, σ∗). Thus, (x∗, y∗, z∗) is a feasible solution of
PSUB(x∗, σ∗, ρ∗).



568 KRISTER SVANBERG

From F0(x(k+1), y(k+1), z(k+1)) ≤ G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)), it fol-
lows, again by letting k ∈ K and k →∞, that F0(x̄, ȳ, z̄) ≤ G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗).

By definition, F0(x∗, y∗, z∗) = G0(x∗, y∗, z∗, x∗, σ∗, ρ∗). From Lemma 7.9 it then
follows that G0(x∗, y∗, z∗, x∗, σ∗, ρ∗) ≤ G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗). But since (x̄, ȳ, z̄) is the
unique global optimal solution of PSUB(x∗, σ∗, ρ∗), it then follows that (x∗, y∗, z∗) =
(x̄, ȳ, z̄).

Lemma 7.12. (x∗, y∗, z∗) is a KKT point of the problem (7.2).

Proof. Follows from Lemmas 7.4, 7.5, 7.10, and 7.11.

Proof of Theorem 7.1. Assume that the statement in Theorem 7.1 is false. Then
there is an ε > 0 and an infinite subset K0 of the integers such that

‖(x, y, z)− (x(k), y(k), z(k))‖ ≥ ε for all (x, y, z) ∈ Ω and every k ∈ K0.(7.4)

Then, as a consequence of Lemma 7.7, the sequence {(x(k), y(k), z(k))}k∈K0 has at
least one convergent subsequence. Thus, there is a point (x̂, ŷ, ẑ) and an infinite
subset K0 ⊆ K0 such that (x(k), y(k), z(k))→ (x̂, ŷ, ẑ) as k ∈ K0 and k →∞.

But then, by letting (x̂, ŷ, ẑ) play the role of (x∗, y∗, z∗) in the above lemmas,
in particular Lemma 7.12, it follows that (x̂, ŷ, ẑ) is a KKT point of the problem
(7.2), and thus also a KKT point of the original problem (2.3). Thus, (x̂, ŷ, ẑ) ∈ Ω.
By letting (x, y, z) = (x̂, ŷ, ẑ) in (7.4), a contradiction has then been established.
Therefore, the statement in Theorem 7.1 can not be false, but must be true.

8. Test problems and numerical results. As mentioned in the introduction,
a major benefit of CCSA methods is that they can be successfully applied to problems
with a very large number of variables, even if the Hessian matrices of the objective
and constraint functions are dense. Such problems often appear in, e.g., structural
optimization, in particular in the subfield dealing with topology optimization. To
illustrate this, we present two problems which are parameterized by the integer n
= the number of variables xj . The general structure of these problems resembles
the corresponding structure of topology optimization problems (nonconvex problems
with a large number of variables, upper and lower bounds on all variables, and a
relatively small number of general inequality constraints); but in order to facilitate
the reader’s making her own numerical tests, the problems are not genuine structural
optimization problems (which would require a finite element package) but are instead
explicitly stated “academic” problems.

8.1. Three matrices which are used in the test problems. Let n be a
given positive integer > 1 and let S, P, and Q be symmetric n × n matrices with
elements given by

sij =
2 + sin(4παij)

(1 + |i− j|) lnn
, pij =

1 + 2αij
(1 + |i− j|) lnn

, qij =
3− 2αij

(1 + |i− j|) lnn
,

where αij = i+j−2
2n−2 ∈ [0, 1] for all i and j.

The matrices S, P, and Q are positive definite, and for n = 9 they look as follows:
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S =
1

ln 9




2.0000 1.3536 1.0000 0.6768 0.4000 0.2155 0.1429 0.1616 0.2222

1.3536 3.0000 1.3536 0.6667 0.3232 0.2000 0.2155 0.2857 0.3384

1.0000 1.3536 2.0000 0.6464 0.3333 0.3232 0.4000 0.4512 0.4286

0.6768 0.6667 0.6464 1.0000 0.6464 0.6667 0.6768 0.6000 0.4512

0.4000 0.3232 0.3333 0.6464 2.0000 1.3536 1.0000 0.6768 0.4000

0.2155 0.2000 0.3232 0.6667 1.3536 3.0000 1.3536 0.6667 0.3232

0.1429 0.2155 0.4000 0.6768 1.0000 1.3536 2.0000 0.6464 0.3333

0.1616 0.2857 0.4512 0.6000 0.6768 0.6667 0.6464 1.0000 0.6464

0.2222 0.3384 0.4286 0.4512 0.4000 0.3232 0.3333 0.6464 2.0000




,

P =
1

ln 9




1.0000 0.5625 0.4167 0.3438 0.3000 0.2708 0.2500 0.2344 0.2222

0.5625 1.2500 0.6875 0.5000 0.4062 0.3500 0.3125 0.2857 0.2656

0.4167 0.6875 1.5000 0.8125 0.5833 0.4688 0.4000 0.3542 0.3214

0.3438 0.5000 0.8125 1.7500 0.9375 0.6667 0.5312 0.4500 0.3958

0.3000 0.4062 0.5833 0.9375 2.0000 1.0625 0.7500 0.5938 0.5000

0.2708 0.3500 0.4688 0.6667 1.0625 2.2500 1.1875 0.8333 0.6562

0.2500 0.3125 0.4000 0.5312 0.7500 1.1875 2.5000 1.3125 0.9167

0.2344 0.2857 0.3542 0.4500 0.5938 0.8333 1.3125 2.7500 1.4375

0.2222 0.2656 0.3214 0.3958 0.5000 0.6562 0.9167 1.4375 3.0000




,

Q =
1

ln 9




3.0000 1.4375 0.9167 0.6562 0.5000 0.3958 0.3214 0.2656 0.2222

1.4375 2.7500 1.3125 0.8333 0.5938 0.4500 0.3542 0.2857 0.2344

0.9167 1.3125 2.5000 1.1875 0.7500 0.5312 0.4000 0.3125 0.2500

0.6562 0.8333 1.1875 2.2500 1.0625 0.6667 0.4688 0.3500 0.2708

0.5000 0.5938 0.7500 1.0625 2.0000 0.9375 0.5833 0.4062 0.3000

0.3958 0.4500 0.5312 0.6667 0.9375 1.7500 0.8125 0.5000 0.3438

0.3214 0.3542 0.4000 0.4688 0.5833 0.8125 1.5000 0.6875 0.4167

0.2656 0.2857 0.3125 0.3500 0.4062 0.5000 0.6875 1.2500 0.5625

0.2222 0.2344 0.2500 0.2708 0.3000 0.3438 0.4167 0.5625 1.0000




.

8.2. Problem 1. In the first considered problem, called Problem 1, the objective
function is strictly convex, but the nonlinear constraint functions are strictly concave
so the set of feasible solutions is nonconvex. The formulation of the problem is as
follows:

minimize f0(x) = xTSx

subject to f1(x) =
n

2
− xTPx ≤ 0,

f2(x) =
n

2
− xTQx ≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n,

(8.1)

with starting point x(0) = (0.5, 0.5, . . . , 0.5)T .
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8.3. Problem 2. In the second considered problem, called Problem 2, the non-
linear constraint functions are strictly convex, but the objective function is strictly
concave and thus nonconvex. The formulation of the problem is as follows.

minimize f0(x) = −xTSx

subject to f1(x) = xTPx− n

2
≤ 0,

f2(x) = xTQx− n

2
≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n,

(8.2)

with starting point x(0) = (0.25, 0.25, . . . , 0.25)T .

8.4. Numerical results. We have used the CCSA method based on MMA ap-
proximations (see Example 5.4 in section 5) to solve the above two problems with
n = 1000, 2000, 5000, 10000, and 20000. Both problems are of the form (2.1), and
they were first transformed to the form (2.3) with a0 = 1, a1 = a2 = 0, d1 = d2 = 1,
and c1 = c2 = 1000. It then turned out that y = 0 and z = 0 in the optimal solution
of each generated CCSA subproblem.

Concerning the termination criterion that we used, first note that the KKT con-
ditions of the considered problems (8.1) and (8.2) can be written as follows, using the
notations a+ = max{0, a} and a− = max{0,−a}:

(1 + xj)

(
∂f0

∂xj
+ λ1

∂f1

∂xj
+ λ2

∂f2

∂xj

)+

= 0, j = 1, . . . , n,(8.3a)

(1− xj)

(
∂f0

∂xj
+ λ1

∂f1

∂xj
+ λ2

∂f2

∂xj

)−
= 0, j = 1, . . . , n,(8.3b)

fi(x)+ = 0, i = 1, 2,(8.3c)

λifi(x)− = 0, i = 1, 2,(8.3d)

λi ≥ 0, i = 1, 2,(8.3e)

−1 ≤ xj ≤ 1, j = 1, . . . , n.(8.3f)

Equations (8.3a)–(8.3d) can be written more concisely as rk(x, λ) = 0, k = 1, . . . ,
2n + 4. The inequalities (8.3e) and (8.3f) are always satisfied by the primal variables
xj and the dual variables λi obtained from the solution of the CCSA subproblem.
The outer iterations were terminated when these x and λ also satisfied

1

n

2n+4∑
k=1

(rk(x, λ))2 ≤ 10−10.(8.4)

A similar, but harder, termination criterion was used when solving the CCSA sub-
problems; a subproblem was considered as solved when a condition corresponding to
(8.4) was satisfied with the right-hand side equal to 10−16.

The optimal solutions obtained for the case n = 1000 are plotted in Figures 8.1
and 8.2, with the index j on the horizontal axis and xj on the vertical axis.
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Fig. 8.1. Obtained xj for Problem 1 with n = 1000.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8.2. Obtained xj for Problem 2 with n = 1000.

Additional results are presented in Tables 8.1 and 8.2, where for each problem
we present the number of variables (n), the objective value of the obtained optimal
solution, the number of variables which are at the upper or lower bound in the obtained
optimal solution, the obtained values of the two Lagrange multipliers λ1 and λ2,
the total number of required outer iterations, and the total number of additionally
required inner iterations.

The method was implemented in Fortran 77 on a Sun Enterprise 4000 (using only
one of the four processors). The total required CPU-time was approximately 2n2/106

CPU-minutes for Problem 1 and approximately 5n2/106 CPU-minutes for Problem 2.
Most of this CPU-time was spent calculating function values and gradients of f0(x),
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Table 8.1
Results for Problem 1.

Number of Objective Variables λ1 λ2 Total number Total number
variables value at bounds of outer iter. of inner iter.
1000 260.85 184 0.138 0.451 177 209
2000 523.51 353 0.147 0.442 190 224
5000 1312.05 840 0.156 0.431 221 263
10000 2626.76 1629 0.161 0.425 251 296
20000 5256.56 3184 0.165 0.420 286 316

Table 8.2
Results for Problem 2.

Number of Objective Variables λ1 λ2 Total number Total number
variables value at bounds of outer iter. of inner iter.
1000 -739.15 184 0.549 0.862 436 415
2000 -1476.49 353 0.558 0.853 465 471
5000 -3687.95 840 0.569 0.844 584 606
10000 -7373.24 1629 0.575 0.839 682 704
20000 -14743.44 3182 0.580 0.835 793 816

f1(x), and f2(x), while only a minor part was spent solving the CCSA subproblems.
It should be noted that the matrices S, P , and Q are never stored. Instead, the
elements sij , pij , and qij are generated as needed when calculating function values
and gradients of f0(x), f1(x), and f2(x) at a given iteration point.

It could finally be mentioned that it is virtually impossible to solve the considered
problems by, e.g., an SQP method. The approximate Hessian matrix (of the Lagrange
function) simply becomes too big.

9. Conclusions. A class of optimization methods based on the concept of con-
servative convex separable approximations has been presented. Global convergence
has been theoretically proved, and it has been demonstrated that the methods work
numerically.

We do not claim that a CCSA method is always the natural choice, but for
certain problems it is certainly a competitive alternative. This is typically the case
for problems with a very large number of variables and a relatively small number of
general inequality constraints, in particular if it is desirable that the iteration points
remain feasible.

Finally, it could be noted that if the considered problem also contains some linear
constraints, these can simply be included as (exactly the same) linear constraints in
the CCSA subproblems. Since exact approximations are conservative approximations,
the global convergence properties of the methods will not be altered.
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1. Introduction. By the term integration of a multivalued operator T : R
d ⇒

R
d, we mean the problem of finding a lower semicontinuous (lsc) function f such that

T ⊆ ∂f , where ∂f corresponds to some notion of subdifferential for the function f .
This problem has recently attracted researchers’ interest; see, for instance, [3], [5], [6],
[9], and references therein.

If we impose the further restriction that ∂f is the Fenchel subdifferential (defined
below), then a complete answer (even in infinite dimensions) to the aforementioned
problem has been established by Rockafellar [7], with the introduction of the class
of cyclically monotone operators. Indeed, as shown in [7] (see also [4]), every such
operator T is included in the subdifferential ∂f of an lsc convex function f . In
particular, T coincides with ∂f if and only if it is maximal, and in such a case f is
unique up to a constant.

In dealing with the above problem, Rockafellar used a technique consisting of
a formal construction of an lsc convex function fT started from a given cyclically
monotone operator T . The function fT is further called the convex integral of T .
Let us recall that Fenchel subdifferentials are particular cases of cyclically monotone
operators. Consequently, for every lsc function f with dom ∂f �= ∅, the convex integral
f∂f (also denoted f̂ in this paper) of its subdifferential ∂f naturally defines an lsc

convex function minorizing f . If in particular f is convex, then the convex integral f̂
is equal to f up to a constant [7]. In the general case, a natural question arises:

(Q) Given an lsc function f , is f̂ equal to the closed convex hull co f of f ?
This question was first considered in [1, Proposition 2.6], where the authors pro-

vided a positive answer (in finite dimensions) for the class of strongly coercive func-
tions, that is, functions satisfying

lim
‖x‖→∞

f(x)

‖x‖ = +∞.(1.1)

In this paper we improve the above result by establishing the same conclusion
for the larger class of epi-pointed functions introduced in [2] (see definition below).
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Moreover, we shall give an easy example of a non-epi-pointed function for which (Q)
is no longer valid. However, for the one-dimensional case (d = 1), we shall show that
(Q) holds true for every lsc function defined on R.

The paper is organized as follows. In the next section, we fix our notation and give
some preliminaries concerning Fenchel duality and convex integration of the (Fenchel)
subdifferential of a nonconvex function. The result of [1] for the class of strongly
coercive functions is recalled, and an example where the convex integration does not
yield the closed convex hull of the function is illustrated. Finally, in section 3 we state
and prove the main result of this article, concerning the class of epi-pointed functions.

2. Convex integration. Throughout this paper we consider the Euclidean space
R
d equipped with the usual scalar product 〈·, ·〉. In what follows, we denote by

f : R
d → R ∪ {+∞} a lsc function which is proper, that is dom f := {x ∈ R

d :
f(x) ∈ R} is nonempty. We also denote by epi f the epigraph of f , that is the set
{(x, t) ∈ R

d × R : f(x) ≤ t}. We recall that the second conjugate co f (also denoted
by f∗∗) of f is given by

co f(x) = sup
x∗∈Rd

{〈x∗, x〉 − f∗(x∗)} ,(2.1)

where

f∗(x∗) = sup
x∈Rd

{〈x∗, x〉 − f(x)} .(2.2)

It is known that co f is the greatest lsc convex function majorized by f , and that
its epigraph coincides with the closed convex hull of the epigraph of f . By the term
subdifferential we shall always mean the Fenchel subdifferential ∂f , defined for every
x ∈ dom f as follows

∂f(x) = {x∗ ∈ R
d : f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ R

d}.(2.3)

If x ∈ R
d \ dom f , we set ∂f(x) = ∅. Throughout this paper, the set

dom ∂f := {x ∈ R
d : ∂f(x) �= ∅}

is assumed to be nonempty. Further, let x0 denote an arbitrary point of dom ∂f . We
call convex integral of ∂f the lsc convex function f̂ : R

d → R ∪ {+∞} defined for all
x ∈ R

d by the formula

f̂(x) := f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉 + 〈x∗n, x− xn〉
}
,(2.4)

where the supremum is taken for all n ≥ 1, all x1, x2, . . . , xn in dom ∂f , and all
x∗0 ∈ ∂f(x0), x∗1 ∈ ∂f(x1), . . . , x∗n ∈ ∂f(xn). According to (2.3), we can easily check

that f̂ ≤ f , and consequently f is proper and

f̂ ≤ co f.(2.5)

Rockafellar [8] has shown that if f is in particular convex, then the convex integral f̂
of ∂f is equal to f , that is

f̂ = f.(2.6)
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In [1, Proposition 2.6] the authors generalized (2.6) to the nonconvex case by showing
that if f is strongly coercive (that is f satisfies (1.1)), then (2.5) becomes

f̂ = co f.

However, the exact relation between f̂ and co f for a function not satisfying (1.1)
remains to be discovered. In particular, while in one-dimensional spaces we always
have f̂ = co f (see Corollary 3.7), the following simple counterexample shows that
this is not the case in general.

Example 2.1. Let f : R
2 → R be defined as follows:

f(a, b) =

{
exp(−a2) + 1

2b
2 if (a, b) �= (0, 0),

0 if (a, b) = (0, 0).

We can easily check that

f∗(a, b) =

{
1
2b

2 if a = 0,
+∞ if a �= 0

and that

co f(a, b) =
1

2
b2.

On the other hand, since

∂f(a, b) =

{ {0} if (a, b) = (0, 0),
∅ if (a, b) �= (0, 0),

formula (2.4) yields (for x0 = (0, 0)) that f̂(x) = 0 for all x ∈ R
2. Hence f̂ �= co f .

Remark. Appropriately modifying the function f around the origin, we can obtain
a continuous function g : R

2 → R such that ĝ �= co g.
Let us also remark that in the previous example we have

int (dom f∗) = ∅.(2.7)

It will follow from the main theorem of section 3 that (2.7) is in fact a necessary
condition for obtaining such examples.

3. Epi-pointed functions. The aim of this section is to establish the equality
between the convex integral f̂ of ∂f and the closed convex hull cof of f for the class
of proper, lsc, and epi-pointed functions defined in R

d.
Let us recall the following definition [2].
Definition 3.1. The function f is called epi-pointed if int (dom f∗) �= ∅.
It follows easily (see [2, Proposition 4.5 (iv)]) that every strongly coercive function

is epi-pointed. Note also that for every x∗ ∈ int (dom f∗) we can always find x ∈ R
d

such that f∗(x∗) = 〈x∗, x〉 − f(x) (that is the “sup” in (2.2) is attained). This
obviously yields that x∗ ∈ ∂f(x) ∩ int (dom f∗). In particular, if f is epi-pointed the
set dom ∂f is nonempty. If now x0 is any point of dom ∂f , we can consider the lsc
convex function f̃ defined for all x ∈ R

d by

f̃(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉 + 〈x∗n, x− xn〉
}
,(3.1)
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where the supremum is taken for all n ≥ 1, all x1, x2, . . . , xn in R
d, all x∗0 ∈ ∂f(x0),

and all

x∗i ∈ ∂f(xi) ∩ int (dom f∗),

where i ∈ {1, . . . , n}. Note that whenever f is epi-pointed, the set

{x ∈ R
d : ∂f(x) ∩ int (dom f∗) �= ∅}

is nonempty, so that f̃ is proper. Comparing formulas (2.4) and (3.1) we immediately
conclude that

f̃ ≤ f̂ .
We shall show that if the function f is convex and epi-pointed, then f is equal to
f̃ and so, in view of (2.6), the previous inequality becomes an equality. This is the
context of Proposition 3.3 below.

We shall first need the following lemma.
Lemma 3.2. Suppose that f is lsc convex and epi-pointed. Then we have the

inclusion

∂f∗(x∗) ⊆ ∂f̃∗(x∗) on int (dom f∗).

Proof. A classic result (see [8]) states that for the lsc convex function f and all
x, x∗ ∈ R

d we have

x ∈ ∂f∗(x∗) if and only if x∗ ∈ ∂f(x).

Similarly, for the lsc convex function f̃ ,

x ∈ ∂f̃∗(x∗) if and only if x∗ ∈ ∂f̃(x).

Let x∗ ∈ int (dom f∗) and x ∈ ∂f∗(x∗). We shall show that x ∈ ∂f̃∗(x∗). It follows
that

x∗ ∈ ∂f(x) ∩ int (dom f∗).(3.2)

For any t < f̃(x), using formula (3.1), we may choose x1, . . . , xn in R
d, x∗0 ∈ ∂f(x0),

and x∗1 ∈ ∂f(x1) ∩ int (dom f∗), . . . , x∗n ∈ ∂f(xn) ∩ int (dom f∗) such that

t < f(x0) +

n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉.(3.3)

For any y ∈ R
d, adding to both sides of (3.3) the quantity 〈x∗, y − x〉, we obtain

t+ 〈x∗, y − x〉 < f(x0) +

n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉+ 〈x∗, y − x〉.(3.4)

In view of (3.1), the right part of (3.4) is always less than or equal to f̃(y). Letting
t→ f̃(x), we infer

f̃(x) + 〈x∗, y − x〉 ≤ f̃(y),
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which yields x∗ ∈ ∂f̃(x), or, equivalently, x ∈ ∂f̃∗(x∗).
Proposition 3.3. If f is lsc convex and epi-pointed, then f̃ = f.
Proof. Since the functions f∗ and f̃∗ are proper, lsc, and convex, we deduce from

[8] and Lemma 3.2 that

f∗ = f̃∗ + k on int (dom f∗)(3.5)

for some constant k ∈ R.
Let us now prove that the equality in (3.5) can be extended to all R

d. According
to [7, Corollary 7.3.4], it suffices to prove that the relative interiors of the convex sets
dom f∗ and dom f̃∗ are equal or, equivalently (since int (dom f∗) is nonempty), that

int (dom f∗) = int (dom f̃∗).(3.6)

Let us now prove this last equality. Taking conjugates in both sides of the inequality
f̃ ≤ f we obtain f∗ ≤ f̃∗; hence in particular

dom f̃∗ ⊆ dom f∗,

and so

int (dom f̃∗) ⊆ int (dom f∗).(3.7)

Conversely, let x∗ ∈ int (dom f∗). Since f∗ is convex, we have ∂f∗(x∗) �= ∅. By
Lemma 3.2 we get ∂f̃∗(x∗) �= ∅, yielding that x∗ ∈ dom ∂f̃∗. It follows that

int (dom f∗) ⊆ dom f̃∗.(3.8)

Combining (3.7) with (3.8), we conclude that equality (3.6) holds as desired. Hence
we obtain

f∗ = f̃∗ + k.

Taking conjugates, this last equality yields f = f̃ − k. Since f(x0) = f̃(x0), we
conclude that k = 0 and thus f = f̃ .

We shall finally need the following lemma.
Lemma 3.4. Suppose that f is lsc and epi-pointed, and set g = co f . Then for

any x ∈ dom ∂f and x∗ ∈ ∂g(x) ∩ int (dom f∗) there exist y1, . . . , yp in R
d such that

x ∈ co {y1, y2, . . . , yp} and

x∗ ∈
p⋂
i=1

∂f(yi).

Proof. From [2, Theorem 4.6] we conclude that for any x∗ ∈ ∂g(x) there exist
y1, . . . , yp in R

d and w1, . . . , wq in R
d \ {0} such that

x−
q∑
j=1

wj ∈ co {y1, y2, . . . , yp}

and

x∗ ∈
[

p⋂
i=1

∂f(yi)

]
∩
[

q⋂
j=1

∂f∞(wj)

]
,(3.9)
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where f∞ is defined via the relation epi(f∞) = (epi f)∞, where

(epi f)∞ :=

{
d ∈ X : ∃{xn}n≥1 in epi f , ∃{tn} ↘ 0+ with d = lim

n→+∞ tnxn

}
.

It suffices to show that for x∗ ∈ int (dom f∗), (3.9) yields q = 0. In order to find
a contradiction, suppose that q �= 0. Since the function f∞ is sublinear positively
homogeneous and f∞(0) = 0 (e.g., [2]), it follows easily that for any wj �= 0 and any
x∗ ∈ ∂f∞(wj) we have 〈x∗, wj〉 = f∞(wj). Since x∗ ∈ int (dom f∗), we may find some
z∗ ∈ R

d (near x∗) such that z∗ ∈ int (dom f∗) and 〈z∗, wj〉 > f∞(wj). The latter
yields easily that

z∗ /∈ ∂f∞(0).(3.10)

On the other hand, since z∗ ∈ int(dom f∗) ⊆ dom ∂f∗, we conclude the existence of
x in R

d such that x ∈ ∂f∗(z∗), or, equivalently,

z∗ ∈ ∂g(x).(3.11)

Since ∂g(x) ⊆ ∂f∞(0) [2, Theorem 4.6], relations (3.10) and (3.11) give the contra-
diction.

We are now ready to establish the main result of this section.
Theorem 3.5. If f is lsc and epi-pointed, then f̂ = co f .
Proof. Set g = co(f). Then g is lsc convex and int (dom g∗) = int (dom f∗). In

particular, g is epi-pointed. Using Proposition 3.3 we conclude that

g(x) = g(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉 + 〈x∗n, x− xn〉
}
,

where the supremum is taken over all n ≥ 1, all x1, . . . , xn in R
d, all x∗0 ∈ ∂g(x0), and

all

x∗i ∈ ∂g(xi) ∩ int (dom f∗),

where i ∈ {1, . . . , n}. Take any x ∈ R
d and any t < g(x). Then there exist x1, . . . , xn

in R
d, x∗0 ∈ ∂g(x0), and x∗i ∈ ∂g(xi) ∩ int (dom f∗) (for i = 1 to n) such that

t < g(x0) +

n−1∑
i=0

〈x∗i , xi+1 − xi〉 + 〈x∗n, x− xn〉.(3.12)

Recalling that x0 ∈ dom ∂f , we easily check that g(x0) = f(x0) and ∂g(x0) =
∂f(x0). On the other hand, for all i ∈ {1, . . . , n} Lemma 3.4 guarantees the existence
of points y1

i , . . . , y
pi
i in R

d such that xi ∈ co{y1
i , y

2
i , . . . , y

pi
i } and

x∗i ∈
pi⋂
j=1

∂f
(
yji

)
.

We claim that, for i = 1, there exists an index j1 in {1, 2, . . . , p1} such that

〈x∗0, x1 − x0〉+ 〈x∗1, x2 − x1〉 ≤ 〈x∗0, yj11 − x0〉+ 〈x∗1, x2 − yj11 〉.
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Indeed, if this were not the case, then for every j we would have

〈x∗0, x1 − x0〉+ 〈x∗1, x2 − x1〉 > 〈x∗0, yj1 − x0〉+ 〈x∗1, x2 − yj1〉.

This yields a contradiction, since x1 ∈ co {y1
1 , . . . , y

p1
1 }.

Proceeding like this for i ≥ 1, we inductively replace all xi’s in (3.12) by yjii ’s in

a way that x∗i ∈ ∂f(yjii ), thus obtaining the formula

t < f(x0) + 〈x∗0, yj11 − x0〉+ 〈x∗1, yj22 − yj11 〉+ · · ·+ 〈x∗n, x− yjnn 〉.

Comparing with (2.4), we obtain t < f̂(x). Letting t → g(x) we infer g(x) =

co f(x) ≤ f̂(x), which finishes the proof in view of (2.5).
Corollary 3.6. Suppose that f, h are proper lsc and epi-pointed functions. If

∂f = ∂h, then co f and coh are equal up to a constant.
Proof. For x0 ∈ dom ∂f and c = g(x0) − f(x0) we obviously have f̂ = ĥ + c,

which, in view of Theorem 3.5, yields co f = coh+ c.
The class of proper, lsc, and epi-pointed functions is not minimal, in order to

ensure the conclusion of Theorem 3.5. For example, every constant function f satisfies
f̂ = co f = f , and obviously dom f∗ = {0}. (In fact, one can consider any lsc
convex function f which is not epi-pointed.) Furthermore, the example of the function

f(x) = min{‖x‖, 1} shows that the conclusion f̂ = co f might be true even in cases
where f is nonconvex and non-epi-pointed at the same time. In particular, in one-
dimensional spaces the following result is true.

Corollary 3.7. If d = 1 (that is f : R → R ∪ {+∞}) and dom ∂f �= ∅, then
f̂ = co f .

Proof. In view of Theorem 3.5, it suffices to consider only the case int (dom f∗) =
∅. Since f∗ is convex (and dom ∂f �= ∅) it follows that dom f∗ = {α} for some α ∈ R.
We easily conclude from (2.1) that

co f(x) = αx− f∗(α)(3.13)

for all x ∈ R. On the other hand, for any x0 ∈ dom ∂f we have ∂f(x0) = {α}, which
yields, in view of (2.2) and (2.3), that

f∗(α) = αx0 − f(x0).(3.14)

Finally, it follows easily from relation (2.4) that

f̂(x) = f(x0) + α(x− x0).(3.15)

Relations (3.13), (3.14), and (3.15) directly yield f̂ = co f .
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Abstract. This paper develops an algorithm for solving mixed complementarity problems that
is based upon probability-one homotopy methods. After the complementarity problem is reformu-
lated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth
approximations to this system of equations. The global convergence properties of this approach are
qualitatively different from those of other recent methods, which rely upon decrease of a merit func-
tion. This enables the algorithm to reliably solve certain classes of problems that prove troublesome
for other methods. To improve efficiency, the homotopy algorithm is embedded in a generalized
Newton method.
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1. Introduction. This paper discusses a robust method for solving mixed com-
plementarity problems (MCPs), which is based upon the probability-one homotopy
methods of [13, 31, 33]. The idea is to reformulate the MCP as a system of equa-
tions and then solve smooth approximations of this system with a homotopy method.
While extremely robust, the homotopy methods we have considered tend to be slower
than Newton-based methods. We therefore propose to embed the homotopy method
inside a Newton-based method. A similar approach was successfully applied in the
proximal perturbation strategy described in [4, 5, 7]. The idea is to invoke the homo-
topy technique only when the Newton-based method fails. The homotopy method is
used to construct an improved starting point, from which the Newton method can be
restarted.

The idea of applying homotopy methods to complementarity problems is not new;
Watson [32] proposed such a method to solve the nonlinear complementarity problem
(NCP). Watson’s method involved reformulating the NCP as a system of smooth
(C2) equations and applying a homotopy method to solve this system. In the context
of Newton-based methods, such smooth reformulations of complementarity problems
are inferior to nonsmooth reformulations due to slow local convergence for degenerate
solutions. In contrast, nonsmooth reformulations allow much faster (superlinear or
quadratic) convergence to degenerate solutions. As such, we are interested in applying
the homotopy method in the context of nonsmooth reformulations of the MCP. One
such approach was developed by Sellami [25] and Sellami and Robinson [27, 26], based
on the theoretical framework for piecewise smooth continuation methods presented
in [1, 2, 3]. This approach was complicated by the fact that a special procedure was
needed to make the transition from one smooth segment of the homotopy zero curve
to another.
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In this paper, we consider a different approach; rather than applying the homo-
topy method to the original nonsmooth equations, we instead apply it to a smooth
approximation of these equations. The solution of this smooth approximation can
then be shown to be nearly a zero of the original function. This solution then gives
the improved starting point from which to restart Newton’s method. The overall
strategy is as follows: First, apply a nonsmooth Newton method using a linesearch to
ensure a reduction of a merit function at each iteration. If the Newton method stalls
(for example, at a local minimum of the merit function), then apply the homotopy
method to a smooth approximation of the equations. If the smooth approximation
is properly chosen, the solution generated by the homotopy method will provide a
reduction in the merit function of the original equations. It is then possible to return
to the damped Newton method with no risk of returning to the region where the
method stalled.

In the remainder of this paper, we describe this approach in more detail. Section 2
provides essential background material, including reformulations of MCPs, smoothing
functions, and homotopy methods. Section 3 describes the algorithm in general and
proves global convergence results. Section 4 discusses a particular implementation
of the approach along with some numerical experimentation. Finally, section 5 gives
conclusions.

2. Background.

2.1. Notation. The following notational conventions are used throughout the
paper. Iteration numbers appear as superscripts on vectors and matrices and as sub-
scripts on scalars. Subscripts on a vector (or matrix) are used to represent components
or subvectors (or submatrices). For example, Vij represents the component in the ith
row and jth column of V, whereas Vi· and V·j represent, respectively, the ith row and
jth column of V . The Euclidean norm is represented by ‖·‖, whereas the ∞- and
1-norms are represented by ‖·‖∞ and ‖·‖1, respectively.

The componentwise median function mid : R
n × R

n × R
n → R

n is defined by
midi(a, b, c) = median{ai, bi, ci}. The sign function sign is defined by

sign(x) =




1, x > 0,
0, x = 0,
−1, x < 0.

The notation O is used as follows: Given a sequence {uk}, we use the expression
{O(uk)} to represent any sequence {vk} satisfying

lim sup
k→∞

vk

uk
<∞.

2.2. MCPs. Given a rectangular region B =
∏n
i=1[li, ui] (where for each i,

−∞ ≤ li < ui ≤ ∞) and a function F : B → R
n, the problem MCP(F,B) is to

find x ∈ B such that for each i ∈ {1, . . . , n} either
1. xi = li and Fi(x) ≥ 0, or
2. Fi(x) = 0, or
3. xi = ui and Fi(x) ≤ 0.

A more concise way of stating these conditions is that mid(x − l, x − u, F (x)) = 0,
where mid is the componentwise median function.
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In the above definition, if li = 0, ui = ∞ for all i = 1, 2, . . . , n, then MCP(F,B)
reduces to the standard form NCP(F ), which is to find x ≥ 0 such that

min(x, F (x)) = 0.

In discussing algorithms for solving these problems, it is normal to assume that
F is a C1 function on an open set Ω ⊃ B. For our homotopy approach, we shall make
the stronger assumption that F is C2 on Ω. Furthermore, for simplicity of discussion,
we will assume that Ω = R

n.

2.3. MCP reformulations. A common approach to solving the MCP is to
define a function H : R

n → R
n such that the zeros of H correspond to solutions

of the complementarity problem. To discuss such reformulations, we need to state
several definitions, which are equivalent to the NCP function and the BVIP function
defined in [23].

Definition 2.1. A function φ : R
2 → R is called an NCP function, provided

φ(a, b) = 0, if and only if min(a, b) = 0.
Definition 2.2. A function ψ : R

⋃{−∞} × R
⋃{∞} × R

2 → R is called an
MCP function, provided ψ(l, u, a, b) = 0, if and only if mid(a− l, a− u, b) = 0.

It is useful to further distinguish NCP and MCP functions according to their
orientations.

Definition 2.3. An NCP function φ is called positively oriented if, for all
a, b ∈ R,

sign(φ(a, b)) = sign(min(a, b)).

An MCP function ψ is called positively oriented if, for all l ∈ R
⋃{−∞}, u ∈ R

⋃{∞},
and a, b ∈ R,

sign(ψ(l, u, a, b)) = sign(mid(a− l, a− u, b)).

Finally, we can further classify NCP and MCP functions with the following defi-
nition.

Definition 2.4. A positively oriented NCP function φ is said to be median-
bounded if there exist positive constants m and M such that, for all a, b ∈ R,

m|min(a, b)| ≤ |φ(a, b)| ≤M |min(a, b)|.
A positively oriented MCP function ψ is said to be median-bounded if there exist
positive constants m and M such that, for all l ∈ R

⋃{−∞}, u ∈ R
⋃{∞}, and

a, b ∈ R,

m|mid(a− l, a− u, b)| ≤ |ψ(l, u, a, b)| ≤M |mid(a− l, a− u, b)|.
Two popular NCP functions are the min function and the Fischer–Burmeister

function [17, 18] defined by

φFB(a, b) = a+ b−
√
a2 + b2.(2.1)

φFB is continuously differentiable everywhere except at the origin, and furthermore, it
has the nice property that (φFB)2 is continuously differentiable. (Note: This version
of the Fischer–Burmeister function is actually the negative of the function presented
in [17, 18]. This change of sign makes φFB a positively oriented NCP function.)
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Billups [4, 5] showed how either the min function or the Fischer–Burmeister func-
tion can be used to construct an MCP function using the formula

ψ(l, u, a, b) := φ(a− l,−φ(u− a,−b)).(2.2)

In the case in which φ is the min function, this formula simplifies to ψ(l, u, a, b) =
mid(a − l, a − u, b). In the case in which φ is the Fischer–Burmeister function φFB ,
the resulting MCP function, which we denote by ψFB , is semismooth (see Definition
2.6 and [4, Proposition 3.2.7, Theorem 3.2.8]). This approach was generalized by Qi
[23], who showed that if φ is any regular pseudo-smooth (see [23, Definition 2.1]) NCP
function, then ψ defined by (2.2) is a regular pseudo-smooth MCP function.

Proposition 2.5. The functions φFB, defined by (2.1), and ψFB, defined by (2.2)
with φ replaced by φFB, are median-bounded NCP and MCP functions, respectively.

Proof. By [29, Lemma 3.1], for any α, β ∈ R,

m̂|min(α, β)| ≤ |φFB(α, β)| ≤ M̂ |min(α, β)|,(2.3)

where m̂ := 2 − √2 and M̂ := 2 +
√
2. Thus, φFB is median-bounded. Let c :=

−φFB(u− a,−b). Then

m̂2|mid(a− l, a− u, b)| = m̂2|min(a− l,−min(u− a,−b))| ≤ m̂|min(a− l, c)|
≤ |φFB(a− l, c)| (

= ψFB(l, u, a, b)
)

≤ M̂ |min(a− l, c)| ≤ M̂2|min(a− l,−min(u− a,−b))|
= M̂2|mid(a− l, a− u, b)|.

Thus, Definition 2.4 is satisfied for ψFB with m = m̂2 and M = M̂2.
It follows from the definitions that if we define H : R

n → R
n by

Hi(x) :=




ψ(li, ui, xi, Fi(x)) for li, ui both finite,
φ(xi − li, Fi(x)) for ui =∞, li finite,
−φ(ui − xi,−Fi(x)) for li = −∞, ui finite,
Fi(x) for li = −∞, ui =∞,

(2.4)

where φ and ψ are NCP and MCP functions, respectively, then a point x is a solution
of MCP(F,B) if and only if H(x) = 0. Thus, the problem of solving the MCP reduces
to finding a zero of the function H. Given such a function H, it is usual to define the
natural merit function

θ(·) := 1

2
‖H(·)‖2 ,

which is useful for linesearch strategies.

2.4. Generalized Newton algorithms. Since the function H defined by (2.4)
is not necessarily smooth, Newton’s method cannot be applied directly to solve
H(x) = 0; however, a generalization can be stated using the idea of the B-subdifferential.

By Rademacher’s theorem, if H : R
n → R

m is locally Lipschitzian, it is differen-
tiable almost everywhere. Let DH be the set where H is differentiable. Define the
B-subdifferential by

∂BH(x) :=

{
V

∣∣∣∣ ∃{xk} → x, xk ∈ DH , with V = lim
k→∞

∇H(xk)

}
.
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Step 1 [Initialization]. Select linesearch parameters α, σ ∈ (0, 1), a positive
integer mmax, a starting point x0 ∈ R

n, and a stopping tolerance
tol. Set k = 0.

Step 2 [Direction generation]. Choose V k ∈ ∂BH(xk). If V k is singular,
stop, returning the point xk along with a failure message. Otherwise
choose the direction

dk = −(V k)−1H(xk).(2.6)

Step 3 [Steplength determination]. Let mk be the smallest nonnegative in-
teger m ≤ mmax such that

θ(xk + αmdk)− θ(xk) ≤ −2σαmθ(xk).(2.7)

If no such mk exists, stop, returning the point xk along with a failure
message. Otherwise set xk+1 = xk + αmkdk.

Step 4 [Termination check]. If θ(xk+1) < tol, stop, returning the point xk+1.
Otherwise, return to Step 2, with k replaced by k + 1.

Fig. 2.1. Generalized damped Newton method.

The Clarke subdifferential ∂H(x) is the convex hull of ∂BH(x).
Definition 2.6. We say that H is semismooth at x if

lim
V ∈ ∂H(x+ th′)
h′ → h, t ↓ 0

{V h′}

exists for any h ∈ R
n. We say that H is strongly semismooth at x if for any sequence

{dk} ⊂ R
n converging to 0, and for V k ∈ ∂H(x+ dk),

V kdk −H ′(x; dk) = O
(∥∥dk∥∥2

)
.(2.5)

Definition 2.7. We say that a semismooth function H is BD-regular at x if all
elements in ∂BH(x) are nonsingular.

Definition 2.8. Suppose that H : R
n → R

m is B-differentiable in a neighborhood
of x. We say that the directional derivative H ′(·; ·) is semicontinuous at x if, for every
ε > 0, there exists a neighborhood N of x such that, for all x+ h ∈ N ,

‖H ′(x+ h;h)−H ′(x;h)‖ ≤ ε ‖h‖ .

We say that H ′(·; ·) is semicontinuous of degree 2 at x if there exist a constant L and
a neighborhood N of x such that, for all x+ h ∈ N ,

‖H ′(x+ h;h)−H ′(x;h)‖ ≤ L
∥∥h2
∥∥ .

A nonsmooth version of a damped Newton method, which is discussed in [5], is
shown in Figure 2.1.

The algorithm has three features that make it attractive for use in our context:
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1. The calculation of the search direction at each iteration only requires solving
a single linear equation (namely, (2.6)), instead of a more complicated sub-
problem, such as a linear complementarity problem or quadratic program.

2. The algorithm either fails in a finite number of steps or produces a sequence
of iterates {xk} such that the corresponding merit function values {θ(xk)}
are strictly decreasing and converge to zero. This property, which is an obvi-
ous consequence of the upper bound mmax placed on mk for the steplength
determination step, guarantees finite termination if tol > 0 and is essential
for our purposes. When the algorithm fails, we intend to employ a homotopy
method to construct an improved starting point x̃ for which θ(x̃) is smaller
than any merit function values evaluated thus far. It will then be possible to
restart the Newton method from x̃ with the guarantee that the iterates will
not return to the region where the algorithm failed previously.

3. The algorithm has fast local convergence behavior near a solution, which is
summarized in the following theorem from Qi [22].

Theorem 2.9. Suppose that x∗ is a solution of H(x) = 0, and that H is semi-
smooth and BD-regular at x∗. Then the iteration method defined by xk+1 = xk + dk,
where dk is given by (2.6), is well defined and convergent to x∗ superlinearly in a
neighborhood of x∗. In addition, if H(xk) �= 0 for all k, then

lim
k→∞

∥∥H(xk+1)
∥∥

‖H(xk)‖ = 0.

If, in addition, H is directionally differentiable at a neighborhood of x∗ and H ′(·; ·)
is semicontinuous of degree 2 at x∗, then the convergence of the iteration method is
quadratic.

One consequence of this local convergence theorem is that within a neighborhood
of a BD-regular solution x∗, the linesearch criteria (2.7) will be satisfied by mk =
0. Thus, the inner algorithm will take full Newton steps and achieve the fast local
convergence rates specified by the theorem.

2.5. Homotopy methods. The probability-one homotopy methods we consider
in this paper are based on the following proposition from [13, 30, 31].

Proposition 2.10. Let H : R
n → R

n be a C2 function and suppose there exists
a C2 map

ρ : R
m × [0, 1)× R

n → R
n

such that
1. the n× (m+ 1 + n) Jacobian matrix ∇ρ(a, λ, x) has rank n on the set

ρ−1(0) = {(a, λ, x) | a ∈ R
m, 0 ≤ λ < 1, x ∈ R

n, ρ(a, λ, x) = 0}

and, for any fixed a ∈ R
m defining ρa(λ, x) := ρ(a, λ, x), the following also hold:

2. ρa(0, x) = 0 has a unique solution x0,
3. ρa(1, x) = H(x),
4. ρ−1

a (0) is bounded.
Then for almost all a ∈ R

m (in the sense of Lebesgue measure) there exists a zero
curve γ of ρa, along which the Jacobian matrix ∇ρa has rank n, emanating from
(0, x0) and reaching a zero x̄ of H at λ = 1. Moreover, γ does not intersect itself and
is disjoint from any other zeros of ρa.
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The expression “reaching a zero” requires some clarification. This expression
means that there exists a sequence of points {(λk, xk)} in γ accumulating at (1, x̄).

The full rank conclusion of ∇ρa on ρ−1(0) allows us to parameterize γ by arc
length. Thus, we denote by γ(s) the point on γ of arclength s along γ from (0, x0).

Given such a homotopy mapping ρ, a globally convergent algorithm can be con-
structed, which picks a ∈ R

m (uniquely determining x0) and then tracks the homo-
topy zero curve γ. Perhaps the simplest choice of homotopy mapping is given by
ρ : R

n × [0, 1)× R
n → R

n defined by

ρ(a, λ, x) := λH(x) + (1− λ)(x− a).(2.8)

When H is a C2 map, this choice of ρ satisfies properties 1–3 but not necessarily
4. However, there are fairly general sufficient conditions on H(x) guaranteeing that
it does satisfy property 4. One such sufficient condition is particularly relevant in our
context and gives us the following theorem from [32].

Theorem 2.11. Let H : R
n → R

n be a C2 map such that

for some r > 0, xTH(x) ≥ 0 whenever ‖x‖ = r.(2.9)

Then H has a zero in the ball {x ∈ R
n | ‖x‖ ≤ r}, and for almost all a in the interior

of this ball there is a zero curve γ of

ρa(λ, x) := λH(x) + (1− λ)(x− a),

along which the Jacobian matrix ∇ρa(λ, x) has full rank, emanating from (0, a) and
reaching a zero x̄ of H at λ = 1. Furthermore, γ has finite arc length if ∇H(x̄) is
nonsingular.

Conceptually, the homotopy method is very simple: Construct the homotopy
mapping ρa and follow the zero curve γ from the point x0 to the solution. However,
implementing this idea in an efficient computer algorithm is very difficult. Clearly, it
is impractical to trace the zero curve exactly. Instead we must generate a sequence of
points {λk, xk} that loosely follow the zero curve (within some prescribed tolerances)
and that make reliable progress along its arclength. These points should not be too
close together, since this requires more function evaluations than are really necessary.
However, if these points are spaced too loosely, one can end up tracing a different
component of the zero set, or reversing direction on the zero curve γ, thereby never
reaching the desired solution.

Obviously it is not possible to ensure “perfect” curve tracking; however, much
research has been devoted to this problem and reliable codes have been developed.
One such code, which we use in our implementation, is HOMPACK [33].

2.6. Smoothing functions. Since the function H defined in (2.4) is not C2, we
cannot apply a homotopy algorithm to it directly. Instead we must form a smooth
approximation of H. In recent years, numerous techniques have emerged for solving
the nonsmooth equation H(x) = 0 which are based on the notion of smoothing (see,
for example, [8] and the references therein).

The basic idea of these techniques is to approximate the function H by a family of
smooth approximations Hµ with smoothing parameter µ. Under suitable assumptions,
the solutions to the perturbed systems Hµ = 0 form a smooth trajectory, leading to
a solution of the original problem. The smoothing methods generate a sequence of
iterates that follow this trajectory. However, these methods decrease µ monotonically,
and so they may fail for highly nonlinear functions.
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Definition 2.12. Given a nonsmooth function ϕ : R
p → R, a smoother for ϕ is

a continuous function ϕ̃ : R
p × R+ → R with the following properties:

1. ϕ̃(x, 0) = ϕ(x);
2. ϕ̃(·, µ) is continuously differentiable for all µ > 0.

If ϕ̃(·, µ) is twice continuously differentiable for all µ > 0, then ϕ̃ is said to be a C2

smoother for ϕ.

We shall find it convenient to make the following assumption on the smoother.

Assumption 2.13. There exists a function ξ : R+ → R+ with limµ↓0 ξ(µ) = 0 such
that

|ϕ̃(x, µ)− ϕ̃(x, 0)| ≤ ξ(µ)

for all x ∈ R
p and µ ∈ R+.

Numerous smoothers have been proposed in the literature [9, 10, 11, 12, 19, 20,
24, 28, 34]. Many of the early smoothers were unified by the family of smoothing
functions described by Chen and Mangasarian [11]. More recently, Gabriel and Moré
[19] introduced a more general family of smoothers for the MCP, which includes the
Chen–Mangasarian family. Unfortunately, many of these smoothers are not C2 and
so are not appropriate for our homotopy framework.

A smoother that is C2 is Kanzow’s smoother for the Fischer–Burmeister function
(2.1) [20]:

φ̃K(a, b, µ) := a+ b−
√
a2 + b2 + 2µ.(2.10)

Using φ̃K in the formula (2.2) yields the following smoother for ψFB :

ψ̃FB(l, u, a, b, µ) := φ̃K(a− l,−φ̃K(u− a,−b, µ), µ).(2.11)

The following proposition establishes that Assumption 2.13 is satisfied for this
smoother.

Proposition 2.14. The smoother ψ̃FB defined by (2.11) satisfies

∣∣∣ψ̃FB(l, u, a, b, µ)− ψFB(l, u, a, b)
∣∣∣ ≤ 3

√
2µ.

Proof. For simplicity, define φµ := φ̃K(·, ·, µ). It is easy to show that for all
a, b, c ∈ R, |φµ(a, b)− φµ(a, c)| ≤ 2|b− c| for all µ ∈ R+. It is also easy to show that
|φµ(a, b)− φ(a, b)| ≤ √2µ. Thus,

∣∣∣ψ̃FB(l, u, a, b, µ)− ψFB(l, u, a, b)
∣∣∣

= |φµ(a− l,−φµ(u− a,−b))− φ(a− l,−φ(u− a,−b))|
= |φµ(a− l,−φµ(u− a,−b))− φµ(a− l,−φ(u− a,−b))

+φµ(a− l,−φ(u− a,−b))− φ(a− l,−φ(u− a,−b))|
≤ 2 |−φµ(u− a,−b) + φ(u− a,−b)|+

√
2µ

≤ 2
√
2µ+

√
2µ = 3

√
2µ.

3. Algorithmic framework. The basic idea behind our algorithm is to employ
the damped Newton method from Figure 2.1 until it fails. Such failure may, for
example, be a result of the iterates converging to a local minimum of the merit
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Step 1 [Initialization]. Given a starting vector x0 ∈ R
n, a parameter 0 <

β < 1, and a convergence tolerance ε > 0, choose 0 < β < 1, and set
k = 0.

Step 2 [Attempt descent algorithm]. Run the generalized damped Newton
algorithm from Figure 2.1 with starting point xk and with tol = ε.
This generates a point x̃k.

Step 3 [Termination check]. If θ(x̃k) := 1
2

∥∥H(x̃k)
∥∥2

< ε, stop, returning the
solution x̃ := x̃k; otherwise continue with Step 4.

Step 4 [Generate better starting point]. Determine a smoothing parameter
µ > 0 such that ξ(µ) ≤ (β/2

√
n)
∥∥H(x̃k)

∥∥. Run the homotopy al-
gorithm to solve the smooth equation Hµ(x) = 0 to a tolerance of
β
2

∥∥H(x̃k)
∥∥. If the homotopy algorithm fails, stop. Otherwise, set

xk+1 equal to the solution.
Step 5. Return to Step 2 with k replaced by k + 1.

Fig. 3.1. Algorithmic framework.

function θ. When the Newton method fails, we then apply a homotopy method
to solve a smooth approximation Hµ(x) = 0, where

(Hµ)i(x) :=




ψ̃(li, ui, xi, Fi(x), µ) for li, ui both finite,

φ̃(xi − li, Fi(x), µ) for ui =∞, li finite,

−φ̃(ui − xi,−Fi(x), µ) for li = −∞, ui finite,
Fi(x) for li = −∞, ui =∞.

(3.1)

It is not necessary to solve this smooth equation exactly; we are only interested in
generating a point x̃ for which θ is decreased. Under mild assumptions, the homotopy
method will find such a point, provided that (1) the smoothing parameter is not too
large and (2) the stopping tolerance for the homotopy method is sufficiently small.
The general algorithm is given in Figure 3.1.

The global convergence behavior for this algorithm is established by the following
proposition.

Proposition 3.1. Let ψ be an MCP function, let ψ̃ be a C2-smoother for ψ
satisfying Assumption 2.13, and let H be defined by (2.4). Choose µ > 0, and let Hµ

be defined by (3.1). The algorithm in Figure 3.1 either terminates in Step 3 (at an
approximate solution x̃ satisfying θ(x̃) < ε) or fails in Step 4 (during the homotopy
algorithm).

Proof. Assume that Step 4 of the algorithm is always successful and that the
test in Step 3 of the algorithm always fails. Then since the damped Newton method
always terminates in a finite number of iterations, the algorithm will generate an
infinite sequence of points {xk}. Because of the linesearch criteria in the damped
Newton method, θ(x̃k) ≤ θ(xk). Now,∥∥H(xk+1)

∥∥ ≤ ∥∥Hµ(x
k+1)

∥∥+ ∥∥H(xk+1)−Hµ(x
k+1)

∥∥
≤ β

2

∥∥H(x̃k)
∥∥+√nξ(µ)

≤ β
2

∥∥H(x̃k)
∥∥+ β

2

∥∥H(x̃k)
∥∥

≤ β
∥∥H(x̃k)

∥∥ .
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Thus, θ(xk+1) ≤ β2θ(x̃k) ≤ β2θ(xk) ≤ β2(k+1)θ(x0). Thus, since β < 1, then for
some finite value of k, θ(xk) < ε, contradicting the assumption that the test in Step
3 always fails.

It should be noted that the stopping criterion θ(x̃) < ε does not ensure that x̃
is near a solution to the MCP, no matter how small ε is. But the proposition does
ensure that if we set ε = 0 and assume that the homotopy algorithm in Step 4 never
fails, then any accumulation point of the iterates {x̃k} will be a solution. Thus, for
example, if the level sets of θ are bounded, then x̃ can be made arbitrarily close to
a solution by choosing ε sufficiently small. In this case, the success of the algorithm
relies entirely upon the success of the homotopy method in Step 4. This in turn
depends on two questions: (1) Does the homotopy zero curve lead to a solution (or
at least an approximate zero of Hµ)? and (2) Can the homotopy method successfully
track this zero curve? Since we cannot guarantee successful curve tracking, the second
question represents a theoretical stumbling block. However, as previously discussed,
sophisticated codes, such as HOMPACK [33], are available that perform this curve
tracking fairly reliably. We therefore focus our attention on the first question.

Theorem 2.11 provides sufficient conditions under which a homotopy zero curve
exists that leads to a solution in finite length. We now prove several results that are
more specific to the complementarity framework.

Lemma 3.2. Let ψ be a positively oriented median-bounded MCP function, and
let H be defined by (2.4). If B is bounded, then

lim
‖x‖→∞

xTH(x)

‖x‖ = +∞.(3.2)

Proof. For a given x ∈ R
n, suppose xi < 0 and Hi(x) > 0. Then by positive

orientation, mid(xi − li, xi − ui, Fi(x)) > 0, which implies that xi > li and mid(xi −
li, xi − ui, Fi(x)) ≤ xi − li < |li|. Thus,

xiHi(x) ≥ −|li| |ψ(li, ui, xi, Fi(x))|
≥ −|li|M |mid(xi − li, xi − ui, Fi(x))|
≥ −Ml2i ,

where M is the constant guaranteed by the median-bounded property (see Defini-
tion 2.4). Similarly, if xi > 0 and Hi(x) < 0, we can show that xiHi(x) ≥ −Mu2

i .
Since these are the only two cases in which xiHi(x) can be negative, we have that

xiHi(x) ≥ −Mb2i ,(3.3)

where bi := max{|li|, |ui|, 1}. Let bmax := maxi bi, bmin := mini bi, and d := ‖b‖.
For a given x, let κx := ‖x‖ /d. Then if κx > 1, there exists an index j such that

|xj | ≥ κxbj . If xj is positive, then mid(xj − lj , xj − uj , Fj(x)) ≥ (κx − 1)bj , so by
median-boundedness,

xjHj(x) = xjψ(lj , uj , xj , Fj(x)) ≥ (κxbj)(m(κx − 1)bj) > κx(κx − 1)mb2min.(3.4)

In similar fashion, we can show that this inequality holds if xj is negative. Thus,

xTH(x) =
∑
i �=j

xiHi(x) + xjHj(x)

> −N1 + κx(κx − 1)mb2min (by (3.3) and (3.4)),



HOMOTOPY-BASED ALGORITHM FOR MCPs 593

where N1 := nMb2max. It follows that

lim
‖x‖→∞

xTH(x)

‖x‖ > lim
‖x‖→∞

− N1

‖x‖ +
κx(κx − 1)mb2min

‖x‖

= lim
κx→∞

(κx − 1)mb2min
d

= +∞.

Theorem 3.3. Let ψ be a positively oriented median-bounded MCP function,
and let ψ̃ be a smoother for ψ satisfying Assumption 2.13. Choose µ > 0, and let Hµ

be defined by (3.1), where B =
∏n
i=1[li, ui] is bounded. Then, Hµ satisfies condition

(2.9) for all r sufficiently large, and therefore the conclusions of Theorem 2.11 hold.
Proof.

xTHµ(x) = xTH(x) + xT (Hµ(x)−H(x))

≥ xTH(x)− ‖x‖ ‖Hµ(x)−H(x)‖
≥ xTH(x)− ‖x‖√nξ(µ).

Dividing both sides by ‖x‖ and taking the limit as ‖x‖ → ∞, we have

lim
‖x‖→∞

xTHµ(x)

‖x‖ ≥ lim
‖x‖→∞

xTH(x)

‖x‖ − √nξ(µ)
= +∞ by Lemma 3.2.

Thus, for r sufficiently large, we have xTHµ(x) > 0 whenever ‖x‖ = r, so (2.9)
holds.

It is not at all difficult to find MCP functions and corresponding smoothers that
satisfy the assumptions of this theorem. With these in hand, the theorem gives a
strong result: If B is bounded, then the homotopy zero curve being tracked in Step
4 of Figure 3.1 leads to a solution x̄ of Hµ(x) = 0. Furthermore, if ∇Hµ(x̄) is
nonsingular, then this zero curve has finite arclength. Thus, the algorithm will not
fail in Step 4 as long as the curve tracking is performed reliably.

In the case in which B is unbounded, the analysis is a bit more difficult. To appre-
ciate the difficulties, note that even if F is a Lipschitz continuous, strongly monotone
function, there is no guarantee that Hµ will satisfy condition (2.9). Fortunately, this
is not necessary. To guarantee the boundedness of the zero curve, it is sufficient that
F satisfy the following assumption.

Assumption 3.4.

lim
‖x‖→∞

max
k

min{|xk|, |Fk(x)|, xkFk(x)} =∞.

It is easy to show (see, for example, the proof of [29, Theorem 2.3]) that if F is
strongly monotone and Lipschitz continuous, it will satisfy Assumption 3.4.

Theorem 3.5. Suppose that F : R
n → R

n satisfies Assumption 3.4. Let ψ be
a positively oriented median-bounded MCP function, let ψ̃ be a C2 smoother for ψ
satisfying Assumption 2.13, and let Hµ be defined by (3.1). Choose a ∈ R

n and define
ρa : [0, 1)× R

n → R
n by

ρa(λ, x) := λHµ(x) + (1− λ)(x− a).
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Then the zero set ρ−1(0) is bounded, and therefore the conclusions of Proposition 2.10
hold.

Proof. Choose δ > max{‖a‖∞ ,maxli>−∞ |li|,maxui<∞ |ui|} + ξ(µ)/m, where ξ
is as defined in Assumption 2.13 and m is as defined in Definition 2.4. By Assump-
tion 3.4, there exists some r̄ ≥ 0 such that ‖x‖ ≥ r̄ implies there is some index k such
that

|xk| ≥ δ, |Fk(x)| ≥ δ, and xkFk(x) > 0.(3.5)

Let (λ, x) ∈ ρ−1
a (0) and suppose, towards a contradiction, that ‖x‖ ≥ r̄. Let k be

the index that satisfies (3.5). Define Rk := mid(xk− lk, xk−uk, Fk(x)), Sk := Hk(x),
and Tk := (Hµ)k(x).

By the choice of δ, if lk is finite, then |xk| > |lk|, so xk− lk will have the same sign
as xk, and |xk − lk| ≥ δ − |lk| > ξ(µ)/m. Similarly, if uk is finite, then xk − uk will
have the same sign as xk, and |xk − uk| > ξ(µ)/m. Finally, by (3.5), Fk(x) has the
same sign as xk, and |Fk(x)| > ξ(µ)/m. Since mid(xk − lk, xk − uk, Fk(x)) is either
Fk(x), xk − lk (if lk is finite) or xk − uk (if uk is finite), it follows that Rk has the
same sign as xk and |Rk| > ξ(µ)/m.

Now, by positive orientation and median-boundedness, Sk has the same sign as
Rk (therefore the same sign as xk), and |Sk| ≥ m|Rk| > ξ(µ). Finally, by Assump-
tion 2.13, |Tk − Sk| ≤ ξ(µ), so Tk must have the same sign as Sk, and therefore the
same sign as xk.

On the other hand, since ρa(λ, x) = 0,

(ρa(λ, x))k = λTk + (1− λ)(xk − ak) = 0.

Since δ > ak, xk − ak has the same sign as xk. Thus, since λ ∈ [0, 1), Tk must
have the opposite sign of xk, which is a contradiction. Therefore, ‖x‖ must be less
than r̄.

A deficiency of the above result is that Assumption 3.4 is not necessarily satisfied
for monotone functions. We therefore present some additional results based on the
following assumption.

Assumption 3.6 (global monotonicity). There exists r > 0 such that for any
x, y ∈ R

n with ‖x− y‖ ≥ r

(x− y)T (F (x)− F (y)) ≥ 0.

Observe that this assumption is satisfied trivially if F is monotone. However,
the assumption is weaker than monotonicity, since, for example, ‖F‖ may have many
local minima.

We shall also assume the existence of a strictly feasible point for the MCP, which
is defined as follows.

Definition 3.7. A point x̄ ∈ R
n is said to be a strictly feasible point for the

MCP(F,B) if, for i = 1, . . . , n,
1. li = −∞, ui =∞ =⇒ Fi(x̄) = 0,
2. li = −∞, ui <∞ =⇒ Fi(x̄) < 0,
3. li > −∞, ui =∞ =⇒ Fi(x̄) > 0.

Finally, we shall need some stronger assumptions on the smoothers for the NCP
and MCP functions.

Assumption 3.8. For all µ ≥ 0, l, u ∈ R there exists c > 0 such that, for all
a, b ∈ R,
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1. limak→∞,bk→b φ̃(ak, bk, µ) ≥ cb,

2. limak→a,bk→∞ φ̃(ak, bk, µ) ≥ ca,

3. limak→a,bk→∞ ψ̃(l, u, ak, bk, µ) ≥ c(a− l),

4. limak→a,bk→−∞ ψ̃(l, u, ak, bk, µ) ≤ c(a− u).

Proposition 3.9. The smoothers φ̃K and ψ̃FB for φFB and ψFB, respectively,
satisfy Assumption 3.8.

Proof. The following equations can easily be shown:

lim
ak→∞,bk→b

φ̃K(ak, bk, µ) = b,(3.6)

lim
ak→a,bk→∞

φ̃K(ak, bk, µ) = a,(3.7)

lim
ak→−∞ φ̃K(ak, bk, µ) = lim

bk→−∞
φ̃K(ak, bk, µ) = −∞.(3.8)

Given sequences {ak} and {bk}, define dk := −φK(u− ak,−bk, µ). Then, using (3.8)
and (3.7), respectively,

lim
ak→a,bk→∞

ψ̃FB(l, u, ak, bk, µ) = lim
ak→a,bk→∞

φ̃K(ak − l,−φK(u− a,−b, µ), µ)

= lim
ak→a,dk→∞

φ̃K(ak − l, dk, µ) = a− l.

Similarly, using (3.7), [29, Lemma 3.1], and the fact that φ̃K(a, b, µ) ≤ φFB(a, b),

lim
ak→a,bk→−∞

ψ̃FB(l, u, ak, bk, µ) = lim
ak→a,dk→a−u

φ̃K(ak − l, dk, µ)

= φ̃K(a− l, a− u, µ)

≤ φFB(a− l, a− u) ≤ (2−
√
2)(a− u).

Lemma 3.10. Suppose that F : R
n → R

n satisfies Assumption 3.6 and there is
a strictly feasible point x̄ for MCP(F,B). Let φ and ψ be median-bounded NCP and
MCP functions, respectively, and let φ̃ and ψ̃ be smoothers for φ and ψ, respectively,
satisfying Assumptions 2.13 and 3.8. Let Hµ be defined by (3.1), choose a ∈ intB,
and define ρa : [0, 1)× R

n → R
n by

ρa(λ, x) := λHµ(x) + (1− λ)(x− a).(3.9)

Then for any unbounded sequence of points in ρ−1
a (0), there is an unbounded subse-

quence {(λk, xk)} ⊂ ρ−1
a (0) such that λk → 1, and Hµ(x

k)→ 0.
Proof. Let {(λk, xk)} be an unbounded sequence of points in ρ−1

a (0). After
going to a subsequence, we may assume that xk → x∗, λk → λ∗, F (xk) → f∗, and
Hµ(x

k)→ h∗ for some x∗, f∗, h∗ ∈ (R
⋃{−∞,∞})n with ‖x∗‖ =∞ and λ∗ ∈ [0, 1].

Define P := {i | x∗i =∞}, N := {i | x∗i = −∞}, and B := {i | x∗i finite}. Suppose
ui is finite for some i ∈ P ; then mid(x∗i − li, x

∗
i − ui, Fi(x

∗)) ≥ x∗i − ui = ∞. By
median-boundedness and Assumption 2.13, h∗i =∞. But this yields a contradiction,
since by (3.9), (ρa(λk, x

k))i would be positive for all sufficiently large k. Thus ui =∞
for all i ∈ P . A similar argument establishes that lj = −∞ for all j ∈ N .

Now, suppose λ∗ < 1. Then for any i ∈ P , by (3.9), h∗i = −∞. It follows that
f∗
i = −∞. Similarly, for any j ∈ N , f∗

j =∞. Thus,

(x∗i − ai)
T (f∗

i − Fi(a)) = −∞ for all i ∈ P ⋃N.(3.10)
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Since P
⋃
N �= ∅, then by global monotonicity there exists j such that lim sup(xkj −

aj)(Fj(x
k)− Fj(a)) =∞. By (3.10), j ∈ B, so |f∗

j | =∞. Without loss of generality

(going to a subsequence if necessary), we may assume f∗
j = ∞ and xkj > aj for all

k. By (3.9), λk > 0 and (Hµ(x
k))j < 0 for all k, so h∗j ≤ 0. But this yields a

contradiction since, by Assumption 3.8, h∗j ≥ c(x∗i − li) ≥ c(ai − li) > 0. It follows
that λ∗ = 1. By (3.9), h∗i = 0 for all i ∈ B, h∗i ≤ 0 for all i ∈ P , and h∗i ≥ 0 for all
i ∈ N .

Now, suppose h∗i < 0 for some i ∈ P . Since ui =∞, by Assumption 3.8, f∗
i < 0,

and since x̄ is strictly feasible, Fi(x̄) ≥ 0. Thus, (x∗i − x̄i)(f
∗
i − Fi(x̄)) = −∞. By

global monotonicity (Assumption 3.6), there exists j such that, going to a subsequence
if necessary, lim(xkj − x̄j)(Fj(x

k) − Fj(x̄)) = ∞. Without loss of generality (going

to a subsequence if necessary), we may assume that xkj > x̄j and Fj(x
k) − Fj(x̄) >

0 for all k. Thus, either x∗j = ∞ or f∗
j = ∞. Then by Assumption 3.8, h∗j ≥

c(x∗j − lj) ≥ c(x̄j − lj) > 0. Since h∗j = 0 for all j ∈ B, it follows that j ∈ P and
uj = ∞. If lj > −∞, then by Assumption 3.8, h∗ ≥ cf∗

j ≥ cFj(x̄) > 0 (by strict
feasibility), contradicting the fact that h∗j ≤ 0 for all j ∈ P . If instead lj = −∞, then

(Hµ(x
k))j = Fj(x

k) > Fj(x̄) = 0 for all k. But (Hµ(x
k))j would then have the same

sign as (xkj − aj) for k sufficiently large. This yields a contradiction since, by (3.9),

(ρa(λk, x
k))i would be positive for all k sufficiently large.

It follows that h∗i = 0 for all i ∈ P . A similar argument yields h∗i = 0 for all
i ∈ N . Thus, h∗ = 0.

Theorem 3.11. Suppose that F : R
n → R

n satisfies Assumption 3.6 and there
is a strictly feasible point x̄ for MCP(F,B). Let Hµ and ρa be as defined in Lemma
3.10, let γa be the connected component of ρ

−1
a (0) containing (0, a), and let (λ(s), x(s))

represent the point on γa of arclength s along γa from (0, a). Then, for almost all a in
the interior of B, either γa reaches a zero x̄ of Hµ in finite arclength or lims→∞ λ(s) =
1 and lims→∞Hµ(x(s)) = 0.

Proof. Since ∇ρ(a, λ, x) has rank n for all (λ, x) ∈ ρ−1(0), then by the param-
eterized Sard’s theorem [13, Theorem 2.1] for almost all a (in the sense of Lebesgue
measure) ∇ρa has full rank on ρ−1

a (0)
⋂
((0, 1)×R

n). It follows that γa
⋂
((0, 1)×R

n)
is a smooth curve and is therefore diffeomorphic either to a circle or to an interval.
Because ∇xρa(0, a) has rank n, the implicit function theorem gives x as a function
of λ in a neighborhood of (0, a). Thus, γa cannot be diffeomorphic to a circle and
must therefore be diffeomorphic to an interval with (0, a) corresponding to one end
of it. By continuity of ρa, all limit points of γa must lie in ρ−1

a (0) (with ρa’s extended
domain [0, 1]×R

n) so the only limit point of ρ−1
a (0) in {0} ×R

n is (0, a). Since ∇ρa
has full rank on γa, by the implicit function theorem, γa cannot have an end point in
(0, 1)× R

n. Thus, if γa has finite arclength, it must reach a point (λ̄, x̄) with λ̄ = 1,
in which case x̄ is a zero of Hµ.

If γa does not have finite arclength, then let (λk, x
k) := (λ(sk), x(sk)) for some

increasing unbounded sequence {sk}. Suppose (λ̄, x̄) is an accumulation point of
{λk, xk}. By continuity, ρ(λ̄, x̄) = 0. By the above paragraph, λ̄ > 0. Suppose
0 < λ̄ < 1. Since ∇ρa(λ̄, x̄) has rank n, then by the implicit function theorem
there is a neighborhood N of (λ̄, x̄) such that N

⋂
ρ−1
a (0) is diffeomorphic to an open

interval and has finite arclength. Thus, for sk sufficiently large, (λ(sk), x(sk)) �∈ N ,
contradicting the assumption that (λ̄, x̄) is an accumlation point of {(λk, xk)}. Thus,
every accumulation point (λ̄, x̄) satisfies λ̄ = 1.

Now define λ̂ = lim inf λk. There exists a subsequence {(λj , xj)} such that λj →
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λ̂. If {(λj , xj)} is bounded, then it has an accumulation point (λ̂, x̄) and, from the

above paragraph, λ̂ = 1. If instead {(λk, xk)} is unbounded, then by Lemma 3.10,

λ̂ = 1.
Finally, suppose H(xk) �→ 0. Then there is a subsequence {(λj , xj)} such that∥∥H(xj)
∥∥ is bounded away from 0. By Lemma 3.10, {(λj , xj)} must be bounded. But

this yields a contradiction, since by (3.9), H(xj) → 0 (since λj → 1, and {xj} is
bounded).

4. Implementation. We implemented the algorithm in Figure 3.1 with H =
HFB and Hµ = HFB

µ defined as follows:

HFB
i (x) := ψFB(li, ui, xi, Fi(x)),

(HFB
µ )i(x) := ψ̃FB(li, ui, xi, Fi(x), µ),

where obvious limits are used to define the function when either bound is infinite; thus,
if li = −∞, then HFB

i (x) := −φFB(ui − xi,−Fi(x)) and (HFB
µ (x))i := −φFBµ (ui −

xi,−Fi(x), µ); if ui =∞, then HFB
i (x) := φFB(xi− li, Fi(x)), (HFB

µ (x))i := φ̃K(xi−
li, Fi(x), µ); and if li = −∞ and ui = ∞, then HFB

i (x) := Fi(x) and HFB
µ (x) :=

Fi(x). To track the homotopy zero curves, we used the FIXPDF algorithm from
HOMPACK.

To use the generalized Newton method from Figure 2.1 to find a zero of HFB , we
need to establish that HFB is semismooth. The following theorem was proved in [4].

Theorem 4.1. If F is continuously differentiable on R
n, then the following hold:

1. HFB is semismooth on R
n.

2. If for each i, Fi is twice continuously differentiable with Lipschitz continuous
Hessian, then HFB is strongly semismooth everywhere.

3. The natural merit function θ := 1
2 (H

FB(·))THFB(·) is continuously differen-
tiable, with gradient given by ∇θ(x) = V THFB(x), where V is any element
of ∂HFB(x).

Observe that Step 2 of the generalized Newton algorithm requires choosing an
element of ∂BH

FB(xk) or ∂BH
FB
µ (xk). We now address the question of how to

calculate such an element. To do this, we shall need the following lemma, which
generalizes [16, Proposition 3.1].

Lemma 4.2.

∂HFB
µ (x) ⊂ {Da(x) +Db(x)∇F (x)}.(4.1)

Here Da(x) and Db(x) are n × n diagonal matrices whose ith diagonal elements are
given by

(Da)ii(x) := ai(x) + bi(x)ci(x), (Db)ii(x) := bi(x)di(x),(4.2)

where

ai(x) = 1− xi − li√
(xi − li)2 + φ̃K(ui − xi,−Fi(x), µ)2 + 2µ

,

bi(x) = 1 +
φ(ui − xi,−Fi(x))√

(xi − li)2 + φ̃K(ui − xi,−Fi(x), µ)2 + 2µ

(4.3)

if (xi − li, Fi(x), µ) �= (0, 0, 0), or

(ai(x), bi(x)) ∈
{
(1− ξ, 1− ρ) ∈ R

2 | ‖(ξ, ρ)‖ ≤ 1
}

(4.4)
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if (xi − li, Fi(x), µ) = (0, 0, 0), and

ci(x) = 1 +
xi − ui√

(xi − ui)2 + Fi(x)2 + 2µ
,

di(x)) = 1 +
Fi(x)√

(xi − ui)2 + Fi(x)2 + 2µ

(4.5)

if (xi − ui, Fi(x), µ) �= (0, 0, 0), or

(ci(x), di(x)) ∈
{
(1 + ξ, 1 + ρ) ∈ R

2 | ‖(ξ, ρ)‖ ≤ 1
}

(4.6)

if (xi − ui, Fi(x), µ) = (0, 0, 0).
Note that in (4.3) and (4.5), if either li or ui is infinite, then the obvious limits

are used to define the fractions. Thus, if li = −∞, then (ai(x), bi(x)) = (0, 1), and if
ui =∞, then (ci(x), di(x)) = (0, 1).

Proof. For simplicity of notation, let Hµ := HFB
µ and let φµ := φ̃K(·, ·, µ). By

[14, Proposition 2.6.2(e)],

∂Hµ(x) ⊂ (∂(Hµ)1(x)× · · · × ∂(Hµ)n(x)).

Thus, it suffices to prove that, for each i,

∂(Hµ)i(x) ⊂ {(ai(x) + bi(x)ci(x))e
iT + bi(x)di(x)∇Fi(x)},(4.7)

where ai(x), bi(x), ci(x), di(x) satisfy (4.3)–(4.6).
To prove this result, let gi : R

n → R be defined by gi(x) := −φµ(ui−xi,−Fi(x)),
and let hi : R

n → R
2 be defined by hi(x) := (xi − li, gi(x)). We then have that

(Hµ)i(x) = φµ(hi(x)). Our first step is to show that ∂(Hµ)i(x) = ∂φµ(hi(x))∂hi(x).
We consider two cases. In the first case, suppose that µ �= 0 or hi(x) �= (0, 0).

It follows that φµ is continuously differentiable at hi(x). Furthermore, since F is
continuously differentiable and φµ is Lipschitz, hi is locally Lipschitz at x. Thus, by
[14, Theorem 2.6.6], ∂(Hµ)i(x) = ∂φµ(hi(x))∂hi(x).

In the second case, suppose that µ = 0 and hi(x) = (0, 0). It then follows that
ui − xi = ui − li > 0, so φµ is continuously differentiable at (ui − xi,−Fi(x)), and
therefore hi is continuously differentiable at x. By the corollary to [14, Proposition
2.2.1], hi is strictly differentiable at x. Furthermore, since φµ is Lipschitz and convex
[17], then by [14, Proposition 2.3.6(b)], φµ is regular everywhere. Thus, by [14,
Theorem 2.3.9(iii)], ∂(Hµ)i(x) = ∂φµ(hi(x))∂hi(x).

We now look at the terms ∂φµ(hi(x)) and ∂hi(x). It is easily shown that

∂φµ(a, b) =




{(
1− a√

a2 + b2 + 2µ
, 1− b√

a2 + b2 + 2µ

)}
, (a, b, µ) �= 0,

{
(1− ξ, 1− ρ) ∈ R

2 | ‖(ξ, ρ)‖ ≤ 1
}
, (a, b, µ) = 0.

Also,

∂hi(x)
T =

{
(ei, σi)

∣∣ σi ∈ ∂gi(x)} ,
where ei is the ith column of the identity matrix. Thus,

∂Hi(x) =
{
ai(x)e

iT + bi(x)σ
i
∣∣ σi ∈ ∂gi(x), ai(x), bi(x) satisfy (4.3) and (4.4)

}
.
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Step 1. Set βl := {i | xi − li = 0 = Fi(x)}, βu := {i | ui − xi = 0 = Fi(x)}.
Step 2. Choose z ∈ R

n such that zi �= 0 for all i ∈ βl
⋃
βu.

Step 3. For each i, if i �∈ βu or µ �= 0, set

ci(x) := 1 +
xi − ui√

(xi − ui)2 + Fi(x)2 + 2µ
,

di(x) := 1 +
Fi(x)√

(xi − ui)2 + Fi(x)2 + 2µ
;

else if µ = 0 and i ∈ βu, set

ci(x) := 1 +
zi

‖(zi,∇Fi(x)z)‖ ,

di(x) := 1 +
∇Fi(x)z

‖(zi,∇Fi(x)z)‖ .

Step 4. For each i, if i �∈ βl or µ �= 0, set

ai(x) := 1− xi − li√
(xi − li)2 + φ̃K(ui − xi,−Fi(x), µ)2 + 2µ

,

bi(x) := 1 +
φFB(ui − xi,−Fi(x))√

(xi − li)2 + φ̃K(ui − xi,−Fi(x), µ)2 + 2µ
;

else if µ = 0 and i ∈ βl, set

ai(x) := 1− zi
‖(zi, ci(x)zi + di(x)∇Fi(x)z)‖ ,

bi(x) := 1 +
ci(x)zi + di(x)∇Fi(x)z

‖(zi, ci(x)zi + di(x)∇Fi(x)z)‖ .

Step 5. For each i, set

Vi· := (ai(x) + bi(x)ci(x))e
iT + bi(x)di(x)∇Fi(x).

Fig. 4.1. Procedure to evaluate an element of ∂BH
FB
µ (x).

By similar arguments, we get

∂gi(x) =
{
ci(x)e

iT + di(x)∇Fi(x) | ci(x), di(x) satisfy (4.5) and (4.6)
}
.

Combining these last two relations, we see that (4.7) is satisfied as an equality.
Notice that if HFB

µ is differentiable, then the right-hand side of (4.1) is a single-
ton, so (4.1) is satisfied as an equality. Figure 4.1 describes a simple procedure for
calculating an element of ∂BH

FB
µ (x).

Theorem 4.3. The matrix V calculated by the procedure given in Figure 4.1 is
an element of ∂BH

FB
µ (x).

Proof. For simplicity of notation, let Hµ := HFB
µ and φµ := φ̃K(·, ·, µ). If µ �= 0,
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then Hµ is differentiable, and by Lemma 4.2, the Jacobian of Hµ is as calculated in
Figure 4.1.

We now consider the case in which µ = 0. In similar fashion to the proof of [15,
Theorem 7.1], we build a sequence of points {yk}, where Hµ(y

k) is differentiable and
such that ∇Hµ(y

k) tends to V . The theorem then follows by the definition of the
B-subdifferential.

Let yk := x + εkz, where z is the vector of Step 2 of Figure 4.1 and {εk} is a
sequence of positive numbers converging to 0. For i �∈ βl

⋃
βu, either xi �= li and

xi �= ui, or Fi(x) �= 0, and for i ∈ βl
⋃
βu, zi �= 0. Thus, if εk is small enough, either

yki �= li and yki �= ui, or Fi(y
k) �= 0. In either case, H is differentiable at yk.

We now show that for each i, limk→∞∇(Hµ)i(y
k) = Vi·. If either li or ui is

infinite, the result is given by [15, Theorem 7.1] by a simple change of variables.
Thus, without loss of generality, we assume that li and ui are both finite.

By Lemma 4.2, ∇(Hµ)i(y
k) is given by

(ai(y
k) + bi(y

k)ci(y
k))ei + bi(y

k)di(y
k)∇Fi(yk),

where ai, bi, ci, di are defined by (4.3) and (4.5).
We now consider three cases.
Case 1. i �∈ βl

⋃
βu. In this case, by continuity, limk→∞∇(Hµ)i(y

k) = Vi·.
Case 2. i ∈ βu. In this case, xi = ui, so y

k
i − ui = εkzi, so

ci(y
k) = 1 +

εkzi
‖(εkz,i Fi(yk))‖ ,

di(y
k) = 1 +

Fi(y
k)

‖(εkzi, Fi(yk))‖ .
(4.8)

Since F is continuously differentiable and Fi(x) = 0, we can use a Taylor series
expansion to get

Fi(y
k) = Fi(x) + εk∇Fi(ζk)z = εk∇Fi(ζk)z with ζk ∈ [x, yk].

Substituting this expression into (4.8), we see that

lim
k→∞

ci(y
k) = 1 +

zi
‖(zi,∇Fi(x)z)‖ ,

lim
k→∞

di(y
k) = 1 +

∇Fi(x)z
‖(zi,∇Fi(x)z)‖ .

Thus, limk→∞∇(Hµ)i(y
k) = Vi·.

Case 3. i ∈ βl. In this case, xi = li and Fi(x) = 0. Clearly, xi �= ui, so φ is
continuously differentiable in a neighborhood of (ui − xi,−Fi(x)). Thus, using an
argument similar to that above, we get

lim
k→∞

ai(y
k) = 1− zi

‖(zi,∇φ(ui − xi,−Fi(x))z)‖ ,(4.9)

lim
k→∞

bi(y
k) = 1 +

∇φ(ui − xi,−Fi(x))z
‖(zi,∇φ(ui − xi,−Fi(x))z)‖ .(4.10)

Finally, ∇φ(ui − xi,−Fi(x)) = ci(x)e
i + di(x)∇Fi(x), where ci(x) and di(x) are

given by (4.5). Substituting this expression into (4.9) and (4.10), we see that
limk→∞∇(Hµ)i(y

k) = Vi·.
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4.1. Tracking the homotopy zero curve. The above discussion describes how
to use the Fischer–Burmeister MCP function and the Kanzow MCP smoother within
our algorithmic framework. It remains to discuss how to track the homotopy zero
curve of Hµ. To do this, we used the FIXPDF routine from HOMPACK. FIXPDF
tracks the zero curve using an ODE-based algorithm. There are two user-defined
parameters, which govern how accurately the zero curve is tracked: arctol specifies
the local error allowed the ODE solver when following the zero curve, and eps specifies
the local error allowed the ODE solver when very near the solution. We used choices
of arctol = 10−4 and eps = 10−6. However, if the algorithm failed, we restarted with
arctol = 10−5. It should be noted that HOMPACK includes other curve tracking
routines, which are faster than FIXPDF. We chose FIXPDF because it is believed to
be the most robust algorithm.

We terminated the homotopy curve tracking whenever a point was discovered
with a sufficiently improved merit function. That is, rather than following the zero
curve all the way to the solution, we stopped as soon as a point x̂k was generated
with θ(x̂k) ≤ ζθ(x̃k), where ζ ∈ (0, 1). For our testing we chose ζ = 0.1.

4.2. Scaling. One potential difficulty with the homotopy algorithm is that if
the Jacobian matrix is poorly conditioned at the solution, it can be very difficult to
track the zero curve. To address this difficulty, we incorporated the following scaling
method, which is based on the fact that MCP(F,B) is equivalent to MCP(DF,B),
where D is a diagonal matrix with strictly positive entries. At the beginning of each
major iteration (Step 2 in Figure 3.1), the algorithm calculates the 1-norm of each row
of ∇F (xk). If

∥∥∇Fi(xk)∥∥1
> 100, then Fi is scaled by a factor of 10/|∇f(xk)ii|. A

similar heuristic was used by Chen and Mangasarian [11]. We terminated either when
the unscaled merit function satisfied the stopping criterion θ(xk) < ε or when the merit
function for the scaled problem satisfied the tighter stopping criterion θ(xk) < 10−4ε.

4.3. Computational results. The above algorithmic framework was coded in
ANSI C, using double precision arithmetic and incorporating an interface with the
GAMS modeling language. We used parameter values σ = .1, α = 0.5, mmax = 10,
β = .5, and ε = 10−12. At each iteration of Step 4 in Figure 3.1, we set µ =
β2θ(x̃k)/36n.

The algorithm was run on all of the problems with fewer than 110 variables in the
MCPLIB and GAMSLIB problem libraries. A listing of these problems is provided
in [6]. Additionally, the algorithm was run on the 125-variable vonthmcp problem,
which is known to be particularly challenging. Results are summarized in Tables
1 and 2 only for those problems that required at least one call to the homotopy
algorithm. Problems not appearing in these two tables were solved by the damped
Newton method without using the homotopy algorithm.

For each problem, we list the size of the problem (that is, the number of variables),
the starting point used, the number of calls to the homotopy algorithm, the number of
Jacobian evaluations required (both by FIXPDF and by the damped Newton method),
and the final value of θ for the unscaled problem. Notice that in some cases, the
algorithm terminated based on the stopping criteria for the scaled problem. In these
cases, the final unscaled θ values are larger than 10−12.

The algorithm solved all but four of the 215 test cases in the two libraries. It
is particularly noteworthy that the method solved all of the pgvon105, pgvon106,
vonthmcp, and billups problems, since these problems were troublesome for all of the
algorithms tested in [6]. The strength of the algorithm is perhaps best illustrated by
the billups problem, whose merit function has a local minimum of roughly 10−4 near
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Table 1
MCPLIB test problems.

Problem St. Homotopy Jac. evals θ
name Size pt. calls FIXPDF Newton final
bertsekas 15 1 2 689 14 2.02e-21
bertsekas 15 2 1 31 20 1.10e-15
bertsekas 15 3 2 523 20 8.28e-22
bertsekas 15 4 2 689 14 2.02e-21
bertsekas 15 5 1 33 16 1.19e-21
bertsekas 15 6 1 33 18 6.59e-22
billups 1 1 1 88 2 5.55e-30
billups 1 2 1 87 3 5.55e-30
billups 1 3 1 87 3 5.55e-30
colvdual 20 1 1 33 11 5.89e-22
colvdual 20 2 2 172 11 6.94e-14
colvdual 20 4 1 33 17 2.25e-22
colvnlp 15 1 1 31 11 9.56e-17
colvnlp 15 4 1 31 12 2.09e-18
colvnlp 15 5 1 31 12 1.90e-18
colvnlp 15 6 1 31 12 1.34e-18
ehl k40 41 1 1 33 15 1.46e-19
ehl k40 41 3 1 168 20 8.07e-12
ehl k60 61 2 1 33 44 5.07e-22
ehl k60 61 3 2 211 55 3.52e-14
ehl k80 81 2 1 33 51 1.28e-17
ehl kost 101 1 1 33 18 1.61e-17
ehl kost 101 2 1 33 50 2.07e-17
freebert 15 1 2 499 12 6.05e-22
freebert 15 3 2 496 7 2.98e-22
freebert 15 4 1 460 8 2.21e-13
freebert 15 5 1 33 16 1.22e-21
freebert 15 6 2 477 12 3.43e-22
freebert 15 7 1 31 14 7.08e-16
hanskoop 14 1 3 137 11 4.46e-16
hanskoop 14 3 1 74 24 3.30e-15
hanskoop 14 5 1 47 19 3.80e-13
hanskoop 14 7 1 304 27 1.44e-13
hanskoop 14 9 1 115 31 5.93e-21
josephy 4 1 1 22 11 1.23e-22
josephy 4 2 2 51 8 4.45e-14
josephy 4 3 1 31 12 1.22e-13
josephy 4 4 2 38 7 5.21e-14
josephy 4 5 1 26 7 3.70e-16
josephy 4 6 1 29 10 6.62e-15

the starting points. Algorithms that rely on descent of a merit function often fail on
this problem because it is very difficult to escape the local minimum. However, the
homotopy algorithm had no difficulties since the global monotonicity assumption is
satisfied.

5. Conclusions. The algorithm described in this paper represents a qualita-
tively different approach for solving complementarity problems. Because of its basis
in probability-one homotopy algorithms, it has a strong global convergence theory that
suggests it may be successful on problems that cannot be solved by other methods.
The fact that the method was able to solve all but four of the test cases supports this
claim. However, the method, at present, is very slow. On a number of test problems,
the algorithm had to calculate an extremely large number of Jacobian matrices. When
compared to the performance of other recent algorithms [6, 21] on this test library,



HOMOTOPY-BASED ALGORITHM FOR MCPs 603

Table 1 (cont.)

Problem St. Homotopy Jac. evals θ
name Size pt. calls FIXPDF Newton final
josephy 4 7 1 20 8 6.06e-15
josephy 4 8 1 17 5 2.65e-20
kojshin 4 2 2 39 10 4.38e-15
kojshin 4 3 1 98 16 9.42e-14
kojshin 4 4 1 28 7 7.27e-18
kojshin 4 6 2 56 6 4.58e-14
pgvon105 105 1 5 2831 294 2.21e-12
pgvon105 105 2 5 454 48 1.35e-14
pgvon105 105 3 4 126 31 3.47e-15
pgvon105 106 4 3 2480 101 2.69e-14
pgvon106 106 1 5 533 41 2.80e-13
pgvon106 106 2 8 7131 61 2.35e-13
pgvon106 106 3 3 337 62 8.15e-17
pgvon106 106 4 5 556 81 1.04e-09
pgvon106 106 5 8 4449 126 4.18e-11
pgvon106 106 6 3 684 56 5.09e-12
pies 42 1 6 760 23 2.66e-14
powell 16 1 4 178 14 3.37e-15
powell 16 2 4 3014 19 2.99e-14
powell 16 3 5 756 17 7.31e-15
powell 16 4 6 1259 9 2.04e-12
powell 16 5 1 9991 2 1.34e+02 (failed)
powell 16 6 4 83 13 6.10e-15
scarfanum 13 1 2 78 12 1.67e-13
scarfanum 13 2 2 128 18 5.04e-13
scarfanum 13 3 2 60 13 1.78e-20
scarfasum 14 1 1 34 10 2.73e-13
scarfasum 14 2 2 67 10 3.79e-14
scarfasum 14 3 2 91 15 3.39e-13
scarfbnum 39 1 1 125 27 1.93e-13
scarfbnum 39 2 2 615 70 1.14e-13
scarfbsum 40 2 3 983 5 5.17e-14
sppe 27 2 1 18 8 3.62e-13
sppe 27 3 1 51 7 5.04e-15
tobin 42 1 3 105 15 1.16e-16
tobin 42 2 1 22 52 1.12e-12
tobin 42 3 2 113 34 1.17e-19

the homotopy method is not competitive in terms of computer time. Nevertheless,
because of its potential to solve more difficult problems, the homotopy method may,
in many situations, be more efficient in real time, since it may require less human
intervention to produce a solution. Further, the generalized damped Newton method
used in Step 2 of Figure 3.1 fails often, necessitating the use of the homotopy algo-
rithm in many cases. In principle, a more sophisticated descent algorithm could be
used so that the homotopy method would only be needed in rare circumstances.
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1. Introduction. The primary attraction of homotopy algorithms is that they
are able to reliably solve systems of equations involving highly nonlinear functions,
where the norm of the residual may have nonglobal local minima. This is because,
unlike line search or trust region methods, homotopy methods do not rely on descent
of a merit function. Instead, they work by following a path, which under certain
weak assumptions is known to lead to a solution. Standard probability-one homotopy
algorithms require that the system of equations involve only smooth (C2) functions.
This paper presents the convergence theory for a new probability-one homotopy al-
gorithm for solving nonsmooth systems of equations and specializes this algorithm
to solve mixed complementarity problems. The algorithm uses smoothing functions
to construct a homotopy mapping that is C2 in the interior of its domain. This al-
lows the zero curve of the homotopy mapping to be tracked using software from the
HOMPACK90 suite of homotopy codes [31]. A preliminary version of this algorithm
was presented at the Second International Conference on Complementarity Problems
[5]. The algorithm proposed here has two significant improvements: first, a new end
game strategy, which makes better use of available information about the behavior
of the homotopy zero curve; second, an option for mixed complementarity problems
that ensures that all iterates generated by the algorithm are feasible. This is impor-
tant because many applications involve functions that are not defined outside of the
feasible region. A similar feasibility property can be achieved for smoothing Newton
methods [21].
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An extension of the probability-one homotopy theory to nonsmooth systems of
equations is presented here. A globally convergent probability-one homotopy algo-
rithm for nonsmooth systems of equations is then derived, with supporting conver-
gence theory, and specialized for mixed complementarity problems. For the case of
mixed complementarity problems, new convergence results are presented, which es-
tablish easily satisfiable sufficient conditions to ensure that the homotopy zero curve
always remains strictly feasible.

The homotopy algorithm proposed here for nonsmooth systems of equations is
similar in spirit to that in [23] and [24] (based on piecewise smooth maps). While
different homotopy formulations might be theoretically equivalent in terms of solu-
tion power, the distinction between such piecewise smooth continuation methods and
probability-one homotopy methods is significant for practical numerical computation.
Probability-one homotopy methods are guaranteed to avoid numerical singularities,
and a probability-one formulation can exploit the existence of very robust, accurate,
and efficient mathematical software specifically tailored for such maps [30], [31].

In order to describe the algorithm, a significant amount of background material
is needed. This is given in section 2, which discusses notation, nonsmooth equa-
tions, a generalized Newton method for nonsmooth equations (which will be used
in the end game), probability-one homotopy methods, complementarity problems,
and smoothing functions. Section 3 describes a probability-one homotopy algorithm
for nonsmooth equations. This algorithm is then specialized to solve mixed com-
plementarity problems in section 4. Section 5 addresses implementation details and
computational results, and section 6 concludes.

2. Background.

2.1. Notation. When discussing vectors and vector-valued functions, subscripts
are used to indicate components, whereas superscripts are used to indicate the itera-
tion number or some other label. In contrast, for scalars or scalar-valued functions,
subscripts refer to labels so that superscripts can be used for exponentiation. The
vector of all ones is represented by e.

Unless otherwise specified, ‖·‖ denotes the Euclidean norm. For a set C ⊂ R
n,

πC(x) represents the orthogonal projection (with respect to the Euclidean norm) of
x onto C. The symbol R+ refers to the nonnegative real numbers. The extended real
numbers are denoted by R := R

⋃{−∞,+∞}.
Real-valued functions are denoted with lower-case letters like f or φ, whereas

vector-valued functions are represented by upper-case letters like F or Φ. For a
function F : C ⊂ R

n → R
m, ∇F (x) is the m × n matrix whose i, jth element

is ∂Fi(x)/∂xj . Let D ⊂ R
m. Then F−1(D) is the set-valued inverse defined by

F−1(D) := {x | F (x) ∈ D}.
Given a function F : R

n → R
m, the directional derivative of F at x in the

direction d is denoted by F ′(x; d) := limt↓0 (F (x+ td)− F (x))/ t, provided the limit
exists.

2.2. Nonsmooth equations. This paper is concerned with solving equations
of the form F (x) = 0, where the function F : R

n → R
n is locally Lipschitzian,

but not necessarily continuously differentiable. Such nonsmooth equations provide a
unifying framework for the study of many important classes of problems, including
constrained optimization, finite-dimensional variational inequalities, complementarity
problems, equilibrium problems, generalized equations, partial differential equations,
and fixed point problems. The following definitions will be used throughout the paper.
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By Rademacher’s theorem, since F is locally Lipschitzian, it is differentiable
almost everywhere. Let DF be the set where F is differentiable. Define the B-
subdifferential by

∂BF (x) :=

{
V

∣∣∣∣ ∃{xk} → x, xk ∈ DF , with V = lim
k→∞

∇F (xk)

}
.

The Clarke subdifferential ∂F (x) is the convex hull of ∂BF (x).

F is said to be semismooth [22] at x if it is directionally differentiable at x and
for any V ∈ ∂F (x+ h), h→ 0,

V h− F ′(x;h) = o(‖h‖).

F is said to be strongly semismooth [10] if, additionally,

V h− F ′(x;h) = O(‖h‖2).

A semismooth function F : R
n → R

n is BD-regular at x if all elements in ∂BF (x)
are nonsingular, and F is strongly regular at x if all elements in ∂F (x) are nonsingular.

2.3. Newton’s method for nonsmooth equations. One approach to solving
the nonsmooth equation F (x) = 0 is a generalization of Newton’s method to semi-
smooth equations, which was proposed by Qi [19]. Qi’s method is used together with
an Armijo line search in the end game of the homotopy algorithm proposed here. Qi’s
algorithm, which is discussed in detail in [3], is shown in Figure 2.1. In this algorithm θ
is the merit function defined by θ(x) := 1

2F (x)TF (x). Theorem 2.1, which is restated
from [22] and [10], shows that this algorithm has the same fast local convergence
properties as the standard (smooth) Newton’s method under natural generalizations
of the standard assumptions.

Step 1 [Initialization] Select line search parameters α, σ ∈ (0, 1), a positive
integer mmax, a starting point x0 ∈ R

n, and a stopping tolerance tol.
Set k = 0.

Step 2 [Direction generation] Choose V k ∈ ∂BF (xk). If V k is singular, stop,
returning the point xk along with a failure message. Otherwise choose
the direction

dk = −(V k)−1F (xk).(2.1)

Step 3 [Step length determination] Let mk be the smallest nonnegative in-
teger m ≤ mmax such that

θ(xk + αmdk)− θ(xk) ≤ −σαmθ(xk).(2.2)

If no such mk exists, stop; the algorithm failed. Otherwise set xk+1 =
xk + αmkdk.

Step 4 [Termination check] If θ(xk+1) < tol, stop, returning the point xk+1.
Otherwise, return to step 2, with k replaced by k + 1.

Fig. 2.1. Generalized damped Newton method.
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Theorem 2.1. Suppose that x∗ is a solution of F (x) = 0 and that F is semis-
mooth and BD-regular at x∗. Then the iteration method defined by xk+1 = xk + dk,
where dk is given by (2.1), is well defined and convergent to x∗ Q-superlinearly in a
neighborhood of x∗. If F is strongly semismooth at x∗, the iteration sequence converges
to x∗ Q-quadratically.

One consequence of this local convergence theorem is that within a neighborhood
of a BD-regular solution x∗, the line search criterion (2.2) will be satisfied by mk =
0. Thus, the inner algorithm will take full Newton steps and achieve the fast local
convergence rates specified by the theorem.

The damped Newton method described above works very well when started near
a solution, or when applied to problems that are nearly linear in the sense that their
merit functions do not contain local minima that are not solutions.

For highly nonlinear problems, the damped Newton method tends to fail without
a carefully chosen starting point. The reason, of course, is that unless started close
to a solution, the iterates may converge only to a local minimum of the merit func-
tion. This motivates the consideration of homotopy methods, which are truly globally
convergent.

2.4. Homotopy methods. The main theory underlying the present homotopy
method is summarized in the following proposition from [5]. This proposition is similar
to results presented in [26] and [8, Theorem 2.4]; however, it does not assume F itself
to be differentiable. The path γa defined in the proposition “reaches a zero of F” in
the sense that it contains a sequence {(λk, xk)} that converges to (1, x̄), where x̄ is a
zero of F .

Proposition 2.2. Let F : R
n → R

n be a Lipschitz continuous function and
suppose there is a C2 map

ρ : R
m × [0, 1)× R

n → R
n

such that
1. ∇ρ(a, λ, x) has rank n on the set ρ−1({0});
2. the equation ρa(0, x) = 0, where ρa(λ, x) := ρ(a, λ, x), has a unique solution

xa ∈ R
n for every fixed a ∈ R

m;
3. ∇xρa(0, xa) has rank n for every a ∈ R

m;
4. ρ is continuously extendible (in the sense of Buck [6]) to the domain

R
m × [0, 1]× R

n, and ρa(1, x) = F (x) for all x ∈ R
n and a ∈ R

m; and
5. γa, the connected component of ρ−1

a ({0}) containing (0, xa), is bounded for
almost every a ∈ R

m.
Then for almost every a ∈ R

m there is a zero curve γa of ρa, along which ∇ρa has
rank n, emanating from (0, xa) and reaching a zero x̄ of F at λ = 1. Further, γa does
not intersect itself and is disjoint from any other zeros of ρa. Also, if γa reaches a
point (1, x̄) and F is strongly regular at x̄, then γa has finite arc length.

Because γa is a smooth curve, it can be parameterized by its arc length away
from (0, xa). This yields a function (λ(s), x(s)), representing the point on γa of arc
length s away from (0, xa).

The construction of a globally convergent probability-one homotopy algorithm
entails: (1) constructing a map ρ according to Proposition 2.2, (2) choosing a ∈ R

m,
(3) finding xa solving ρa(0, x) = 0, and (4) tracking γa starting from (0, xa) until
λ = 1. Assuming an appropriate ρ exists, the theory guarantees that for almost all a
(in the sense of Lebesgue measure), γa exists and leads to a solution; hence the term
“probability-one.”
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A simple (and occasionally useful in practice) homotopy mapping is ρ : R
n ×

[0, 1)× R
n → R

n given by

ρ(a, λ, x) := λF (x) + (1− λ)(x− a).(2.3)

If F is C2, then ρ trivially satisfies properties (1), (2), (3), and (4) but not necessarily
(5) of Proposition 2.2. The following theorem gives conditions on F under which the
fifth condition is satisfied. This result will be generalized to nonsmooth functions in
Theorem 3.2.

Theorem 2.3. (See [28].) Let F : R
n → R

n be a C2 function such that, for some
x̃ ∈ R

n and r > 0,

(x− x̃)TF (x) ≥ 0 whenever ‖x− x̃‖ = r.(2.4)

Then F has a zero in a closed ball of radius r about x̃, and for almost every a in the
interior of this ball there is a zero curve γa of

ρa(λ, x) := λF (x) + (1− λ)(x− a),

along which ∇ρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of
F at λ = 1. Further, γa has finite arc length if ∇F (x̄) is nonsingular.

The actual statement of the theorem in [28] fixes x̃ = 0. However, the proof
can be modified trivially to yield the more general theorem above. (See the proof of
[5, Theorem 2.11] for the necessary modifications.) It is interesting to note that in
many applications, (2.4) holds for all r sufficiently large (not just for some fixed r).
This makes the choice of x̃ irrelevant. Furthermore, in such cases, a can be chosen
arbitrarily (instead of from some neighborhood of x̃), thus making the method truly
globally convergent (with probability one).

Equation (2.4) will be referred to as the global monotonicity property. If a C2

function F possesses this property, these theoretical results have some profound im-
plications: the guaranteed existence of a path between almost any starting point and
a solution x̄ to F (x) = 0, which has finite arc length if rank∇F (x̄) = n. In theory,
to find a solution, one must simply follow the path to a point of γa where λ = 1. In
practice, however, the task of constructing a ρ for which γa is short and smooth is
very difficult, although this has been done for large classes of problems.

Several packages exist to solve root-finding problems using homotopy techniques
[31]. The implementation here uses the routine STEPNX from the HOMPACK90
suite of software [30], [31, section 3], which tracks the zero curve of a homotopy
mapping specified by the user.

2.5. Complementarity problems. Given a continuously differentiable func-
tion G : R

n → R
n, the nonlinear complementarity problem NCP(G) is to find some

x ∈ R
n so that

0 ≤ x ⊥ G(x) ≥ 0,(2.5)

where x ⊥ G(x) means that xTG(x) = 0.
Given a rectangular region Bl,u :=

∏n
i=1[li, ui] ⊂ R

n
defined by two vectors l

and u in R
n, where −∞ ≤ l < u ≤ ∞, and a function G : R

n → R
n, the mixed

complementarity problem MCP(G,Bl,u) is to find an x ∈ Bl,u such that for each i ∈
{1, . . . , n}, either (1) xi = li and Gi(x) ≥ 0, (2) Gi(x) = 0, or (3) xi = ui and Gi(x) ≤
0. This is equivalent to the condition that mid(x − l, x − u,G(x)) = 0, where mid
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represents the componentwise median function. When these conditions are satisfied,
write G(x) ⊥ x and say that x is complementary to G(x). Assume henceforth that G
is C2.

It is well known that NCP(G) can be reformulated as a system of equations. This
was first shown by Mangasarian [17]. An excellent review of reformulations of NCP
can be found in [20]. To discuss such reformulations requires several definitions, which
are equivalent to the NCP function and the BVIP function defined in [20].

Definition 2.4. A function φ : R
2 → R is called an NCP function, provided

φ(a, b) = 0, if and only if min(a, b) = 0.
Definition 2.5. A function ψ : R

⋃{−∞} × R
⋃{∞} × R

2 → R is called an
MCP function, provided ψ(l, u, a, b) = 0, if and only if mid(a− l, a− u, b) = 0.

It is useful to further distinguish NCP and MCP functions according to their
orientations, as follows.

Definition 2.6. An NCP function φ is called positively oriented if, for all
a, b ∈ R,

sign(φ(a, b)) = sign(min(a, b)).

An MCP function ψ is called positively oriented if

sign(ψ(l, u, a, b)) = sign(mid(a− l, a− u, b))

for all l ∈ R
⋃{−∞}, u ∈ R

⋃{∞}, l < u, and a, b ∈ R.
An NCP function that has been very popular recently is the Fischer–Burmeister

function [14] φ : R
2 → R, defined by

φFB(a, b) := a+ b−
√

a2 + b2.(2.6)

It is easily seen that φFB(a, b) = 0 if and only if 0 ≤ a ⊥ b ≥ 0. Thus, by defining the
function F : R

n → R
n by

Fi(x) := φFB(xi, Gi(x)),(2.7)

it is clear that x ∈ R
n solves NCP(G) if and only if F (x) = 0.

While φFB is not differentiable at the origin, (φFB)2 is continuously differentiable
everywhere. This property, together with the fact that φFB is semismooth, makes this
reformulation well suited for use in globalization strategies for nonsmooth Newton-
based methods (see, for example, [9]).

Given a positively oriented NCP function φ, and the convention that φ(∞, b) =
lima→∞ φ(a, b) and φ(a,∞) = limb→∞ φ(a, b), an MCP function ψ can be constructed
using the following formula, first proposed in [1]:

ψ(l, u, a, b) := φ(a− l,−φ(u− a,−b)).(2.8)

Constructing the function F : R
n → R

n by

Fi(x) := ψ(li, ui, xi, Gi(x))(2.9)

yields a reformulation of the MCP(G,Bl,u); F (x) = 0 if and only if x is a solution to
MCP(G,Bl,u) [2].

Note that for the Fischer–Burmeister function, lima→∞ φFB(a, b) = b and
limb→∞ φFB(a, b) = a. Thus, for the MCP case, if li is finite and ui =∞, then Fi(x) =
φFB(xi− li, Gi(x)); if ui is finite and li = −∞, then Fi(x) = −φFB(ui− xi,−Gi(x));
and if neither bound is finite, then Fi(x) = Gi(x).
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2.6. Smoothing operators. Consider the system F (x) = 0, where F is a non-
smooth function, and suppose there exists a family of functions Fµ parameterized
by a smoothing parameter µ so that limµ↓0 Fµ = F in some sense. Under suitable
conditions, the solutions to the systems Fµ(x) = 0 converge to a solution to F (x) = 0
along a smooth trajectory [7].

Definition 2.7. Given a nonsmooth continuous function φ : R
p → R, a

smoother for φ is a continuous function φ̃ : R
p × R+ → R such that

1. φ̃(x, 0) = φ(x), and
2. φ̃ is continuously differentiable on the set R

p × R++.
If φ̃ is C2 on R

p × R++, call φ̃ a C2-smoother.
For convenience, define φµ(x) := φ̃(x, µ). To define smoothers for functions F :

R
n → R

n, say that Fµ : R
n × R+ → R

n is a smoother for F if, for each i ∈ {1 . . . n},
Fµ
i is a smoother for Fi.

In the case of complementarity problems, the NCP functions and MCP functions
generally have well understood nonsmoothness structure, so C2-smoothers for these
functions can usually be easily constructed. As an example, the following C2-smoother
for the Fischer–Burmeister function was proposed by Kanzow [16]:

φ̃K(a, b, µ) := a+ b−
√

a2 + b2 + 2µ.(2.10)

The following smoother is more useful here, since its partial derivative with respect
to µ is bounded near the origin:

φ̃BW (a, b, µ) := a+ b−
√

a2 + b2 + µ2.(2.11)

Given a smoother φ̃ for an NCP function φ and the convention that φ̃(∞, b, µ) =
lima→∞ φ̃(a, b, µ) and φ̃(a,∞, µ) = limb→∞ φ̃(a, b, µ), a smoother ψ̃ for the MCP
function ψ defined by (2.8) can be constructed according to the formula

ψ̃(l, u, a, b, µ) := φµ(a− l,−φµ(u− a,−b)).(2.12)

Smoothers for (2.7) and (2.9) are then given, respectively, by

Fµ
i (x) := φµ(xi, Gi(x)) and(2.13)

Fµ
i (x) := ψµ(li, ui, xi, Gi(x)).(2.14)

Note that for the smoother defined by (2.11), lima→∞ φ̃BW (a, b, µ) = b and
limb→∞ φ̃BW (a, b, µ) = a. Thus, for the MCP case, if ui = ∞ and li is finite,
then Fµ

i (x) = φ̃BW (xi − li, Gi(x), µ); if ui is finite and li = −∞, then Fµ
i (x) =

−φ̃BW (ui − xi,−Gi(x), µ); and if neither bound is finite, then Fµ
i (x) = Gi(x).

3. The algorithm. This section summarizes the probability-one homotopy al-
gorithm for solving nonsmooth equations. It contrasts with an earlier hybrid Newton-
homotopy method described in [2]. The earlier method begins by using a nonsmooth
version of a damped Newton method to solve the root-finding problem F (x) = 0.
If the Newton algorithm stalls, a standard homotopy method is invoked to solve a
particular smoothed version of the original problem, Fµ(x) = 0, where µ is fixed. The
smoothing parameter µ is chosen based on the level of a merit function on F at the
last point x̂ generated by the Newton method. Starting from x̂, a homotopy method
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is carried out until it produces a point that yields a better merit value than the pre-
vious Newton iterate. The Newton method is then started again and the process
repeats until a point is produced that is close enough to a solution or the homotopy
method fails. One key feature of that hybrid method is that each time the Newton
method stalls, a different homotopy map is constructed. The smoothing parameter µ
is chosen based on the level of the merit function when the Newton method stalls, so
the homotopy that is then used is

ρµa(λ, x) := λFµ(x) + (1− λ)(x− a).

An alternative approach, described here, is to adopt a pure probability-one ho-
motopy algorithm by fixing the homotopy map and tracking a single homotopy zero
curve into the Newton domain of convergence around a solution. Essentially, the idea
is to use a standard probability-one homotopy algorithm, but with a specially de-
signed “end game” near a solution. The key to this approach is to define a homotopy
mapping that couples the smoothing parameter with the homotopy parameter.

3.1. The homotopy map. Given a function F and an associated C2-smoother
Fµ, construct a homotopy mapping with Fµ, where the smoothing parameter µ is
a function of the homotopy parameter λ so that µ ↓ 0 as λ ↑ 1. If this homotopy
satisfies the conditions in Proposition 2.2, a well behaved path exists from almost any
starting point to a solution, and standard curve tracking techniques can reliably solve
the equation F (x) = 0.

Throughout this section, assume that F is a Lipschitz continuous function on R
n

and that Fµ is a C2-smoother for F . Take µ : [0, 1] → R+ to be a decreasing C2

function such that µ(λ) > 0 for λ < 1 and µ(1) = 0. For example,

µ(λ) := α(1− λ)(3.1)

for some parameter α > 0. Define the homotopy map ρa : [0, 1)×R
n → R

n, nonlinear
in λ, by

ρa(λ, x) := λFµ(λ)(x) + (1− λ)(x− a),(3.2)

and let γa be the connected component of the set ρ−1
a ({0}) that contains (0, a). Notice

that this mapping is a generalization of (2.3), since if F is C2, then Fµ := F suffices.
In order to ensure that a well behaved zero curve exists, conditions on F and its

smoother are required so that Proposition 2.2 can be invoked. The following weak
assumption on the smoother will be useful in the theory that follows.

Assumption 3.1. There is a nondecreasing function η : R+ → R+ satisfying
limν↓0 η(ν) = 0 such that for all x in R

n and all ν in R+

‖F ν(x)− F (x)‖∞ ≤ η(ν).

Note (by [2, Proposition 2.14]) that if F ν is constructed by (2.14), with φµ defined
either by (2.10) or (2.11), then Assumption 3.1 is satisfied with η(ν) := 3

√
2ν or

η(ν) := 3ν, respectively.
The following theorem [5, Theorem 2.11] is a generalization of Theorem 2.3.
Theorem 3.2. Let F : R

n → R
n be a Lipschitz continuous function such that

for some fixed r > 0 and x̃ ∈ R
n,

(x− x̃)TF (x) ≥ 0 whenever ‖x− x̃‖ = r,
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and let Fµ be a smoother for F satisfying Assumption 3.1. Further, suppose that the
smoothing parameter µ(λ) is such that

η(µ(λ)) <
1− λ

λ
M for 0 < λ ≤ 1(3.3)

for some M ∈ (0, r). Then γa is bounded for almost every a ∈ R
n such that ‖a− x̃‖ <

r̃ := r −M .
A direct application of Proposition 2.2 gives the main convergence theorem.
Theorem 3.3. Under the assumptions of Theorem 3.2, F has a zero in a closed

ball of radius r about x̃, and for almost every a in the interior of a ball of radius r̃
about x̃ there is a zero curve γa of

ρ(a, λ, x) := ρa(λ, x) := λFµ(λ)(x) + (1− λ)(x− a),

along which ∇ρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of
F at λ = 1. Further, γa has finite arc length if F is strongly regular at x̄.

Observe that in applications, the r in Theorem 3.2 can be arbitrarily large; hence
so can r̃ = r −M , and thus ‖a− x̃‖ < r̃ is really no restriction at all.

3.2. Tracking the zero curve. As discussed in section 2.4, the zero curve can,
with probability one, be parameterized by arc length: Let (λ(s), x(s)) be the point
on γa of arc length s away from (0, xa). Tracking the zero curve involves generating
a sequence of points {yk} ⊂ R

n+1, with y0 = (0, xa), that lie approximately on the
curve in order of increasing arc length. That is, yk ≈ (λ(sk), x(sk)), where {sk} is
some increasing sequence of arc lengths.

The subroutine STEPNX from HOMPACK90 [31] is used to handle the curve
tracking. At each iteration, STEPNX uses a predictor-corrector algorithm to gener-
ate the next point on the curve. The prediction phase requires for each iterate yk

the corresponding unit tangent vector to the curve, (y′)k ≈ (λ′(sk), x′(sk)). This
is accomplished by finding an element η of the null space of ∇ρa(yk) and setting
(y′)k := ±η/ ‖η‖, where the sign is chosen so that (y′)k makes an acute angle with
(y′)k−1, for k > 0. On the first iterate, the sign is chosen so that the first component
(corresponding to λ) of (y′)0 is positive.

At each iteration after the first, STEPNX approximates the zero curve with a
Hermite cubic polynomial ck(s), which is constructed using the last two points yk−1

and yk, along with the associated unit tangent vectors (y′)k−1 and (y′)k. A step
of length h along this cubic yields the predicted point wk,0 := c(sk + h). The first
iteration uses a linear predictor instead, which is constructed using the starting point
y0 and its associated unit tangent vector.

Once the predicted point is calculated, a normal flow corrector algorithm [31] is
used to return to the zero curve. Starting with the initial point wk,0, the corrector
iterates wk,j , j = 1, . . . , are calculated via the formula wk,j+1 := wk,j + zk,j , j =
0, 1, . . ., where the step zk,j is the unique minimum-norm solution to the equation

∇ρa(wk,j)zk,j = −ρa(wk,j).(3.4)

The corrector algorithm terminates when one of the following conditions is satisfied:
the normalized correction step zk,j

/(
1 +

∥∥wk,j∥∥) is sufficiently small, some maximum
number of iterations (usually 4) is exceeded, or a rank-deficient Jacobian matrix is
encountered in (3.4). In the first case, set yk+1 := wk,j , calculate an optimal step
size h for the next iteration, and proceed to the next prediction step. In the second
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case, discard the point and return to the prediction phase, using a smaller step size if
possible; otherwise, terminate curve tracking with an error return. In the third case,
terminate the curve tracking, since rank∇ρa < n should theoretically not happen and
indicates serious difficulty. The step size in h is also never reduced beyond relative
machine precision.

3.2.1. Step size control. At each iteration, STEPNX estimates an “optimal”
step size to be used in computing the predicted point. This calculation is governed by
several user-defined parameters. Successful termination of the corrector phase occurs
when the norm of the residual

∥∥ρ(wk,j)∥∥ is sufficiently small. In some cases, this can
happen even when the converged point is not close to the true zero curve. As the
tracking progresses, the computed points may slowly drift farther and farther from
the zero curve, while continuing to meet the criterion on the norm of the residual.
Eventually, the iterates may leave the Newton domain of attraction, and the corrector
phase may fail to converge, no matter how small the predictor step is. To avoid such
difficulties, STEPNX calculates several quantities that measure the “quality” of the
step.

The first quantity is the contraction factor∥∥zk,1∥∥/∥∥zk,0∥∥ ,
which measures how much the Newton step shrinks from the first corrector iteration
to the second. The second quantity is the residual factor∥∥ρa(wk,1)∥∥/∥∥ρa(wk,0)∥∥ .
The third quantity is the distance factor∥∥wk,1 − yk+1

∥∥/∥∥wk,0 − yk+1
∥∥ ,

which approximates how much the distance from the zero curve shrinks from the
first iteration to the second. Since Newton’s method has quadratic local convergence,
each of these quantities should be small when the predicted point is close to the
zero curve. Through the use of input parameters, the user is able to specify ideal
values (lideal, rideal, dideal, respectively) for each of these quantities. If the
quantities are smaller than the ideal, the step size will be increased; if the quantities
are larger than ideal, the step size will be decreased. The amount of increase or
decrease is also controlled by user-defined parameters. Generally, default values for
all of these parameters work very well. However, occasionally, it is necessary to choose
more conservative parameter values in order to avoid losing the zero curve.

As a final consideration, the default limit on the number of Newton iterations in
the corrector phase is 4 (a HOMPACK90 parameter). In some cases, increasing this
limit to 6 or 8 improved performance.

3.3. The end game. The standard homotopy method used by HOMPACK90
concludes the curve tracking with an end game strategy that zeros in on a point (λ, x)
on the zero curve with λ = 1. This end game strategy, which is a robust blend of
secant iterations with Newton corrections, is begun when a point (λ, x) is found on
the zero curve with λ > 1. However, this approach requires that ρ(λ, x) be defined for
λ > 1—a requirement that is not desirable here since the smoother Fµ(λ) may not be
defined for λ > 1. Therefore the standard end game is replaced with the generalized
Newton method given in Figure 2.1, which is begun while λ < 1 still.
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The Newton end game is invoked when one of the following criteria is satisfied:
1. The point generated by the cubic predictor (with step length h) has λ > 1.
2. A linear predictor with the same step length has λ > 1.
3. The corrector phase of the algorithm generates a point with λ > 1.

In all cases, a starting point for the Newton end game is the prediction of where the
zero curve crosses the hyperplane λ = 1. The precise details follow.

1. First, try to find a point (λc, xc) for which the cubic approximation has λc = 1.
If this point occurs within a step length shorter than 2h, then xc will be the
starting point.

2. Otherwise, find a point (λl, xl) for which the linear approximation has λl = 1.
Then xl will be the starting point.

If the curve tracking fails for any reason before the end game criteria are met,
then attempt the nonsmooth Newton method with the starting point x, where (λ, x)
is the last point found on the zero curve.

The starting point generated by the above procedure is usually quite good. How-
ever, in some cases, the Newton end game may fail to converge. In that event, simply
return to tracking the zero curve, picking up from the last point yk on γa, but with
the step size (computed by STEPNX) cut in half, and with the STEPNX tracking
tolerances abserr and relerr also reduced.

Note that this approach differs from the end game strategy described in [5], which
simply invoked the Newton end game with a starting point x whenever a point (λ, x)
was found on the zero curve with λ sufficiently close to 1. The new end game strategy
has two main advantages over this earlier approach. First, using the cubic predictor
to estimate where the zero curve crosses λ = 1 results in a significantly more accurate
approximation for the solution as a starting point for Newton’s method. Second,
the new method takes better advantage of available information in determining when
to enter the end game. Specifically, on difficult problems, the Newton domain of
convergence near the final solution will be small, so it is desirable to track the zero
curve very close to λ = 1 before trying Newton’s method. This is exactly what
happens since, in this case, the step size will likely be very small. In contrast, for
easier problems, larger step sizes will be used, and the end game will be started
earlier. Again this is acceptable because the Newton domain of convergence around
the solution will likely be large.

In order to solve the system F (x) = 0, the nonsmooth Newton method requires
that F be semismooth. If, in addition, F is BD-regular at a solution x∗, Newton’s
method will converge superlinearly in some neighborhood about x∗. Theoretically, to
use the homotopy approach and guarantee the end game’s success, F should satisfy
the global monotonicity property and be strongly regular at every solution. This
guarantees that the homotopy’s zero curve crosses the hyperplane λ = 1 transversally
rather than tangentially, and ensures that the zero curve will have finite arc length.
For most homotopies used in practice in other contexts, even if the zero curve γa is
tangent to the hyperplane λ = 1, a point with λ > 1 near ρ−1

a ({0}) will be generated,
and the usual end game provided in HOMPACK90 will succeed (to modest accuracy,
since ∇F (x̄) is singular).

4. Solving mixed complementarity problems. This section specializes the
algorithm described above in order to solve mixed complementarity problems. The
approach taken here is to reformulate the MCP by defining the function F : R

n → R
n

according to (2.8) and (2.9), where φ is a positively oriented NCP function, and
defining a smoother for F according to (2.12) and (2.14), where φµ is a smoother
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for φ. Once these functions are defined, the homotopy algorithm described in the
previous section can be used to find a zero of F , which corresponds to a solution
of MCP. Because of the special structure of these functions, stronger convergence
results are possible than for the general nonsmooth equations problem. In particular,
the following results establish that it is possible to construct a homotopy method
that follows a strictly feasible path (that is, a path whose x-components remain in the
interior of the feasible region). This is unusual for probability-one homotopy methods.
In fact, due to the necessity of maintaining transversality, it is usually very difficult
to construct probability-one homotopy methods that have feasible paths [25, 29].
Interestingly, probability-one methods usually view it as an advantage that their paths
go infeasible, since they “cut across” infeasible regions to get to the feasible solution.
However, since many practical problems involve functions that are not defined outside
the feasible region, it is important to have feasible algorithms available as well.

The first results presented in this section are tailored to particular choices of φ
and φµ, namely the Fischer–Burmeister NCP function (2.6) and the smoother (2.11).
More general results are given in Theorem 4.3 and Corollary 4.4. In describing these
results it will be useful to refer to the following index set:

Il,u = {i | −∞ < li < ui <∞} .
That is, Il,u is the set of indices for which both the lower and upper bounds are finite.

Theorem 4.1. Let φ be the positively oriented NCP function in (2.6), and let φ̃
be the smoother for φ in (2.11). Let ψ be defined by (2.8) with associated smoother ψ̃
defined by (2.12). Choose a ∈ int Bl,u. Let Fµ be defined by (2.14), where µ : [0, 1]→
R+ is a decreasing C2 function satisfying µ(1) = 0 and

µ(λ)2 ≤ 2
1− λ

λ
(ui − ai)(ui − li) for all i ∈ Il,u, λ ∈ (0, 1].(4.1)

Define ρa : [0, 1) × R
n → R

n by (3.2), and let γa be the connected component of
ρ−1
a ({0}) containing (0, a). Then γa is contained in [0, 1)× (intBl,u).

Proof. Let (λ̂, x̂) be an arbitrary point on γa. If λ̂ = 0, then x̂ = a ∈ intBl,u; so

assume 0 < λ̂ < 1. First suppose that x̂i ≤ li for some i. Then

0 = ρi(λ̂, x̂) = λ̂F
µ(λ̂)
i (x̂) + (1− λ̂)(x̂i − ai)

or

F
µ(λ̂)
i (x̂) = −1− λ̂

λ̂
(x̂i − ai) > 0,(4.2)

where the last inequality follows from x̂i ≤ li < ai, since a is interior to Bl,u. Also

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ), where ζ := −φ̃(ui − x̂i,−Gi(x̂), µ). Thus

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ) ≤ φ(x̂i − li, ζ) ≤ 0,

contradicting (4.2). It follows that every point (λ, x) on γa satisfies l < x.
Now suppose x̂i ≥ ui for some i. Note that this implies that ui is finite. In this

case (analogous to (4.2)),

F
µ(λ̂)
i (x̂) = −1− λ̂

λ̂
(x̂i − ai) ≤ −1− λ̂

λ̂
(ui − ai)(4.3)
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and ζ = −φ̃(ui − x̂i,−Gi(x̂), µ) > 0 since µ(λ) > 0 for λ < 1. If li = −∞, then

F
µ(λ̂)
i (x̂) = ζ > 0, contradicting (4.3). If li is finite, then from (6) and (11), for any

α, β ∈ R,

φ̃(α, β, µ)− φ(α, β) > − µ2

2
√

α2 + β2
.(4.4)

Then, using ζ > 0, x̂i ≥ ui, the monotonicity of φ̃, (4.4), and (4.1) give

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ)

≥ φ̃(ui − li, 0, µ)

> φ(ui − li, 0)− µ2

2
√

(ui − li)2

= − µ2

2(ui − li)

≥ −1− λ̂

λ̂
(ui − ai),

contradicting (4.3). Therefore every point (λ̂, x̂) on γa satisfies l < x̂ < u.
Note that if Il,u is empty, then the condition on µ(λ) in the above theorem is

achieved by any decreasing C2 function satisfying µ(1) = 0. If Il,u is not empty, the
condition is easily achieved by choosing a deep in the interior of the feasible region
Bl,u. For example, if ui − ai ≥ 1

2 (ui − li) for all i ∈ Il,u, then

µ(λ) =

[
min
i∈Il,u

(ui − li)

]
(1− λ)

suffices, since, for 0 < λ ≤ 1,

µ(λ)2 =

[
min
i∈Il,u

(ui − li)

]2
(1− λ)2

≤ 2

[
min
i∈Il,u

(ui − ai)(ui − li)

]
(1− λ)2

≤ 2

[
min
i∈Il,u

(ui − ai)(ui − li)

]
(1− λ)

λ
.

The above theorem has two important consequences. First, as mentioned earlier,
because γa always stays in the feasible region, it is possible to implement the algorithm
without ever having to evaluate functions outside of the feasible region. The second
consequence is the guarantee that when all bounds are finite, the zero curve γa is
bounded. The implications of this are stated in the following corollary.

Corollary 4.2. Let φ and φµ be defined by (2.6) and (2.11), respectively. As-
sume that all the bounds of the MCP are finite, choose κ ∈ (0,

√
2), and take

µ(λ) = κ
[
min
i

(ui − li)
]
(1− λ).(4.5)

Then for almost all a ∈ int Bl,u satisfying ui − ai ≥ κ2(ui − li)/2 for 1 ≤ i ≤ n and
ρa defined as in Theorem 4.1, there is a zero curve γa of ρa emanating from (0, a),
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along which ∇ρa(λ, x) has full rank, that remains in [0, 1)× (int Bl,u

)
and reaches a

point (1, x̄), where x̄ solves the MCP. γa does not intersect itself, is disjoint from any
other zeros of ρa, and has finite arc length if F is strongly regular at x̄.

Proof. The first four hypotheses of Proposition 2.2 are satisfied trivially. The
choice of φµ, µ(λ), and the restrictions on a are sufficient for carrying out the proof
of Theorem 4.1. Hence γa remains in [0, 1)× (int Bl,u

)
and is bounded, since Bl,u is

bounded.
The remainder of this section generalizes the above results to other choices of φ

and φµ.

Theorem 4.3. Let φ be a positively oriented NCP function, and let φ̃ be a
C2-smoother for φ, monotone in its first two variables, satisfying

φ(α, β) ≥ φ̃(α, β, µ) for all α, β ∈ R, µ > 0, and(4.6)

φ̃(α, 0, µ) > −cµp

α
for µ > 0, 0 < α <∞,(4.7)

where c and p are positive constants. Define ψ by (2.8) and the smoother ψ̃ by (2.12).
Choose a ∈ intBl,u, and let µ : [0, 1]→ R+ be a decreasing C2 function with µ(1) = 0
satisfying

µ(λ)p ≤ 1− λ

cλ
(ui − ai)(ui − li) for i ∈ Il,u, λ ∈ (0, 1].(4.8)

Define Fµ by (2.14), define ρa : [0, 1)×R
n → R

n by (3.2), and let γa be the connected
component of ρ−1

a ({0}) containing (0, a). Then γa is contained in [0, 1)× (intBl,u).
Proof. The proof is identical to the proof of Theorem 4.1 except that in place of

(4.4), the inequality (4.7) is used. Then by similar arguments using (4.8),

F
µ(λ̂)
i (x̂) > − cµp

ui − li

≥ −1− λ̂

λ̂
(ui − ai),

contradicting (4.3).
Corollary 4.4. Let φ, φ̃, ψ, ψ̃, and Fµ be defined as in Theorem 4.3. Assume

that all the bounds of the MCP are finite, choose κ ∈ (0, 1), and take

µ(λ) = κ

(
1− λ

c

)1/p [
min
i

(ui − li)
]2/p

.

Then for almost all a ∈ int Bl,u satisfying ui − ai ≥ κp(ui − li) for 1 ≤ i ≤ n and ρa
defined as in Theorem 4.1, there is a zero curve γa of ρa emanating from (0, a), along
which ∇ρa(λ, x) has full rank, that remains in [0, 1)× (int Bl,u

)
and reaches a point

(1, x̄), where x̄ solves the MCP. γa does not intersect itself, is disjoint from any other
zeros of ρa, and has finite arc length if F is strongly regular at x̄.

4.1. Ensuring feasibility. Since some MCP applications involve functions that
are not defined outside the feasible region, the algorithm includes an option to ensure
that all iterates are feasible. The following discussion assumes that the MCP algorithm
is based on the particular choices of φ and φµ given by (2.6) and (2.11).
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Feasibility of the path γa can be assured by Theorem 4.1, provided that the initial
point a and the function µ(λ) are chosen appropriately. The following procedure
achieves this while choosing the initial point a near the starting point x0 provided by
the user: Define a by

ai :=




mid(li + νi, x
0
i , ui − νi) if i ∈ Il,u,

max(li + ν, x0
i ) for ui =∞, li finite,

min(ui − ν, x0
i ) for li = −∞, ui finite,

x0
i if li = −∞, ui =∞,

(4.9)

where νi := κ2
min(ui − li)/2 for i ∈ Il,u, and κmin ∈ (0, 1) and ν > 0 are constants

that ensure the strict feasibility of a. Next, define µ(λ) by (3.1), with α given by

α =

{
min

(
c, κ

[
mini∈Il,u(ui − li)

])
if Il,u �= ∅,

c otherwise,
(4.10)

where c is some positive constant, and κ is defined as follows if Il,u �= ∅:

κ := min
i∈Il,u

√
2(ui − ai)

ui − li
.(4.11)

Note that if Il,u is not empty, this choice of a and κ ensures that κ ≥ κmin and
also that (4.1) is satisfied. Thus, the assumptions of Theorem 4.1 are satisfied, so
γa remains strictly within the feasible region. Feasibility is maintained by exploit-
ing STEPNX’s built-in logic for handling domain violations. Precisely, whenever a
STEPNX call to evaluate F (x) produces an infeasible point (either in the prediction
phase or the correction phase), that domain violation is reported to STEPNX. The
result is that STEPNX cuts the step size in half (after sanity checks to prevent an
infinite loop) and calculates a new predicted point. Since the zero curve is strictly
feasible for λ < 1, eventually (assuming adequate machine precision) a feasible step
will be taken.

Finally, to ensure feasibility of the iterates generated in the end game, the gen-
eralized damped Newton method in Figure 2.1 is modified according to the general
descent framework described in [13]. Specifically, the Newton direction dk is projected
back onto the feasible region to produce the modified direction

d̃k := πBl,u
(xk + dk)− xk.

Note that xk+ d̃k is feasible. Step 3 in Figure 2.1 is then replaced with the following.
Step 3′ If θ(xk + d̃k) ≤ (1− σ)θ(xk), set xk+1 = xk + d̃k. Otherwise, take a

projected gradient step as follows: Let mk be the smallest nonnega-
tive integer m ≤ mmax such that

θ(xk(αm)) ≤ θ(xk)− σ∇θ(xk)(xk − xk(αm)),(4.12)

where xk(t) := πBl,u
(xk − t∇θ(xk)). If no such mk exists, stop; the

algorithm failed. Otherwise, set xk+1 = xk(αk).
Note that for any feasible x∗, ‖xk + d̃k − x∗‖ ≤ ‖xk + dk − x∗‖. This ensures,

by [13, Theorem 4.5] and Theorem 2.1, that in a neighborhood of a strongly regular
solution x̄, the iterates generated by the feasible end game strategy described above
converge Q-superlinearly to x̄.

The projected gradient step in the above algorithm requires that θ be continuously
differentiable. This is true when φ is the Fischer–Burmeister function (2.6), but is
not true in general.
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5. Solver implementation and testing. The MCP algorithm described in the
previous section was implemented using the Fischer–Burmeister NCP function for φ
and the smoother defined by (2.11). The nonsmooth Newton method described in
Figure 2.1 was used for the Newton end game. To construct the homotopy mapping
defined in (3.2), the parameter a was constructed according to (4.9), with κmin := 0.1,
and ν = 0.0001. The function µ(λ) was defined by (4.10), with c = 1.0 and κ defined
by (4.11).

The algorithm was implemented in C with a link to the Fortran 90 subroutine
STEPNX from HOMPACK90. The code is interfaced with the GAMS modeling
language, enabling it to be tested using the MCPLIB suite of GAMS test problems
[11], [4]. All linear algebra was performed using the LUSOL sparse factorization
routine [15] from MINOS [18].

Computational results on the MCPLIB problems are shown in Table 5.1. Many
of the problems in this test library include multiple runs, which vary the starting
point x0 or other parameters defining the problem. All of the problems were run
using default parameter settings, and the number of successes and failures over all
runs are reported in the third column of Table 5.1. The notation m(n) means that
the problem included m+n runs, and for those there were m successes and n failures.
The default parameters were chosen as follows:

• Curve tracking parameters: abserr = relerr = 10−4. Maximum step size
hmax = 100, 000. The normal default for this parameter used by HOM-
PACK90 is hmax = 1. However, many problems in the MCPLIB test library
were poorly scaled, and so had very long zero curves. The large value of hmax
was therefore used to allow these curves to be tracked in a reasonable number
of iterations. All other curve tracking parameters were the defaults chosen
by STEPNX.
• Newton parameters (See Figure 2.1): α = σ = 0.5, mmax = 20. Maximum

number of Newton iterations = 30.
• Stopping criteria: An iterate xk was considered to solve the problem when
‖F (xk)‖∞

/ (
1 + ‖xk‖∞

)
< 10−6.

In cases where the problem was not solved by the default parameters, the algo-
rithm was restarted using more conservative parameters: abserr = relerr = 10−6,
dideal = 0.01, lideal = 0.01, rideal = 0.005, and hmax = max(.1, arclen/100),
where arclen is the arc length of the zero curve calculated using the default param-
eters. Results from these runs are shown in the fourth column of Table 5.1.

For the problems that were not solved by the conservative settings, the last column
of Table 5.1 describes the reason for failure. The notation “∞” indicates that the
zero curve appeared to go off to infinity. This behavior is common for problems that
do not satisfy the global monotonicity assumption. The notation “lost” indicates
that STEPNX was unable to continue tracking the zero curve. This is generally
due to a poorly conditioned Jacobian matrix. The notation “r” indicates failure due
to exceeding resource limits—either the limit of 5000 homotopy steps or 1000 CPU
seconds. Finally, the notation “v” indicates failure due to domain violations.

While the untuned algorithm with default parameters failed to solve a number of
problems that have been solved by other algorithms, it is encouraging to note that
it performed very well on some problems that are generally regarded as very hard.
Notable among these are the billups, pgvon105, pgvon106, and simple-ex problems.
Thus, the homotopy algorithm should be viewed as an important supplement to other
approaches.
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Table 5.1
MCPLIB test problems.

Problem Default settings Conservative settings
name Size Success(Failure) Success(Failure) Notes
badfree 5 1(0)
bert oc 5000 3(1) 3(1) r
bertsekas 15 5(1) 6(0)
billups 1 3(0)
bratu 5625 1(0)
choi 13 1(0)
colvdual 20 4(0)
colvnlp 15 6(0)
colvtemp 20 4(0)
cycle 1 1(0)
degen 2 1(0)
duopoly 63 0(1) 0(1) ∞
ehl k40 41 2(1) 3(0)
ehl k60 61 2(1) 3(0)
ehl k80 81 2(1) 3(0)
ehl kost 101 1(2) 1(2) lost
electric 158 0(1) 0(1) ∞
eta2100 296 0(1) 1(0)
explcp 16 1(0)
forcebsm 184 0(1) 0(1) ∞
forcedsa 186 0(1) 0(1) ∞
freebert 15 7(0)
gafni 5 3(0)
games 16 25(0)
hanskoop 14 10(0)
hydroc06 29 0(1) 0(1) ∞
hydroc20 99 0(1) 0(1) ∞
jel 6 2(0)
josephy 4 8(0)
kojshin 4 8(0)
lincont 419 0(1) 0(1) ∞
mathinum 3 6(0)
mathisum 4 7(0)
methan08 31 0(1) 0(1) ∞
multi-v 48 0(3) 0(3) lost
nash 10 4(0)
ne-hard 3 1(0)
obstacle 2500 7(1) 8(0)

It should also be noted that the algorithm solved several problems for which it
was not able to track the zero curve all the way to λ = 1. This occurred for the
bert oc, obstacle, and opt cont* problems. However, for these problems the Newton
end game was able to find the solution.

Except for the cases “v” and “r”, the failures are of two types: numerical in-
stability or unbounded homotopy zero curve γa. No attempt was made to scale,
reformulate, or precondition the test problems, or to tune the tracking parameters
for a particular problem. There is little doubt that a concerted pursuit of all of these
options would have removed all of the failures due to numerical instability. For in-
stance, failures denoted “lost” are cured by tracking with smaller error tolerances
and permitted steps. The “r” failures are removed by scaling or accepting the CPU
time required for long paths. “v” failures are cured by never permitting STEPNX to
generate infeasible points. These case-by-case “fixes” were intentionally not done to
illustrate the homotopy performance with fixed settings over a large class of problems.
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Table 5.1
MCPLIB test problems (cont.).

Problem Default settings Conservative settings
name Size Success(Failure) Success(Failure) Notes
olg 249 0(1) 0(1) lost
opt cont127 4096 1(0)
opt cont 288 1(0)
opt cont255 8192 1(0)
opt cont31 1024 1(0)
opt cont511 16384 1(0)
pgvon105 105 4(0)
pgvon106 106 5(1) 6(0)
pies 42 0(1) 1(0)
powell 16 5(1) 5(1) ∞
powell mcp 8 6(0)
qp 4 1(0)
romer 214 0(2) 0(2) lost
scarbsum 40 1(1) 2(0)
scarfanum 13 4(0)
scarfasum 14 1(3) 1(3) v
scarfbnum 39 0(2) 2(0)
scarfbsum 40 1(1) 2(0)
shubik 30 7(41) 13(35) r
simple-ex 17 1(0)
simple-red 13 1(0)
sppe 27 3(0)
tinloi 146 10(54) 64(0)
tobin 42 4(0)
trade12 600 1(1) 1(1) lost
trafelas 2376 0(2) 0(2) r

The unbounded zero curves are a more fundamental problem, indicating that the de-
fault homotopy map (3.2) is inadequate (which is no surprise, since in engineering
practice the default map is virtually never used). It is likely that replacing (3.2) by
λFµ(λ)(x) + (1 − λ)G(a, λ, x), where G is carefully crafted for each problem, could
remove the other failures. This remains a topic for future work.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Fig. 5.1. f(x) := arctan(100x)/π + sin(5x/(x2 + 0.2))/2 + 0.1x.
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Fig. 5.2. Merit function θ(x) := 0.5f(x)2.

Finally, to emphasize the robustness of the homotopy method, consider the one-
dimensional equation f(x) = 0, where

f(x) := arctan(100x)/π + sin(5x/(x2 + 0.2))/2 + 0.1x.

This function, shown in Figure 5.1, has a unique root at x = 0. For algorithms that
rely on descent of a merit function, this root is difficult to find because, as illustrated
in Figure 5.2, the global minimum of the merit function θ(x) := f(x)2/2 is in a very
narrow valley. Nevertheless, the proposed probability-one homotopy algorithm easily
found the root, tracking the homotopy zero curve in 32 steps from a starting point of
x0 = 0.5. As a comparison, PATH version 4.0 [12] was used from the same starting
point. After 449 iterations, PATH terminated at x = .24233, corresponding to a local
minimum of θ. This function θ(x), while artificial, is representative of merit functions
encountered in applications such as protein folding, analog circuit simulation, and
aircraft configuration design.

6. Conclusions. This paper describes a probability-one homotopy algorithm
for solving nonsmooth systems of equations and complementarity problems. These
methods are an extension to nonsmooth equations of the probability-one homotopy
methods described in [8], [27], [30], [31], and they are attractive because they are
able to solve a qualitatively different class of problems than methods relying on merit
functions. This claim is justified both theoretically and computationally. The key to
success of the method is the global monotonicity assumption. When this is satisfied,
the zero curve is known to lead to a solution. This result is formalized in Theo-
rem 3.3. In the case of complementarity problems, an easily satisfiable condition was
established, which ensures that the homotopy zero curve always remains strictly fea-
sible. This condition can always be enforced in the algorithm by choosing the initial
point a properly. A simple consequence of this result is that, for finitely bounded
mixed complementarity problems, the zero curve is bounded and, by Proposition 2.2,
is guaranteed to lead to a solution.

Topics for future research include the effect of the choice of the smoothing func-
tion ψµ used to define Fµ, and the choice of the start function G, in the general
homotopy map λFµ(λ)(x) + (1 − λ)G(a, λ, x). A systematic numerical comparison,
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for several different smoothing functions, of smoothing Newton methods, piecewise
smooth continuation, and the present probability-one homotopy algorithm also seems
worthwhile.
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Abstract. In recent years, a body of research into “condition numbers” for convex optimization
has been developed, aimed at capturing the intuitive notion of problem behavior. This research has
been shown to be relevant in studying the efficiency of algorithms (including interior-point algorithms)
for convex optimization as well as other behavioral characteristics of these problems such as problem
geometry, deformation under data perturbation, etc. This paper studies measures of conditioning
for a conic linear system of the form (FPd): Ax = b, x ∈ CX , whose data is d = (A, b). We present a
new measure of conditioning, denoted µd, and we show implications of µd for problem geometry and
algorithm complexity and demonstrate that the value of µ = µd is independent of the specific data
representation of (FPd). We then prove certain relations among a variety of condition measures for
(FPd), including µd, σd, χ̄d, and C(d). We discuss some drawbacks of using the condition number
C(d) as the sole measure of conditioning of a conic linear system, and we introduce the notion of a
“preconditioner” for (FPd), which results in an equivalent formulation (FPd̃) of (FPd) with a better

condition number C(d̃). We characterize the best such preconditioner and provide an algorithm and
complexity analysis for constructing an equivalent data instance d̃ whose condition number C(d̃) is
within a known factor of the best possible.
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1. Introduction. The subject of this paper is the further study and development
of a new measure of conditioning for the convex feasibility problem in conic linear form:

(FPd) : Ax = b, x ∈ CX ,(1)

where A ∈ L(X,Y ) is a linear operator between n- and m-dimensional spaces X and
Y , b ∈ Y , and CX ⊂ X is a closed convex cone, CX �= X. We denote the data for the
problem (FPd) by d = (A, b) (the cone CX is regarded as fixed and given) and the set
of solutions of (FPd) by

Xd
�
= {x ∈ X : Ax = b, x ∈ CX}.

The problem (FPd) is an important tool in mathematical programming. It provides
a very general format for studying the feasible regions of convex optimization prob-
lems (in fact, any convex feasibility problem can be modeled as a conic linear system)
and includes linear programming and semidefinite programming feasibility problems
as special cases. Over the last decade many important developments in linear pro-
gramming, most notably the theory of interior-point methods, have been extended
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to convex problems in this form. In recent years, largely prompted by these devel-
opments, researchers have developed new and powerful theories of condition numbers
for convex optimization, aimed at capturing the intuitive notion of problem behavior;
this body of research has been shown to be important in studying the efficiency of al-
gorithms, including interior-point algorithms, for convex optimization as well as other
behavioral characteristics of these problems such as problem geometry, deformation
under data perturbation, etc.

In this paper, we (i) develop a new measure of conditioning µd for (FPd) that
is invariant under equivalent data representations of the problem, (ii) establish the
connection of the condition numbers µd and C(d) to some of the measures of condi-
tioning arising in recent linear programming literature, and (iii) develop a theory of
“preconditioners” for improving the condition number of (FPd). We begin by briefly
reviewing developments in the theory of measures of conditioning in recent literature
as well as by providing an overview of the issues addressed in this paper.

The study of the computational complexity of linear programming originated with
the analysis of the simplex algorithm, which, while extremely efficient in practice,
was shown by Klee and Minty [15] to have worst-case complexity exponential in the
number of variables. Khachiyan [14] demonstrated that linear programming problems
were in fact polynomially solvable via the ellipsoid algorithm. Under the assumption
that the problem data is rational, the ellipsoid algorithm requires at most O(n2L)
iterations, where n is the number of variables and L is the problem size, which is
roughly equal to the number of bits required to represent the problem data. The
development of interior-point methods gave rise to algorithms that are efficient in
theory as well as in practice (unlike the ellipsoid algorithm). The first such algorithm,
developed by Karmarkar [13], has a complexity bound of O(nL) iterations, and the
algorithm introduced by Renegar [23] has a complexity bound of O(

√
nL) iterations,

which is currently the best known bound for linear programming. Many interior-point
algorithms have also proven to be extremely efficient computationally and are often
superior to the simplex algorithm.

Despite the importance of the above results, there are several serious drawbacks in
analyzing algorithm performance in the bit-complexity framework. One such draw-
back is the fact that computers use floating point arithmetic, rather than integer
arithmetic, in performing computations. As a result, two problems can have data
that are extremely close but have drastically different values of L. The analysis of the
performance of algorithms for solving these problems will yield different performance
estimates, yet actual performance of the algorithms will likely be similar due to their
similar numerical properties. See Wright [39] for a detailed discussion. A second
drawback is that the complexity analysis of linear programming algorithms in terms
of L largely relies on the combinatorial structure of the linear program; in particular,
it relies on the fact that the set of feasible solutions is a polyhedron and the solution
is attained at one of the extreme points of this polyhedron.

A relevant way to measure the intuitive notion of conditioning of a convex op-
timization (or feasibility) problem via the so-called distance to ill-posedness and the
closely related condition number was developed by Renegar in [24] in a more specific
setting, but then generalized more fully in [25] and in [26] to convex optimization
and feasibility problems in conic linear form. Recall that d = (A, b) is the data for
the problem (FPd) of (1). The condition number C(d) of (FPd) is essentially a scale-
invariant reciprocal of the smallest data perturbation ∆d = (∆A,∆b) for which the
system (FPd+∆d) changes its feasibility status. The problem (FPd) is well-conditioned
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to the extent that C(d) is small; when the problem (FPd) is “ill-posed” (i.e., arbitrar-
ily small perturbations of the data can yield both feasible and infeasible problem
instances), then C(d) = +∞.

One of the important issues addressed by researchers is the relationship between
the condition number C(d) and the geometry of the feasible region of (FPd). Rene-
gar [24] demonstrated that when a feasible instance of (FPd) is well-posed (C(d) <∞),
there exists a point x feasible for (FPd) which satisfies ‖x‖ ≤ C(d). Furthermore, it
is shown in [8] that under the above assumption the set of feasible solutions contains
a so-called “reliable” solution: A solution x̂ of (FPd) is reliable if, roughly speak-
ing, (i) the distance from x̂ to the boundary of the cone CX , dist(x̂, ∂CX), is not
excessively small; (ii) the norm of the solution ‖x̂‖ is not excessively large; and (iii)

the ratio ‖x̂‖
dist(x̂,∂CX) is not excessively large. The importance of reliable solutions is

motivated in part by considerations of finite-precision computations. The results in
[8] also demonstrate that when the system (FPd) is feasible, there exists a feasible
point x̂ such that

‖x̂‖
dist(x̂, ∂CX)

≤ c1C(d), dist(x̂, ∂CX) ≥ c2
1

C(d) , ‖x̂‖ ≤ c3C(d),(2)

where the constants c1, c2, and c3 depend only on the “width” of the cone CX (to
be formally defined shortly) and are independent of the data d of the problem (FPd)
(but may depend on n).

The condition number C(d) was also shown to be crucial for analyzing the com-
plexity of algorithms for solving (FPd). Renegar [26] presented an interior-point al-
gorithm for solving (FPd) with the complexity bound of O(

√
ϑ ln(ϑ C(d))) iterations,

where ϑ is the complexity parameter of a self-concordant barrier for the cone CX .
In [9] it was shown that a suitably modified version of the ellipsoid algorithm will
solve (FPd) in O(n2 ln(C(d))) iterations. (The constants in both complexity bounds
depend on the width of CX .) In [4], a generalization of a row-action algorithm is
shown to compute a reliable solution of (FPd) in the sense of (2). The complexity of
this algorithm is also closely tied to C(d).

The recent literature has explored many other important properties of the prob-
lem (FPd) tied to the distance to ill-posedness and the condition number C(d). Rene-
gar [24] studied the relation of C(d) to sensitivity of solutions of (FPd) under per-
turbations in the problem data. (This issue was also investigated earlier by Robin-
son [28].) Peña and Renegar [22] discussed the role of C(d) in the complexity of
computing approximate solutions of (FPd). Freund and Vera [7] and Peña [20] ad-
dressed the theoretical complexity and practical aspects of computing the distance
to ill-posedness. Vera [38] considered the numerical properties of an interior-point
method for solving (FPd) (and, in fact, a more general problem of optimizing a lin-
ear function over the feasible region of (FPd)) in the case when (FPd) is a linear
programming problem. He considered the algorithm in the floating point arithmetic
model, and demonstrated that the algorithm will approximately solve the optimiza-
tion problem in polynomial time, while requiring roughly O(ln(C(d))) significant digits
of precision for computation. For additional discussion of ill-posedness and the condi-
tion number, see Filipowski [6, 5], Nunez and Freund [19], Nunez [18], Peña [21, 20],
and Vera [35, 36, 37].

As we hope the above discussion conveys, the condition number C(d) is a rele-
vant and important measure of conditioning of the problem (FPd). Note that when
(FPd) is in fact a linear programming feasibility problem, C(d) provides a measure of
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conditioning that, unlike L, does not rely on the assumption that the problem data
is rational, and is relevant in the floating point model of computation.

Nevertheless, there are some potential drawbacks in using C(d) as a sole measure
of conditioning of the problem (FPd). To illustrate this point, note that problem
(FPd) of (1) can be interpreted as the problem of finding a point x in the intersection
of the cone CX with an affine subspace A ⊂ X, defined as

A �
= {x : Ax = b} = {x : x = x0 + xN , xN ∈ Null(A)},

where x0 ∈ X is an arbitrary point satisfying Ax0 = b, and Null(A) is the null space of
A. Notice that the description of the affine subspace A by the data instance d = (A, b)
is not unique. It easy to find an equivalent data instance d̃ = (Ã, b̃) such that

{x : Ãx = b̃} = {x : Ax = b} = A

(take, for example, b̃ = Bb and Ã = BA, where B is any nonsingular linear operator
B : Y → Y ). Then the problem

(FPd̃) : Ãx = b̃, x ∈ CX
is equivalent to problem (FPd) in the sense that their feasible regions are identical;
we can think of the systems (FPd) and (FPd̃) as different but equivalent formulations
of the same feasibility problem

(FP): find x ∈ A ∩ CX .

Since the condition number C(d) is, in general, different from C(d̃), analyzing many
of the properties of the problem (FP) above in terms of the condition number will
lead to different results, depending on which formulation, (FPd) or (FPd̃), is being
used. This observation is somewhat disconcerting, since many of these properties are
of purely geometric nature. For example, the existence of a solution of small norm
and the existence of a reliable solution depend only on the geometry of the feasible
region, i.e., of the set A ∩ CX , and do not depend on a specific data instance d used
to “represent” the affine space A.

An interesting research direction, therefore, is the development of relevant mea-
sures of conditioning of the problem (FPd) that depend on the affine space A rather
than on a particular data instance d used to represent it and that allow us to analyze
some of the properties of the problem independently of the data used to represent
the problem. The recent literature contains some results on developing such measures
when (FPd) is a linear programming feasibility problem. In particular, two condition
measures, χ̄d and σd, were used in the analysis of interior-point algorithms for linear
programming (Vavasis and Ye [32, 33, 34]). These measures, discussed in detail in sec-
tion 4, provide a new perspective on the analysis of linear programming problems; for
example, like the condition number C(d), they do not require the data for the problem
to be rational. Also, they have the desired property that they are independent of the
specific data instance d used to describe the problem and can be defined considering
only the affine subspace A. Further analysis of these measures in the setting of linear
programming feasibility problems can be found in Ho [11], Todd, Tunçel, and Ye [29],
and Tunçel [30].

In this paper we define a new measure of conditioning, µd, for feasible instances
of the problem (FPd) of (1), which is independent of the specific data representation
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of the problem. We explore the relationship between µd and measures χ̄d, σd, and
C(d). (In particular, we demonstrate that the measure σd is directly related to µd
in the special case of linear programming.) We show that µd ≤ C(d), i.e., µd is
less conservative, and that for any data instance d̃ equivalent to d, µd ≤ C(d̃). We
also demonstrate that many important properties of the system (FPd) previously
analyzed in terms of C(d) can be analyzed through µd (independently of the data
representation).

On the other hand, some properties of (FPd) are not purely geometric and depend
on the data d. Therefore, it might be beneficial, given a data instance d, to construct
a data instance d̃ which is equivalent to d but is better conditioned in the sense
that C(d̃) < C(d). We develop a characterization of all equivalent data instances d̃
by introducing the concept of a preconditioner and provide an upper bound on the
condition number C(d̃) of the “best” equivalent data instance d̃. We also analyze
the complexity of computing an equivalent data instance whose resulting condition
number is within a known factor of this bound. To this end, we construct an algorithm
for computing such a data instance and analyze its complexity.

An outline of the paper is as follows. Section 2 contains notation, definitions,
assumptions, and preliminary results. In section 3 we introduce the new measure of
conditioning µd for (FPd), establish several results relating µd to geometric properties
of the feasible region of (FPd), and analyze the performance of several algorithms for
solving (FPd) in terms of µd. In section 4 we study the relationship between µd and
other measures of conditioning, completely characterizing the relationship between
C(d) and µd, as well as σd and χ̄d, in the linear programming setting. In section 5,
we develop the notion of a preconditioner for the problem (FPd), establish an upper
bound on the condition number C(d̃) of the best equivalent data instance d̃, and
construct and analyze an algorithm for computing an equivalent data instance whose
condition number is within a known factor of this bound. Section 6 contains some
final conclusions and indicates potential topics of future research.

2. Preliminaries. We work in the setup of finite-dimensional normed linear
vector spaces. Both X and Y are normed linear spaces of finite dimension n and m,
respectively, endowed with norms ‖x‖ for x ∈ X and ‖y‖ for y ∈ Y . For x̄ ∈ X, let
B(x̄, r) denote the ball centered at x̄ with radius r, i.e., B(x̄, r) = {x ∈ X : ‖x− x̄‖ ≤
r}, and define B(ȳ, r) analogously for ȳ ∈ Y . We denote the set of real numbers by
� and the set of nonnegative real numbers by �+. The set of real k-by-k symmetric
matrices is denoted by Sk×k. The set Sk×k is a closed linear space of dimension

n = k(k+1)
2 . We denote the set of symmetric positive semidefinite k-by-k matrices

by Sk×k+ . Sk×k+ is a closed convex cone in Sk×k. The interior of the cone Sk×k+ is

precisely the set of k-by-k positive definite matrices, and is denoted by Sk×k++ .
We associate with X and Y the dual spaces X∗ and Y ∗ of linear functionals

defined on X and Y , respectively. Let c ∈ X∗. In order to maintain consistency with
standard linear algebra notation in mathematical programming, we will denote the
linear function c(x) by ctx. Similarly, for f ∈ Y ∗ we denote f(y) by f ty. We denote
A(x) by Ax, and we denote the dual operator of A by At : Y ∗ → X∗.

The dual norm induced on c ∈ X∗ is defined as

‖c‖∗ �
= max{ctx : x ∈ X, ‖x‖ ≤ 1},(3)

and the Hölder inequality ctx ≤ ‖c‖∗‖x‖ follows easily from this definition. The dual
norm induced on f ∈ Y ∗ is defined similarly.
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We now present the development of the concepts of condition numbers and data
perturbation for (FPd) in detail. Recall that d = (A, b) is the data for the problem
(FPd). Let

D = {d = (A, b) : A ∈ L(X,Y ), b ∈ Y }

denote the space of all data d = (A, b) for (FPd). For d = (A, b) ∈ D we define the
norm on the Cartesian product L(X,Y )× Y to be

‖d‖ = ‖(A, b)‖ = max{‖A‖, ‖b‖},

where ‖b‖ is the norm specified for Y and ‖A‖ is the operator norm, namely

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1}.

We define

F = {(A, b) ∈ D : there exists x satisfying Ax = b, x ∈ CX}

to be the set of data instances d for which (FPd) is feasible. Its complement is denoted
by FC , the set of data instances for which (FPd) is infeasible. The boundary of F
and of FC is precisely the set B = ∂F = ∂FC = cl(F)∩ cl(FC), where ∂S denotes the
boundary and cl(S) denotes the closure of a set S. Note that if d = (A, b) ∈ B, then
(FPd) is ill-posed in the sense that arbitrarily small changes in the data d = (A, b)
can yield instances of (FPd) that are feasible as well as instances of (FPd) that are
infeasible. Also, note that B �= ∅, since d = 0 ∈ B.

For a data instance d = (A, b) ∈ D, the distance to ill-posedness is defined to be

ρ(d)
�
= inf{‖∆d‖ : d+ ∆d ∈ B} =

{
inf{‖d− d̄‖ : d̄ ∈ FC} if d ∈ F ,
inf{‖d− d̄‖ : d̄ ∈ F} if d ∈ FC ;

(4)

see Renegar [24, 25, 26]. The condition number C(d) of the data instance d is defined
to be

C(d) =
‖d‖
ρ(d)

(5)

when ρ(d) > 0, and C(d) = ∞ when ρ(d) = 0. The condition number C(d) is a
measure of the relative conditioning of the data instance d and can be viewed as a
scale-invariant reciprocal of ρ(d), as it is elementary to demonstrate that C(d) = C(αd)
for any positive scalar α. It is easy to show that ρ(0) = 0, and hence C(d) ≥ 1.

If C is a convex cone in X, then the dual cone of C, denoted by C∗, is defined by

C∗ = {z ∈ X∗ : ztx ≥ 0 for any x ∈ C}.(6)

We will say that a cone C is regular if C is a closed convex cone, has a nonempty
interior, and is pointed (i.e., contains no line). If C is a closed convex cone, then C is
regular if and only if C∗ is regular.

We will use the following definition of the width of a regular cone C.
Definition 1. If C is a regular cone in X, the width of C is given by

τC
�
= maxx,r

{
r

‖x‖ : B(x, r) ⊂ C

}
.
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Note that τC ∈ (0, 1], since C is pointed and has a nonempty interior, and τC is
attained for some (x̄, r̄) as well as along the ray (αx̄, αr̄) for all α > 0. By choosing
the value of α appropriately, we can find u ∈ C such that

‖u‖ = 1 and τC is attained for (x, r) = (u, τC).(7)

Definition 2. If C is a regular cone in X, define the norm approximation
coefficient by

δC
�
= dist(0, ∂conv(C(1),−C(1)),(8)

where C(1)
�
= {x ∈ C : ‖x‖ ≤ 1}, and ∂conv(C(1),−C(1)) is the boundary of the

convex hull of the set C(1) ∪ (−C(1)).
The norm approximation coefficient δC measures the extent to which the unit ball

B(0, 1) ⊂ X can be approximated by the set conv(C(1),−C(1)). As a consequence,
it measures the extent to which the norm of a linear operator can be approximated
over the set C(1).

Proposition 3. Suppose A ∈ L(X,Y ). Then ‖A‖ ≤ 1
δC

max{‖Ax‖ : x ∈ C(1)}.
Lemma 4. Suppose C is a regular cone with width τC . Then

δC ≥ τC
1 + τC

≥ τC
2
.(9)

Proof. Let x̄ ∈ X be an arbitrary vector satisfying ‖x̄‖ ≤ τC
1+τC

. To establish the
lemma we need to show that x̄ ∈ conv(C(1),−C(1)).

Let x = x̄(1+τC)
τC

. If u is as in (7), then u+τCx ∈ C and u−τCx ∈ C. Furthermore,

u+ τCx

1 + τC
∈ C(1) and

−u+ τCx

1 + τC
∈ −C(1),

and so

x̄ =
τC

1 + τC
x =

1

2

(
u+ τCx

1 + τC

)
+

1

2

(−u+ τCx

1 + τC

)
∈ conv(C(1),−C(1)).

We will assume throughout this paper that the system (FPd) of (1) is feasible.
At this point we make no further assumptions on the cone CX and the norms on the
spaces X and Y unless stated otherwise. (We will make some additional assumptions
in sections 4 and 5.)

When (FPd) is feasible, ρ(d) can be expressed via the following characterization:

ρ(d) = max{r : B(0, r) ⊆ Hd},(10)

where

Hd �
= {bθ −Ax : θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1} ⊂ Y.(11)

Note that 0 ∈ Hd whenever (FPd) is feasible, and ρ(d) > 0 precisely when 0 ∈ intHd.
This interpretation, presented by Renegar in [26], will serve as an important tool in
developing further understanding of the properties of the system (FPd).

The next result follows from the definition of Hd and Proposition 3.
Corollary 5. Suppose that d = (A, b) ∈ D and CX is regular. Then ‖d‖ ≤

1
δCX

max{‖h‖ : h ∈ Hd}.
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3. The symmetry measure µd. In this section we define a new measure of
conditioning of (FPd), µd, which we refer to as the “symmetry measure,” and we
establish some of its properties relevant in the analysis of (FPd). We begin by recalling
the symmetry of a set with respect to a point, in the following definition.

Definition 6. Let D ⊂ Y be a bounded convex set. For y ∈ intD we define
sym(D, y) to be the symmetry of D about y, i.e.,

sym(D, y)
�
= sup{t | y + v ∈ D ⇒ y − tv ∈ D}.

If y ∈ ∂D, we define sym(D, y) = 0.

This definition of symmetry is equivalent to that given in [26]. Observe that
sym(D, y) ∈ [0, 1], with sym(D, y) = 1 if D is perfectly symmetric about y, and
sym(D, y) = 0 precisely when y ∈ ∂D. Moreover, the definition of sym(D, y) is
independent of the norm on the space Y .

Lemma 7. Suppose that D is a compact convex set with a nonempty interior,
and let y ∈ intD. Then there exists an extreme point w of D such that sym(D, y) =

symw(D, y)
�
= sup{t | y − t(w − y) ∈ D}.

Proof. Define f(w) = symw(D, y) = sup{t | y − t(w − y) ∈ D}. It follows that
f(w) is a quasi-concave function on D. This implies that the minimum of f(w) is
attained at an extreme point of D; see, for example, section 3.5.3 of [1].

To define the symmetry measure of the problem (FPd) recall that if (FPd) is
feasible, then 0 ∈ Hd, where Hd is defined in (11). Hence, the following quantity is
well-defined.

Definition 8. Suppose the system (FPd) is feasible. We define

µd
�
=

1

sym(Hd, 0)
(12)

when sym(Hd, 0) > 0, and µd = +∞ when sym(Hd, 0) = 0.

From the above definition, µd ≥ 1 and µd = +∞ precisely when 0 ∈ ∂Hd, i.e.,
precisely when (FPd) is ill-posed.

3.1. The symmetry measure and geometric properties of solutions of
(FPd). We now establish two results that characterize geometric properties of the
feasible region Xd of the system (FPd) in terms of µd. Theorem 9 establishes a bound
on the size of a solution of (FPd) in terms of µd; this result is similar to the bound in
terms of the condition number C(d) in [24]. Theorem 10 demonstrates existence of a
reliable solution of (FPd). This is similar to the result (2) presented in [8]; however,
here the bounds on the size of the solution, its distance to the boundary of the cone
CX , and the ratio of the above quantities are established in terms of µd rather than
C(d). Also, unlike for the condition number C(d), we can establish a converse result
for µd; namely, if the feasible region possesses nice geometry, i.e., contains a reliable
solution, then µd can be nicely bounded by a function of the parameters associated
with the reliable solution. This result is proven in Theorem 11.

Theorem 9. Suppose µd <∞. Then there exists x ∈ Xd such that ‖x‖ ≤ µd.

Proof. By the definition of µd, − 1
µd
b = −sym(Hd, 0)b ∈ Hd, since b ∈ Hd.

Therefore there exists (θ, x) satisfying θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1, and bθ − Ax =
− 1
µd
b. Let x̂ = x/(θ + 1

µd
). Then x̂ ∈ Xd and ‖x̂‖ = ‖x‖/(θ + 1

µd
) ≤ µd.
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Theorem 10. Suppose CX is a regular cone with width τ , and that µd < ∞.
Then there exist x̂ and r > 0 such that

1. x̂ ∈ Xd,
2. ‖x̂‖ ≤ 2µd + 1,
3. dist(x̂, ∂CX) ≥ r ≥ τ

2µd+1 ,

4. ‖x̂‖
r ≤ 2µd+1

τ .
Proof. Let u be as in (7). Then 1

2b − 1
2Au ∈ Hd. From the definition of µd

we conclude that − 1
µd

(
1
2b− 1

2Au
) ∈ Hd, whereby there exists (θ̄, x̄) ∈ �+ × CX ,

|θ̄|+ ‖x̄‖ ≤ 1, satisfying bθ̄ −Ax̄ = − 1
µd

( 1
2b− 1

2Au).

Let x̂ = 2µdx̄+u
2µdθ̄+1

. It is easy to verify that x̂ ∈ Xd, so that condition 1 of the

theorem is satisfied. Moreover, ‖x̂‖ = ‖2µdx̄+u‖
2µdθ̄+1

≤ 2µd + 1, establishing condition 2.

Next, let r = τ
2µdθ̄+1

. Since B(u, τ) ⊂ CX and x̄ ∈ CX , we conclude that

B (u+ 2µdx̄, τ) ⊂ CX , and therefore B(u+2µdx̄
2µdθ̄+1

, τ
2µdθ̄+1

) = B (x̂, r) ⊂ CX . Also, since

θ̄ ≤ 1, r ≥ τ
2µd+1 , establishing condition 3. Finally,

‖x̂‖
r

=
‖2µdx̄+ u‖
2µdθ̄ + 1

· 2µdθ̄ + 1

τ
≤ 2µd + 1

τ
,

implying condition 4 and concluding the proof of the theorem.
We conclude from Theorems 9 and 10 that, much like for the condition number

C(d), if the symmetry measure µd is small, then the feasible region Xd possesses nice
geometry. We now establish a converse result.

Theorem 11. Suppose CX is a regular cone and there exists x̂ ∈ Xd and r > 0

such that dist(x̂, ∂CX) ≥ r. Let γ = max{‖x̂‖, 1
r ,

‖x̂‖
r }. Then µd ≤ 1 + 2γ.

Proof. Let δ = ‖x̂‖+ 1 and π = min{r, 1}. We first show that sym(Hd, 0) ≥ π
δ+π .

Let y ∈ Hd. From the definition of Hd, y = bθ̄ − Ax̄ for some (θ̄, x̄) ∈ �+ × CX ,
|θ̄|+ ‖x̄‖ ≤ 1. Therefore

π

δ + π
(−y) =

π

δ + π
(−bθ̄ +Ax̄) +

1

δ + π
(b−Ax̂) = b

(−πθ̄ + 1

δ + π

)
−A

(−πx̄+ x̂

δ + π

)
.

Let θ̌ = −πθ̄+1
δ+π and x̌ = −πx̄+x̂

δ+π . Since π ≤ 1 and θ̄ ≤ 1, we have θ̌ ≥ 0. Moreover, since

π ≤ r and ‖x̄‖ ≤ 1, we have x̌ ∈ CX . Finally, |θ̌|+ ‖x̌‖ ≤ 1
δ+π (1 + π‖x̄‖+ ‖x̂‖) ≤ 1,

and therefore − π
δ+πy ∈ Hd for an arbitrary y ∈ Hd, establishing that sym(Hd, 0) ≥

π
δ+π . Hence,

µd =
1

sym(Hd, 0)
≤ δ + π

π
= 1+

1

min{r, 1} +
‖x̂‖

min{r, 1} ≤ 1+max{γ, 1}+γ ≤ 1+2γ.

The last inequality follows from the observation that r ≤ ‖x̂‖ (since CX is pointed

and thus ‖x̂‖ ≥ dist(x̂, ∂CX) ≥ r) and thus γ ≥ ‖x̂‖
r ≥ 1.

The result in Theorem 11 is quite specific to µd; no such result is possible for the
condition number C(d). In fact, the example following Remark 19 in section 4 shows
that C(d) can be arbitrarily large even when γ is fixed.

3.2. The symmetry measure and the complexity of computing a solu-
tion of (FPd). In this subsection we present complexity bounds for solving (FPd)
via an interior-point algorithm and via the ellipsoid algorithm, and we show that the
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complexity of solving (FPd) depends on ln(µd) as well as on other naturally appear-
ing quantities. For this subsection, we assume that the space X is an n-dimensional
Euclidean space with Euclidean norm ‖x‖ = ‖x‖2 =

√
xtx for x ∈ X. We also assume

that CX is a regular cone with width τ and that the vector u of (7) is known.
When the cone CX is represented as the closure of the domain of a self-concordant

barrier function, a solution of (FPd) can be found using the barrier method devel-
oped by Renegar, based on the theory of self-concordant functions of Nesterov and
Nemirovskii [17]. Below we briefly review the barrier method as articulated in [27]
and then state the main complexity result.

The version of the barrier method that we will use is designed to approximately
solve a problem of the form

z∗ = inf{ctω : ω ∈ S ∩ L},(13)

where S is a bounded set whose interior is convex and is the domain of a self-
concordant barrier function f(ω) with complexity parameter ϑf (see [17] and [27]
for details), and L is a closed subspace (or a translate of a closed subspace). The
barrier method takes as input a point ω′ ∈ intS ∩ L, and proceeds by approximately
following the central path, i.e., the sequence of solutions of the problems

z(η) = inf
ω∈L

η · ctω + f(ω),

where η > 0 is the barrier parameter. In particular, after the initialization stage, the
method generates an increasing sequence of barrier parameters ηk > 0 and iterates
ωk ∈ intS ∩ L that satisfy

ctωk − 6ϑf
5ηk
≤ z∗ ≤ ctωk, k = 0, 1, 2, . . . .(14)

It follows from the analysis in [27] that if the barrier method is initialized at the point
ω′ ∈ intS ∩ L, then it will take at most

O

(√
ϑf ln

(
ϑf (z

∗ − z∗)
sym(S ∩ L, ω′)

· η̄
))

(15)

iterations to bring the value of the barrier parameter η above the threshold of η̄ ≥ η0

while maintaining (14). (Here, z∗ = sup{ctω : ω ∈ S ∩ L}.) This implies the main
convergence result for the barrier method, which follows.

Theorem 12 (see [27, Theorem 2.4.10]). Assume that S is a bounded set whose
interior is convex and is the domain of a self-concordant barrier function f(ω) with
complexity parameter ϑf , and that L is a closed subspace (or a translate of a closed
subspace). Assume that the barrier method is initialized at a point ω′ ∈ intS ∩ L. If
0 < ε < 1, then within

O

(√
ϑf ln

(
ϑf

ε sym(S ∩ L, ω′)

))

iterations of the method, all points ω computed thereafter satisfy ω ∈ intS ∩ L and

ctω − z∗
z∗ − z∗

≤ ε.

In order to find a solution of (FPd) we will construct a closely related problem of
the form (13) and apply the barrier method to this problem. This construction was
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carried out in [26], where the complexity of solving (FPd) was analyzed in terms of
C(d). The optimization problem we consider is

z∗ = infθ,x,t t
subject to (s.t.) bθ −Ax = t( 1

2b− 1
2Au),

x ∈ intCX ,
‖x‖ < 1,
0 < θ < 1,
−1 < t < 2,

(16)

where u is chosen as in (7). We will use the barrier method to find a feasible solution

(θ̂, x̂, t̂) of (16) such that t̂ ≤ 0, and use the transformation x = x̂− 1
2 t̂u/(θ̂ − 1

2 t̂) to
obtain a solution of (FPd).

Let z∗ be the optimal value of the problem obtained from (16) by replacing
“inf” with “sup”. Let f̃(x) be the self-concordant barrier function defined on intCX

and let ϑf̃ be the complexity parameter of f̃(x). Then the set S
�
= {(θ, x, t) : x ∈

intCX , ‖x‖ < 1, 0 < θ < 1, −1 < t < 2} is convex and bounded, and is the domain
of the self-concordant barrier function

f(ω) = f(θ, x, t) = f̃(x)− ln(1− ‖x‖2)− ln θ − ln(1− θ)− ln(t+ 1)− ln(2− t)

with complexity parameter ϑf ≤ ϑf̃ + 5. (See, for example, [26] or [27] for de-

tails.) If we define L
�
= {(θ, x, t) : bθ − Ax = t( 1

2b − 1
2Au)}, then problem (16)

is of the form (13), and we can apply the barrier method initialized at the point
ω′ = (θ′, x′, t′) = ( 1

2 ,
1
2u, 1). The following proposition provides bounds on all of

the parameters necessary in the analysis of the complexity of the barrier method via
Theorem 12.

Proposition 13. z∗ ≤ 2, −1 ≤ z∗ ≤ − 1
µd
, sym(S ∩ L, ω′) ≥ 1

12τ .
Proof. The upper bound on z∗ and the lower bound on z∗ follow from the last

constraint of (16).
Let y = 1

2b− 1
2Au ∈ Hd. From the definition of µd we conclude that − y

µd
∈ Hd, so

there exists (θ, x) such that θ ≥ 0, x ∈ CX , |θ|+‖x‖ ≤ 1, bθ−Ax = − 1
µd

( 1
2b− 1

2Au).

Therefore (θ, x,−1/µd) is in the closure of the feasible set of (16), and so z∗ ≤ − 1
µd

.
To establish the last statement of the proposition, we appeal to Proposition 3.3

of Renegar [26], where it is shown that ω′ defined above satisfies

sym(S ∩ L, ω′) ≥ 1

4
sym

(
CX(1),

1

2
u

)
, where CX(1) = {x : x ∈ CX , ‖x‖ ≤ 1}.

Since B
(

1
2u,

1
2τ
) ⊂ CX(1), it is easy to verify that sym

(
CX(1), 1

2u
) ≥ τ

3 , establishing
the proposition.

Theorem 14. Suppose that the barrier method for problem (16) is initialized at
the point ( 1

2 ,
1
2u, 1). Then within

O

(√
ϑf̃ ln

(
ϑf̃µd

τ

))

iterations, any iterate (θ̂, x̂, t̂) of the algorithm will satisfy t̂ ≤ 0, and therefore x =

x̂− 1
2 t̂u/(θ̂ − 1

2 t̂) is a solution of (FPd).
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Proof. First note that for any iterate (θ̂, x̂, t̂) of the algorithm, θ̂ > 0 and x̂ ∈
intCX . Therefore, it is easy to check that when t̂ ≤ 0, x is well-defined and is a
solution of (FPd).

It remains to verify the number of iterations needed to generate an iterate such
that t̂ ≤ 0. Let ε = 1

3µd
. Applying Theorem 12 and substituting the bounds of

Proposition 13 into the complexity bound, we conclude that after at most

O

(√
ϑf ln

(
ϑf

ε sym(S ∩ L, ω′)

))
= O

(√
ϑf̃ ln

(
ϑf̃µd

τ

))

iterations of the barrier method, any iterate (θ̂, x̂, t̂) will satisfy

t̂ ≤ ε(z∗ − z∗) + z∗ ≤ 1

3µd
(2− (−1))− 1

µd
= 0,

from which the theorem follows.
When the cone CX is represented via a separation oracle, a solution of (FPd) can

be found using a version of the ellipsoid algorithm. (See, for example, [2] and [10].)
Below is a generic theorem for analyzing the ellipsoid algorithm for finding a point ω
in a convex set S ⊂ �k given by a separation oracle.

Theorem 15. Suppose that a convex set S ⊂ �k given by a separation oracle
contains a Euclidean ball of radius r centered at some point ω̂, and that an upper bound
R on the quantity (‖ω̂‖2 + r) is known. Then if the ellipsoid algorithm is initiated
with a Euclidean ball of radius R centered at ω0 = 0, the algorithm will compute a
point in S in at most

�2k(k + 1) ln(R/r)�
iterations, where each iteration must perform a feasibility cut on S.

The main problem with trying to apply Theorem 15 directly to (FPd) is that
one needs to know the upper bound R in advance. Because such an upper bound is
generically unknown in advance for (FPd), we approach solving (FPd) by considering
finding a point in the following set:

S
�
= {(θ, x) : θ > 0, x ∈ CX , bθ −Ax = 0},(17)

which is a convex set in the linear subspace T
�
= {(θ, x) : bθ − Ax = 0} of dimension

k = n + 1 −m. Observe that it is easy to construct a separation oracle for S in the
linear subspace T , provided that one has a separation oracle for CX . We will use the
ellipsoid algorithm to find a point (θ̂, x̂) ∈ S (working in the linear subspace T ), and
we use the obvious transformation x = x̂

θ̂
to transform the output of the algorithm

into a solution of (FPd).

Proposition 16. Let S be as in (17). Then there exists a point (θ̂, x̂) ∈ S and
r̂ > 0 such that

B((θ̂, x̂), r̂) ∩ {(θ, x) : bθ −Ax = 0} ⊂ S, ‖(θ̂, x̂)‖+ r̂ ≤ 3, and r̂ ≥ τ

2µd
.

Proof. Let y = 1
2b − 1

2Au ∈ Hd. From the definition of µd we conclude that
− y
µd
∈ Hd, whereby there exists (θ̄, x̄) such that

|θ̄|+ ‖x̄‖ ≤ 1, θ̄ ≥ 0, x̄ ∈ CX , bθ̄ −Ax̄ = − 1

µd

(
1

2
b− 1

2
Au

)
.
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Let ω̂ = (θ̂, x̂)
�
= (θ̄ + 1

2µd
, x̄ + 1

2µd
u) and r̂ = τ

2µd
. Then ω̂ ∈ S, B(ω̂, r̂) ∩ {(θ, x) :

bθ −Ax = 0} ⊂ S and

‖ω̂‖2+r̂ =

√
(θ̄ +

1

2µd
)2 + ‖x̄+

1

2µd
u‖2+ τ

2µd
≤ |θ̂|+‖x̂‖+ 1

2µd
+
‖u‖
2µd

+
τ

2µd
≤ 3.

The following theorem is an immediate consequence of Theorem 15 and Proposi-
tion 16.

Theorem 17. Suppose that the ellipsoid algorithm is applied in the linear sub-
space T to find a point in the set S, initialized with the Euclidean ball (in the space
T ) of radius R = 3 centered at (θ0, x0) = (0, 0). Then the ellipsoid algorithm will find
a point in S (and hence, by transformation, a solution of (FPd)) in at most⌈

2(n−m+ 1)(n−m+ 2) ln

(
6µd
τ

)⌉

iterations.

4. Symmetry measure and other measures of conditioning for (FPd).

4.1. Symmetry measure and the condition number. In this subsection we
establish a relationship between µd and C(d). As demonstrated in Theorem 18, if
an instance of (FPd) is “well-conditioned” in the sense that C(d) is small, then µd
is also small. This relationship, however, is one-sided, since µd may carry no upper-
bound information about C(d). In particular, in Remark 19 we exhibit a sequence of
instances of (FPd) with C(d) becoming arbitrarily large while µd remains fixed.

Theorem 18. µd ≤ C(d).
Proof. If ρ(d) = 0, then C(d) = ∞, and the statement of the theorem holds

trivially. Suppose ρ(d) > 0. Since B(0, ρ(d)) ⊆ Hd, we conclude that for any v ∈ Hd,
−ρ(d)‖v‖ v ∈ Hd. Therefore

1

µd
= sym(Hd, 0) ≥ inf

v∈Hd

ρ(d)

‖v‖ ≥
ρ(d)

‖d‖ =
1

C(d) ,

proving the theorem.
Remark 19. µd may carry no upper-bound information about C(d).
To see why this is true, consider the parametric family of problems (FPdε), where

dε = (Aε, b):

b =

[
0
0

]
and Aε =

[
1 1 −1 −1
ε −ε ε −ε

]
,

CX = �4
+ and ‖x‖ �

= ‖x‖1 for x ∈ X, and ‖y‖ = ‖y‖2 for y ∈ Y . Consider the values
of the parameter ε ∈ (0, 1]. The set Hdε is symmetric about 0, so µdε = 1 for any
value of ε. On the other hand, ρ(dε) = ε and ‖dε‖ =

√
1 + ε2. Therefore,

C(dε) =

√
1 + ε2

ε
≥ 1

ε
,

and so C(d) can be arbitrarily large while µd remains constant. Furthermore, letting
x̂ = (1, 1, 1, 1) and r = 1, we see that γ in Theorem 11 has fixed value γ = 4 for any
ε ∈ (0, 1].
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So far, we have made no assumptions on the norm on the space Y ; in fact, it
can be easily seen that µd is invariant under changes in the norm on Y . (This is not
true for C(d).) We conclude this section by providing another interpretation of the
relationship between the measures µd and C(d). As Theorem 20 indicates, when the
space Y is endowed with the appropriate norm, µd and C(d) are within a constant
factor of each other. To see this, define

Td �
= −Hd ∩Hd.(18)

Then Td is a convex set that is symmetric about 0, and 0 ∈ int Td when µd < ∞.
Therefore we can define the norm ‖ · ‖ on Y to be the norm induced by considering
Td to be the unit ball, namely:

‖y‖ �
= min {α : y ∈ αTd} .(19)

Theorem 20. Suppose CX is regular and µd <∞. If the norm on Y is given by
(19), then ρ(d) = 1 and C(d) ≤ µd

δ , where δ is the norm approximation coefficient of
the cone CX .

Proof. The characterization of ρ(d) in (10) easily implies that ρ(d) = 1. It remains
to establish the bound on the condition number C(d). We have

C(d) =
‖d‖
ρ(d)

= ‖d‖ ≤ 1

δ
max{‖y‖ : y ∈ Hd} ≤ µd

δ
.

The first inequality above follows from Corollary 5. To verify the second inequality
above, suppose that y ∈ Hd. Then 1

µd
y ∈ Hd because µd ≥ 1, and − 1

µd
y ∈ Hd by

the definition of µd. Therefore, 1
µd
y ∈ Td, and so ‖ 1

µd
y‖ ≤ 1, which implies that

max{‖y‖ : y ∈ Hd} ≤ µd. This inequality is sufficient to prove the theorem; one can,
however, show that max{‖y‖ : y ∈ Hd} = µd.

4.2. Relationships between the symmetry measure and other measures
of conditioning for linear programming. In the special case when CX = �n+, the
problem (FPd) becomes a linear feasibility problem and can be written as follows:

(FPd) : Ax = b, x ≥ 0,(20)

where x ∈ �n, b ∈ �m, and A ∈ �m×n. We assume in this subsection that (FPd)
has a strictly positive solution x0, i.e., Ax0 = b and x0 > 0, that the norm on X is

‖x‖ �
= ‖x‖1, and that the norm on Y is ‖y‖ �

= ‖y‖2.
Complexity analysis of linear programming sometimes relies on the complexity

measures σ(·) and χ̄(·). These measures are quite specific to the special case of linear
programming, as opposed to C(d) and µd, which apply to more general conic problems.
In this subsection we state both previously known as well as new results relating all
of these condition measures, which in total provide a complete characterization of the
relationship between these four measures of conditioning.

For simplicity of notation, we define an “expanded” matrix Ã
�
= [b;−A] ∈ �m×(n+1).

Notice that ‖Ã‖ �
= max{‖bθ −Ax‖ : ‖(θ, x)‖1 ≤ 1} = ‖d‖.

We first review a slight variant on σ(·) called σd, which was introduced and used
in the complexity analysis of an interior-point algorithm for solving (FPd) by Vavasis
and Ye [32]:

σd
�
= min
j=1,...,n+1

max
w
{etjw : Ãw = 0, etw = 1, w ≥ 0},



MEASURES OF CONDITIONING AND PRECONDITIONERS 641

where ej , j = 1, . . . , n+ 1, denotes the jth unit vector and e ∈ �n+1 is the vector of
all ones. Note that while the above does not coincide with the usual definition of σ,
it does under our assumption that (FPd) has a strictly positive solution.

We also review a slight variant on χ̄(·) called χ̄d, which has been used by Vavasis
and Ye [33, 34] and Megiddo, Mizuno, and Tsuchiya [16] in the complexity analysis
of another interior-point algorithm:

χ̄d
�
= sup{‖Ãt(ÃDÃt)−1ÃD‖ : D ∈ S(n+1)×(n+1)

++ , D diagonal}.
An alternative characterization of χ̄d is

χ̄d = max{‖B−1Ã‖ : B ∈ B(Ã)},(21)

where B(Ã) is the set of all bases (i.e., m ×m nonsingular submatrices) of Ã. (See
[29] for the proof of the equivalence of these characterizations.)

It has been established by Vavasis and Ye [32] that σd and χ̄d are related by the
inequality

σd ≥ 1

χ̄d + 1
.

On the other hand, Tunçel in [31] established that, in general, σd may carry no upper-
bound information about χ̄d. Specifically, he provided a family of data instances dε
such that for any ε > 0, σdε = 1

2 , but χ̄dε ≥ 1
ε , and so χ̄dε can be arbitrarily large.

Theorem 18 and Remark 19 established a relationship between µd and C(d). Below
we establish relationships between the other pairs of measures µd, C(d), χ̄d, and σd,
or provide examples that show that no such relationship exists, in the spirit of [31].

Remark 21. C(d) and χ̄d may carry no upper-bound or lower-bound information
about each other.

To establish the above result, we provide two parametric families of matrices Ãε
such that by varying the value of the parameter ε > 0 we can make one of the above
measures arbitrarily bad while keeping the other measure constant or bounded.

First consider the family of matrices Ãε = [ ε0
0
1

−ε
−1 ]. For ε > 0 and sufficiently

small, ρ(dε) = ε√
ε2+4

. Furthermore, ‖dε‖ =
√

1 + ε2, and so

C(dε) =

√
ε2 + 1

ε2 + 4
· 1
ε
→ +∞ as ε→ 0.

On the other hand, it is easy to establish using (21) that χ̄(dε) =
√

2 for any ε > 0.
To establish the second claim of the remark, consider the family Ãε = [1 ε − 1]

with 0 < ε < 1. We have ‖dε‖ = 1, ρ(dε) = 1, and so C(dε) = 1 for any ε as
above. On the other hand it is easy to establish using (21) that for any ε ∈ (0, 1),
χ̄dε = 1

ε → +∞ as ε→ 0.
Proposition 22. Suppose the system (FPd) of (20) has a positive solution. Then

σd = 1
1+µd

.
Proof. Observe that we can redefine σd as follows:

σd = min
j=1,...,n+1

σj , where σj
�
= max{etjw : Ãw = 0, etw = 1, w ≥ 0}.

From Lemma 7, there exists an extreme point w̄ of

Hd = {bθ −Ax : (θ, x) ≥ 0, ‖(θ, x)‖1 ≤ 1} = {Ãw : w ≥ 0, etw ≤ 1}
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such that 1
µd

= symw̄(Hd, 0) = sup{t : −tw̄ ∈ Hd}. Since the set of extreme points of

the set Hd is contained in the set {Ã1, . . . , Ãn+1}, where Ãj ∈ �m is the jth column

of the matrix Ã, we can characterize µd as

1

µd
= min
j=1,...,n+1

1

µj
, where

1

µj

�
= sup{t : −tÃj ∈ Hd}.

We will now show that for any j

σj =
1

1 + µj
.(22)

Without loss of generality we can consider j = 1 and the corresponding column Ã1 of
Ã. If Ã1 = 0, then σ1 = 1, 1

µ1
= +∞, and (22) holds as a limiting relationship.

Suppose that A1 �= 0, and therefore µ1 > 0 and σ1 < 1. By definition of µ1,
− 1
µ1
Ã1 ∈ Hd, i.e., there exists a point p ≥ 0, etp = 1 such that − 1

µ1
Ã1 = Ãp. Define

w
�
= µ1p+e1

1+µ1
. Then w ≥ 0, etw = 1, and Ãw = 0. Therefore, σ1 ≥ w1 ≥ 1

1+µ1
.

Suppose now that w is a solution of the linear program defining σ1. Then w1 = σ1.

Let p = 1
1−σ1

(w−σ1e1). Then p ≥ 0, etp = 1, and Ãp = −Ã1σ1

1−σ1
. Therefore, 1

µ1
≥ σ1

1−σ1
,

and so σ1 ≤ 1
µ1+1 . Combining this with the bound in the previous paragraph, we

conclude that σ1 = 1
µ1+1 , and by similar argument, σj = 1

µj+1 , j = 1, . . . , n+ 1.

Suppose now that σd = σj for some j. That means that σj ≤ σi for any index i,
or, equivalently, 1

µj+1 ≤ 1
µi+1 and hence µj ≥ µi for any index i. Therefore, µd = µj

and hence σd = 1
1+µd

.
The following two remarks, which are easy consequences of Proposition 22, estab-

lish the remaining relationships between the four measures of conditioning.
Remark 23. µd ≤ χ̄d. However, µd may carry no upper-bound information

about χ̄d.
Remark 24. σd ≥ 1

C(d)+1 . However, σd may carry no upper-bound information

about C(d).
In light of Proposition 22, µd can in fact be viewed as a generalization of the

Vavasis–Ye measure σd to a general conic linear system. Related to this, Ho in [11]
provides an argument indicating that extending χ̄d to general conic systems is not
possible.

5. Preconditioners for conic linear systems. In this section we present a
characterization of all data instances d̃ equivalent to d (in the sense that Xd = Xd̃),
by introducing the concept of a preconditioner, and we provide an upper bound on
the condition number C(d̃) of the “best” equivalent data instance d̃. We conclude by
analyzing the complexity of computing an equivalent data instance whose condition
number is within a known factor of this bound, by constructing an algorithm for
computing such an instance and analyzing its complexity.

Consider the data instance d = (A, b) ∈ D defining the system (FPd). Let B ∈
�m×m be a given nonsingular matrix and consider the data instance Bd

�
= B · d =

(BA,Bb), which gives rise to the system

(FPBd) : BAx = Bb, x ∈ CX .(23)

The systems (FPd) and (FPBd) are equivalent; for this reason we say that the data
instances d and Bd are equivalent as well. We can view the systems (FPd) and (FPBd)
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as different formulations of the same feasibility problem (FP): find x ∈ A∩CX , where
A is the affine subspace

A �
= {x : Ax = b} = {x : BAx = Bb}.(24)

However the condition numbers of the two systems, C(d) and C(Bd), are, in general,
not equal.

On the other hand, consider the symmetry measures of the two systems, µd and
µBd. Observe that

HBd �
= {Bbθ −BAx : θ ≥ 0, x ∈ CX , |θ|+ ‖x‖ ≤ 1} = B(Hd);

i.e., the set HBd is the image of the set Hd under the linear transformation defined
by B. Therefore, sym(HBd, 0) = sym(Hd, 0), and µd = µBd, since the symmetry of a
set is preserved under nonsingular linear transformation, and so we can think of µd
as depending on the affine space A defined in (24) but not on the specific data d. To
highlight the independence of µd of the particular data d, we sometimes write µA in
place of µd. We record this formally in the following proposition.

Proposition 25. Let d = (A, b) ∈ D, let B ∈ �m×m be a nonsingular matrix,

and define A �
= {x : Ax = b}. Then µd = µBd = µA.

We leave to the reader the proof of the next proposition.
Proposition 26. Suppose CX is a regular cone. Let d = (A, b) ∈ D and

d̃ = (Ã, b̃) ∈ D be such that Xd = Xd̃. If C(d) < ∞, then there exists a nonsingular
matrix B ∈ �m×m such that d̃ = Bd.

Suppose that a feasibility problem can be represented via two equivalent data
instances d and d̃, and suppose that C(d) C(d̃). If one were to predict, for example,
the performance of the interior-point algorithm from section 3 for solving (FPd) by
analyzing its complexity in terms of the condition number, the bounds would be
overly conservative if the problem were described by the data instance d̃. However, our
analysis of the performance of the algorithm in terms of µA yields a bound independent
of the data instance used.

On the other hand, as detailed in the introduction, the condition number C(d) is a
crucial parameter for analyzing properties of (FPd) that depend on the representation
of the problem (FP(·)) by a specific data instance d, such as sensitivity of the feasible
region to data perturbations, numerical properties of computations in algorithms for
solving (FPd), etc. Therefore, it might be beneficial to precondition the system (FPd),
i.e., to find another data instance d̃ = Bd for which C(d̃) < C(d), and work with the
corresponding system (FPd̃), which is better-behaved. In this light, we can view the
matrix B above as a preconditioner for the system (FPd), yielding the preconditioned
system (FPd̃) with d̃ = Bd, and Proposition 26 implies that any data instance d̃ for
which Xd̃ = Xd can be obtained by preconditioning d with an appropriate B.

In the remainder of this section, we characterize a so-called best preconditioner,
which is a preconditioner that gives rise to a condition number that is within a constant
factor of the best possible, and we construct and analyze an algorithm for computing
a preconditioner that yields a condition number that is within a known factor of
this bound. For the remainder of this section, we assume that the space Y is the
m-dimensional Euclidean space �m with Euclidean norm ‖y‖ = ‖y‖2 =

√
yty. We

assume that the cone CX is a regular cone with width τ and norm approximation
coefficient δ. We also assume that m ≥ 2. (In fact, the case m = 1 is trivial since
in this case µA and C(d) are within a factor of δ of each other, and thus the issue of
preconditioning is essentially irrelevant.)
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5.1. Best preconditioners and α-roundings. The main result of this subsec-
tion, Theorem 30, demonstrates the existence of a preconditioner B̄ such that C(B̄d)
is within the factor

√
m
δ of µA. We begin by developing the tools to prove this result.

For any matrix Q ∈ Sm×m
++ we define EQ to be the ellipsoid EQ

�
= {y ∈ Y :

ytQ−1y ≤ 1}.
Definition 27. Let S ⊂ Y be a bounded set with a nonempty convex interior.

For α ∈ (0, 1], an ellipsoid EQ is called an α-rounding of S if

αEQ ⊆ S ⊆ EQ.

We refer to the parameter α as the tightness of the rounding EQ.
If the set S above satisfies S = −S (i.e., is symmetric about 0), then S possesses

a 1√
m

-rounding, i.e., there exists an ellipsoid EQ such that 1√
m
EQ ⊆ S ⊆ EQ (see

John [12]). In particular, the ellipsoid of minimum volume containing S (often referred
to as the Löwner–John ellipsoid of S) is a 1√

m
-rounding of S.

The following lemma allows us to interpret preconditioning of the system (FPd)
by B as constructing a 1

C(Bd) -rounding of the set Hd.
Lemma 28. Let B ∈ �m×m be a (nonsingular) preconditioner for the system

(FPd). Let Q = ‖Bd‖2(BtB)−1. Then

1

C(Bd)EQ ⊆ Hd ⊆ EQ.

Proof. First, observe that Q ∈ Sm×m
++ , since B is nonsingular. To prove the first

inclusion, let h ∈ 1
C(Bd)EQ, i.e., htQ−1h ≤ 1

C(Bd)2 . Using the definition of Q, we have

ht(BtB)h ≤ ‖Bd‖2

C(Bd)2 = ρ(Bd)2, that is, ‖Bh‖ ≤ ρ(Bd). This implies Bh ∈ HBd, and

hence, h ∈ Hd.
Next, suppose h ∈ Hd, and so Bh ∈ HBd. Then ‖Bh‖ ≤ ‖Bd‖, and therefore

htQ−1h = ht
(‖Bd‖2(BtB)−1

)−1
h =

‖Bh‖2
‖Bd‖2 ≤ 1,

i.e., h ∈ EQ.
Lemma 29. Let Q ∈ Sm×m

++ be such that EQ is an α-rounding of the set Td of
(18). Let B = Q− 1

2 . Then B is a preconditioner for the system (FPd) such that

C(Bd) ≤ µA
αδ
≤ 2µA

ατ
.

Proof. We establish the result by providing bounds on the distance to infeasibility
ρ(Bd) and the size of the data ‖Bd‖ of the system (FPBd). First, we will show that
ρ(Bd) ≥ α. Let v ∈ Y satisfy ‖v‖ ≤ α. Then

(B−1v)tQ−1B−1v = (B−1v)t(B ·B)(B−1v) = ‖v‖2 ≤ α2,

and therefore B−1v ∈ αEQ ⊆ Td ⊆ Hd. Thus, v ∈ HBd, and so ρ(Bd) ≥ α.
Next, recall from Corollary 5 that ‖Bd‖ ≤ 1

δ max{‖v‖ : v ∈ HBd}. Let v ∈ HBd.
Then y = B−1v ∈ Hd, and 1

µA
y ∈ −Hd ∩ Hd = Td ⊆ EQ. Hence ‖v‖2 = ytBtBy =

ytQ−1y ≤ µ2
A, whereby ‖Bd‖ ≤ µA

δ .

Combining the obtained results, C(Bd) = ‖Bd‖
ρ(Bd) ≤ µA

δα ≤ 2µA
τα .
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Theorem 30. Suppose that (FPd) is feasible and C(d) < +∞. Then there exists
a preconditioner B̄ such that

µA ≤ C(B̄d) ≤
√
m

δ
· µA.(25)

Proof. By definition, Td is a bounded convex set symmetric about 0. Since
C(d) < ∞, Td has a nonempty interior. Therefore, there exists Q ∈ Sm×m

++ such that
EQ is a 1√

m
-rounding of Td. Applying Lemma 29 with α = 1√

m
, we obtain (25).

Remark 31. In general, the upper bound in (25) is tight for any m.
We verify this remark by example. Consider the system (FPd) with n = 2m,

CX = �2m
+ , ‖x‖ = ‖x‖1 (so that δ = 1), and the data d = (A, b) as follows:

b = 0 and A = [e1, −e1, . . . , em, −em] ,

where ei is the ith unit vector in �m. Then Hd = Td = conv{±ei, i = 1, . . . ,m},
and it can be easily verified that µA = 1, ρ(d) = 1√

m
, and ‖d‖ = 1, and therefore

C(d) =
√
m. Suppose B is an arbitrary preconditioner. Using Lemma 28, we can

construct a 1
C(Bd) -rounding of the set Td. However, it is impossible to construct an

α-rounding of the set conv{±ei, i = 1, . . . ,m} with α > 1√
m

; see, for example, [10].

Therefore, C(Bd) ≥ √m for any preconditioner B.

5.2. On the complexity of computing a good preconditioner. We present
an algorithm that computes a preconditioner B̃ for which

C(B̃d) ≤ 4mµA
δ

.(26)

Recall that in Lemma 29 it was shown that a tight rounding of the set Td gives
rise to a good preconditioner for the system (FPd). In Theorem 30 we relied on the
existence of a 1√

m
-rounding of the set Td to establish the existence of a preconditioner

B̄ such that µA ≤ C(B̄d) ≤
√
m
δ µA, i.e., C(B̄d) is within the factor of

√
m
δ of the

lower bound. In general, we are not able to efficiently compute a 1√
m

-rounding of

the set Td. (See [10] for commentary on the difficulty of computing an approximate
1√
m

-rounding of a set S that does not have an efficient half-space representation.)

However, the algorithm presented in this subsection will compute an ellipsoid which
is a 1

4m -rounding of Td (also called a weak Löwner–John ellipsoid for Td). In particular,

the algorithm of this subsection will compute a matrix Q̃ ∈ Sm×m
++ such that

1

4m
EQ̃ ⊆ Td ⊆ EQ̃,(27)

which can be used to obtain a preconditioner B̃ satisfying (26) via Lemma 29. We
denote this algorithm as Algorithm WLJ for “Weak Löwner–John.”

In order to be able to efficiently implement the algorithm described in this section,
we restrict the norm ‖x‖ for x ∈ X to the Euclidean norm ‖x‖ = ‖x‖2 (as well as
maintain the assumption that ‖y‖ = ‖y‖2 for y ∈ Y ). We further assume that the
interior of the cone C∗

X is the domain of a self-concordant barrier f∗(·) with complexity
parameter ϑ∗. The width of the cone C∗

X is denoted by τ∗. We assume that we know
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and are given the vector u∗ ∈ C∗
X for which ‖u∗‖ = 1 and B(u∗, τ∗) ⊂ C∗

X as in (7).
Finally, we assume that an upper bound d̄ on ‖d‖ is known and given or is easily
computable. One could, for example, take

d̄ =
√
nmax{‖b‖2, ‖A1‖2, . . . , ‖Am‖2},

where Aj is the jth column of the matrix A. Then d̄ approximates ‖d‖ within the
factor of

√
n, i.e., 1√

n
d̄ ≤ ‖d‖ ≤ d̄.

The algorithm WLJ is a version of the parallel-cut ellipsoid algorithm; see [10].
A generic iteration of this algorithm can be described as follows. At the start of each
iteration, we have a matrix Q ∈ Sm×m

++ such that Td ⊆ EQ. We compute the eigenvalue
decomposition of the matrix Q. In particular, we compute the eigenvalues 0 < λ1 ≤
λ2 ≤ · · · ≤ λm of the matrix Q and their corresponding (orthonormal) eigenvectors
a1, . . . , am. Then the axes of the ellipsoid EQ are vi =

√
λiai, i = 1, . . . ,m. We

denote V
�
= [v1, . . . , vm] ∈ �m×m. It is elementary to verify that Q = V V t.

The algorithm then checks if the scaled axes ± 1
4
√
m
vi are elements of Td for

i = 1, . . . ,m. If so, the algorithm correctly asserts that

1

4m
EQ =

1√
m
· 1

4
√
m
EQ ⊂ conv

{
± 1

4
√
m
vi, i = 1, . . . ,m

}
⊆ Td ⊆ EQ,(28)

and the algorithm terminates. On the other hand, if the algorithm finds an axis
v = ±vj for some j for which 1

4
√
m
vj /∈ Td, then it finds a parallel cut separating the

two points ± 1
2
√
m
vj from the set Td, i.e., it produces a vector s such that

stvj = 1 for some vj , and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(29)

This cut is then used to find an ellipsoid EQ̂ which satisfies

EQ̂ ⊃
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
⊇ Td,

and for which

vol(EQ̂)

vol(EQ)
≤ 1

2
e

3
8 .(30)

The formula for Q̂ is

Q̂ =
m

m− 1

(
1− 1

4mξ

)(
Q− m(4ξ − 1)

4mξ − 1
· Qss

tQ

ξ

)
,(31)

where

ξ = stQs = ‖V ts‖2 ≥ stvj = 1;(32)

see formula (3.1.20) of [10], for example.
In order to implement this algorithm, it is necessary to be able to check whether

the rescaled axes ± 1
4
√
m
vi are elements of Td, for i = 1, . . . ,m, and if not, it is then

necessary to produce the vector s describing the parallel cut of (29). These two tasks
are accomplished in a subroutine called Weak Check, which is outlined as follows, and
for which a more complete description is furnished in the appendix.
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Subroutine Weak Check.
Given the axes v1, . . . , vm of an ellipsoid EQ ⊇ Td, either

(i) verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m, or

(ii) find a vector s such that

stvj = 1 for some vj , and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(33)

The formal description of algorithm WLJ is as follows.
Algorithm WLJ (Weak Löwner–John).
• Initialization: The algorithm is initialized with the matrix Q0 = d̄2I.
• Iteration k ≥ 1.
Step 1 Let Q = Qk. Compute the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λm of

Q and the corresponding (orthonormal) eigenvectors a1, . . . , am. Define
the axes of EQ by vi =

√
λiai, i = 1, . . . ,m.

Step 2 Call subroutine Weak Check with the input (v1, . . . , vm). If the sub-

routine verifies that ± 1
4
√
m
vi ∈ Td, i = 1, . . . ,m, then return B̃ = Q− 1

2

and terminate. Otherwise, subroutine Weak Check returns a vector s.
Define Q̂ by (31).

Step 3 Let Qk+1 = Q̂, k ← k + 1; go to Step 1.
To complete the description of Algorithm WLJ, one must specify the details of

subroutine Weak Check. The purpose of subroutine Weak Check is to verify whether
the rescaled axes ± 1

4
√
m
vi, i = 1, . . . ,m, are contained in Td, or to produce a parallel

cut otherwise. This is accomplished by examining the following 2m optimization
problems (Pφv ), where v = ±vi, i = 1, . . . ,m:

(Pφv ) φv = maxφ φ
s.t. φv ∈ Hd.(34)

It is easy to verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m precisely when

φQ
�
= min±vi

φv ≥ 1

4
√
m
.(35)

(Here min±vi φv stands for min{φv1 ,−φv1 , . . . , φvm ,−φvm} in order to shorten the
notation.) We will therefore implement subroutine Weak Check by means of ap-
proximately solving the 2m optimization problems (34) and checking whether con-
dition (35) is satisfied. To solve the optimization problems (34) for every value of
v = ±vi, i = 1, . . . ,m, we will apply the barrier method of [27] to a version of the
Lagrangian dual of (Pφv ). The formal description of this implementation is presented
in the appendix, where the following complexity bound is proved.

Lemma 32. Subroutine Weak Check will terminate in at most

O

(
m
√
ϑ∗ ln

(
mϑ∗

τ∗
· d̄√

λ1

·
√
λm
λ1

))
(36)

iterations of the barrier method. Upon termination, it will either correctly verify that
± 1

4
√
m
vi ∈ Td for all i = 1, . . . ,m, or will return a vector s such that

stvj = 1 for some vj, and Td ⊆
[
EQ ∩

{
y : − 1

2
√
m
≤ sty ≤ 1

2
√
m

}]
.(37)
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Note that the skewness of the ellipsoid EQ, which is square root of the ratio of
the largest to the smallest eigenvalue of Q, comes to play in the complexity bound of
subroutine Weak Check.

We now proceed to analyze the complexity of Algorithm WLJ. We first prove the
volume reduction bound of (30) in Lemma 33. We then prove the main complexity
of Algorithm WLJ in Theorem 34.

Lemma 33. Let Q be an iterate of Algorithm WLJ, and let Q̂ be defined by (31).
Then

vol(EQ̂)

vol(EQ)
≤ 1

2
e

3
8 .

Proof. Let R ∈ �m×m be an orthonormal matrix such that RQ
1
2 s = ‖Q 1

2 s‖e1 =√
ξe1. Then Q̂ can be expressed as

Q̂ =
m

m− 1

(
1− 1

4mξ

)
Q

1
2Rt

(
I − m(4ξ − 1)

4mξ − 1
e1e

t
1

)
RQ

1
2 .(38)

Therefore,

det(Q̂) = det

(
m

m− 1

(
1− 1

4mξ

)
Q

1
2Rt

(
I − m(4ξ − 1)

4mξ − 1
e1e

t
1

)
RQ

1
2

)

=

(
m

m− 1

(
1− 1

4mξ

))m(
1− m(4ξ − 1)

4mξ − 1

)
det(Q).

We conclude that

det(Q̂)

det(Q)
=

(
m

m− 1

(
1− 1

4mξ

))m(
1− m(4ξ − 1)

4mξ − 1

)

=
mm(4mξ − 1)m−1

(m− 1)m−1(4mξ)m
=

1

4ξ

(
4mξ − 1

4mξ − 4ξ

)m−1

=
1

4ξ

(
1 +

4ξ − 1

4ξ(m− 1)

)m−1

≤ 1

4ξ
e1−

1
4ξ ≤ 1

4
e

3
4 .

The last inequality follows since the function te1−t is an increasing function for t ∈
[0, 1], and from (32) we have 0 < 1

4ξ ≤ 1
4 . Finally,

vol(EQ̂)

vol(EQ)
=

√
det(Q̂)√
det(Q)

≤ 1

2
e

3
8 .

Theorem 34. Suppose C(d) < ∞. Then Algorithm WLJ will terminate in at
most

O

(
m2
√
ϑ∗ ln2

(
d̄

ρ(d)

)
ln

(
mϑ∗

τ∗

))
(39)

iterations of the barrier method. It will return upon termination a preconditioner B̃
such that

µA ≤ C(B̃d) ≤ 4mµA
δ

.
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Proof. First observe that the matrix Q0 = d̄2I used to initialize the algorithm is
a valid iterate, since for any point y ∈ Td, ‖y‖ ≤ ‖d‖ ≤ d̄, and so Td ⊆ EQ0 .

Suppose Algorithm WLJ has performed k iterations, and let Qk be the current
iterate. Since Td ⊆ EQk , we conclude that

vol(Td) ≤ vol(EQk) ≤
(

1

2
e

3
8

)k
vol(EQ0) =

(
1

2
e

3
8

)k
d̄m vol(B(0, 1)).

On the other hand, since B(0, ρ(d)) ⊆ Td, we have vol(Td) ≥ vol(B(0, ρ(d)) =

ρ(d)m vol(B(0, 1)). Therefore, ρ(d)m vol(B(0, 1)) ≤ d̄m( 1
2e

3
8 )k vol(B(0, 1)), and Al-

gorithm WLJ will perform at most

K ≤ m ln

(
d̄

ρ(d)

)
· 1

ln 2− .375
≤ 10

3
m ln

(
d̄

ρ(d)

)
(40)

iterations.
To bound the skewness of the ellipsoids generated by Algorithm WLJ, note that

all such ellipsoids contain the set Td and therefore contain B(0, ρ(d)). This implies
that for any ellipsoid encountered by the algorithm, λ1 ≥ ρ(d)2.

We now estimate the change in the largest eigenvalue of the ellipsoid matrix Qk

from one iteration of the algorithm to the next. Suppose Q and Q̂ are two consecutive
iterates of the algorithm. Then from (38) we conclude that

λ̂m = ‖Q̂‖ ≤ ‖Q‖ m

m− 1

(
1− 1

4mξ

)
= λm

m

m− 1

(
1− 1

4mξ

)
≤ λm

m

m− 1
≤ λme

1
m−1 .

Hence, at any iteration k,

λkm ≤ λ0
me

k
m−1 = d̄2e

k
m−1 ≤

(
d̄

ρ(d)

) 10m
3(m−1)

d̄2,

the last inequality following from (40). Therefore, throughout the algorithm, the
skewness of all ellipsoids generated by the algorithm is bounded above by

√
λm
λ1
≤
√(

d̄

ρ(d)

) 10m
3(m−1)

+2

≤
(

d̄

ρ(d)

)5

.(41)

Using (41) we conclude from Lemma 32 that any call to subroutine Weak Check

will perform at most O(m
√
ϑ∗ ln(mϑ

∗
τ∗ · d̄

ρ(d) )) iterations of the barrier method. Com-

bining this with (40), we can bound the total number of iterations of the barrier
method performed by Algorithm WLJ by

O

(
m2
√
ϑ∗ ln2

(
d̄

ρ(d)

)
ln

(
mϑ∗

τ∗

))
.

Finally, the inequalities µA ≤ C(B̃d) ≤ 4mµA
δ follow from Theorem 18, (28), and

Lemma 29.
Remark 35. Note that the skewness of the ellipsoids does not necessarily degrade

at every iteration. In fact, the last ellipsoid of the algorithm has the nice property that√
λm

λ1
≤ 4
√
mC(d).
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To see why this remark is true, notice that the axes of any ellipsoid of the algo-
rithm will satisfy ‖vi‖ ≥ ρ(d) for all i, and so

√
λ1 ≥ ρ(d). Also, the last ellipsoid

of the algorithm satisfies 1
4
√
m
vi ∈ Td ⊂ B(0, ‖d‖) for all i, and so ‖vi‖ ≤ 4

√
m‖d‖,

whereby
√
λm ≤

√
m‖d‖.

To further interpret the complexity result of Theorem 34, suppose for simplicity
that d̄ = ‖d‖, i.e., the size of the data ‖d‖ is known. Then Algorithm WLJ will
perform at most

O

(
m2
√
ϑ∗ ln2 (C(d)) ln

(
mϑ∗

τ∗

))

iterations. We see that the condition number C(d) of the initial data instance d plays
a crucial role in the complexity of Algorithm WLJ, which aims to find an equivalent
data instance whose condition number is within a given factor of the best possible.
In particular, if the original data instance d is badly conditioned, i.e., C(d) is large,
it might take a large number of iterations to find a “good” preconditioner as above.
Another interesting observation is that the complexity of Algorithm WLJ depends on
C(d) rather then µA. This result, which may seem counterintuitive at first, is actually
explained by the fact that in order to obtain a preconditioner, Algorithm WLJ has to
work with the set Td, rather then Hd, which is symmetric about 0 regardless of the
geometry of Hd.

6. Conclusions. In this paper we have addressed several issues related to mea-
sures of conditioning for convex feasibility problems. We have discussed some potential
drawbacks of using the condition number C(d) as the sole measure of conditioning of
a conic linear system, motivating the study of data-independent measures. We have
introduced the symmetry measure µA for feasible conic linear systems as one such
data-independent measure, and we have studied many of its implications for problem
geometry, conditioning, and algorithm complexity.

One research topic that is not addressed in this paper concerns the existence of
data-independent measures of conditioning for (FPd) that are useful when (FPd) is
infeasible and/or whether any such measures can be adapted to analyze the linear
optimization version of (FPd). Such measures might or might not be an extension of
the symmetry measure discussed in this paper.

Another potential topic of research stems from the importance of the inherent
conditioning of the problem data for certain properties of (FPd) such as sensitivity
to data perturbations and numerical precision required for accurate computation in
algorithms. The complexity bound for computing the good preconditioner in Al-
gorithm WLJ is only reassuring in theory, as it would be unthinkable to use this
algorithm in practice. Instead, much as in the case for linear optimization, it would
be interesting to explore heuristic methods for preconditioning (FPd). The notion
of a heuristic preconditioning/preprocessing stage in an algorithm is well-established;
most optimization software packages include some type of preprocessing options, such
as variable and constraint elimination or data scaling, for improving condition num-
bers and other numerical measures in matrix computations. We hope that the results
in this paper may inspire future research on the analysis of heuristic preconditioning
techniques for solving linear and conic optimization problems.

Appendix. Implementation of subroutine Weak Check. In this appendix
we present an implementation of the subroutine Weak Check. Recall that each iter-
ation of Algorithm WLJ calls the subroutine Weak Check with input being the axes
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v1, . . . , vm of an ellipsoid EQ ⊇ Td. The purpose of Weak Check is to verify whether
the rescaled axes ± 1

4
√
m
vi are elements of Td, for i = 1, . . . ,m, and if not, to produce

a parallel cut vector s satisfying (33).
Consider the following 2m optimization problems (Pφv

), where v = ±vi, i =
1, . . . ,m:

(Pφv
) φv = maxφ φ = maxθ,x,φ φ

s.t. φv ∈ Hd s.t. bθ −Ax = vφ,
|θ|+ ‖x‖ ≤ 1,
θ ≥ 0, x ∈ CX .

(42)

It is easy to verify that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m precisely when

φQ
�
= min±vi

φv ≥ 1

4
√
m
.(43)

(Here min±vi φv stands for min{φv1 ,−φv1 , . . . , φvm ,−φvm}.) We will therefore im-
plement the subroutine Weak Check by means of approximately solving the 2m opti-
mization problems (42) and checking whether condition (43) is satisfied.

The approach we use to solve the optimization problems (42) in the subroutine
Weak Check relies on the barrier method described in section 3. Since no obvious
starting point is available for (42), we solve (42) for all 2m values of v = ±vi, i =
1, . . . ,m, by considering its dual:

(Pγv ) γv = mins,q,γ γ
s.t. ‖Ats− q‖ ≤ γ,

bts ≤ γ,
q ∈ C∗

X ,
vts = 1.

(44)

It is straightforward to verify that strong duality holds for (Pφv
) and (Pγv ), and so

φQ = min±vi
φv = min±vi

γv.

In order to be able to apply the barrier method, we need the optimization problem
at hand to have a bounded feasible region. To satisfy this condition, we consider the
following modification of (44):

(Pγ̃v ) γ̃v = mins,q,γ γ
s.t. ‖Ats− q‖ ≤ γ,

bts ≤ γ,
‖V ts‖ ≤ 2

√
m,

γ ≤ 7
√
md̄√
λ1

,

q ∈ C∗
X ,

vts = 1,

(45)

where d̄ is the known upper bound on the norm of the data ‖d‖, and V = [v1, . . . , vm] ∈
�m×m. The following two simple facts are useful in the derivation of the forthcoming
results. First, for all i = 1, . . . ,m, we have

√
λ1 ≤ ‖vi‖ ≤

√
λm. Second, for any

vector s ∈ Y ∗, ‖s‖ ≤ ‖V ts‖√
λ1

. In the next proposition we show that solving (Pγ̃v )

instead of (Pγv ) still yields a valid estimate of φQ.
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Proposition 36. For any v, γv ≤ γ̃v. Moreover,

φQ = min±vi
γv = min±vi

γ̃v.(46)

Proof. The first claim of the proposition is trivially true, since the feasible region
of the program (Pγ̃v ) is contained in the feasible region of the program (Pγv ).

To establish the second claim, note that

φQ = min±vi
γ±vi ≤ min±vi

γ̃±vi .

Suppose the minimum on the left is attained for v = vi0 , and let (s̄, q̄, γv) be an
optimal solution of the corresponding program (Pγv ). Then we have

γv = max{‖Ats̄− q̄‖, bts̄}, q̄ ∈ C∗
X , vts̄ = 1.

We can further assume without loss of generality that ‖Ats̄ − q̄‖ ≤ ‖Ats̄‖, since q̄
can always be chosen to minimize the distance from Ats̄ to the cone C∗

X . If the
point (s̄, q̄, γv) is feasible for the corresponding program (Pγ̃v ), then γv = γ̃v and (46)
follows. Otherwise, let σ = maxi |vti s̄| ≥ 1. We can assume without loss of generality
that σ = vtj s̄ for some j. (If vtj s̄ < 0, we can redefine the jth axis of EQ to be −vj .)
Define (s̃, q̃, γ̃) = ( 1

σ s̄,
1
σ q̄,

1
σγv). Note that vtj s̃ = 1, q̃ ∈ C∗

X , and

‖V ts̃‖ =

√√√√ m∑
i=1

(vti s̃)
2 ≤ √m ≤ 2

√
m.

It remains to check whether the upper bound constraint on γ̃ is satisfied. Observe

that ‖s̃‖ ≤
√
m√
λ1

(since ‖V ts̃‖ ≤ √m). Therefore

γ̃ = max{‖Ats̃− q̃‖, bts̃} ≤ max{‖Ats̃‖, bts̃} ≤ d̄ ·
√
m√
λ1

<
7
√
md̄√
λ1

.

Hence the vector (s̃, q̃, γ̃) is feasible for (Pγ̃vj ), and γ̃vj ≤ γ̃ ≤ γv ≤ γvj ≤ γ̃vj , which

implies that γ̃vj = γv, from which (46) follows.
Now define

S
�
=

{
(s, q, γ) : ‖Ats− q‖ ≤ γ, bts ≤ γ, ‖V ts‖ ≤ 2

√
m, γ ≤ 7

√
md̄√
λ1

, q ∈ C∗
X

}

and

Lv
�
= {(s, q, γ) : vts = 1}.

Then Lv is a translate of an affine space, and S is a bounded convex set. Recall from
the assumptions in section 5.2 that f∗(·) is a self-concordant barrier for the cone C∗

X

with complexity parameter ϑ∗. Then the interior of the set S is the domain of the
following self-concordant barrier f(s, q, γ):

f(s, q, γ)
�
= f∗(q)−ln(γ2−‖Ats−q‖2)−ln(γ−bts)−ln(4m−‖V ts‖2)−ln

(
7
√
md̄√
λ1

− γ

)
,

whose complexity parameter is ϑf ≤ ϑ∗ + 5.
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In order to use the barrier method to solve (Pγ̃v ), we need to have a point
(s′, q′, γ′) ∈ intS ∩ Lv at which to initialize the method. The next proposition indi-
cates that such point is readily available when the vector u∗ ∈ C∗

X of (7) is known;
the second part of the proposition presents a lower bound on sym(S ∩Lv, (s′, q′, γ′)),
which is important in analyzing the complexity of the barrier method.

Proposition 37.

(s′, q′, γ′)
�
=

(
v

‖v‖2 ,
2d̄u∗
‖v‖ ,

4
√
md̄√
λ1

)
∈ intS ∩ Lv,

and

sym(S ∩ Lv, (s′, q′, γ′)) ≥ τ∗

13
√
m
·
√

λ1

λm
.

Proof. The first claim of the proposition is easily established by verifying directly
that (s′, q′, γ′) strictly satisfies the constraints of (45). The derivation of the bound
on the symmetry in the second claim is fairly long and tedious, and is omitted. We
refer the interested reader to [3] for details.

We now present the formal statement of the implementation of the subroutine
Weak Check.

Subroutine Weak Check.
• Input: Axes vi, i = 1, . . . ,m, of an ellipsoid EQ ⊇ Td.
• for v = ±vi, i = 1, . . . ,m,
Step 1 Form the problem (Pγ̃v ).
Step 2 Run the barrier method on the problem (Pγ̃v ) initialized at the point

(s′, q′, γ′) =

(
v

‖v‖2 ,
2d̄u∗
‖v‖ ,

4
√
md̄√
λ1

)

until the value of the barrier parameter η first exceeds η̄ =
24

√
mϑf

5 . Let
(s, q, γ) be the last iterate of the barrier method.

Step 3 If γ < 1
2
√
m

, terminate and return s. Otherwise, continue with the

next value of v.
• Assert that 1

4
√
m
vi ∈ Td for all i = 1, . . . ,m.

Proof of Lemma 32. Subroutine Weak Check will apply the barrier method to at
most 2m problems of the form (Pγ̃v ). Note that

min
(s,q,γ)∈S∩Lv

γ ≥ 0 and max
(s,q,γ)∈S∩Lv

γ ≤ 7
√
md̄√
λ1

.

Therefore, applying (15) and Proposition 37, we see that each of the (at most) 2m
applications of the barrier method will terminate in at most

O

(√
ϑf ln

(
7
√
md̄ϑf√
λ1

· η̄

sym(S ∩ Lv, (s′, q′, γ′))
))

≤ O

(√
ϑ∗ ln

(
7
√
md̄ϑ∗
√
λ1

· 24
√
mϑ∗

5
· 13
√
m

τ∗
·
√
λm
λ1

))

= O

(√
ϑ∗ ln

(
mϑ∗

τ∗
· d̄√

λ1

·
√
λm
λ1

))

iterations, giving (36).
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Suppose subroutine Weak Check has terminated in Step 3 of an iteration in which
the barrier method is applied to the problem (Pγ̃vj ). (This is without loss of generality;

if the termination occurs during the iteration that applies the barrier method to the
problem (Pγ̃−vj

), we can redefine the jth axis of EQ to be −vj , to preserve the

notation.) Then the last iterate (s, q, γ) of the barrier method satisfies

‖Ats− q‖ ≤ γ < 1
2
√
m
,

bts ≤ γ < 1
2
√
m
,

‖V ts‖ ≤ 2
√
m,

q ∈ C∗
X , v

t
js = 1.

The vector s above yields a parallel cut that separates ± vj
2
√
m

from Td. To see why this

is true, let h ∈ Td. Then h ∈ Hd, and hence h = bθ − Ax for some (θ, x) ∈ �+ × CX
such that |θ|+ ‖x‖ ≤ 1. Therefore

sth = st(bθ −Ax) = θ(bts)− xt(Ats) = θ(bts)− xt(Ats− q)− xtq

≤ (|θ|+ ‖x‖)γ ≤ γ <
1

2
√
m

=
stvj
2
√
m
.

Applying the same argument for the point −h ∈ Hd, we conclude that sth > − stvj
2
√
m

,

and therefore the vector s returned by the subroutine Weak Check satisfies (37).
Next, suppose that the barrier method applied to (Pγ̃v ) has not terminated in

Step 3 of the subroutine Weak Check, i.e., we have γ ≥ 1
2
√
m

. Then, using (14),

γ̃v ≥ γ − 6ϑf
5η̄
≥ 1

2
√
m
− 6ϑf

5η̄
≥ 1

4
√
m
.

Therefore, if the subroutine Weak Check has not terminated in Step 3 for any v =
±vi, i = 1, . . . ,m, we conclude that φQ = min±vi γ̃v ≥ 1

4
√
m
, and we correctly assert

that ± 1
4
√
m
vi ∈ Td for all i = 1, . . . ,m.
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Abstract. In this paper, we consider a general optimization problem in the broad class of
Asplund spaces. We derive a new necessary optimality condition in the so-called Lagrangian “fuzzy
form” without standard Lipschitz conditions. We also give a chain rule for Fréchet subdifferentials
and subdifferential representations of Fréchet normals to constrained sets.
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1. Introduction. Throughout the paper, X denotes a Banach space, C ⊂ X
is a closed subset of X and fi : X → R ∪ {+∞}, i = 0, 1, . . . , n, are extended
real valued functions. We consider a general constrained optimization problem with
semicontinuous inequality and continuous equality data:

minimize f0(x) subject to (s.t.)
fi(x) ≤ 0, i = 1, . . . ,m,
fi(x) = 0, i = m+ 1, . . . , n,
x ∈ C.

(P)

Although problem (P) for nonsmooth data has been studied by several authors in-
cluding, for instance, [1, 2, 6, 7, 11, 15] and the references therein, the current research
was motivated by the work of [1, 11, 18, 19, 22]. In these papers, necessary optimal-
ity conditions were established in different situations. In [1], Borwein, Treiman, and
Zhu considered reflexive Banach spaces, and their necessary optimality condition was
given in terms of (smooth) subderivatives and normal cones. In [11], Kruger and
Mordukhovich gave a necessary condition in terms of limiting constructions in spaces
with Fréchet renorms, while Mordukhovich [18] and Mordukhovich and Wang [19]
considered Asplund spaces. Finally, this research continues work by Ngai and Théra,
who proved in [22] a necessary condition using limiting Fréchet subdifferentials and
limiting normals in Asplund spaces with compactness assumptions.

It is a purpose of this report to prove a fuzzy multiplier rule for the above problem
in terms of Fréchet subdifferentials and Fréchet normals in Asplund spaces, without
standard Lipschitz conditions.

In section 2, a “fuzzy calculus rule” for Fréchet subdifferentials of composite
functions is established. Using this chain rule, we derive in section 3 a fuzzy multiplier
rule for problem (P). In the final section we present in the Asplund setting a result on
the relationship between the normal cone to a level set and the subdifferential of the
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corresponding function. Such a relationship for smooth subderivatives and smooth
normal cones in reflexive spaces plays a key role in the proof of the main result in [1].

2. Fuzzy calculus for Fréchet subdifferentials. Let X be a Banach space
with closed unit ball BX and with dual space X∗. Let f : X → R∪ {+∞} be a lower
semicontinuous function. We denote as usual by domf := {x ∈ X : f(x) < +∞},
epif := {(x, α) ∈ X ×R : α ≥ f(x)}, and gphf := {(x, α) ∈ X ×R : α = f(x)} the
domain, the epigraph, and the graph of f, respectively.

Recall that the Fréchet subdifferential of f at x ∈ domf is defined by

∂F f(x) :=

{
x∗ ∈ X∗ : lim inf

h→0

f(x+ h)− f(x)− 〈x∗, h〉
‖h‖ ≥ 0

}
.(2.1)

If x /∈ domf, we set ∂F f(x) := ∅.
For a closed subset C of X, the Fréchet normal cone to C at x ∈ C is the set

NF (C, x) := ∂F δC(x), where δC(.) is the indicator function of the set C and is given
by

δC(x) :=

{
0 if x ∈ C,
+∞ if x /∈ C.

Equivalently,

NF (C, x) =

{
x∗ ∈ X∗ : lim sup

u→x, u∈C
〈x∗, u− x〉
‖u− x‖ ≤ 0

}
.

The Fréchet subdifferential has a geometrical interpretation in terms of the Fréchet
normal cone to the epigraph of the function under consideration:

∂F f(x) =
{
x∗ ∈ X∗ : (x∗,−1) ∈ NF (epi f, (x, f(x)))

}
.

Recall that a Banach space is said to be Asplund if every convex continuous function
is Fréchet differentiable on a dense Gδ-subset of the interior of its domain. This
class of Banach spaces includes Banach spaces with Fréchet differentiable renorms or
bump functions (hence, all reflexive spaces; see [23]). A important characterization
of Asplund spaces is the fuzzy sum rule for Fréchet subdifferentials proved by Fabian
[4, 5] (see also other characterizations in Modukhovich and Shao [16] and Jourani and
Théra [9]).

Proposition 2.1 (see Fabian [5]). Let X be an Asplund space, let fi : X → R∪
{+∞}, i = 1, . . . , n, be lower semicontinuous functions. Let x̄ ∈ domf1∩· · ·∩domfn.
Then, for any ε > 0 and any weak* neighborhood V of 0 in X∗,

∂F (f1 + · · ·+ fn)(x̄) ⊆
⋃{

∂F f1(x1) + · · ·+ ∂F fn(xn) + V :

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R, i = 1, . . . , n
}
.

Moreover, in addition, if f2, . . . , fn are locally Lipschitz, then the following inclusion
holds:

∂F (f1 + · · ·+ fn)(x̄) ⊆
⋃{

∂F f1(x1) + · · ·+ ∂F fn(xn) + εBX∗ :

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R, i = 1, . . . , n
}
.
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In what follows we shall make use of the following pair of lemmata from [8, 12,
17, 22].

Lemma 2.2 (see Ioffe [8], Modukhovich and Shao [17]). Let f : X → R ∪ {+∞}
be a lower semicontinuous function and let (x̄, α) ∈ epif.

(i) Let λ �= 0; the equivalence

(x∗,−λ) ∈ NF (epif, (x̄, α)) ⇐⇒ λ > 0, α = f(x̄), x∗ ∈ ∂F (λf)(x̄)

is true in every Banach space X.
(ii) Suppose that X is an Asplund space. If (x∗, 0) ∈ NF (epif, (x̄, α)), then there

exist sequences {xn}n∈N, {x∗
n}n∈N, {λn}n∈N such that

x∗
n ∈ λn∂

F f(xn),

(xn, f(xn))→ (x̄, f(x̄)), λn ↓ 0,
and ‖x∗

n − x∗‖ → 0.

Lemma 2.3 (see [12, 22]). Let f : X → R ∪ {+∞} be a continuous function and
let x̄ ∈ domf.

(i) Let λ �= 0; the equivalence

(x∗,−λ) ∈ NF (gphf, (x̄, f(x̄))) ⇐⇒ x∗ ∈ ∂F (λf)(x̄)

is true in any Banach space X.
(ii) Suppose that X is an Asplund space. If (x∗, 0) ∈ NF (gphf, (x̄, f(x̄))), then

there exist sequences {xn}n∈N, {x∗
n}n∈N, {λn}n∈N such that

x∗
n ∈ ∂F (λnf)(xn) ∪ ∂F (−λnf)(xn),
(xn, f(xn))→ (x̄, f(x̄)), λn ↓ 0,

and ‖x∗
n − x∗‖ → 0.

Let fi : X → R ∪ {+∞}, i = 1, . . . , n, g : R
n → R ∪ {+∞}. Consider the

composite function g[f1, . . . , fn] : X → R ∪ {+∞} defined by

g[f1, . . . , fn](x) :=

{
g(f1(x), . . . , fn(x)) if x ∈ domf1 ∩ · · · ∩ domfn,
+∞ otherwise.

We next prove the following chain rule.
Theorem 2.4. Let X be an Asplund space. Let fi : X → R ∪ {+∞} be lower

semicontinuous for i = 1, . . . ,m and be continuous for i = m+1, . . . , n. Let g : R
n →

R ∪ {+∞} be lower semicontinuous such that lim|t|→+∞ g(t) = +∞. Suppose that g
is nondecreasing for each of its first m variables. Let x̄ ∈ domf1 ∩ · · · ∩ domfn and
(f1(x̄), . . . , fn(x̄)) ∈ domg. Then, for any ε > 0 and any weak* neighborhood V of 0
in X∗, we have

∂F g[f1, . . . , fn](x̄) ⊆
⋃{

∂F (µ1f1)(x1) + · · ·+ ∂F (µnfn)(xn) + V :

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R, i = 1, . . . , n;

(α1, . . . , αn) ∈ (f1(x̄), . . . , fn(x̄)) + εBRn ;

(µ1, . . . , µn) ∈ ∂F g(α1, . . . , αn) + εBRn ;

µi > 0, i = 1, . . . ,m; µi �= 0, i = m+ 1, . . . , n
}
.
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Proof. First, we set

Si :=
{
(x, α1, . . . , αn) ∈ X × R

n : αi ≥ fi(x)
}
, i = 1, . . . ,m,

Si :=
{
(x, α1, . . . , αn) ∈ X × R

n : αi = fi(x)
}
, i = m+ 1, . . . , n.

Clearly, for i = 1, . . . ,m,

NF (Si, (x, α1, . . . , αn)) =
{
(x∗, λ1, . . . , λn) ∈ X∗ × R

n : λj = 0 if j �= i,

(x∗, λi) ∈ NF (epifi, (x, αi))
}
,

while for i = m+ 1, . . . , n,

NF (Si, (x, α1, . . . , αn)) =
{
(x∗, λ1, . . . , λn) ∈ X∗ × R

n : λj = 0 if j �= i,

(x∗, λi) ∈ NF (gphfi, (x, αi))
}
.

Fix x∗ ∈ ∂F g[f1, . . . , fn](x̄). Observe that

g[f1, . . . , fn](x)

= min

{
g(α1, . . . , αn) +

n∑
i=1

δSi(x, α1, . . . , αn) : (x, α1, . . . , αn) ∈ X × R
n

}
.

Hence,

(x∗, 0, . . . , 0) ∈ ∂F

[
g(.) +

n∑
i=1

δSi
(.)

]
(x̄, f1(x̄), . . . , fn(x̄)).(2.2)

For any ε > 0, any weak* neighborhood V of 0 in X∗, let U be a weak* neighborhood
of 0 in X∗ such that U + nεBX∗ ⊆ V . (BX∗ is the closed unit ball in X∗.)

Since the functions fi are lower semicontinuous, there exists η ∈ (0, ε2 ) such that

fi(x) > fi(x̄)− ε

2
for all x ∈ x̄+ ηBX , i = 1, . . . , n.(2.3)

Using the fuzzy sum rule for (2.2), there exist

(xi, ri) ∈
(
(x̄, fi(x̄)) + ηBX×R

) ∩ epifi, i = 1, . . . ,m,(2.4)

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + ηBX×R, i = m+ 1, . . . , n,(2.5)

(α1, . . . , αn) ∈ (f1(x̄), . . . , fn(x̄)) + ηBRn ,(2.6)

(λ1, . . . , λn) ∈ ∂F g(α1, . . . , αn),

(ζi,−γi) ∈ NF (epifi, (xi, ri)), i = 1, . . . ,m,(2.7)
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(ζi,−γi) ∈ NF (gphfi, (xi, fi(xi)), i = m+ 1, . . . , n,(2.8)

such that

(x∗, 0, . . . , 0) ∈ (0, λ1, . . . , λn) + (ζ1 + · · ·+ ζn,−γ1, . . . ,−γn) + U × ηBRn .

Thus,

x∗ ∈ ζ1 + · · ·+ ζn + U,(2.9)

(γ1, . . . , γn) ∈ ∂F g(α1, . . . , αn) + ηBRn .(2.10)

For every i = 1, . . . ,m, by (2.7), using Lemma 2.2, we obtain the following:
• If γi �= 0, then ri = fi(xi), γi > 0, and ζi ∈ γi∂

F fi(xi). Set µi := γi, zi := xi,
and ξi := ζi.
• Else, γi = 0. Then, there exist µi ∈ (0, η), (zi, fi(zi)) ∈ (xi, fi(xi)) + ηBX×R,

ξi ∈ µi∂
F fi(zi) such that ‖ξi − ζi‖ < ε.

Similarly, for every i = m + 1, . . . , n, applying Lemma 2.3 to (2.8), one has the
following:
• If γi �= 0, then ζi ∈ ∂F (γifi)(xi). Set µi := γi, zi := xi, and ξi := ζi.
• Else, γi = 0. Then, there exist µi ∈ (−η, η), µi �= 0, (zi, fi(zi)) ∈ (xi, fi(xi)) +

ηBX×R, ξi ∈ ∂F (µifi)(zi) such that ‖ξi − ζi‖ < ε. Hence, by (2.10) we have

(µ1, . . . , µn) ∈ ∂F g(α1, . . . , αn) + εBRn ,

and moreover, from (2.9) we derive that

x∗ ∈ ζ1 + · · ·+ ζn + U ⊆ ξ1 + · · ·+ ξn + nεBX∗ + U ⊆ ξ1 + · · ·+ ξn + V.

On the other hand, combining (2.3), (2.4), (2.5) yields

(zi, fi(zi)) ∈ (x̄, fi(x̄)) + εBX×R for all i = 1, . . . , n.

The proof is complete.

3. A necessary optimality condition. Let us again consider the constrained
optimization problem:

min f0(x) s.t.
fi(x) ≤ 0, i = 1, . . . ,m,
fi(x) = 0, i = m+ 1, . . . , n,
x ∈ C.

(P)

Suppose that fi : X → R ∪ {+∞} is lower semicontinuous for each i = 1, . . . ,m,
continuous for each i = m+ 1, . . . , n, and that C ⊆ X is a nonempty closed set.

We now use the chain rule established in section 2 to obtain a multiplier rule for
problem (P). In the proof, following Treiman [26], we use the function g : R

n+1 → R

given by

g(α0, . . . , αn) :=

{
max{α0, . . . , αn} if αm+1 = · · · = αn = 0,
max{α0, . . . , αm, |αm+1|, . . . , |αn|} otherwise.

We first establish the following simple lemma.
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Lemma 3.1. For any (α0, . . . , αn) ∈ R
n+1,

(µ0, . . . , µn) ∈ ∂F g(α0, . . . , αn) =⇒ µi ≥ 0, i = 0, . . . ,m, and

n∑
i=0

|µi| ≥ 1.

Proof. Clearly, g is nondecreasing for each of its first m + 1 variables. Hence,
immediately, µi ≥ 0 for all i = 0, . . . ,m. By definition, for each ε > 0 there exists
δ > 0 such that

n∑
i=0

µihi ≤ g(α0 + h0, . . . , αn + hn)− g(α0, . . . , αn) + εmax{|h0|, . . . , |hn|}(3.1)

for all (h0, . . . , hn) ∈ δBRn+1 .

Let h ∈ (0, δ). Take (h0, . . . , hn) in (3.1) such that h0 = · · · = hm = −h, and for
i = m+ 1, . . . , n, hi = −h if αi > 0; hi = h if αi < 0; hi = 0 if αi = 0. Then, when δ
is small, we have

g(α0 + h0, . . . , αn + hn)− g(α0, . . . , αn) = −h.

Hence, from (3.1),

n∑
i=0

|µi|h ≥ −
n∑
i=0

µihi ≥ h(1− ε).

Dividing the latter inequality by h and letting ε go to zero, we obtain
∑n
i=0 |µi| ≥ 1,

establishing the proof of Lemma 3.1.
We can now prove the main result, as follows.
Theorem 3.2. Let X be an Asplund space, let C be a closed subset of X. Suppose

the functions fi are lower semicontinuous for i = 0, . . . ,m and continuous for i =
m+1, . . . , n. Assume that x̄ is a local solution of (P). Then for any ε > 0, any weak*
neighborhood V of 0 in X∗, there exist

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R, i = 0, . . . , n,

xn+1 ∈ x̄+ εBX ,

µi > 0, i = 0, . . . ,m,

µi �= 0, i = m+ 1, . . . , n,

such that

|µ0|+ · · ·+ |µn| = 1,

0 ∈ ∂F (µ0f0)(x0) + · · ·+ ∂F (µnfn)(xn) +NF (C, xn+1) + V.

Proof. Observe that if x̄ is a local solution of (P), then x̄ is a local minimum
point of function g ◦ F + δC , where g : R

n+1 → R,

g(α0, . . . , αn) :=

{
max{α0, . . . , αn} if αm+1 = · · · = αn = 0,
max{α0, . . . , αm, |αm+1|, . . . , |αn|} otherwise,
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and

F (x) := (f0(x)− f0(x̄), . . . , fm(x)− fm(x̄), fm+1(x), . . . , fn(x)).

Therefore,

0 ∈ ∂F (g ◦ F + δC)(x̄).(3.2)

Of course, we only need to consider ε ∈ (0, 1). Since the functions fi are lower semi-
continuous, there exists η ∈ (0, ε2 ) such that

fi(x) > fi(x̄)− ε

2
for all x ∈ x̄+ ηBX , i = 0, . . . , n.(3.3)

Let U be a convex weak* neighborhood of 0 in X∗ such that 2U ⊆ V. Applying the
fuzzy sum rule to (3.2) yields

(y, g ◦ F (y)) ∈ (x̄, g ◦ F (x̄)) + ηBX×R,(3.4)

xn+1 ∈ x̄+ ηBX , ζ ∈ ∂F (g ◦ F )(y), ζn+1 ∈ NF (C, xn+1)

such that

0 ∈ ζ + ζn+1 +
U

2
.(3.5)

Combining (3.3) and (3.4), we derive that

(y, fi(y)) ∈ (x̄, fi(x̄)) + ε

2
BX×R, i = 0, . . . , n.(3.6)

On the other hand, since ζ ∈ ∂F (g ◦ F )(y), by virtue of Theorem 2.4, there exist

(xi, fi(xi)) ∈ (y, fi(y)) + ε

2
BX×R, i = 0, . . . , n,(3.7)

(α0, . . . , αn) ∈ (f0(y), . . . , fn(y)) +
ε

2
BRn+1 ,(3.8)

(λ0, . . . , λn) ∈ ∂F g(α0, . . . , αn) +
ε

2
BRn+1 ,(3.9)

and ζi ∈ ∂F (λifi)(xi), i = 0, . . . , n, such that

λi > 0 for i = 0, . . . ,m, λi �= 0 for i = m+ 1, . . . , n,

and

ζ ∈ ζ0 + · · ·+ ζn +
U

2
.(3.10)

From (3.5), (3.10), we have

0 ∈ ζ0 + · · ·+ ζn + ζn+1 + U.(3.11)
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By (3.6), (3.7), we have

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBX×R.(3.12)

By Lemma 3.1 and (3.9), we derive that |λ0| + · · · + |λn| ≥ 1 − ε
2 > 1

2 . Dividing the
inclusion (3.11) by λ :=

∑n
i=0 |λi| > 1

2 , and setting

µi := λi/λ,

ξi := ζi/λ ∈ ∂F (µifi)(xi), i = 0, . . . , n,

ξn+1 = ζn+1/λ,

we obtain

µi > 0 for i = 0, . . . ,m,

µi �= 0 for i = m+ 1, . . . , n,
n∑
i=0

|µi| = 1,

and

0 ∈
n∑
i=0

ξi + ξn+1 + U/λ ⊆
n∑
i=0

∂F (µifi)(xi) +NF (C, xn+1) + V.

The proof is complete.
Let us mention that optimality necessary conditions in the “fuzzy” form for op-

timization problems with non-Lipschitzian data were first obtained by Kruger and
Mordukhovich [11] in terms of ε-Fréchet normals in Banach spaces with Fréchet differ-
entiable renorms. The above necessary condition was established in reflexive Banach
spaces by Borwein, Treiman, and Zhu [1]. Our proof differs from the proof given in [1].
Recently, Mordukhovich [18, Theorem 5.1(i)] established the general version of fuzzy
necessary optimality conditions in terms of Fréchet normals in Asplund spaces. Fi-
nally, a result close to Theorem 3.2 was derived by a different method in [19, Theorem
6.3].

4. The normal cone to a level set. The relationship between the normal cone
to a level set and the subderivative of the corresponding function was established in
the reflexive setting [1]. This relation was the key ingredient of the proof of the main
result in [1]. This relationship is of some independent interest; however, in the final
section, we prove that it is also valid for Fréchet subdifferentials and Fréchet normals
in an Asplund setting.

Theorem 4.1. Let X be an Asplund space and let f : X → R ∪ {+∞} be a
lower semicontinuous function. Let S := {x ∈ X : f(x) ≤ 0}, and let x̄ ∈ bdry S (the
boundary of S). Then, either

(A1) for any ε, η > 0, there exists (x, f(x)) ∈ (x̄, f(x̄)) + ηBX×R such that
∂F f(x) ∩ εBX∗ �= ∅,

or
(A2) for any ξ ∈ NF (S, x̄), any ε > 0, there exist (x, f(x)) ∈ (x̄, f(x̄)) + εBX×R,

ζ ∈ ∂F f(x), and λ > 0 such that ‖λζ − ξ‖ < ε.
We first recall the following two lemmata from [10, 22]. Denote by dC(.) the

distance function to a set C.
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Lemma 4.2 (see Jourani and Thibault [10]). Let C be a nonempty closed subset
of X and let x0 /∈ C. Then the implication

x∗ ∈ ∂F dC(x0) =⇒ ‖x∗‖ = 1
holds for any Banach space X.

The following lemma is proved in [22]. It follows the lines of Thibault’s paper
[25].

Lemma 4.3. Let C ⊂ X be a nonempty closed set.
(i) Let x̄ ∈ C and let x∗ ∈ NF (C, x̄). Then x∗ ∈ λ∂F dC(x̄) holds for any λ ≥

‖x∗‖+ 1 and any Banach space X.
(ii) Let X be an Asplund space and let x ∈ X. If x∗ ∈ ∂F dC(x̄), then for any

ε ∈ (0, 1) there exist xε ∈ C and x∗
ε ∈ NF (C, xε) such that

‖xε − x̄‖ < dC(x̄) + ε and ‖x∗
ε − x∗‖ ≤ ε.

Proof of Theorem 4.1. We set S1 :=
{
(x, α) ∈ X × R : α ≤ 0

}
, S2 := epif.

Clearly,

∂F dS1(x, α) =



{(0, 0)} if α < 0,
{0} × [0, 1] if α = 0,
{(0, 1)} if α > 0.

We consider the following two cases.
Case 1. There exists a sequence (xn, αn)→ (x̄, f(x̄)) such that

rn := dS1∩S2(xn, αn) > n
(
dS1(xn, αn) + dS2(xn, αn)

)
, n = 1, 2, . . . .

Thus,

dS1(xn, αn) + dS2
(xn, αn) <

rn
n
≤ min
X×R

(
dS1

(.) + dS2
(.)
)
+

rn
n
.

By the Ekeland variational principle, for every n = 1, 2, . . . there exists a point
(zn, βn) ∈ X × R such that ‖(zn, βn)− (xn, αn)‖ < rn and (zn, βn) is a minimizer of
the function

gn(x, α) := dS1(x, α) + dS2(x, α) +
1

n
‖(x, α)− (zn, βn)‖.

Therefore,

(0, 0) ∈ ∂F gn(zn, βn), n = 1, 2, . . . .(4.1)

Observe that (zn, βn) /∈ S1 ∩ S2; indeed, otherwise we would have

‖(xn, αn)− (zn, βn)‖ ≥ dS1∩S2(xn, αn) = rn,

a contradiction. Since S1 and S2 are closed, there exists δn > 0 such that either
((zn, βn)+δnBX×R)∩S1 = ∅ or ((zn, βn)+δnBX×R)∩S2 = ∅, and δn → 0 as n→∞.

Now, using the fuzzy sum rule in (4.1) (note that dS1 and dS2 are Lipschitz),
there exist

(un, an) ∈ (zn, βn) + δnBX×R,

(vn, bn) ∈ (zn, βn) + δnBX×R,

(0, a∗n) ∈ ∂F dS1
(un, an),

(ζn,−b∗n) ∈ ∂F dS2
(vn, bn)
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such that

(0, 0) ∈ (0, a∗n) + (ζn,−b∗n) +
2

n
BX∗×R.(4.2)

Thus, either (un, an) /∈ S1 or (vn, bn) /∈ S2. By Lemma 4.2, then either |a∗n| = 1 (since
a∗n ≥ 0, this means that a∗n = 1) or ‖(ζn,−b∗n)‖ = 1. Combining this observation and
(4.2), we derive that

ζn → 0 and b∗n → 1 as n→∞.(4.3)

On the other hand, (ζn,−b∗n) ∈ ∂F dS2(vn, bn). Lemma 4.3 gives the existence of

(yn, λn) ∈ S2,

(ξn,−µn) ∈ NF (S2, (yn, λn))

such that

‖(yn, λn)− (vn, bn)‖ < dS2(vn, bn) +
1

n
, ‖(ξn,−µn)− (ζn,−b∗n)‖ <

2

n
.

Hence, (yn, f(yn))→ (x̄, f(x̄)), and by (4.3), µn → 1, ξn → 0. When n is large, then
µn > 0. Since (ξn,−µn) ∈ NF (epif, (yn, λn)), using Lemma 2.2, we obtain

ξn/µn ∈ ∂F f(yn).

From the above, we derive that, for any ε > 0, η > 0, when n is large enough, we have

(yn, f(yn)) ∈ (x̄, f(x̄)) + ηBX×R and ξn/µn ∈ ∂F f(yn) ∩ εBX∗ .

We obtain (A1).
Case 2. There are a > 0, r > 0 such that

dS1∩S2(x, α) ≤ a
(
dS1(x, α) + dS2(x, α)

)
for all (x, α) ∈ (x̄, f(x̄)) + rBX×R.

Fix ξ ∈ NF (S, x̄). Clearly, (ξ, 0) ∈ NF (S1 ∩ S2, (x̄, f(x̄))). By Lemma 4.3,

(ξ, 0) ∈ b∂F dS1∩S2(x̄, f(x̄)) for some b > ‖ξ‖+ 1.

Therefore,

(ξ, 0) ∈ κ∂F
(
dS1(.) + dS2(.)

)
(x̄, f(x̄)), where κ := ab.(4.4)

Since f is lower semicontinuous, there exists η ∈ (0, ε2 ) such that

f(x) > f(x̄)− ε

2
for all x ∈ x̄+ ηBX .(4.5)

Now, apply the fuzzy sum rule to (4.4), to obtain the existence of

(u, α), (v, β) ∈ (x̄, f(x̄)) + η

4
BX×R,

(0, γ) ∈ ∂F dS1(u, α),

(v∗, λ) ∈ ∂F dS2(v, β)
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such that

(ξ, 0) ∈ κ
(
(0, γ) + (v∗, λ)

)
+

ε

4
BX∗×R.

Thus,

ξ ∈ κv∗ +
ε

4
BX∗ .(4.6)

Since (v∗, λ) ∈ ∂F dS2(v, β), by Lemma 4.3, there exist (z, ν) ∈ S2 := epif and
(z∗,−ν∗) ∈ NF (S2, (z, ν)) such that

‖(z, ν)− (v, β)‖ ≤ dS2(v, β) +
η

2
(4.7)

and

‖(v∗, λ)− (z∗,−ν∗)‖ < ε

4κ
.(4.8)

Combining (4.5) and (4.7), we obtain (z, f(z)) ∈ (x̄, f(x̄)) + ε
2BX×R. From (4.6)

and (4.8) we derive that ‖κz∗ − ξ‖ < ε
2 . Next, we apply Lemma 2.2 to (z

∗,−ν∗) ∈
NF (S2, (z, ν)), to obtain the following:
• If ν∗ �= 0, then ζ := z∗/ν∗ ∈ ∂F f(z) and ‖λζ − ξ‖ < ε. Here, λ = κν∗. We thus

obtain (A2).
• Else, there exist

(y, f(y)) ∈ (z, f(z)) + ε

2
BX×R ⊆ (x̄, f(x̄)) + εBX×R,

t > 0, and ζ := y∗/t ∈ ∂F f(y) such that ‖y∗ − z∗‖ < ε
2κ . Therefore, ‖λζ − ξ‖ < ε,

where λ = κt. We again obtain (A2). The proof is complete.
Theorem 4.4. Let X be an Asplund space, and let f : X → R ∪ {+∞} be a

continuous function. Let S := {x ∈ X : f(x) = 0}, and let x̄ ∈ S. Then, either
(B1) for any ε, η > 0, there exists (x, f(x)) ∈ (x̄, f(x̄)) + ηBX×R such that[

∂F f(x) ∪ ∂F (−f)(x)] ∩ εBX∗ �= ∅,
or
(B2) for any ξ ∈ NF (S, x̄), any ε > 0, there exist (x, f(x)) ∈ (x̄, f(x̄)) + εBX×R,

ζ ∈ [∂F f(x) ∪ ∂F (−f)(x)], and λ > 0 such that ‖λζ − ξ‖ < ε.
Proof. Set

S =
{
x ∈ X : f(x) = 0

}
, S1 =

{
x ∈ X : f(x) ≤ 0}, and S2 =

{
x ∈ X : f(x) ≥ 0}.

We first prove that

NF (S, x̄) ⊆ NF (S1, x̄) ∪NF (S2, x̄).(4.9)

Let x∗ ∈ NF (S, x̄). Assume to the contrary that x∗ /∈ NF (S1, x̄) ∪ NF (S2, x̄). It
follows that there exist ε0 > 0, sequences {xn}n∈N, {yn}n∈N converging, respectively,
to x̄ such that xn ∈ S1, yn ∈ S2, and

〈x∗, xn − x̄〉 ≥ ε0‖xn − x̄‖,

〈x∗, yn − x̄〉 ≥ ε0‖yn − x̄‖.
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Since f is continuous, there exists zn = λnxn + (1− λn)yn with λn ∈ [0, 1] such that
zn ∈ S. Obviously, zn → x̄.

From the above inequalities, we obtain

〈x∗, zn − x̄〉 = λn〈x∗, xn − x̄〉+ (1− λn)〈x∗, yn − x̄〉
≥ ε0(λn‖xn − x̄‖+ (1− λn)‖yn − x̄‖)
≥ ε0‖zn − x̄‖.

This implies that x∗ /∈ NF (S, x̄), a contradiction. Then, Theorem 4.4 follows imme-
diately from Theorem 4.1 and inclusion (4.9).

Observe that we can use Theorems 4.1 and 4.4 and the method in [1] to establish
a fuzzy multiplier rule for problem (P) in an Asplund space setting.
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Abstract. Most current implementations of interior-point methods for semidefinite program-
ming use a direct method to solve the Schur complement equation (SCE) M∆y = h in computing
the search direction. When the number of constraints is large, the problem of having insufficient
memory to store M can be avoided if an iterative method is used instead. Numerical experiments
have shown that the conjugate residual (CR) method typically takes a huge number of steps to
generate a high accuracy solution. On the other hand, it is difficult to incorporate traditional pre-
conditioners into the SCE, except for block diagonal preconditioners. We decompose the SCE into
a 2 × 2 block system by decomposing ∆y (similarly for h) into two orthogonal components with
one lying in a certain subspace that is determined from the structure of M . Numerical experiments
on semidefinite programming problems arising from the Lovász θ-function of graphs and MAXCUT
problems show that high accuracy solutions can be obtained with a moderate number of CR steps
using the proposed equation.

Key words. large scale semidefinite programming, interior-point methods, inexact search di-
rections, preconditioned conjugate residual method, deflated conjugate gradient method
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1. Introduction. Let Sn be the vector space of n× n real symmetric matrices
endowed with the inner product A • B = Trace(AB). Given an integer n, we let
n̄ = n(n+ 1)/2. Let svec be an isometry identifying Sn with R

n̄ such that K • L =
svec(K)T svec(L), and let smat be the inverse of svec. Given k × l matrices G,H,
we define G©∗ H : Sl −→ Sk by G©∗ H(M) = (HMGT +GMHT )/2, for M ∈ Sl.

Consider the standard semidefinite program (SDP)

minX C •X
Ak •X = bk, k = 1, . . . ,m,

X 	 0,
(1)

where b ∈ R
m, Ak, C ∈ Sn, and X 	 0 means that X is positive semidefinite. The

dual of (1) is

maxy,Z bT y∑m
k=1 ykAk + Z = C

Z 	 0.

For later discussion, let us introduce the linear map A : Sn −→ R
m, defined by

A(X) = [A1 •X · · · Am •X]
T
.
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The adjoint of A with respect to the standard inner product in Sn and R
m is the

linear map AT : R
m −→ Sn defined by

AT y =

m∑
k=1

ykAk.

We consider primal-dual path-following methods [21, 23] for SDP using the Nes-
terov–Todd (NT) direction in which the general framework in each iteration is as
follows. Given a current iterate (X, y, Z) and a centering parameter σ ∈ [0, 1),
where X,Z are symmetric positive definite, the methods find a search direction
(∆X,∆y,∆Z) so as to generate the next iterate by solving the following linear system
of equations:

A∆X = Rp := b−AX,(2a)

AT∆y + ∆Z = Rd := C − Z −AT y,(2b)

E∆X + F∆Z = Rc := σµI − Σ2,(2c)

where

µ = X • Z/n, E = G−T ©∗ GZ, F = G−TX ©∗ G,

and G is a matrix such that Σ := GZGT = G−TXG−1 is a positive definite diagonal
matrix. Note that W := GTG is the NT scaling matrix with WZW = X; see [21].

As in the case of linear programming, we can avoid solving the linear system of
n2 + m equations (2a)–(2c) directly by first solving a Schur complement equation
(SCE) involving only ∆y and then computing ∆X, dZ in terms of ∆y as follows:

M∆y = h := Rp +AE−1FRd −AE−1Rc,(3a)

∆Z = Rd −AT∆y,(3b)

∆X = E−1Rc − E−1F(Rd −AT∆y),(3c)

where M = AE−1FAT is the Schur complement matrix whose (i, j) element is given
by

Mij = Ai •WAjW, i, j = 1, . . . ,m.(3d)

Generally, (3a) is solved by a direct method through the following steps:
(i) Compute the m×m matrix M and store it in the computer memory;
(ii) Compute the Cholesky factorization of M , and obtain ∆y by solving two

triangular systems of linear equations.
The work required for step (i) is 2mn3 +m2n2/2 flops if the SDP data is dense. (A
flop is one addition or one multiplication.) But when the data is sparse, substantial
reduction in the computational cost of M is possible by exploiting the sparsity; see
[7] for details. However, M is generally fully dense even when the SDP data is sparse.
Thus when m is large, say more than a few thousands, it is impossible to store M in
the memory of most current workstations. Furthermore, the m3/3 flops required to
compute the Cholesky factorization of M also become prohibitively expensive.

In this paper, we will mainly focus on SDPs where m is large but n is moderate
(say, less than 1000). It is well known that one can overcome the memory problem
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just mentioned by using an iterative method to solve (3a). The reason is that an
iterative method only needs to access matrix-vector products of the form Mv, and
these can be easily computed based on the operator description of M for any given
vector v. As a result, M need not be formed explicitly, and hence the problem of
having insufficient computer memory to store M does not arise in this case.

Of course, memory problems can also occur when n is large, since the primal
variable X is typically dense even if the SDP data and the resulting dual variable Z
are sparse. However, the root cause of this problem lies in the primal-dual framework
used to solve the SDP and it cannot be easily overcome by simply using an iterative
method to compute the search direction. For such a problem, it is more appropriate
to use methods that avoid the need to form X explicitly. One such method is the
dual scaling interior-point method proposed in [3], which is able to solve large SDPs
(with m,n ≈ 2000) arising from MAXCUT problems. Another method that avoids
the explicit formation of X is the spectral bundle method proposed in [10]. (This is
a first order method that is designed for SDPs in which Trace(X) is a constant. The
authors succeeded in solving some large scale SDPs arising from MAXCUT problems
and the Lovász θ-function on graphs, but only with low accuracies in the duality
gaps.)

The idea of using an iterative method to solve (3a) in order to avoid excessive
memory requirement is well known. In [16], a preconditioned conjugate gradient
(CG) method was proposed to approximately solve the SCE in each iteration of a
primal-dual interior-point method. Besides reporting some impressive computational
results on SDPs arising from the Lovász θ-function on graphs and graph partitioning
problems, that paper also gave a detailed discussion on how to incorporate inexact
search directions into a primal-dual interior-point method. Building on the earlier
work, a preconditioned conjugate residual (CR) method was proposed to solve the
SCE in [17]. Recently, Choi and Ye [5] also reported computational results for large
SDPs arising from MAXCUT problems (with n up to 14000). They used the dual
scaling interior-point method described in [3], but solved the associated SCE in each
iteration by a preconditioned CG method. Earlier works on using preconditioned CG
methods to solve the SCE in interior-point methods for SDP include [14] and [24].

As far as we are aware, all the earlier works mentioned above used diagonal
or block diagonal preconditioners. These preconditioners are ineffective when the
Schur complement matrix becomes more and more ill-conditioned as the interior-
point iterates approach an optimal solution. Although attempts were made in [14] to
construct more effective preconditioners based on incomplete Cholesky factors, none
really succeeded in overcoming the ill-conditioning problem of the SCE. As a result, in
all these works, only low accuracies in the duality gaps could be obtained at reasonable
costs.

In this paper, we propose a method to overcome the ill-conditioning problem
of the Schur complement matrix as interior iterates approach an optimal solution.
By analyzing the structure of the Schur complement matrix, we decompose the SCE
into a 2 × 2 block system by decomposing ∆y (similarly for h) into two orthogonal
components with one lying in a certain subspace of R

m that is determined from the
structure of M . We call the resulting 2 × 2 block system the projected SCE. Using
the combination of applying the CR method to the SCE when interior-point iterates
are not close to an optimal solution and switching to the projected SCE when they
are, we are able to solve some large SDPs arising from the Lovász θ-function of graphs
and MAXCUT problems to moderately high accuracies, but at reasonable costs.
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Although we focus only on the NT direction in this paper, we should mention
that the method presented here also works for the dual scaling direction considered in
[3], where E = I ©∗ I, F = Z−1©∗ Z−1/µ. In fact, if the dual scaling method is used,
our idea can in principle be used to solve sparse SDPs where m and n are both large.
On the negative side, it seems that our proposed method cannot be adapted for the
HRVW/KSH/M direction [11, 12, 15], for reasons that we will explain in section 5.

Now we introduce some notations. TheMatlab notation [x ; y] is used to denote
the column vector formed by appending a column vector y to x. We let I be the set of
indices of nonzero elements of the matrix

∑m
k=1 |Ak| (where |Ak| is the matrix whose

(i, j) element is the magnitude of the corresponding element of Ak), and

ρs = (number of nonzero elements of the matrix
∑m
k=1 |Ak|)/n2,

ρt = (total number of nonzero elements of A1, A2, . . . , Am)/(mn2).

We use ‖·‖ to denote the vector and matrix 2-norms, and ‖·‖F to denote the Frobenius
norm.

An iterative method can solve (2a)–(2c) only approximately. In section 2, we
discuss how to incorporate an approximately computed search direction (or inexact
search direction) into a primal-dual interior-point method. In section 3, some basic
results on the convergence of the CR method are given. The behavior of the CR
method on SDPs arising from the Lovász θ-function of graphs is given in section
4. The derivation of the projected Schur complement equation and discussions on
related issues are given in section 5. This is followed by numerical results showing
the effectiveness of the projected Schur complement approach on two classes of SDPs,
namely, those arising from the Lovász θ-function of graphs, and MAXCUT problems.

2. Inexact search directions. The use of iterative methods to solve the SCE
(3a) requires less computer memory than does the use of a direct method. It also has
the advantage that one can terminate the iterative solver whenever an approximate
solution of (3a) is deemed sufficiently accurate. This can lead to a significant savings
in the CPU time required in each interior-point iteration, especially during the initial
phase where accurate computation of the search direction is not necessary. In [13],
Kojima, Shida, and Shindoh proposed inexact search directions for which (2a) and
(2b) are satisfied exactly but (2c) is relaxed. Given a fixed parameter κ ∈ [0, 1), they
said that (∆X,∆y,∆Z) is an admissible direction if (2a) and (2b) hold, and

‖(E∆X + F∆Z)−Rc‖F ≤ κ ‖Rc‖F .(4)

Note that the Frobenius norm is used above out of convenience since it can usually be
computed cheaply. However, the norms in (4) need not be computed exactly, and it is
sufficient to have some reasonably accurate estimates. As a result, we should keep in
mind that sometimes it is cheaper to use the 2-norm instead since it can be estimated
via the Lanczos method [18, Chapter 4] by calculating dominant eigenvalues.

Under certain mild assumptions, it is shown in [13] that primal-dual interior-point
methods using inexact admissible directions maintain the same polynomial complexity
enjoyed by their counterparts that use exact search directions. In this paper, we follow
the framework laid out in [13] for the computation of inexact directions. Suppose ∆y
satisfies (3a) only approximately, i.e.,

M∆y ≈ h.
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Let

r = h−M∆y.

Given such a ∆y, we compute ∆Z and ∆̂X as in (3b) and (3c), respectively. Thus

(∆̂X,∆y,∆Z) satisfies (2b) and (2c) exactly, but not (2a), since

A∆̂X = AE−1Rc −AE−1F (Rd −AT∆y
)

= Rp − r.

However, (2a) can be made to hold exactly by replacing ∆̂X by the minimizer of the
following linear least squares problem:

min
∆X

∥∥∥∆X − ∆̂X
∥∥∥
F

such that A∆X = Rp,

whose solution is given by

∆X = ∆̂X + AT (AAT )−1 r.(5)

By using (∆X,∆y,∆Z) as the search direction, (2a) and (2b) are satisfied exactly,
but not (2c), where

‖(E∆X + F∆Z)−Rc‖F =
∥∥E [AT (AAT )−1 r]

∥∥
F

=: ‖R‖F .(6)

Thus (∆X,∆y,∆Z) is an admissible direction as soon as ‖R‖F ≤ κ ‖Rc‖F .
Note that in (6), the quantity ‖R‖F can be computed in 3n3 flops, since for a

given U ∈ Sn,
E(U) =

[
(G−TUG−1)Σ + Σ(G−TUG−1)

]
/2

can be computed in 3n3 flops, to leading order.
Notice that in (5), one has to solve a system of linear equations in computing

AT (AAT )−1r. Fortunately, for many large scale SDPs such as those arising from the
Lovász θ-function of graphs and MAXCUT problems, the matrix AAT is diagonal or
sparse, and hence (AAT )−1r can be computed at reasonable cost. But for problems
(such as those arising from control theory) where AAT is dense, the computation of
(AAT )−1r can be very expensive and should be done by using an iterative solver in
order to avoid incurring a huge memory requirement in storing AAT .

3. The conjugate residual method. The CR method [18] is a Krylov sub-
space method that is analogous to the CG method, except that the former minimizes
the norm of the residual vector over the underlying Krylov subspace in each iteration
while the latter orthogonalizes the residual vector against the underlying Krylov sub-
space. The advantage of using the CR method is that the residual norm decreases
monotonically as the iteration progresses. In general, the CR and CG methods exhibit
similar convergence behavior.

In our application of the CR method to the SCE (3a), the stopping criterion is
based on the quantity R in (6) that is a function of the standard residual vector r.
We feel that for our case it is even more desirable to have a method that exhibits a
monotone convergence in the residual norm, and thus we choose the CR method over
the more commonly used CG method as our iterative solver for solving the SCE.

Given an N × N symmetric linear system of equations Bx = d, the standard
implementation of the CR method is as follows [18].
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CR method.
Compute r0 = d−Bx0, and Br0. Set p0 = r0 and Bp0 = Br0.

For j = 0, 1, 2, . . .,

αj = rTj Brj/ ‖Bpj‖2
xj+1 = xj + αj pj

rj+1 = rj − αj Bpj

Compute Brj+1

βj = rTj+1Brj+1/r
T
j Brj

pj+1 = rj+1 + βj pj

Compute Bpj+1 = Brj+1 + βj Bpj

end
Each iteration of the algorithm requires 12N flops, plus the cost of computing Brj+1.

It is well known that the CR method will suffer from slow convergence when the
coefficient matrix B has an unfavorable eigenvalue distribution. For readers who are
not familiar with the convergence theory of the CR method, we will now briefly review
how its convergence is related to the spectrum for the case where B is positive definite.
Suppose the eigenvalues of B are distributed almost uniformly in an interval [a, b] on
the positive real line. Then, in exact arithmetic, the asymptotic convergence rate of
the CR method is determined by the ratio τ := b/a; specifically, the convergence rate
is given by

ρ =

√
τ − 1√
τ + 1

.

If, in addition, B has t isolated eigenvalues lying on the right of [a, b], then these
outliers may cause a stagnation (that is, very little reduction in the residual norm)
of at most t steps during the initial phase of the CR method, but they do not affect
the asymptotic convergence rate. Similarly, if B has isolated eigenvalues that lie on
the left of [a, b], then these outliers may cause a stagnation during the initial phase
of the CR method, but the stagnation can last for many steps, depending on how
close the outliers are to the origin. However, we should note that stagnation due
to outliers will not occur if the initial residual vector r0 is orthogonal to the eigen-
space associated with these isolated eigenvalues. For a more detailed account of the
convergence behavior of the CR method and other Krylov subspace iterative methods,
we refer the reader to [6].

From the above discussion, we see that when the eigenvalues of B are distributed
over a large interval, or when there are eigenvalues close to the origin, the convergence
of the CR method can be exceedingly slow. In such a situation, it is necessary to apply
a preconditioner to B to improve the convergence rate. That is, instead of applying the
CR method to the original linear system of equations, one applies it to a transformed
linear system, say (L−1BL−T ) (LTx) = L−1d, where L is a matrix chosen such that
Lz = f is easy to solve, and the spectrum of the preconditioned matrix L−1BL−T

is better behaved than that of the original matrix B in either having fewer outliers
that are close to the origin or having eigenvalues that are distributed over a smaller
interval.

So far, our discussion on the convergence behavior of the CR method is based on
exact arithmetic. In the presence of rounding errors, there are further complications
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in the behavior of the CR method. Roughly speaking, there are two main effects
caused by rounding errors.

1. The residual norm will stop decreasing beyond a certain accuracy level (known
as the final attainable level of accuracy) even if one continues the CR iteration.
This happens because the residual vectors rj generated by the CR method
differ from the true residual vectors d−Bxj in the presence of rounding errors.
In [9], it is shown that the CR method will stop making further progress when
j is such that

‖d−Bxj − rj‖ ≈ u ‖B‖ ‖x‖ O(j) (1 + max{‖xi‖ / ‖x‖ : i ≤ j}) .

Here u denotes the machine precision.
2. Rounding errors deteriorate the convergence rate by causing a loss of orthogo-

nality among the computed vectors (in exact arithmetic, they are orthogonal).
For example, in exact arithmetic, the CR method will converge to the exact
solution in no more than N steps. But due to rounding errors, it may take
more than N steps to reduce the residual norm to the final attainable level
of accuracy, and such a delay can apparently be arbitrarily long; see [20].

4. Behavior of the CR method on the Schur complement equation. In
this section, we will present some numerical experiments showing the convergence
behavior of the CR method in solving the following preconditioned version of (3a):

L−1ML−T︸ ︷︷ ︸ (LT∆y) = L−1h︸ ︷︷ ︸,
M̂ ĥ

(7)

where L is a nonsingular lower triangular matrix chosen to precondition M . Our im-
mediate task is to construct a suitable preconditioner for M . In the current literature,
most preconditioning techniques are proposed for a sparse linear system of equations
where the sparse coefficient matrix is known explicitly, and preconditioners such as
incomplete Cholesky factors are generally quite effective [18]. However, as the reader
may recall, our matrix M is dense and is not formed explicitly. Thus, a lot of the
current preconditioning techniques [18, Chapter 10] are not applicable to our linear
system. The only obvious and easily implementable choices for our system are block
diagonal preconditioners. That is, L is chosen to be the Cholesky factor of a matrix of
the form diag(M1,M2, . . . ,Mk), where the Mi’s are diagonal blocks of M . Note that
if each block is just a scalar, then the diagonal elements of L are simply the square
roots of the diagonal elements of M .

In [14], Lin and Saigal used incomplete Cholesky factors as preconditioners for
the SCE arising from SDP relaxation of quadratic assignment problems. But their nu-
merical results showed that these sophisticated preconditioners are not clearly better
than the diagonal preconditioner.

We will first analyze the behavior of the CR method on the preconditioned SCE
(7) associated with the SDP problem theta2 taken from the SDPLIB collection [2].
For this problem, n = 50,m = 498, and we take LLT to be the diagonal preconditioner
of M . In each CR iteration, we compute M̂v for a given v ∈ R

m via the procedure
described in Table 1, where the cost is also estimated.

All the numerical results presented in this paper are computed using Matlab
5.3 on a 400MHz Pentium II PC with 256M of memory. The parameter κ in (4) is
set to κ = 0.01. The interior-point method we used is the primal-dual path-following
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Table 1
Computational cost of a matrix-vector product for (7).

Computing Number of flops required

w := L−T v m
U := AT w ρt mn2

V := U W 2ρs n3

{Tij | (i, j) ∈ I}, where T := W V ρs n3

u := A(T ) ρt mn2

M̂v = L−1u 3ρs n3 + 2ρt mn2
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Fig. 1. Behavior of the CR method on the SDP problem theta2. The left-hand plot is the
number of CR steps taken in each interior-point iteration to solve the preconditioned Schur comple-
ment equation (7) approximately to satisfy the admissible condition (4). The right-hand plot is the
corresponding duality gap X •Z. The residual in the infeasibilities, max(‖rp‖ , ‖Rd‖F ), is less than
10−12 after the 9th interior-point iteration.

method (without corrector) described in [22]. For easy reference, we will refer to the
interior-point method in [22] as Algorithm PFchol, and the corresponding method
that uses the CR method to solve preconditioned SCE (7) as Algorithm PFCR. The
default starting iterates described in [22] are used throughout.

Let

NCR(k) =

{
the number of CR steps required at the kth interior-point iteration
to solve (7) so that the admissible condition (4) is satisfied.

In Figure 1, we plot NCR(k) against k. The corresponding duality gap Xk • Zk is
shown in the same figure. We use the superscript “k” to denote dependence on the kth
interior-point iterate (Xk, yk, Zk). Notice that the duality gap decreases at almost a
linear rate. This implies that the norm ‖Rkc‖F also decreases at almost a linear rate
as the interior-point iteration progresses. As a result, the admissible condition (4)
becomes more and more stringent as k increases, and more CR steps are required for
this condition to be fulfilled. Ideally, we would hope that NCR(k) increases at most
linearly with k. However, it is evident from Figure 1 that NCR(k) increases far more
rapidly than the reduction in Xk •Zk. As the latter becomes smaller, the convergence
rate of the CR method deteriorates rapidly, resulting in a huge increase in NCR(k).
Furthermore, the effect of rounding errors also becomes more prominent, as can be



SOLVING SOME LARGE SDPs VIA THE CR METHOD 677

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

residual norms

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

spectrum

CR step number eigenvalue number

Fig. 2. The dashed line in the left-hand plot is the residual norm ‖h − Mvj‖ / ‖h‖ generated
by the CR method, where M and h correspond to the 15th interior-point iterate generated from the
run in Figure 1. The solid line corresponds to the quantity ‖R‖F defined in (6). The right-hand

plot is the spectrum of the preconditioned matrix M̂ .
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Fig. 3. Same as Figure 2, but for the 20th interior-point iterate.

seen from the fact that NCR(22) > 5m, when in fact this number should be at most
m in exact arithmetic.

The deterioration in the convergence rate occurs because the spectrum of M̂k

becomes “worse” as k increases. In Figures 2 and 3, the spectra of M̂k are plotted for
k = 15 and k = 20, respectively. Based on these spectra, the convergence rates are at
best equal to 0.94 and 0.993, respectively. This phenomenon of worsening convergence
rate as the duality gap decreases is typical for the SCE. It is to be expected since the
eigenvalues of M̂k are spread uniformly in an interval of the form [O(µk), O(1)].

In Table 2, we show the cumulative CPU time (in the format hours: minutes:
seconds) taken by Algorithms PFchol and PFCR to solve a number of SDP problems
arising from the Lovász θ-function of random graphs to an accuracy of 10−6 in the
relative duality gaps. (The graphs were generated using a program provided by K.
Nakata, whose help we gratefully acknowledge.) For the machine we used, the CPU
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time required to compute the Cholesky factor of a given dense m×m positive definite
matrix follows the empirical formula below:

chol time(m) ≈ 4.446
( m

100

)3

secs.(8)

Those numbers which appear in typewriter style in Table 2 are the cumulative CPU
times estimated from (8) to factorize M , and the memories needed to store M alone.

Observe that for the theta problems with large m, the CPU time taken by the CR
method to solve these problems to an accuracy level of roughly 0.1 in the duality gaps
can be one hundred times faster than that using the Cholesky factorization. This
success can be attributed to the following facts when the duality gap is at a level
above 0.1:

• the accuracy needed in computing an admissible direction is quite low;
• the matrix M̂ is well-conditioned, leading to a fast convergence of the CR
method where it takes only a relatively small number of steps to obtain an
admissible direction.

But once the interior-point iteration progresses to the stage where the duality gaps
are smaller than 0.01, the CR method becomes highly inefficient, resulting in a huge
increase in the CPU time needed to compute an admissible direction. For example,
for the problem with m = 23872, the CR method spent only about 1 hour in the first
15 interior-point iterations, but almost 99 hours in the last 6 iterations. On the other
hand, for the direct method using Cholesky factorization, the time taken is still the
same as in all the previous iterations. The result is that, when the duality gaps are
less than 0.01, an interior-point iteration using a direct method to solve (3a) is far
more efficient than that using the CR method. But it is worthy to note from Table 2
that when m is very large (m = 13390 and m = 23872), the cumulative CPU time
taken by PFCR to compute an approximate optimal solution with a relative duality
gap of 10−6 or smaller is still less than that required by PFchol even if there is enough
computer memory to store M .

We note that [16] also reported the same observations on the behavior of the CG
method in solving a similar collection of SDPs.

Based on the above observations, one may want to combine the advantages of the
CR and direct methods by using a hybrid method that employs the CR method to
compute the search direction when the duality gap is above a certain level (say, 0.01)
and then switch to the direct method when the duality gap falls below that level. But
as our main purpose in this paper is to address the memory problem when m is large,
we shall not distract ourselves with such a hybrid method.

Finally, observe that from Figures 2 and 3 the ratio at step j,

‖Rj‖F
‖rj‖ =

∥∥EAT (AAT )−1rj
∥∥
F

‖rj‖ ,

stays at an almost constant value for all j. Thus we can first estimate this ratio, say
c, at the beginning of the CR method, then stop the CR method when we have

‖Rj‖F ≈ c ‖rj‖ ≤ κ ‖Rc‖F .

In this way we avoid the need to compute the quantity ‖Rj‖ for each j. This can
sometimes lead to a substantial savings in the computation time in each CR step,
especially when computing (AAT )−1rj or E(U) for a given U is expensive. The
empirical fact just mentioned can be very useful in cutting down computation time
in practice.
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Table 2
Comparison of Algorithms PFchol and PFCR on a number of SDP problems arising from Lovász

θ-function on graphs. CPU times are cumulative. The numbers in typewriter style are estimated
figures needed to factorize and store M alone.

Solving (3a) via Cholesky

factorization of M

Solving (3a) via the CR method on

(7) with diagonal preconditioner

n m
Iter.
no.

CPU
time

X • Z Mem.
MB

Iter.
no.

CPU
time

X • Z Mem.
MB

NCR(k)

200 1949 18 12:47 3.6e− 1 80 18 2:57 3.6e− 1 18 335
21 14:55 3.9e− 3 80 21 11:11 3.9e− 3 18 2500
24 17:02 3.6e− 5 80 24 57:48 3.6e− 5 18 9745

200 5986 15 3:58:30 287 15 5:10 1.7e− 1 20 245
18 4:46:12 287 18 33:41 1.3e− 3 20 3015
21 5:33:54 287 21 6:03:50 2.2e− 5 20 29930

300 4375 20 2:35:05 2.1e− 1 219 20 14:14 2.4e− 1 27 445
23 2:57:18 1.2e− 3 219 23 1:08:16 1.3e− 3 27 6120
26 3:19:23 1.2e− 5 219 26 8:36:40 1.3e− 5 27 31315

300 13390 15 44:28:15 1434 15 22:18 2.3e− 1 44 290
18 53:21:54 1434 18 2:33:16 2.1e− 3 44 3450
21 62:15:33 1434 21 35:02:47 2.5e− 5 44 52320

400 7905 20 12:12:00 500 20 34:06 2.9e− 1 39 475
23 14:01:48 500 23 2:59:19 1.9e− 3 39 5435
25 15:15:00 500 25 15:19:15 6.6e− 5 39 27420

400 23872 15 251:56:15 4560 15 1:02:39 2.8e− 1 89 290
18 302:19:30 4560 18 6:44:35 3.2e− 3 89 2860
21 352:42:45 4560 21 99:57:54 1.2e− 5 89 57200

5. The projected SCE. The numerical results in the last section show that the
CR method is very efficient in computing an admissible search direction when X • Z
is greater than 0.1, but becomes exceedingly slow when X •Z is smaller than 0.01 for
the theta problems. In this section, we propose a method to overcome this difficulty
based on the structure of the Schur complement matrix when X • Z is small.

Given an interior-point iterate (X, y, Z), let µ := X • Z/n, and let W be the as-
sociated NT scaling matrix. Suppose that (X, y, Z) is close to some optimal solution
(X∗, y∗, Z∗) of the primal and dual SDP. If (X∗, Z∗) satisfies the strict complemen-
tarity, as well as the primal and dual nondegeneracy conditions defined in [1], then as
(X,Z) approaches this optimal solution (i.e., when µ is sufficiently small), the eigen-
values of W will separate into two groups, one with large magnitudes of the order
O(1/√µ) and the other with small magnitudes of the order O(√µ).

Now suppose that W has a group of p large eigenvalues and a group of q := n− p
small eigenvalues. Let W = QDQT be the eigenvalue decomposition of W . We can
rewrite W as

W = W1 +W2,(9)

whereW1 = Q1D1Q
T
1 andW2 = Q2D2Q

T
2 , according to the partitionD = [D1 0 ; 0 D2]

andQ = [Q1 Q2], withD1 ∈ R
p×p, Q1 ∈ R

n×p corresponding to the large eigenvalues,
and D2 ∈ R

q×q, Q2 ∈ R
n×q corresponding to the small eigenvalues.

Note that in practice it is only necessary to compute a partial eigenvalue decom-
position of W . All we need is D1 and Q1, and then W2 will be completely determined
as W −W1. If p is an integer that is much smaller than n, then D1 and Q1 can be
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computed cheaply by using variants of the Lanczos method for computing dominant
eigenvalues. For the dual scaling direction used in [3], instead of W , it is the large
eigenvalues of Z−1/

√
µ that should be computed. When Z is sparse and a sparse

Cholesky factorization of it is readily available, computing the partial eigenvalue de-
composition D1 and Q1 via Lanczos methods (applied to Z−1) can sometimes be done
efficiently even if n is large. Note that each step of a Lanczos method applied to Z−1

requires the solution of a system of linear equations with Z as the coefficient matrix,
and Z−1 is not required explicitly.

When µ is sufficiently small, the number of eigenvalues of W with magnitudes
O(1/√µ) is equal to the rank of X∗. Thus p is usually equal to the rank of X∗. In
actual computation, however, we can set p to be any integer such that p̄ ≤ m, and it
is not necessary to know the rank of X∗.

With the partition in (9), the Schur complement matrix M can be rewritten as

M = A (Q1©∗ Q1) (D1©∗ D1) (Q
T
1 ©∗ QT1 )AT +A [(2W1 +W2)©∗ W2]AT

= A1D2
1AT1 + B,(10)

where

A1 = A(Q1©∗ Q1), D1 = D
1/2
1 ©∗ D

1/2
1 , B = A [(2W1 +W2)©∗ W2]AT .

Note that A1 is a linear map from Sp into R
m. But we will sometimes view A1 also

as the matrix representation of the linear map with respect to the standard bases in
Sp and R

m. Under the assumption that (X∗, Z∗) satisfies the strict complementarity
as well as the primal and dual nondegeneracy conditions defined in [1], the matrix A1

will have full column rank [1, Theorem 3] when µ is small and p is the rank of X∗.
Notice that the decomposition (10) depends on our ability to find the eigenvalue

decomposition of W ©∗ W . For the HRVW/KSH/M direction direction described in
[11, 12, 15], W ©∗ W is replaced byX ©∗ Z−1. Unlike that of the former, the eigenvalue
decomposition of the latter is not readily available even if those ofX and Z are known.
For this reason, the Schur complement matrix cannot be easily decomposed into the
form in (10) for the HRVW/KSH/M direction.

We are now ready to describe our method to alleviate the problem of slow con-
vergence when the CR method is applied to SCE (3a).

Theorem 5.1. Suppose A1 ∈ R
m×p̄ has full column rank. Let H = AT1A1. Then

H ∈ R
p̄×p̄ is nonsingular, and solving the SCE, Mv = h, for v is equivalent to solving

for v1 and v2 from the following linear system of equations:

(11)[
I +D−1

1 H−1AT1 BA1H
−1D−1

1 D−1
1 H−1AT1 BQ

QBA1H
−1D−1

1 QBQ

]
︸ ︷︷ ︸

[
v1

v2

]
=

[
D−1

1 H−1AT1 h
Qh

]
︸ ︷︷ ︸

,

K g

where Q = I −A1H
−1AT1 . The solution v of the SCE can be recovered from

v = A1H
−1D−1

1 v1 + v2.(12)

In addition, if we let [r1 ; r2] = g −K[v1 ; v2], then

h−Mv = A1D1r1 + r2.
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Proof. In this proof, we will view A1 as a matrix in R
m×p̄ instead of as a linear

operator from Sp to R
m. Consider the decomposition

A1 = PR,(13)

where P ∈ R
m×p̄ is a matrix whose columns form an orthonormal set, and R ∈ R

p̄×p̄

is an upper triangular matrix. Let Q = I − PPT be the orthogonal projection of R
m

onto the orthogonal complement of Range(A1). Then v ∈ R
m can be decomposed as

v = P ṽ1 + v2,(14)

where ṽ1 = PT v and v2 = Qv. Substituting (13) and (14) into the SCE, Mv = h,
and using (10), we have

PRD2
1 R

T ṽ1 + BP ṽ1 + B v2 = h,

which implies that

(RD2
1 R

T + PTBP )ṽ1 + PTB v2 = PTh,

QBP ṽ1 +QB v2 = Qh.

Thus (
I +D−1

1 R−1PTBPR−TD−1
1

)
v1 +D−1

1 R−1PTB v2 = D−1
1 R−1PTh,

QBPR−TD−1
1 v1 +QB v2 = Qh,

}
(15)

where v1 = D1R
T ṽ1. We can avoid the explicit formation of the m × p̄ matrix P by

observing that P = A1R
−1, and R is the Cholesky factor of the matrix H = AT1A1.

With this observation, it is readily verified that (15) can be rewritten as (11), and
Q = I −A1H

−1AT1 . Finally, from (14), it is readily shown that (12) holds.
We will call the linear system of equations in (11) the projected Schur comple-

ment equation since its derivation is based on the orthogonal projection of R
m onto

Range(A1). From the above theorem, we see that instead of applying the CR method
to compute ∆y approximately from (3a), we can compute it from (11). We may view
(11) as a preconditioned version of (3a), but not in the conventional sense since an
explicit description of an approximate inverse of M is not available.

The matrix K in (11) is a singular positive semidefinite matrix, but system (11) is
consistent. In fact, K has p̄ zero eigenvalues. But these zero eigenvalues do not impede
the convergence of the CR method since the right-hand side vector is orthogonal to
the eigenspace associated with the zero eigenvalues. By a result in [4], the convergence
rate of the CR method for (11) is determined solely by the positive eigenvalues of K
when the initial guess of the CR method is chosen to be the zero vector. To be more
quantitative, the next theorem states a result on the positive eigenvalues of K.

Theorem 5.2. Let Λ+ be the set of positive eigenvalues of the matrix QBQ.
Assume that a partition in (10) is chosen such that ‖D1‖ = O(1/√µ), ‖D2‖ = O(√µ),
and dist(0,Λ+)� O(√µ). Suppose λ is a positive eigenvalue of the matrix K in (11).
Then

dist(λ,Λ+ ∪ {1}) = ‖QBA1‖
∥∥H−1

∥∥ O(√µ).
Note that ‖B‖ can be bounded by a constant that is independent of µ.
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Proof. Observe that K can be written as

K =

[
I

QBQ

]
+

[ D−1
1 H−1AT1 BA1H

−1D−1
1 D−1

1 H−1AT1 BQ
QBA1H

−1D−1
1

]
,

where the second matrix in the right-hand side is considered as a perturbation to the
first matrix. By the Bauer–Fike theorem, we have

dist(λ,Λ+ ∪ {1}) ≤ ‖QBA1‖
∥∥H−1

∥∥ ∥∥D−1
1

∥∥ +
∥∥H−1AT1 BA1H

−1
∥∥ ∥∥D−1

1

∥∥2 .
Now, the required result follows readily from the above inequality.

To complete the proof, we need to show that ‖B‖ can be bounded by a constant
that is independent of µ. Note that

‖B‖ ≤ ‖A‖2 (2 ‖W1©∗ W1‖+ ‖W2©∗ W2‖)

= ‖A‖2
(
2

∥∥∥∥
[
D1 0
0 0

]
©∗
[

0 0
0 D2

]∥∥∥∥ +

∥∥∥∥
[

0 0
0 D2

]
©∗
[

0 0
0 D2

]∥∥∥∥
)

= ‖A‖2
(
max
1≤i≤p

(D1)ii max
1≤j≤q

(D2)jj + max
1≤j≤q

(D2)
2
jj

)

= O(1) ‖A‖2 .
The last equality above follows from the assumptions made on D1 and D2.

The above theorem implies that the positive eigenvalues of K are roughly con-
tained in the set Λ+ ∪ {1} when µ is small. Therefore, the convergence rate of the
CR method applied to (11) is governed by the positive eigenvalues of QBQ. Since B
is better conditioned than M̂ , the effective condition number (the ratio of the largest
to the smallest positive eigenvalues) of QBQ is usually smaller than the condition

number of M̂ . Thus, we would expect the CR method to converge faster in this case
than when it is applied to (7).

5.1. Connection to the deflated CG method. The projection step used
in the derivation of the projected SCE bears some resemblance to the deflated CG
method described in [19]. The basic process involved in the deflated CG method for
solving a linear system of equation Bx = d is as follows. Suppose a matrix U of
appropriate dimension is given and UTBU is nonsingular. Given an initial guess x0

such that UT r0 = 0, where r0 = d−Bx0, the deflated CG constructs successively for
each j an approximate solution xj+1 such that

rj+1 := d−Bxj+1 ⊥ Range(U) + 〈r0, r1, . . . , rj〉.
In doing so, the convergence rate of the deflated CG method is governed by the
eigenvalues of the matrix B̃ := B − BU(UTBU)−1UTB instead of by those of the
original matrix B.

Now, adapting the deflated CG to the Schur complement matrix M and taking
U = A1H

−1D−1
1 , we have

M̃ := M −MU(UTMU)−1UTM = QBQ− (I −Q)B(I −Q) + E,

where ‖E‖ = O(‖D−1
1 ‖2), and B,Q are the matrices which appeared in Theorem

5.1. Thus if we apply the deflated CG to the SCE, the convergence rate is basically
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governed by the matrixQBQ−(I−Q)B(I−Q) when ‖D−1
1 ‖ is small. This convergence

rate is very similar to that for the projected SCE where it is governed by the matrix
QBQ.

Computationally, each step j of the deflated CG method requires the solution of
the linear system UTBUξ = UTBrj , which for the SCE is given by

(I +D−1
1 H−1AT1 BA1H

−1D−1
1 ) ξ = (D1AT1 +D−1

1 H−1AT1 B) rj .
Notice that the coefficient matrix is the (1, 1) block of the matrix K in (11). To apply
the CR method to (11) this matrix need not be formed explicitly, but for the deflated
CG, we need to compute it explicitly. However, computing this coefficient matrix is
very expensive. Due to this serious disadvantage, we will not explore any further in
this paper the use of the deflated CG method to solve the SCE.

5.2. Cost per CR step. To minimize the computation time of the CR method
when applied to (11), we need to compute efficiently a matrix-vector product for (11).
To begin with, we state in Table 3 the cost for computing some basic steps required
in the matrix-vector product.

Table 3
Computational cost of some basic steps needed in a matrix-vector product for (11).

Computing Number of flops required

AT v, given v ∈ R
m ρt mn2

A(T ), given T ∈ Sn ρt mn2

AT
1 v, given v ∈ R

m p2n + 2ρs pn2 + ρt mn2

A1(T ), given T ∈ Sp 2p2n + ρs pn2 + ρt mn2

From (11), it is easy to confirm that if we let

z = B (A1H
−1D−1

1 v1 +Qv2
)

= B (A1H
−1
[D−1

1 v1 −AT1 v2
]
+ v2

)
,

then

K

[
v1

v2

]
=

[
v1 +D−1

1 (H−1AT1 z)
z −A1(H

−1AT1 z)

]
.

Let

ωH = the number of flops required to compute H−1f for a given f.(16)

If H is precomputed with Cholesky factorization H = RTR, then ωH = 2p̄2. For
the numerical experiments in this paper, we compute H explicitly where the cost is
estimated to be at most p(4ρtmn2 +2p2n+(1+ ρs)pn

2) flops. For easy reference, we
summarize in Table 4 the cost for computing quantities such as W1 and H that are
needed in the projected SCE.

In our implementation of the CR method for (11), we compute K[v1 ; v2] via the
procedure described in Table 5, where the cost is also estimated. Compared to the
cost of computing M̂v in section 4, we see that computing K[v1 ; v2] can be much
more expensive. Exactly how much more expensive is difficult to estimate since it
depends on the sparsity factors ρs, ρt, the cost ωH in computing H−1f , and the
integers m, n, p. But hopefully, the reduction in the number of CR steps needed for
computing an admissible direction will outweigh the higher cost required.
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Table 4
Computational cost of quantities that are needed in the projected SCE (11).

Computing Number of flops required

Q1, D1 via QR algorithm O(n3)

W1 2pn2

W2 = W − W1 n2

H = AT
1 A1 at most p(4ρtmn2 + 2p2n + (1 + ρs)pn2)

Cholesky factor R of H 1
3

p̄3

Table 5
Computational cost required in the matrix-vector product for (11).

Computing Number of flops required

w := A1H−1(D−1
1 v1 −AT

1 v2) + v2 3p2n + 3ρs pn2 + 2ρt mn2 + ωH

z := Bw 4ρs n3 + 2ρt mn2

H−1AT
1 z p2n + 2ρs pn2 + ρt mn2 + ωH

A1(H−1AT
1 z) 2p2n + ρs pn2 + ρt mn2

K[v1 ; v2] 6p2n + 6ρs pn2 + 4ρs n3 + 6ρt mn2 + 2ωH

5.3. A preconditioner for K. The coefficient matrix K has an eigenvalue dis-
tribution that is much more favorable than that of the preconditioned Schur comple-
ment matrix M̂ . But we can further improve the eigenvalue distribution by applying
a preconditioner to K.

The most obvious preconditioner for K is the diagonal preconditioner. However,
it turns out that computing the diagonal elements of K is very expensive; the cost of
computing all the diagonal elements is at least m(2p2n+pn2+3ρs n

3+2ρtmn2+ωH).
Thus we are forced to look for a cheaper alternative. We find that the diagonal
preconditioner of B is such an alternative where the cost of computing all the diagonal
elements is only about 3ρtmn3. We do not claim that the diagonal preconditioner
of B is more effective than the diagonal preconditioner of K itself. But it is a much
cheaper alternative that in practice does improve the convergence rate associated with
K.

Suppose that Φ is the diagonal preconditioner of B, and Φ = LLT is its Cholesky
factorization. We first rewrite (3a) using (10) as follows:

A1D2
1AT1 ∆y + B∆y = h.(17)

Then we precondition the above system by L to get

Â1D2
1ÂT1 ∆ŷ + B̂∆ŷ = ĥ,(18)

where

Â1 = L−1A1, B̂ = L−1BL−T , ∆ŷ = LT∆y, ĥ = L−1h.(19)

Thus instead of using Theorem 5.1 to solve (17), we apply it to (18), and the associated
equation has the form:
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Fig. 4. Behavior of the CR method on the SDP problem theta2. The left-hand plot is the
number of CR steps taken in each iteration of Algorithm PFCR1 to solve either (7) or (20) in order
to approximately satisfy the admissible condition (4). Note that from the 15th iteration onwards,
(20) is used. The right-hand plot is the corresponding duality gap X •Z. Note the difference in scale
between this figure and Figure 1.

(20)[
I +D−1

1 Ĥ−1ÂT1 B̂Â1Ĥ
−1D−1

1 D−1
1 Ĥ−1ÂT1 B̂Q̂

Q̂B̂Â1Ĥ
−1D−1

1 Q̂B̂Q̂

]
︸ ︷︷ ︸

[
v1

v2

]
=

[ D−1
1 Ĥ−1ÂT1 ĥ
Q̂ĥ

]
︸ ︷︷ ︸

,

K̂ ĝ

where Ĥ = ÂT1 Â1 and Q̂ = I − Â1Ĥ
−1ÂT1 .

Let K̂ be the coefficient matrix in (20). We observe that the eigenvalue distribu-

tion of K̂ is better than that of K for the SDPs considered in this paper.

6. Behavior of the CR method on the projected Schur complement
equation. In view of the efficiency of the CR method in computing an admissible
search direction via (7) when the duality gap X •Z is not too small, we propose in this
section a hybrid method that combines the advantages of applying the CR method
to (7) and (20) for computing the search direction in each interior-point iteration.
The details of the hybrid method are given in Algorithm PFCR1. For the numerical
experiments in this section, when step 3(b) in Algorithm PFCR1 is invoked, the p̄× p̄

matrix Ĥ is formed explicitly and its Cholesky factorization Ĥ = RTR is computed
before the CR method is applied to (20).

Figures 4, 5, and 6 are the analogues of Figures 1, 2, and 3, respectively, for
the SDP problem theta2, but using Algorithm PFCR1 instead of Algorithm PFCR.
Comparing Figures 1 and 4, we see that the CR method method takes far fewer steps
to solve (20) than are needed to solve (7) when X •Z is small. This indicates that the

matrix K̂ has a much more favorable eigenvalue distribution than does to M̂ . This is
indeed confirmed in Figures 5 and 6, where the eigenvalues of K̂ are plotted. From
the spectra shown in these figures, the convergence rates of the CR method applied to
(20) are roughly equal to 0.87 and 0.93 at the 15th and 20th interior-point iteration,
respectively.
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Fig. 5. The dashed line in the left-hand plot is the residual norm ‖h − Mvj‖ / ‖h‖ generated
by the CR method, where M and h correspond to the 15th interior-point iterate generated from the
run in Figure 4. The solid line corresponds to the quantity ‖R‖F defined in (6). The right-hand

plot is the spectrum of K̂. Note that there are 45 zero eigenvalues not shown in the plot. Also note
the difference in scale between this figure and Figure 2.
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Fig. 6. Same as Figure 5, but for the 20th interior-point iterate.

Table 6 compares the cumulative CPU time taken by Algorithms PFchol and
PFCR1 at various interior-point iterations in order to achieve an accuracy of 10−6

in the relative duality gaps. It shows that Algorithm PFCR1 performs very much
better than Algorithm PFchol, especially for problems with large m. For example,
consider the problem with m = 13390; Algorithm PFCR1 is at least ten times faster
than Algorithm PFchol at achieving the required accuracy in the relative duality gap,
even if there is enough memory to store M . Comparing Tables 2 and 6, we see that
the number of CR steps needed to solve (20) is far less than that required by (7).
But because computing a matrix-vector product for (20) is much more expensive, the
savings in CPU time is not as impressive as the reduction in the number of CR steps.

Observe that although we need to store the dense p̄× p̄ matrix Ĥ, we are able to
solve SDPs with m much larger than that allowed by the direct method. This is espe-
cially true when p̄ is much smaller than m. But we should note that, although storing
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Algorithm PFCR1. Suppose we are given an initial iterate (X0, y0, Z0) with X0, Z0 positive
definite. Select κ = 0.01. Set γ0 = 0.9 and σ0 = 0.5.

For k = 0, 1, . . .

Let the current and the next iterate be (X, y, Z) and (X+, y+, Z+), respectively. Also, let the current
and the next step-length (centering) parameter be denoted by γ and γ+ (σ and σ+), respectively.

1. Set µ = X • Z/n and

φ = max

(
‖rp‖

max(1, ‖b‖) ,
‖Rd‖F

max(1, ‖C‖F )

)
.

Stop the iteration if the infeasibility measure φ and the duality gap X • Z are sufficiently
small.

2. Compute the Nesterov–Todd scaling matrix W and its eigenvalue decomposition W =
QDQT . Let d = diag(D), where d is sorted in ascending order.
If max(d)/min(d) > 103

choose p to be the integer such that dp+1/dp is the maximum,
else

set p = 0,
end

3. (a) If p = 0,
compute an admissible search direction (∆X,∆y,∆Z) using the CR method via (7).

(b) If p > 0,
compute an admissible search direction (∆X,∆y,∆Z) using the CR method via the
projected SCE (20).

4. Update (X, y, Z) to (X+, y+, Z+) by

X+ = X + α∆X, y+ = y + β ∆y, Z+ = Z + β ∆Z,

where

α = min

(
1,

−γ

λmin(X−1∆X)

)
, β = min

(
1,

−γ

λmin(Z−1∆Z)

)
.

(Here λmin(U) denotes the minimum eigenvalue of U ; if the minimum eigenvalue in either
expression is positive, we ignore the corresponding term.)

5. Update the step-length parameter by

γ+ = 0.9 + 0.08min(α, β)

and the centering parameter by σ+ = 1− 0.9min(α, β).

Ĥ requires significantly less memory than storing M for the SDPs we considered here,
we may again face the problem of having insufficient memory when p̄ is large, as can
be seen from the last problem in Table 6. Based on the information obtained from the
experiment in Table 2 for the problem with m = 23872, p̄ is approximately equal to
9453, and storing Ĥ would require about 715MB of memory. Although this is much
smaller than the 4560MB of memory needed to store M , it still exceeds the limit of
256MB that our computer has.

In a future paper, we will present a method in which Ĥ is not formed explicitly
to avoid possible memory problems. More specifically, we will solve the linear system
Ĥz = f using the CR method instead of using the Cholesky factorization.

In the context of this paper, we are primarily concerned with SDPs where m� n.
However, for the sake of gaining more computational experience in solving the SCE
by the CR method and by the method proposed in this section, we will also consider
problems where m ≈ n are both large. As we have noted before, primal-dual interior-
point methods are not the most appropriate methods to use when m ≈ n are both
large, because the memory required by the primal variable is as acute as the Schur
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Table 6
Comparison between Algorithm PFchol and PFCR1. The latter uses the CR method to solve

either (7) or (20), depending on the condition number of W in each iteration. A “0” in the last
column means that (7) is used; otherwise (20) is used. Note that for the last problem the information
on p was obtained from the experiment conducted in Table 2.

Solving (3a) via Cholesky

factorization of M

Solving (3a) via the CR method

on (7) / (20)

n m
Iter.
no.

CPU
time

X • Z Mem.
MB

Iter.
no.

CPU
time

X • Z Mem.
MB

NCR(k) p

200 1949 18 12:47 3.6e− 1 80 18 2:43 3.3e− 1 20 110 20
21 14:55 3.9e− 3 80 21 4:33 3.8e− 3 22 125 32
24 17:02 3.6e− 5 80 24 7:31 2.4e− 5 22 215 32

200 5986 15 3:58:30 287 15 4:48 1.7e− 1 22 257 0
18 4:46:12 287 18 20:13 1.5e− 3 63 195 67
21 5:33:54 287 21 56:50 1.2e− 5 65 530 69

300 4375 20 2:35:05 2.1e− 1 219 20 11:28 2.3e− 1 38 75 41
23 2:57:18 1.2e− 3 219 23 21:05 1.3e− 3 40 240 47
26 3:19:23 1.2e− 5 219 26 45:23 1.3e− 5 41 735 48

300 13390 15 44:28:15 1434 15 20:32 2.3e− 1 45 297 0
18 53:21:54 1434 18 1:52:10 2.9e− 3 242 165 100
21 62:15:33 1434 21 4:18:52 2.7e− 5 258 185 106

400 7905 20 12:12:00 500 20 32:58 2.3e− 1 65 65 58
23 14:01:48 500 23 1:03:25 1.5e− 3 82 235 65
25 15:15:00 500 25 1:38:52 4.4e− 5 82 505 66

400 23872 15 0
18 insufficient memory to store the 131

21 matrix Ĥ in (20) 137

complement matrix. (The appropriate method for this class of SDPs is the dual
scaling method described in [3].) Thus our main concern for these problems now is
not alleviating the memory problem but increasing the speed at which the SCE can
be solved by the CR method.

Table 7 compares the performance of PFchol, PFCR, and PFCR1 on a number
of SDPs arising from MAXCUT problems for random graphs. In the table, we report
the cumulative CPU time taken to solve the SCE alone (including the time to form M
if it is needed explicitly) via the Cholesky factorization, the CR method on (7), and
the hybrid combination of the CR method on (7) and (20). We stop the interior-point
iterations when the relative duality gaps are less than 10−6.

The most important observation we want to make from Table 7 is that the number
of CR steps needed to solve (20) is far less than that needed to solve (7), although
each step of the former is more expensive.

Notice that for PFchol, when there is enough memory to store the Schur com-
plement matrix M , solving (3a) by the direct method takes far less CPU time than
using an iterative method for the SDPs we tested. This can be attributed to two
facts. First, the SDPs arising from the MAXCUT problems are highly sparse and the
formation of M can be done efficiently. Second, the Cholesky factorization routine
we used is a routine highly optimized for computer execution (about twice as fast as
Matlab’s chol) compared to the iterative routines we implemented. However, we
would expect these advantages of the direct method to diminish when the dimensions
m,n of the SDPs increase, since computing the Cholesky factorization of M then
becomes prohibitively expensive. But due to the huge memory requirement of the
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primal variable, we are unable to test problems where n is much larger than 1000 in
a primal-dual interior-point framework.

As mentioned earlier, the projected SCE proposed in this paper can be adapted
to solve the SCE associated with a dual scaling interior-point method. Based on the
computational experiences that have been reported in [3] and [5] for SDPs arising from
MAXCUT problems, our guess is that it is very likely that the method we propose here
can efficiently solve the SCE associated with the dual scaling interior-point method
for this class of problems.

Table 7
Comparison of Algorithms PFchol, PFCR, and PFCR1 on a number of SDPs arising from

MAXCUT problems (values are shown for (3a)).

Solving via Cholesky

factorization of M

Solving via the

CR method on (7)

Solving via the CR

method on (7) / (20)

n m
Iter.
no.

CPU
time

X • Z CPU
time

X • Z NCR(k)
CPU
time

X • Z NCR(k) p

300 300 11 9 4.0e+ 1 9 2.5e+ 1 27 9 2.5e+ 1 27 0
14 12 1.0e+ 0 26 3.6e− 1 88 25 3.7e− 1 16 8
17 15 1.0e− 3 73 4.6e− 4 296 46 4.3e− 4 26 8

500 500 14 74 5.1e+ 1 56 1.3e+ 1 75 63 1.3e+ 1 75 0
17 91 1.2e+ 0 194 2.3e− 1 380 217 2.3e− 1 380 0
20 108 1.3e− 2 718 4.4e− 3 1726 355 4.3e− 3 37 11

1000 1000 12 65 3.4e+ 2 94 2.9e+ 2 26 93 2.9e+ 2 26 0
15 81 7.0e+ 0 281 8.5e+ 0 114 278 8.5e+ 0 114 0
18 98 1.4e− 2 1176 1.1e− 2 569 740 9.2e− 3 41 14

7. Conclusion and discussion. We have introduced a decomposition of the
SCE and converted it into what we call the projected SCE. Numerical experiments
on SDPs arising from theta and MAXCUT problems were conducted to show that
when the CR method is applied to this equation, moderately accurate solutions can
be obtained at reasonable cost. The proposed method is well suited for a primal and
dual nondegenerate problem that satisfies the strict complementarity condition and
that has an optimal primal solution whose rank is small.

The research work in this paper has generated a number of problems that deserve
further investigation in the future. They include the following.

First, the applicability of the projected Schur complement approach remains to
be tested for wider classes of SDPs. For example, in a recent work [8] it was shown
that a large sparse SDP can sometimes be converted into one with a block diagonal
structure by increasing the number of linear constraints. It will be interesting to
adapt the method developed in this paper to solve that type of SDPs.

Another area that requires further work is a careful implementation of the pro-
jected SCE to fully exploit any sparsity and special structures present in the SDP
data. This is especially important for large SDPs such as those arising from graph
partition problems in which the data involves dense matrices of small ranks.

We would also want to investigate the performance of the projected SCE on large
SDPs arising from MAXCUT problems in a dual scaling interior-point method. Based
on extensive computational experiences reported in [3] and [5] for SDPs arising from
MAXCUT problems, our guess is that the method we proposed in this paper could
solve such problems efficiently. But that remains to be verified.
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As the reader may recall, in each step of the CR method for the projected SCE we
need to solve a dense p̄× p̄ linear system of equations Ĥz = f . Though p̄ is generally
much smaller thanm, it can still be large, and memory problems may again arise. One
possible way to overcome such problems is to solve the system by an iterative method.
Our preliminary work has shown that this linear system can be solved without much
difficulty by the CR method.

Lastly, the most difficult problem we have to face is perhaps to extend the ideas
in this paper in order to solve degenerate SDPs.
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[21] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov–Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769–796.

[22] K. C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3—a Matlab software package for
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Abstract. We consider an interior-point approach to sensitivity analysis in linear programming
developed by the authors. We investigate the quality of the interior-point bounds under degeneracy.
In the case of a special type of degeneracy, we show that these bounds have the same nice asymptotic
relationship with the optimal partition bounds as in the nondegenerate case. We prove a weaker
relationship for general degenerate linear programs.
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1. Introduction. Sensitivity analysis (or postoptimality analysis) is the study of
how the optimal solution of an optimization problem changes with respect to changes
in the problem data. The possible presence of errors in the problem data often makes
sensitivity analysis as important as solving the original problem itself.

In the context of linear programming, sensitivity analysis can be performed us-
ing an optimal basis approach (as in the simplex method) or an optimal partition
approach, where the optimal partition refers to knowing, for each index, whether the
corresponding component of an optimal primal solution or of an optimal dual slack
vector can be positive. The latter approach has close connections with interior-point
methods since such methods, when properly terminated, provide an optimal solution
in the relative interior of the optimal face, from which the optimal partition is readily
available. In fact, as will shortly be discussed in more detail, the optimal partition
approach has been developed by Adler and Monteiro [1] and Jansen, de Jong, Roos,
and Terlaky [7] as a promising alternative, in order to circumvent the drawbacks of
the classical optimal basis approach in the presence of degeneracy. Later, Monteiro
and Mehrotra [9] extended this approach by relaxing the requirement that the opti-
mal partition be known. They also provided two methods for estimating the range
of perturbations, each of which can be performed at any optimal solution, regardless
of where it lies on the optimal face. More recently, Greenberg, Holder, Roos, and
Terlaky [5] related the dimension of the optimal set to the dimension of the set of
objective perturbations for which the optimal partition is invariant. Greenberg [4]
considered the simultaneous perturbations of the right-hand side and the cost vectors
in linear programming from an optimal partition perspective.

In [13], the authors studied perturbations of the right-hand side and the cost pa-
rameters in linear programming, motivated by the way in which interior-point methods
from a near-optimal pair of strictly feasible solutions for a problem and its dual would
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compare with the optimal basis approach obtained from a nondegenerate optimal ba-
sic solution for such perturbations. The proposed interior-point perspective results
from the objectives of regaining feasibility and maintaining near-optimality in a single
iteration of the interior-point method. This requires the setup of the “right” Newton
system among many possible choices in order to achieve both objectives simultane-
ously. Such a perspective provides a basis for the comparison of the interior-point
and the simplex approaches to sensitivity analysis.

Under the assumption of a unique, nondegenerate optimal solution, the authors
show that the Newton system proposed in [13] is the “right” one in the sense that it
yields asymptotically the same bounds on perturbations as those that keep the cur-
rent basis optimal (after symmetrization with respect to the origin). Similar results,
changing only one of the primal or dual near-optimal solutions, were obtained by Kim,
Park, and Park [8].

However, most linear programs (LPs) arising from real-life problems are degen-
erate. Our goal in this paper is to investigate the quality of the bounds from the
interior-point perspective in the absence of the strong assumption of nondegeneracy.
This will lead to a complete analysis of the interior-point perspective proposed in [13].
In such an analysis, we need something to compare our interior-point bounds with.
In contrast to the nondegenerate case, the presence of multiple optimal bases makes
a simplex-based approach unsuitable, as will be explained shortly. We therefore com-
pare our bounds to those obtained from consideration of how much the right-hand
side or the cost vector can change while maintaining the same optimal partition.
Consequently, we use different tools for our analysis in this paper.

The next section is devoted to preliminaries, including introduction of the tools
relevant for the analysis as well as a restatement of our interior-point approach. Sec-
tion 3 discusses the equivalence between the primal and dual formulations and shows
that it suffices to consider perturbations of the right-hand side only. We analyze
the interior-point bounds under a special case of degeneracy in section 4 and extend
the analysis to the general degenerate case in section 5. We apply our interior-point
approach to a well-documented, degenerate transportation example in section 6 and
conclude the paper in section 7.

2. Preliminaries. We consider LP in the following standard form:

(P) min
x

cTx subject to Ax = b, x ≥ 0.

The associated dual LP is given by

(D) max
y,s

bT y subject to AT y + s = c, s ≥ 0.

Here, A ∈ R
m×n, b ∈ R

m, and c ∈ R
n constitute the data, and (x, y, s) ∈ R

n×R
m×R

n

are the decision variables. Throughout this paper, the coefficient matrix A will be
fixed and we will consider one-dimensional perturbations of the right-hand side vector
b and the cost vector c; i.e., b will be replaced by b + t∆b and c by c + t∆c, where
∆b and ∆c will be fixed in R

m and R
n, respectively, and t ∈ R will be the parameter.

This is also called parametric analysis in the literature.
We will make the following assumptions.
Assumption 2.1. The coefficient matrix A has full row rank.
Assumption 2.2. Both (P) and (D) have strictly feasible solutions; i.e., there

exist x > 0, s > 0, and y such that Ax = b and AT y + s = c.
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While Assumption 2.1 is without loss of generality, Assumption 2.2 is clearly
restrictive. However, we will discuss ways in which our approach can be extended to
LPs that do not satisfy Assumption 2.2 (but do have optimal solutions) at the end of
section 2.2.

The classical approach to sensitivity analysis has been based on the simplex
method. Assuming that an optimal solution exists, the simplex method terminates
with a basic optimal solution along with a corresponding basis. A natural criterion
for the allowable perturbations in the data is then given by the range of such per-
turbations for which the current basis remains optimal for the resulting family of
LPs.

Let us consider the parametric right-hand side (RHS) problem, i.e., let b be re-
placed by b + t∆b. Define v(t) = min{cTx : Ax = b + t∆b, x ≥ 0}. It is well known
that v is a convex, piecewise linear, continuous function of t. The parametric RHS
problem includes finding all the “breakpoints” of v(t).

Fixing a value of t, say at 0 for the purposes of this paper, the classical approach
to sensitivity analysis then provides the set of values of t for which an optimal basis
for t = 0 remains optimal for the resulting LPs parametrized by t. This is called
the optimality interval associated with an optimal basis. Note that the optimal ba-
sis approach indeed yields the breakpoints of v(t) around 0 under primal and dual
nondegeneracy (which holds only if 0 itself is not a breakpoint of v(t)). However,
the presence of primal and/or dual degeneracies is a shortcoming for this approach
since, for example, multiple optimal bases might yield different optimality intervals.
This shortcoming has been observed by several researchers. Adler and Monteiro [1],
and Jansen, de Jong, Roos, and Terlaky [7] developed an optimal partition approach
to sensitivity analysis and showed that the optimality intervals associated with the
optimal partitions uniquely and unambiguously identify the breakpoints of v(t) and
the intervals between the consecutive breakpoints. By the symmetry between (P) and
(D), which will be treated in more detail in section 3, the same conclusions also hold
for the parametric analysis of the cost vector c.

The idea of the optimal partition is based on a well-known result of Goldman and
Tucker [2]. The optimality conditions for (P) and (D) are given by primal and dual
feasibility and complementary slackness; that is, a triple (x, y, s) is optimal for (P)
and (D) if and only if it satisfies

Ax = b, AT y + s = c, xisi = 0, i = 1, . . . , n, x ≥ 0, s ≥ 0,(2.1)

where xi and si denote the ith components of x and s, respectively. Let ΩP and ΩD
denote the set of optimal solutions for (P) and (D), respectively. Then, we can define
two index sets as

B = {j ∈ {1, . . . , n} : xj > 0 for some x ∈ ΩP },(2.2)

N = {j ∈ {1, . . . , n} : sj > 0 for some (y, s) ∈ ΩD}.

The optimality conditions (2.1) imply that B ∩ N = ∅. The Goldman–Tucker result
indicates that B and N actually partition the index set {1, . . . , n}, i.e., B ∪ N =
{1, . . . , n}. Therefore, there exist at least one primal optimal solution x ∈ ΩP and
one dual optimal solution (y, s) ∈ ΩD such that x + s > 0. Such a solution will
be called strictly complementary, and (B,N ) will be called the optimal partition. In
contrast to the possibility of multiple optimal bases, the optimal partition is unique
for a given LP instance.
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We will denote by B and N the columns of A corresponding to the indices in B
and N , respectively, and we will also partition the cost vector c as cB and cN , and the
variables x and s as xB and xN , and sB and sN , accordingly. Note that if (x, y, s) is a
strictly complementary solution, then we have xB > 0, xN = 0, sB = 0, and sN > 0.

Let us again restrict our attention to one-dimensional perturbations of the right-
hand side vector b. The optimal partition approach is based on maintaining the
whole dual optimal set invariant rather than an optimal basis as in the classical
simplex approach. Note that perturbations of b do not affect the dual feasible region.
Consequently, the range of t is given by solving two auxiliary LPs. More precisely, if
b is replaced by b + t∆b, and if ΩD denotes the dual optimal set for (D) (i.e., t = 0),
then the lower and upper bounds on t are given by the optimal values of

(AUX1) minx,λ (maxx,λ) λ
subject to

Ax = b + λ∆b,
x ≥ 0,

(s∗)Tx = 0 ∀ (y∗, s∗) ∈ ΩD.

We will call the resulting bounds the optimal partition bounds. Note that both prob-
lems are always feasible, since λ = 0 together with any x ∈ ΩP satisfy all the con-
straints. Fixing the dual optimal set ΩD is equivalent to fixing the optimal partition
(B,N ) by the Goldman–Tucker result. Therefore, the (possibly infinite) last con-
straint set in (AUX1) can be replaced by the equivalent single constraint xT s∗ = 0,
where s∗ is any point in the relative interior of ΩD (hence s∗N > 0). This condition,
in turn, is the same as setting xN = 0. Consequently, (AUX1) can be written in the
following simplified form:

(AUX1′) minxB ,λ (maxxB ,λ) λ
subject to

BxB = b + λ∆b,
xB ≥ 0.

The analogous derivation for the one-dimensional perturbations of the cost vector
c leads to the following auxiliary problems, whose optimal values give the optimal
partition bounds for t when c is replaced by c + t∆c:

(AUX2) miny,sN ,λ (maxy,sN ,λ) λ
subject to

BT y = cB + λ∆cB ,
NT y + sN = cN + λ∆cN ,

sN ≥ 0.

Here, ∆cB and ∆cN constitute the corresponding partition of ∆c.
Before getting into the symmetrized bounds, we would like to recall an important

result about the dimensions of the optimal solution sets ΩP and ΩD. In what follows,
dim(·) denotes the dimension and | · | denotes the cardinality of a set. The reader is
referred to Lemma IV.44 in [10] for a proof.

Proposition 2.1. The following hold: dim (ΩP ) = |B| − rank (B); dim (ΩD) =
m − rank (B).

2.1. Symmetrized bounds. The auxiliary problems (AUX1) and (AUX2) can
be reformulated in the following way. Let us consider (AUX1′) and let x∗ ∈ ΩP .
Then, the equality constraint can be rewritten as

BxB = Bx∗
B + λ∆b or B(xB − x∗

B) = λ∆b.
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Therefore, by a change of variable, if we let u = xB − x∗
B , then (AUX1) is equivalent

to

(AUX1′′) minu,λ (maxu,λ) λ
subject to

Bu = λ∆b,
u ≥ −x∗

B .

Next, we will tighten the constraints in the above formulation by putting upper bounds
on u as well, and our choice for the upper bound will be x∗

B , which will give the largest
symmetric L∞-box around the origin which is contained in the feasible region:

(SA1) minu,λ (maxu,λ) λ
subject to Bu = λ∆b,

−x∗
B ≤ u ≤ x∗

B .

We will call (SA1) the symmetrized LP and the resulting optimal solutions the sym-
metrized bounds. The formulation of (SA1) reveals that if (u∗, λ∗) solves the max-
imization problem, then (−u∗,−λ∗) solves the minimization problem. Therefore, it
suffices to solve one LP as opposed to solving two LPs to obtain the optimal parti-
tion bounds from (AUX1). A similar treatment of (AUX2) gives rise to the following
symmetrized LP:

(SA2) minv,w,λ (maxv,w,λ) λ
subject to

BT v = λ∆cB ,
NT v + w = λ∆cN ,

−s∗N ≤ w ≤ s∗N ,

which is obtained by replacing y − y∗ by v, and sN − s∗N by w, where (y∗, s∗) ∈ ΩD.
Finally, a similar symmetrization has been applied to w.

Next, we would like to discuss the relationship between the auxiliary and the
symmetrized LPs. First of all, let us assume that both (P) and (D) have unique and
nondegenerate optimal solutions. Then, Proposition 2.1 implies that B is actually
a square and nonsingular matrix, hence invertible. In fact, B is the optimal basis.
Consequently, (AUX1) and (AUX2) are trivial to solve and their optimal solutions
coincide with the optimal basis bounds arising from the simplex method. With this
observation, the constraints of (AUX1′′) reduce to

λB−1∆b ≥ −x∗
B or λ(X∗

B)
−1

B−1∆b ≥ −e,(2.3)

where X∗
B is the diagonal matrix whose components are given by x∗

B and e denotes
the vector of ones in the appropriate dimension. Similarly, the constraints of (SA1)
can be rewritten as

−e ≤ λ(X∗
B)

−1
B−1∆b ≤ e or |λ|‖(X∗

B)
−1

B−1∆b‖∞ ≤ 1,(2.4)

where ‖ · ‖∞ is the L∞-norm. A similar treatment reveals that the constraints of
(AUX2) are equivalent to

λ(S∗
N )−1(∆cN −NTB−T∆cB) ≥ −e,(2.5)

where S∗
N is defined similarly, and that those of (SA2) are equivalent to

|λ|∥∥(S∗
N )−1(∆cN −NTB−T∆cB)

∥∥
∞ ≤ 1.(2.6)
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The derivations (2.3)–(2.6) imply the following relationship between the auxiliary
and the symmetrized LPs. Let (λ−, λ+) denote the optimal partition bounds given
by the optimal solutions of the auxiliary LPs (possibly including ±∞). Then, the
symmetrized bounds for t are (−λs, λs), where

λs = min (|λ−|, λ+).(2.7)

Therefore, the symmetrized bounds are indeed equal to the “symmetrization” of the
optimal partition bounds.

Note that we used an open interval for the optimal partition bounds above. The
reason for this is that the optimal partition remains the same in this open interval,
whereas it does change at the left and right limit points (assuming they are finite).

Next, let us assume that (P) has a unique but degenerate optimal solution. Then,
by Proposition 2.1, B is nonsquare but has full column rank. Therefore, (AUX1′′)
is still easy to solve. If ∆b does not lie in the range space of B, then the optimal
solutions of (AUX1′′) and (SA1) are all zero (which implies that t = 0 is a breakpoint
of v(t)). Otherwise, there exists a unique vector v such that Bv = ∆b, and hence, the
constraints of (AUX1′′) are equivalent to

λ(X∗
B)−1v ≥ −e.(2.8)

Similarly, the constraints of (SA1) can be stated as

|λ|‖(X∗
B)−1v‖∞ ≤ 1.(2.9)

Once again, we conclude that a similar symmetry as in (2.7) continues to hold between
(SA1) and (AUX1′′). In a similar manner, one can show that such a relationship holds
between (SA2) and (AUX2) if (D) has a unique but degenerate optimal solution.

The preceding discussion shows that the optimal solutions of the auxiliary and the
symmetrized LPs have the nice relationship (2.7) as long as there is a unique optimal
solution that one can use to symmetrize the constraints of the auxiliary LPs to obtain
the symmetrized LPs. An interesting question then is whether the same relationship
continues to hold between the optimal partition bounds and the symmetrized bounds
if there are multiple optimal solutions; that is, whether the symmetrized bounds are
independent of the choice of the optimal solution used to symmetrize the constraints.
Unfortunately, the answer is no, as is shown by the following example. Let (P) be
given by min{x2 − x1 : x1 − x2 = 0, x2 + x3 = 1, x ≥ 0}. Then (P) has multiple
optimal solutions given by (x1, x2, x3) = (β, β, 1−β), where β ∈ [0, 1], with an optimal
value of 0. If the right-hand side is perturbed to (0, 1)T + t (2, 1)T , then the reader
can easily verify that (AUX1) yields (−1/3,+∞) as the optimal partition bounds,
whereas the symmetrized bounds are (−β,+β) if one uses the optimal solutions with
β < 1/3 to symmetrize the constraints, and (−1/3, 1/3) if those with β ≥ 1/3 are
used. This example illustrates that in the case of multiple optimal solutions, the
symmetrized bounds are dependent on the optimal solution used in the formulation
of the symmetrized LPs. Therefore, the relationship (2.7) no longer holds between
the optimal partition bounds and the symmetrized bounds.

However, we will keep using the symmetrized LPs for two reasons. First, at least
in the unique solution case, they bear a nice relationship to the auxiliary LPs. For
our analysis, we will always choose an optimal solution in the relative interior of
the optimal set; therefore the symmetrization will hopefully allow more room for the
decision variables of the symmetrized LPs. Second, the symmetrized LPs are easier
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to deal with than the auxiliary LPs, and the symmetrized bounds will provide a good
comparison basis for our interior-point approach proposed in [13], as will be analyzed
in the subsequent sections.

2.2. Interior-point approach and central path neighborhoods. We will
start with a brief review of the primal-dual path-following interior-point methods.
The reader is referred to [11] for an extensive treatment. The central path is a path
of strictly feasible points (x(ν), y(ν), s(ν)) parametrized by a positive scalar ν. Each
point on the central path satisfies the following system for some ν > 0:

Ax = b,
AT y + s = c,

XSe = νe,
(2.10)

with x > 0 and s > 0. Under Assumptions 2.1 and 2.2, such a solution exists and
is unique for each positive ν. Interior-point methods are iterative algorithms that
generate iterates which “follow” the central path in the direction of decreasing ν
towards the primal-dual optimal set ΩP × ΩD. The iterates generated typically lie
in some neighborhood of the central path. For any given feasible iterate (x, y, s), the
duality gap is given by cTx− bT y = xT s ≥ 0, and we define the duality measure µ as
µ := µ(x, s) := xT s/n. Let S and S0 denote the set of feasible and strictly feasible
primal-dual points, respectively; that is,

S = {(x, y, s) : Ax = b, AT y + s = c, (x, s) ≥ 0},(2.11)

S0 = {(x, y, s) ∈ S : (x, s) > 0}.(2.12)

One of the commonly used neighborhoods in interior-point methods is the so-called
wide neighborhood, denoted by N−∞(γ):

N−∞(γ) = {(x, y, s) ∈ S0 : xisi ≥ γµ ∀ i = 1, 2, . . . , n},(2.13)

where γ ∈ (0, 1].
At each iteration, given (x, y, s) ∈ N−∞(γ), the algorithm determines a search

direction (∆x,∆y,∆s). This direction is usually obtained by seeking an approxima-
tion to the point on the central path corresponding to some parameter ν ≤ µ and
then applying Newton’s method to the nonlinear system of equations (2.10). Finally,
a (damped) step is taken in this direction in such a way that the resulting iterate still
lies in N−∞(γ).

However, as in the context of target-following methods [10, Part III], one might
seek an approximation to a point other than the one on the central path. It suffices
to redefine (2.10) by replacing νe in the right-hand side of the third equality by any
target vector v > 0. In this case, the Newton step at (x, y, s) for the target vector v
is given by

A∆x = b−Ax,
AT∆y + ∆s = c−AT y,
S∆x + X∆s = v −XSe.

(2.14)

Next, we describe the interior-point approach proposed by the authors in [13].
Given a primal-dual pair of LPs (P) and (D), let us assume that b or c is perturbed
in some fixed direction. Assuming that (x, y, s) is strictly primal-dual feasible for (P)
and (D), a full Newton step is taken from (x, y, s) for the target vector v := XSe
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for the perturbed LP pair, thereby aiming to maintain the current xisi products. If
(x, y, s) is near-optimal for (P) and (D), then this particular choice is likely to result
in a near-optimal solution for the perturbed LP pair, since XSe ≈ 0. We state the
results formally, referring the reader to [13] for the proofs. Note, in particular, that
the duality gap of the resulting feasible iterate for the perturbed LP pair is no greater
than that of the original iterate.

Proposition 2.2. Assume that (x, y, s) is a strictly feasible point for (P) and
(D) and that the right-hand side vector b is replaced by b + t∆b, where t ∈ R and
∆b ∈ R

m. Suppose also that a Newton step is taken from (x, y, s) for the target vector
v := XSe for the perturbed problem. Then a full Newton step will yield a feasible
iterate for the new problem if and only if

| t | ≤ 1

‖S−1AT (AD2AT )−1∆b‖∞ ,(2.15)

where D = X
1
2 S− 1

2 . Moreover, in this case the new iterate will have duality gap at
most xT s.

Proposition 2.3. Assume that (x, y, s) is a strictly feasible point for (P) and
(D) and that the cost vector c is replaced by c + t∆c, where t ∈ R and ∆c ∈ R

n.
Suppose also that a Newton step is taken from (x, y, s) for the target vector v := XSe
for the perturbed problem. Then a full Newton step will yield a feasible iterate for the
new problem if and only if

| t | ≤ 1

‖S−1(I −AT (AD2AT )−1AD2)∆c‖∞ ,(2.16)

where D = X
1
2 S− 1

2 . Moreover, in this case the new iterate will have duality gap at
most xT s.

Under primal-dual nondegeneracy, the bounds arising from Propositions 2.2 and
2.3 computed at near-optimal solutions for (P) and (D) asymptotically equal the
symmetrized bounds arising from (SA1) and (SA2); see [13]. The goal of this paper
is to investigate the quality of these bounds in the absence of the nondegeneracy
assumption.

We first present a nice characterization of the distance of the strictly feasible
primal-dual points (x, y, s) from strictly complementary optimal solutions in terms
of the duality gap µn. Using this characterization, we derive some bounds on the
components of such points. In what follows, xB , xN , sB , and sN denote the partitions
of x and s according to the optimal partition (B,N ), as before. Furthermore, we will
use the bounds O(µ), Ω(µ), and Θ(µ) interchangeably for scalars as well as vectors and
matrices, by which we mean each entry satisfies the stated bounds. O(µ) will indicate
that the quantity (in absolute value) is bounded above by some positive multiple of
µ, where the multiple depends on the primal-dual instance (P) and (D) but does not
depend on the particular strictly feasible point or on µ. Similarly, Ω(µ) will indicate
a lower bound by some positive multiple of µ, and Θ(µ) will mean a lower and upper
bound by some positive multiples of µ.

The following proposition will be useful for the analysis that follows. Actually,
the proposition continues to hold for any feasible solutions and even for a point where
feasibility is violated by O(µ). The statement below suffices for the purposes of this
paper.

Proposition 2.4. Let (x, y, s) be a strictly feasible point for (P) and (D) with du-
ality gap µn. Then, there exists a strictly complementary optimal solution (x∗, y∗, s∗)
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of (P) and (D) such that

(x, y, s) = (x∗, y∗, s∗) + O(µ).(2.17)

Proof. Optimal solutions of (P) and (D) satisfy the linear system Ax = b,
AT y + s = c, cTx − bT y = 0, x ≥ 0, s ≥ 0. Any strictly feasible point (x, y, s)
satisfies the same linear system with the third equality replaced by cTx− bT y = µn.
Hoffman’s lemma [6] indicates that there exists a solution (x̂, ŷ, ŝ) of the first sys-
tem such that (x̂, ŷ, ŝ) = (x, y, s) + O(µ). The result follows immediately if (x̂, ŷ, ŝ)
is strictly complementary. If not, there exists an arbitrarily small perturbation of
(x̂, ŷ, ŝ) which leads to a strictly complementary solution, and (2.17) follows since
µ > 0.

The following corollary immediately follows from Proposition 2.4, since x∗
N = 0

and s∗B = 0 for any optimal solution of (P) and (D).
Corollary 2.5. Let (x, y, s) be a strictly feasible point for (P) and (D) with

duality gap µn. Then,

xN = O(µ), sB = O(µ).(2.18)

Note that both Proposition 2.4 and Corollary 2.5 hold for any primal-dual strictly
feasible (x, y, s). Next, we derive some more bounds by restricting the iterates to lie
in a wide neighborhood given by (2.13).

Proposition 2.6. Let (x, y, s) ∈ N−∞(γ) with duality gap µn for (P) and (D).
Then,

XSe = Θ(µ), sN = Ω(1), xB = Ω(1), XNS−1
N e = O(µ), SBX−1

B e = O(µ).(2.19)

Proof. Since (x, y, s) ∈ N−∞(γ), we have xisi ≥ γµ. Moreover, xT s = µn.
Therefore, xisi ≤ µn, since x > 0 and s > 0. This proves XSe = Θ(µ). By Corollary
2.5, xN = O(µ). Then, XSe = Θ(µ) implies sN = Ω(1). A similar argument shows
xB = Ω(1). Finally, xN = O(µ) together with sN = Ω(1) imply XNS−1

N e = O(µ).
The proof of SBX−1

B e = O(µ) is similar.
We mentioned in section 2 that Assumption 2.2 is somewhat restrictive. Actually,

it is possible to extend our interior-point approach to LP instances where that partic-
ular assumption is not satisfied. We simply need to define an appropriate viewpoint.
Assume that (x, y, s) is such that Ax = b+ξb, A

T y+s = c+ξc, x > 0, and s > 0 with
‖ξb‖ = O(µ) and ‖ξc‖ = O(µ), where µn is the duality gap. (Such a pair of solutions
will be generated by several infeasible interior-point methods when applied to prob-
lems where optimal solutions exist.) It follows that Proposition 2.4 and Corollary 2.5
hold for such a point, as well as Proposition 2.6 with an appropriate definition of the
wide neighborhood. One can then take precisely the same Newton step as before for
a perturbed LP pair and obtain an iterate with precisely the same primal and dual
infeasibilities with a lower duality gap. Then, the resulting interior-point bound can
be interpreted as the range of perturbations for which a single Newton step yields
a point with a smaller duality gap for a nearby LP instance of the perturbed prob-
lem. The analysis of sections 4 and 5 carry over in this case and will reveal that the
interior-point bounds will still be related to the desired symmetrized partition bounds
as µ tends to 0.

Another possible extension of our interior-point approach in this case is to try to
correct for all of the primal and dual feasibilities in a single Newton step by setting
the right-hand side of the first and second equations in (2.14) to t∆b − ξb and −ξc,
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respectively. The analysis remains unchanged for the case of a unique and nondegen-
erate primal-dual optimal solution (since B will be nonsingular). However, ξb and ξc
might not be in the “right” spaces in the degenerate case, which would complicate the
analysis. Consequently, we adopt the viewpoint described in the previous paragraph
for LP instances failing to satisfy Assumption 2.2.

3. Equivalence. In this section, we show that the interior-point bounds are
independent of the problem formulation. It is well known that, although (P) and (D)
do not look symmetric, they can easily be reformulated so that (D) is in the form of
(P) and vice versa [10, pp. 110–112]. More precisely, (D) is equivalent to

(D′) min
s

x̂T s subject to Ks = ĉ, s ≥ 0,

where x̂ satisfies Ax̂ = b, ĉ := Kc and K ∈ R
(n−m)×n is a matrix whose rows form a

basis for the null space of A. The dual of (D′) is given by

(P′) max
u,x

ĉTu subject to KTu + x = x̂, x ≥ 0,

which is equivalent to (P).
Let us now focus on perturbations of c, i.e., let c be replaced by c + t∆c. By

the above reformulation, this is the same as replacing the right-hand side of (D′)
by ĉ + tK∆c. Therefore, Proposition 2.2 can be used to evaluate the interior-point
bound at a strictly feasible primal-dual pair (s, x). (Note that the roles of x and s
are interchanged.) We need to compute

X−1KT (KSX−1KT )−1K∆c.(3.1)

On the other hand, one can also use Proposition 2.3 to compute the interior-point
bound directly at (x, s), which requires the evaluation of

S−1(I −AT (AXS−1AT )−1AXS−1)∆c.(3.2)

A simple manipulation of (3.1) gives rise to another equivalent formula:

X−1/2S−1/2ΨX1/2S−1/2∆c,(3.3)

where Ψ is the orthogonal projection matrix onto the range space of X−1/2S1/2KT .
Similarly, (3.2) is equivalent to

X−1/2S−1/2ΞX1/2S−1/2∆c,(3.4)

where Ξ is the orthogonal projection matrix onto the null space of AX1/2S−1/2.
Therefore, in order to prove that (3.1) and (3.2) are equivalent, it suffices to show that
Ψ and Ξ project onto the same subspace, or that the null space of AX1/2S−1/2 equals
the range space of X−1/2S1/2KT . This is easily proven by an inclusion argument: If
w satisfies AX1/2S−1/2w = 0, then X1/2S−1/2w = KTu for some unique u. Thus, w
is in the range space of X−1/2S1/2KT . Conversely, if w = X−1/2S1/2KTu for some
u, then AX1/2S−1/2w = AKTu = 0. This proves the equivalence of the interior-point
bounds.

We next argue that the range of t resulting from the optimal partition bounds is
also independent of the formulation. If the two LPs are formulated in the form of (P)
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and (D), then (AUX2) yields the range of t for perturbations of c. Premultiplying the
equality constraints of (AUX2) by K = [KB ,KN ] leads to (AUX1′) given by

(AUX1′′′) min
w,λ

(max
w,λ

)λ subject to KNw = λK∆c, w ≥ −s∗N ,(3.5)

which exactly yields the range of t for perturbations of the right-hand side of (D′) if
one uses the form (D′) and (P′). Similarly, if (w, λ) is feasible for (AUX1′), then[

λ∆cB
λ∆cN − w

]

lies in the null space of K. Then, by our previous observation, there exists a v such
that BT v = λ∆cB , NT v + w = λ∆cN , which is exactly the constraints of (AUX2),
completing the proof of the claim.

Using this observation, we will carry out our analysis for perturbations of b only
in the subsequent sections, and state the corresponding results for changes in c as
corollaries. We begin with a special case of degeneracy and then consider the most
general case.

4. Unique primal solution. Throughout this section, we assume that (P) has
a unique but degenerate optimal solution x∗. Note that by Proposition 2.1, we have
|B| = rank (B), i.e., B has linearly independent columns. In this particular case,
Proposition 2.4 provides another useful bound on xB for a strictly feasible primal-
dual point (x, y, s).

Corollary 4.1. Assume that (P) has a unique optimal solution x∗. Let (x, y, s)
be primal-dual strictly feasible for (P) and (D) with duality gap µn. Then,

xB = x∗
B + O(µ).(4.1)

An analogous corollary follows if (D) has a unique optimal solution.
Corollary 4.2. Assume that (D) has a unique optimal solution (y∗, s∗). Let

(x, y, s) be primal-dual strictly feasible for (P) and (D) with duality gap µn. Then,

sN = s∗N + O(µ).(4.2)

Next, we will analyze one-dimensional perturbations of b.

4.1. Perturbations of b. In this subsection, we assume that the right-hand
side vector b is replaced by b + t∆b, where ∆b ∈ R

m and t ∈ R. We also assume
that (x, y, s) ∈ N−∞(γ) is a primal-dual strictly feasible point for (P) and (D) for
some γ ∈ (0, 1]. We will compare the interior-point bounds arising from Proposition
2.2 at (x, y, s) with the optimal values of (SA1), i.e., the symmetrized bounds. The
interior-point bounds are given by the L∞-norm of

S−1AT (AD2AT )−1∆b,(4.3)

where D2 = XS−1.
Let us now consider (SA1). Since B has full column rank, ∆b either does not

lie in the range space of B, in which case the optimal values of (SA1) as well as
(AUX1) are all 0, or there exists a unique v ∈ R

|B| such that Bv = ∆b, in which case
the constraints of (SA1) reduce to (2.9), from which the symmetrized bounds can be
obtained easily. We will consider both situations in turn.
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Let us start with the second case. Without loss of generality, we can assume that
∆b has unit L2-norm, which implies a bound on v. Then, we need to compute

u = (AD2AT )−1∆b = (AD2AT )−1Bv(4.4)

in order to obtain (4.3). However, (4.4) is equivalent to

AD2ATu = Bv or BXBS−1
B BTu + NXNS−1

N NTu = Bv,(4.5)

where B and N are the partitions of the coefficient matrix A with respect to B
and N , as before. Since B has linearly independent columns, there exists a matrix
C ∈ R

m×(m−|B|) such that the augmented matrix [B C] is square and nonsingular:
let W be its inverse. Therefore, premultiplying the second equality in (4.5) by W , we
obtain [

I
0

]
XBS−1

B [I 0] ũ + ÑXNS−1
N ÑT ũ =

[
I
0

]
v,(4.6)

where ũ = W−Tu, Ñ = WN , and I is a |B| × |B| identity matrix. Therefore, if we
partition Ñ and ũ accordingly as

Ñ =

[
Ñ1

Ñ2

]
, ũ =

[
ũ1

ũ2

]
,

then (4.6) can be decomposed in the following way:[
D2
B + Ñ1D

2
N ÑT

1 Ñ1D
2
N ÑT

2

Ñ2D
2
N ÑT

1 Ñ2D
2
N ÑT

2

] [
ũ1

ũ2

]
=

[
v
0

]
,(4.7)

where DB and DN are the corresponding partitions of D. By (4.3), we need to
compute

S−1ATu = S−1(WA)T ũ =

[
S−1
B ũ1

S−1
N

(
ÑT

1 ũ1 + ÑT
2 ũ2

) ] .(4.8)

For notational convenience, let us define

F := Ñ1DN , G := Ñ2DN .

Note that G has full row rank since A does. The bottom equality in (4.7) can be
rewritten as

GFT ũ1 + GGT ũ2 = 0, and so ũ2 = −(GGT )−1GFT ũ1.(4.9)

Substituting (4.9) into the top equality in (4.7) gives(
D2
B + FFT − FGT (GGT )−1GFT

)
ũ1 = v, or(

D2
B + F (I − PG)FT

)
ũ1 = v,(4.10)

where PG is the orthogonal projection matrix onto the range space of GT . Therefore,
I − PG is the orthogonal projection matrix onto the null space of G.

We now briefly review the Neumann lemma [3]. Let U be an invertible matrix
and let V satisfy ‖U−1V ‖ ≤ 1/2. (The particular norm being used does not really
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matter: We will always use ‖ · ‖ for the Euclidean norm or the operator norm arising
from it.) Then, I + U−1V is invertible with ‖I + U−1V ‖ ≤ 2. Moreover U + V is
invertible and given by

(U + V )−1 = U−1 − U−1V (I + U−1V )−1U−1.(4.11)

Now, we apply this result to (4.10) with U := D2
B and V := F (I−PG)FT . Proposition

2.6 implies that both U−1 and V are O(µ), since I − PG is a projection matrix and
has unit Euclidean norm. Therefore, assuming that the duality gap µn is small,

ũ1 =
(
D2
B + F (I − PG)FT

)−1
v,

= D−2
B v −D−2

B F (I − PG)FT
(
I + D−2

B F (I − PG)FT
)−1

D−2
B v.(4.12)

It then follows that

S−1
B ũ1 = X−1

B v −X−1
B F (I − PG)FT

(
I + D−2

B F (I − PG)FT
)−1

D−2
B v.(4.13)

However, by Proposition 2.6, F is O(µ1/2), D−2
B is O(µ), and X−1

B is O(1). Conse-
quently, the second term on the right-hand side of (4.13) is O(µ2), since ‖I−PG‖ ≤ 1.
Finally, Corollary 4.1 implies X−1

B = (X∗
B)−1 + O(µ). Therefore,

S−1
B ũ1 = (X∗

B)−1v + O(µ).(4.14)

We have thus obtained the top part of (4.8). For the lower part, we get

S−1
N (ÑT

1 ũ1 + ÑT
2 ũ2) = S−1

N D−1
N (FT ũ1 + GT ũ2),

= (XNSN )−1/2(I − PG)FT ũ1,(4.15)

where we substituted (4.9) for ũ2. Proposition 2.6 implies (XNSN )−1/2 = O(µ−1/2)
and F = O(µ1/2). By (4.14), ũ1 = O(µ) since sB is O(µ). Combining these bounds
with ‖I − PG‖ ≤ 1 leads to

S−1
N (ÑT

1 ũ1 + ÑT
2 ũ2) = O(µ).(4.16)

Using (4.8), we conclude that the L∞-norm of the quantity (4.3) that we need to
evaluate is given by

∥∥S−1AT (AD2AT )−1∆b
∥∥
∞ =

∥∥∥∥
[

(X∗
B)−1v + O(µ)

O(µ)

]∥∥∥∥
∞

.(4.17)

The reciprocal of (4.17) gives the desired interior-point bound. Consequently, if the
duality gap µn is small, we conclude by comparing (4.17) with (2.9) that the interior-
point approach yields exactly the same bound as the optimal solution to (SA1) asymp-
totically in µ.

Next, we address the situation in which ∆b does not lie in the range space of B.
In this case, the optimal values of both (AUX1) and (SA1) are clearly 0. ∆b can be
uniquely written as

∆b = BvB + CvC ,(4.18)

where [B C] is nonsingular as before and vC is a nonzero vector. Once again, we
need to compute (4.3). We follow a similar treatment as before, and corresponding
to (4.7) we obtain[

D2
B + Ñ1D

2
N ÑT

1 Ñ1D
2
N ÑT

2

Ñ2D
2
N ÑT

1 Ñ2D
2
N ÑT

2

] [
ũ1

ũ2

]
=

[
vB
vC

]
.(4.19)
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The bottom part can be expanded as

Ñ2XN

[
S−1
N ÑT

1 ũ1 + S−1
N ÑT

2 ũ2

]
= vC .(4.20)

However, (4.8) implies that the term in the brackets is exactly the bottom part of the
quantity (4.3) we seek. Let us denote that term by p and let XN p = q. Then, (4.20)
is equivalent to Ñ2 q = vC . Since vC is nonzero, the norm of q is bounded below;
that is, ‖q‖ ≥ α > 0, where α is the norm of the least squares solution. Therefore,
‖q‖∞ ≥ β with β := (α/

√
n− |B|) (see, e.g., [3]). (Note that |B| < n since |B| = n

can happen only if m = n, in which case ∆b is always in the range of B.) However,
‖q‖∞ ≤ ‖XN‖∞‖p‖∞ since XN p = q. This implies

‖p‖∞ ≥ ‖q‖∞
‖XN‖∞ ≥

β

‖XN‖∞ = Ω(1/µ),(4.21)

where the last equality follows from Corollary 2.5. Therefore, as µ tends to 0, ‖p‖∞
tends to ∞, which implies that the interior-point bound given by its reciprocal tends
to 0 as desired.

We remark that if B = ∅, then x∗ = 0 is the only optimal solution of (P),
which can happen only if b = 0. In this case, the top part of (4.8) disappears. The
interior-point bound is then given by the reciprocal of ‖p‖∞, where p is as defined
after (4.20). By the preceding argument, the interior-point bound tends to 0 as µ
approaches 0. This is still in agreement with the optimal partition bounds since any
nonzero perturbation of b leads to a change in the optimal partition, and hence, the
optimal partition bounds in this case are also equal to 0. Therefore, we have proved
the following theorem.

Theorem 4.3. Let (x, y, s) ∈ N−∞(γ) be a primal-dual strictly feasible point for
(P) and (D). Assume that (P) has a unique but degenerate optimal solution, and that
b is replaced by b + t∆b, where t ∈ R and ∆b ∈ R

m. Then the interior-point bound
evaluated at (x, y, s) yields exactly the same value as the optimal solution of (SA1)
asymptotically in µ, where µ = xT s/n.

The following corollary of Theorem 4.3 is an immediate consequence of the equiv-
alence between (P) and (D), as discussed in section 3. One uses Corollary 4.2 in place
of Corollary 4.1 in the preceding analysis.

Corollary 4.4. Let (x, y, s) ∈ N−∞(γ) be a primal-dual strictly feasible point
for (P) and (D). Assume that (D) has a unique but degenerate optimal solution and
that c is replaced by c+t∆c, where t ∈ R and ∆c ∈ R

n. Then the interior-point bound
evaluated at (x, y, s) yields exactly the same value as the optimal solution of (SA2)
asymptotically in µ, where µ = xT s/n.

It does not appear that we can obtain better results for perturbations of c in the
case of a unique primal optimal solution (but not dual optimal solution) than those
arising from the analysis of the general case in the next section. A similar remark
holds for perturbations of b in the case of a unique dual optimal solution (but not
primal optimal solution).

5. General case. In this section, we turn our attention to the most general case,
in which both (P) and (D) may have multiple optimal solutions. As the small example
given at the end of section 2.1 reveals, some complications arise in the presence of
multiple optimal solutions. For instance, unlike the previous case, the symmetrized
bounds become dependent on the optimal solution of (P) used in the formulation of
(SA1) if (P) has multiple optimal solutions. Furthermore, they do not necessarily
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coincide with the “symmetrizations” of the optimal partition bounds arising from
(AUX1). Similar remarks hold for the relationship between (SA2) and (AUX2) if (D)
has multiple optimal solutions.

Despite this complication arising from the presence of multiple optimal solutions,
we will attempt to say something about the quality of the interior-point bounds, at
least in comparison with the symmetrized bounds. In the next subsection, we analyze
perturbations of b in this general setting.

5.1. Perturbations of b. Let (P) have multiple optimal solutions and let b be
replaced by b + t∆b, where t ∈ R and ∆b ∈ R

m. Suppose that (x, y, s) ∈ N−∞(γ)
is primal-dual strictly feasible, where γ ∈ (0, 1]. For such a point, Proposition 2.4
guarantees the existence of a strictly complementary solution (x∗, y∗, s∗) whose dis-
tance from (x, y, s) is O(µ). We will compare the interior-point bounds evaluated at
(x, y, s) with the optimal values of (SA1). Among other optimal solutions of (P), the
x∗ above will be the particular choice of the primal optimal solution to be used in the
formulation of (SA1). The use of such an optimal solution in the relative interior of
the primal optimal set is likely to leave more room for the decision variables of (SA1),
since x∗

B > 0.
Let us first consider (SA1). The constraints of (SA1) are

Bu = λ∆b,
−x∗

B ≤ u ≤ x∗
B .

(5.1)

Let rank (B) = r and |B| = k. Clearly we have r ≤ m and r < k, since Proposition
2.1 implies dim (ΩP ) = k − r, which is positive by our assumption. This, in turn,
implies that r > 0, since r = 0, if and only if B = ∅ (assuming that no columns of A
are identically zero). A QR factorization of B yields B = QR, where Q ∈ R

m×m is
orthogonal and R ∈ R

m×k is upper triangular with

R =

[
R1

0

]
,(5.2)

where R1 has r rows. Note that R1 has full row rank.
Premultiplying the equality constraints in (5.1) by QT yields

[
R1

0

]
u = λ

[
∆̃b1
∆̃b2

]
,

− x∗
B ≤ u ≤ x∗

B ,

(5.3)

with ∆̃b = QT∆b. Clearly, (5.3) reveals that (SA1) has a nontrivial optimal solution

λ∗ if and only if ∆̃b2 = 0.

First, we consider the nontrivial case. (Since ∆̃b is nonzero, this implies that
k > 0.) Let (λ∗, u∗) be an optimal solution to the maximization problem with λ∗ �= 0.
Note that λ∗ is finite since u∗ is bounded (this follows, since B �= ∅). Then, we have

∆̃b = QT∆b = (1/λ∗)Ru∗.(5.4)

The interior-point approach, on the other hand, requires the evaluation of (4.3)
at (x, y, s). By (5.4), we then need to evaluate the L∞-norm of

(1/λ∗)S−1AT (AD2AT )−1QRu∗.(5.5)
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Let

w = (AD2AT )−1QRu∗ or AD2ATw = QRu∗.(5.6)

Premultiplying the second equality in (5.6) by QT gives[
R1 Ñ1

0 Ñ2

] [
D2
B 0
0 D2

N

] [
RT1 0

ÑT
1 ÑT

2

] [
w̃1

w̃2

]
=

[
R1

0

]
u∗,(5.7)

where w̃1 and w̃2 are the appropriate partitions of w̃ = QTw, and Ñ1 and Ñ2 are
those of Ñ = QTN . Let us define

F := Ñ1DN , G := R1DB , H := Ñ2DN .(5.8)

We can then decompose (5.7) into two equations as

(GGT + FFT )w̃1 + FHT w̃2 = R1u
∗,

HFT w̃1 + HHT w̃2 = 0.
(5.9)

Note, in particular, that both G and H have full row rank since R1 and A do. From
the second equation in (5.9), we obtain

w̃2 = −(HHT )−1HFT w̃1.(5.10)

Substituting (5.10) into the first equation of (5.9) leads to

(GGT + FFT − FHT (HHT )−1HFT )w̃1 = R1u
∗, or

(GGT + F (I − PH)FT )w̃1 = R1u
∗,(5.11)

where I−PH is the orthogonal projection matrix onto the null space of H. Proposition
2.6 implies that the second term in parentheses in the second equation above is O(µ),
since ‖I − PH‖ ≤ 1. In order to apply Neumann’s lemma, we need to show that
(GGT )−1 is bounded.

Lemma 5.1. (GGT )−1 = O(µ).
Proof. We use the “thin” QR factorization of GT = DBRT1 = Y Z, where Y has

orthonormal columns and Z is upper triangular and nonsingular. Then, (GGT )−1 =
Z−1Z−T . Therefore, it suffices to find an upper bound on Z−1. We have

DBRT1 = Y Z, or R1R
T
1 = R1D

−1
B Y Z.(5.12)

Therefore, I = (R1R
T
1 )−1R1D

−1
B Y Z, or Z−1 = (R1R

T
1 )−1R1D

−1
B Y . However, by

Proposition 2.6, D−1
B = O(µ1/2), which implies that Z−1 = O(µ1/2), completing the

proof.
We can now apply Neumann’s lemma to (5.11). Using the same notation as in

(4.11), we have U := GGT and V := F (I − PH)FT . Note that both U−1 and V are
O(µ). We obtain

w̃1 = (GGT )−1GD−1
B u∗ − (GGT )−1V (I + (GGT )−1V )−1(GGT )−1GD−1

B u∗,(5.13)

where we used R1 = GD−1
B .

By (5.5) and (5.6), we need

(1/λ∗)S−1ATw = (1/λ∗)
[

S−1
B RT1 w̃1

S−1
N (ÑT

1 w̃1 + ÑT
2 w̃2)

]
.(5.14)
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Let us define

W = GT (GGT )−1.(5.15)

For the top part of (5.14) we need to evaluate

S−1
B RT1 w̃1 = S−1

B D−1
B GT w̃1,

= (SBXB)−1/2PGD
−1
B u∗

− (SBXB)−1/2WV (I + (GGT )−1V )−1WTD−1
B u∗,(5.16)

where we used (5.13), (5.15) and where PG is the orthogonal projection matrix onto
the range space of GT . Consider the second term in the right-hand side of the second
equality. By Proposition 2.6, (SBXB)−1/2 is O(µ−1/2), V is O(µ), and D−1

B is O(µ1/2).
Lemma 5.1 implies that W = GT (GGT )−1 = Y Z−T = O(µ1/2), since ‖Y ‖ ≤ 1.
Therefore, the whole expression is O(µ2). We conclude that the top part of (5.14) is

(1/λ∗)(SBXB)−1/2PG(SBXB)1/2X−1
B u∗ + (1/λ∗)O(µ2).(5.17)

Let us next consider the lower part of (5.14). We need to compute

S−1
N ÑT

1 w̃1 + S−1
N ÑT

2 w̃2.(5.18)

By (5.13) the first term in (5.18) is given by

(SNXN )−1/2FT
[
WT − (GGT )−1V (I + (GGT )−1V )−1WT

]
D−1
B u∗.(5.19)

Note that W = O(µ1/2) by the preceding discussion. As for the second term in
brackets, we have that both (GGT )−1 and V are O(µ), which implies that the whole
second term is O(µ5/2). Thus, the expression in brackets is O(µ1/2). By Proposition
2.6, (SNXN )−1/2 is O(µ−1/2), whereas both FT and D−1

B are O(µ1/2). We therefore
conclude that (5.19) is O(µ).

For the second term in (5.18), we use (5.10) together with (5.13):

−(SNXN )−1/2HT (HHT )−1HFT w̃1 = −(SNXN )−1/2PHFT w̃1.(5.20)

Note that w̃1 = O(µ) by the preceding arguments. The fact that ‖PH‖ ≤ 1, together
with (SNXN )−1/2 being O(µ−1/2) and FT being O(µ1/2), implies that (5.20) is O(µ).

Therefore, we conclude that the lower part of (5.14) is O(µ). Combining this
result with (5.17) yields the following:

r := (1/λ∗)
[

(SBXB)−1/2PG(SBXB)1/2X−1
B u∗ + O(µ2)

O(µ)

]
.(5.21)

Consequently, we need to evaluate the L∞-norm of (5.21) and take its reciprocal.
Observe that X−1

B = (X∗
B)−1 + O(µ) by Proposition 2.4. Using this, we derive an

upper bound on the L∞-norm of (5.21).

‖r‖∞ ≤ |1/λ∗|(‖(SBXB)−1/2‖∞‖PG‖∞‖(SBXB)1/2‖∞‖(X∗
B)−1u∗‖∞ + O(µ)).

(5.22)
Since (x, y, s) ∈ N−∞(γ),

xisi = µn−
∑
j 	=i

xjsj ≤ µn− µ(n− 1)γ = µ(n− (n− 1)γ).(5.23)
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Thus, (xisi)
1/2 ≤ (µ(n− (n−1)γ)1/2 and (xisi)

−1/2 ≤ 1/(γµ)1/2. Furthermore, since
‖PG‖ ≤ 1, we have ‖PG‖∞ ≤ k1/2 (see, e.g., [3]), where |B| = k. Finally, since u∗ is
optimal for (SA1), ‖(X∗

B)−1u∗‖∞ ≤ 1. Therefore,

‖r‖∞ ≤ 1

|λ∗|
(

1

(γµ)1/2
k1/2(µ(n− (n− 1)γ))1/2 + O(µ)

)
,

=
1

|λ∗|

(√
(n− (n− 1)γ)k

γ
+ O(µ)

)
.(5.24)

We conclude that the interior-point bound, which is the reciprocal of (5.24), is then
bounded below by

1

‖r‖∞ ≥
√
γ√

(n− (n− 1)γ)k + O(µ)
|λ∗|.(5.25)

Note, in particular, that the lower bound tends to 1/
√
k, independent of n, as µ→ 0

if (x, y, s) is on the central path.

We next consider the case in which ∆b is not in the range space of B. Again,
in this case, the symmetrized bounds as well as the optimal partition bounds are all
0. The QR factorization of B can be rewritten as B = QR = [Q1 Q2]R = Q1R1,
where we use (5.2), and where [Q1 Q2] is the appropriate partition of Q. Since Q is
orthogonal, ∆b can uniquely be expressed as

∆b = Q1v1 + Q2v2,(5.26)

where v2 is nonzero. Arguing as in section 4, we need to evaluate (4.3), which in turn
requires the computation of

w = (AD2AT )−1(Q1v1 + Q2v2) or AD2ATw = Q1v1 + Q2v2.(5.27)

Premultiplying (5.27) by QT leads to[
R1 Ñ1

0 Ñ2

] [
D2
B 0
0 D2

N

] [
RT1 0

ÑT
1 ÑT

2

] [
w̃1

w̃2

]
=

[
v1

v2

]
,(5.28)

which looks like (4.19). Essentially the same arguments as in section 4 reveal that the
interior-point bound tends to 0 as µ approaches 0.

Therefore, we have proved the following theorem.
Theorem 5.2. Let (x, y, s) ∈ N−∞(γ) be a primal-dual strictly feasible point for

(P) and (D) with duality gap µn. Assume that (P) has multiple optimal solutions and
that b is replaced by b + t∆b, where t ∈ R and ∆b ∈ R

m. Let k = |B|. If the strictly
feasible solution given by Proposition 2.4 is used for symmetrization in (SA1), then
the ratio of the interior-point bound evaluated at (x, y, s) to the value of the optimal
solution of (SA1) is at least

√
γ√

(n− (n− 1)γ)k + O(µ)
.(5.29)

Note that the presence of multiple primal optimal solutions implies k > 0; there-
fore, the expression (5.29) is well-defined. As in section 4, Theorem 5.2 leads to the
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following corollary by the discussion in section 3. Due to the interchange of the roles
of the basic and nonbasic variables in the reformulation given in section 3, k in the
denominator of (5.29) is replaced by (n− k). Under the assumption of multiple dual
optimal solutions, Proposition 2.1 indicates that m > r, which implies k < n, since A
has full row rank.

Corollary 5.3. Let (x, y, s) ∈ N−∞(γ) be a primal-dual strictly feasible point
for (P) and (D) with duality gap µn. Assume that (D) has multiple optimal solutions
and that c is replaced by c+t∆c, where t ∈ R and ∆c ∈ R

n. Let k = |B|. If the strictly
feasible solution given by Proposition 2.4 is used for symmetrization in (SA2), then
the ratio of the interior-point bound evaluated at (x, y, s) to the value of the optimal
solution of (SA2) is at least

√
γ√

(n− (n− 1)γ)(n− k) + O(µ)
.(5.30)

6. An example. In the previous sections, we have provided a theoretical basis
for the behavior of the interior-point bounds evaluated at the near-optimal solutions.
We present an example in this section to shed some light on the performance of the
interior-point bounds in practice.

The example we consider in this section is a degenerate transportation problem
discussed by Roos, Terlaky, and Vial [10, pp. 398–402]. For this problem, they report
strikingly different results on sensitivity analysis on the right-hand side and the cost
parameters using different commercial solvers. We aim to test our interior-point
approach on this instance.

The problem is very simple. There are three distribution centers with capacity 2,
6, and 5 units, respectively, which can supply three warehouses each with a demand
of 3 units at a cost of 1 per unit. We aim to minimize the total cost while meeting
all the demand.

This problem can be formulated as a linear program in standard form as follows:

min
∑3
i=1

∑3
j=1 xij

subject to x11 + x12 + x13 + s1 = 2,
x21 + x22 + x23 + s2 = 6,
x31 + x32 + x33 + s3 = 5,
x11 + x21 + x31 − d1 = 3,
x12 + x22 + x32 − d2 = 3,
x13 + x23 + x33 − d3 = 3,
xij , si, dj ≥ 0, i, j = 1, 2, 3,

where xij denotes the amount shipped from distribution center i to warehouse j, si
is the excess supply at distribution center i, and dj is the shortage of demand at
warehouse j, i, j = 1, 2, 3.

It is easy to verify that any feasible solution with objective value 9 is optimal.
Therefore, there exist optimal solutions with all the variables xij and si, i, j = 1, 2, 3,
positive, whereas all dj , j = 1, 2, 3, will always be zero in any optimal solution. By
Proposition 2.1, the primal optimal set has dimension 6, whereas the dual optimal
solution is unique.

We solved this LP using CPLEX’s standard barrier solver (http://www.ilog.com
/products/cplex/product/barrier.cfm). By setting the tolerance level to different val-
ues (1e-3, 1e-4, 1e-5) we obtained several strictly feasible, near-optimal solutions with
different duality gaps. We then evaluated the interior-point bounds (2.15) and (2.16)
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Table 1
Interior-point bounds for the transportation example (b).

µ γ b1 b2 b3 b4
1 3.94 e-4 0.98 1.653 2.554 2.542 2.496
2 2.62 e-5 0.98 1.639 2.572 2.519 2.480
3 1.86 e-6 0.74 1.487 2.641 2.332 2.163

CPLEX [−2, 1] [−2, 1] [−4,+∞) -1

Range (−2,+∞) (−4,+∞) (−4,+∞) (−3, 4)

Table 2
Interior-point bounds for the transportation example (c).

µ γ c1j c2j c3j
1 3.94 e-4 0.98 1.126 e-3 7.825 e-4 6.994 e-4
2 2.62 e-5 0.98 7.505 e-5 5.238 e-5 4.685 e-5
3 1.86 e-6 0.74 5.425 e-6 3.740 e-6 3.437 e-6

CPLEX -2 -2 -2

Range {0} {0} {0}

at these iterates for perturbations of the form b+tek and c+tel, where ek and el, with
k = 1, . . . , 6 and l = 1, . . . , 9, denote the unit vectors in the appropriate dimension.

The results are reported in Table 1 and Table 2 for perturbations of the right-
hand side parameters and the cost parameters, respectively. Rows 1–3 correspond to
the three strictly feasible, near-optimal iterates ordered by descending duality gaps.
For the iterates (x, y, s), µ denotes the duality measure given by xT s/n, and γ is the
parameter of the narrowest wide central-path neighborhood containing the iterate.
The columns bi in Table 1 correspond to changes in the right-hand side of the ith
constraint, and the number in each column is the upper interior-point bound evaluated
at the corresponding iterate. Since the changes in b4–b6 are symmetric, we report only
the results for b4. Similarly, the columns cij in Table 2 represent changes in the cost
coefficient of the variable xij , and the number in that column is the upper interior-
point bound evaluated at the corresponding iterate. Again, the changes in cij for fixed
i are symmetric. The CPLEX row denotes the range obtained from that solver. (The
basic variables returned by CPLEX were x11, x21, x22, x23, x33, and s3.) Finally,
the last row in each table gives the correct ranges (optimal partition bounds) for the
corresponding right-hand side or the cost parameters.

Table 1 reveals that the interior-point bounds provide useful information in com-
parison with the symmetrized optimal partition bounds as µ tends to 0, even if the
LP is highly degenerate. Furthermore, the ratio of the interior-point bounds to the
symmetrized optimal partition bounds is much better than the theoretical worst-case
ratio (5.29). In fact, we experienced similar behavior in our extensive computational
tests with randomly generated problems [12].

The results of Table 2 indicate the rapid convergence of the interior-point bounds
to 0 as µ tends to 0, as expected. Note that the convergence rate is related to the
duality measure µ, as illustrated by the previous theoretical results.

The particular instance we considered has multiple primal optimal solutions and
a unique degenerate dual optimal solution. In order to get a complementary view, we

1CPLEX provided the following different results: b4 : [−1, 2], b5 : [−1, 2], b6 : [−1, 4].
2CPLEX ranges: c11 : (−∞, 0], c12 : [0,+∞), c13 : [0,+∞), c21 : {0}, c22 : [−1, 0], c23 : {0},

c31 : [0,+∞), c32 : [0,+∞), c33 : {0}.
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Table 3
Interior-point bounds for the modified transportation example (b).

µ γ b1 b2 b3 b4 b5 b6
1 2.42 e-4 0.99 1.999 1.513 e-3 2.000 2.000 1.513 e-3 1.513 e-3
2 1.58 e-5 0.95 2.000 1.012 e-4 2.000 2.000 1.012 e-4 1.012 e-4
3 1.71 e-6 0.58 2.000 8.075 e-6 2.000 2.000 8.075 e-6 8.075 e-6
CPLEX [−2,+∞) [0,+∞) [−2,+∞) [−3, 2] [−3, 0] [−3, 0]
Range (−2,+∞) {0} (−2,+∞) (−3, 2) {0} {0}

Table 4
Interior-point bounds for the modified transportation example (c).

µ γ c11 c12 c13 c21 c22 c23 c31 c32 c33
1 2.42 e-4 0.99 1.000 0.777 0.777 1.335 0.900 0.900 1.000 0.777 0.777
2 1.58 e-5 0.95 1.000 0.777 0.777 1.334 0.900 0.900 1.000 0.777 0.777
3 1.71 e-6 0.58 1.000 0.785 0.785 1.335 0.922 0.922 1.000 0.785 0.785
CPLEX [−1,+∞) [−1,+∞) [−1,+∞) [−1,+∞) [−1, 1] [−1, 1] [−1, 1] [−1,+∞) [−1,+∞)
Range (−1,+∞) (−1,+∞) (−1,+∞) (−2,+∞) (−2, 1) (−2, 1) (−1, 1) (−1,+∞) (−1,+∞)
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slightly modified the data of the transportation problem so that the primal problem
has a unique degenerate optimal solution whereas the dual problem has multiple
optimal solutions. More specifically, we increased the cost coefficients of x11, x12, x13,
x21, x32, and x33 from 1 to 2 in the objective function and maintained the remaining
data. The resulting primal instance has the unique optimal solution given by x22 = 3,
x23 = 3, x31 = 3, s1 = 2, and s3 = 2 with all other variables equal to 0.

We tested our interior-point approach on this problem instance. The results
are tabulated in Tables 3 and 4 for the right-hand side and the cost parameters,
respectively. (The basic variables returned by CPLEX in this example were x22, x23,
x31, s1, s2, and s3.)

For perturbations of the right-hand side, Table 3 illustrates the convergence be-
havior predicted by the theoretical results. For perturbations of the cost vector,
Table 4 reveals that the interior-point bounds provide very useful information in com-
parison with the symmetrized partition bounds at a moderate cost.

7. Conclusion. In this paper, we have studied the quality of the bounds arising
from the interior-point perspective on sensitivity analysis developed by the authors
in [13]. By relaxing the strong assumption of nondegeneracy, we have been able to
consider all possible degeneracy scenarios and to investigate how our bounds compare
with those arising from the optimal partition approach to sensitivity analysis.

If the primal problem has a degenerate but unique optimal solution, then our
approach yields the same bounds as the “symmetrized” optimal partition bounds for
perturbations of b. By the equivalence discussed in section 3, the same relationship
holds for perturbations of c if the dual problem has a degenerate but unique optimal
solution. This result directly extends the previous result proved in [13] under the
assumption of a unique and nondegenerate solution.

We then considered general degenerate LPs. In this case, we were able to show
that our interior-point approach would yield bounds that are at least a certain fraction
of the symmetrized bounds, where the fraction depends on certain characteristics of
the problem instance and of the iterate at which the bounds are evaluated. The
behavior of the interior-point bounds on a highly degenerate transportation example
indicates that useful information can be gained using the interior-point approach. Our
extensive computational tests on random problems suggest that the ratio in practice
is much better than the predicted worst-case ratio. Although this result is not as
strong as the aforementioned results, our interior-point bounds still yield some useful
information on the range of allowable perturbations. The fact that the cost of the
evaluation of our bounds is simply the same as that of an interior-point iteration
makes it more appealing, given the cost of solving two LPs, to obtain the range from
the optimal partition approach.

Acknowledgments. We would like to thank two anonymous referees whose help-
ful comments and suggestions led to an improved exposition.

REFERENCES

[1] I. Adler and R. D. C. Monteiro, A geometric view of parametric linear programming, Al-
gorithmica, 8 (1992), pp. 161–176.

[2] A. J. Goldman and A. W. Tucker, Theory of linear programming, in Linear Equalities
and Related Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press,
Princeton, NJ, 1956, pp. 53–97.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.



714 E. ALPER YILDIRIM AND MICHAEL J. TODD

[4] H. J. Greenberg, Simultaneous primal-dual right-hand-side sensitivity analysis from a strictly
complementary solution of a linear program, SIAM J. Optim., 10 (2000), pp. 427–442.

[5] H. J. Greenberg, A. G. Holder, K. Roos, and T. Terlaky, On the dimension of the set of
rim perturbations for optimal partition invariance, SIAM J. Optim., 9 (1998), pp. 207–216.

[6] A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Res. National
Bureau of Standards, 49 (1952), pp. 263–265.

[7] B. Jansen, J. de Jong, C. Roos, and T. Terlaky, Sensitivity analysis in linear programming:
Just be careful!, European J. Oper. Res., 101 (1997), pp. 15–28.

[8] W.-J. Kim, C.-K. Park, and S. Park, An ε-sensitivity analysis in the primal–dual interior
point method, European J. Oper. Res., 116 (1999), pp. 629–639.

[9] R. D. C. Monteiro and S. Mehrotra, A general parametric analysis approach and its im-
plication to sensitivity analysis in interior point methods, Math. Programming, 72 (1996),
pp. 65–82.

[10] C. Roos, T. Terlaky, and J.-P. Vial, Theory and Algorithms for Linear Optimization : An
Interior Point Approach, Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion, John Wiley, Chichester, UK, 1997.

[11] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
[12] E. A. Yıldırım, An Interior-Point Perspective on Sensitivity Analysis in Linear Programming

and Semidefinite Programming, PhD thesis, Cornell University, Ithaca, NY, 2001.
[13] E. A. Yıldırım and M. J. Todd, Sensitivity analysis in linear programming and semidefinite

programming using interior-point methods, Math. Program., 90 (2001), pp. 229–261.



SELF-SCALED BARRIERS FOR IRREDUCIBLE
SYMMETRIC CONES∗

RAPHAEL A. HAUSER† AND YONGDO LIM‡

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 715–723

Abstract. Self-scaled barrier functions are fundamental objects in the theory of interior-point
methods for linear optimization over symmetric cones, of which linear and semidefinite programming
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1. Introduction. Self-scaled barriers are a special class of self-concordant bar-
rier functions [20] and were introduced by Nesterov and Todd [21] for the purpose
of extending long-step primal-dual symmetric interior-point methods from linear and
semidefinite programming to more general convex optimization problems [21, 22]; see
section 2 below. The domain of definition of a self-scaled barrier F is a regular (open,
convex, with nonempty interior and not containing any full lines) cone Ω in a real
Euclidean space (V, 〈·|·〉). By abuse of language one often refers to F as a self-scaled
barrier for the topological closure Ω̄ of Ω. Not every proper open convex cone Ω
allows a self-scaled barrier, and for those which do, Ω̄ is called a self-scaled cone in
the terminology of Nesterov and Todd [21].

It later emerged that a number of tools developed by Nesterov and Todd had pre-
viously been studied in the theory of Euclidean Jordan algebras. On the one hand,
Güler [8] observed that the family of interiors of self-scaled cones is identical to the set
of symmetric cones for which there exists a complete classification theory; see, e.g.,
[29] or [7]. On the other hand, Faybusovich [2] showed that interior-point methods for
self-scaled programming can be analyzed purely in terms of Euclidean Jordan alge-
bra techniques. Subsequently, a number of authors continued to develop the Jordan
algebra approach, which is now accepted as a natural framework for the analysis of
semidefinite programming; see, e.g., [3, 4, 5, 6, 27, 28, 1, 19]. The classification theory
of self-scaled barriers to which this paper contributes continues the trend of relating
the work of Nesterov and Todd to the existing Jordan algebra literature. Indeed, as a
consequence the axiomatic theory of self-scaled barriers can be replaced by a simpler
theory that assumes functions of a specific form which are algebraically related to the
characteristic functions of symmetric cones (see below).
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Self-scaled barriers were studied by Nesterov–Todd [21, 22], Güler [8], Faybusovich
[2], Güler–Tunçel [25], and Hauser [10], and more recently by Hauser [12], Lim [18],
Schmieta [26], and Güler [9]. Though an axiomatic theory of these functions exists,
the only known examples are trivially related to the characteristic function of the
cone Ω,

ϕΩ(x) :=

∫
Ω�

e−〈x|s〉 ds,(1.1)

where Ω� := {s ∈ V : 〈x|s〉 > 0 ∀x ∈ Ω} is the polar of Ω with respect to 〈·|·〉. This
was first observed by Güler, who showed that the universal barrier U (see [20]) of a
symmetric cone is self-scaled and is a homothetic transformation U = c1 lnϕΩ + c2
of the characteristic function ϕΩ, where c1 ≥ 1 and c2 are constants. More generally,
every symmetric cone Ω has a decomposition, unique up to indexing, into a direct
sum of irreducible symmetric cones

Ω = Ω1 ⊕ · · · ⊕ Ωm,

where the Ωi lie in subspaces Vi ⊆ V decomposing V into a direct sum V = ⊕mi=1Vi.
The irreducible summands Ωi can be classified into five different types; see [7] and
references therein. All known self-scaled barrier functions for Ω are of the form

H = c0 +

m⊕
i=1

ci lnϕΩi ,(1.2)

where c1, . . . , cm ≥ 1. We use the direct sum notation for H in (1.2) and else-
where to indicate that each x = ⊕mi=1xi ∈ ⊕mi=1Ωi = Ω is mapped to H(x) =
c0 +

∑m
i=1 ci lnϕΩi(xi). It is also well known that each function of the form (1.2)

is a self-scaled barrier for Ω.
The natural question arises as to whether all self-scaled barrier functions are of

the form (1.2). Early dents into this question were made by Güler and Tunçel when
considering invariant barriers; see [25, p. 124] and related material. In a chapter of his
thesis [10] and in a subsequent report [11], Hauser showed that any self-scaled barrier
H over a symmetric cone Ω decomposes into a direct sum H = ⊕mi=1Hi of self-scaled
barriers Hi over the irreducible components Ωi, and that any isotropic (rotationally
invariant) self-scaled barrier Hi on Ωi is of the form c1 lnϕΩi + c2 with c1 ≥ 1.
Hauser also observed that any self-scaled barrier H on Ω is invariant under a rich
class of rotations of Ω, i.e., elements of O(Ω); see (2.1) below, where these particular
rotations are defined in terms of the Hessians of H, and also see Lemma 2.2.19 of
[10]. Suspecting that in the case in which Ω is irreducible this family of rotations is
rich enough to generate all of O(Ω), Hauser [10, 11] conjectured that all self-scaled
barriers on irreducible symmetric cones are isotropic. This conjecture, proving the
correctness of which is the primary objective of this paper, shows that all self-scaled
barriers are indeed of the form (1.2) and concludes their algebraic classification.

Following the path suggested by Lemma 2.2.19 of [10], Hauser [12] showed the
correctness of the isotropy conjecture in the special case of the cone of positive semidef-
inite symmetric matrices. The key mechanism in the proof, Proposition 3.3 of [12],
later turned out to be closely related to Koecher’s Theorem 4.9(b) in [15]. Using
this theorem, Lim [18], Schmieta [26], and Güler [9] all independently proved the
isotropy conjecture in the general case. Our article is based on Lim’s generalization
[18] of Hauser’s approach from [12]. The first completed manuscript presenting the
full classification of self-scaled barriers was Schmieta’s report [26]. Güler’s work [9]
and Hauser’s manuscript [11] were later combined in a joint report [13].
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2. Preliminary notions. In this section we summarize definitions and identities
that will be needed for proving the results of the main section. Recall from the
introduction that Ω denotes a regular cone in a real Euclidean space (V, 〈·|·〉). The
set of vector space automorphisms of V that leave Ω invariant is called the symmetry
group of Ω. We denote it by

G(Ω) :=
{
θ ∈ GL(V ) : θΩ = Ω

}
.

The inner product on V defines an adjoint θ∗ for each endomorphism θ, and this
defines the orthogonal group O(V ) :=

{
θ ∈ GL(V ) : θ∗ = θ−1

}
. The subgroup

O(Ω) := G(Ω) ∩O(V )(2.1)

is called the orthogonal group of Ω.
A ν-self-concordant logarithmically homogeneous barrier function (see [20] or [23]

for a definition) H ∈ C3(Ω,R) is self-scaled if the following conditions are satisfied:
(i) H ′′(w)x ∈ Ω� for all x,w ∈ Ω, and
(ii) H�

(
H ′′(w)x

)
= H(x)− 2H(w)− ν for all x,w ∈ Ω.

The function H� : s �→ max
{−〈x|s〉 − H(x) : x ∈ Ω

}
is a self-scaled barrier defined

on Ω�; see [21]. It is assumed in the definition of a self-concordant function (see [20])
that the Hessians H ′′(x) are nonsingular for all x ∈ Ω.

If H ∈ C3(Ω,R) is a self-scaled barrier and x ∈ Ω, s ∈ Ω�, then there exists a
unique scaling point wH(x, s) ∈ Ω such that s = H ′′(wH(x, s))x; see [21]. Further-
more, Nesterov and Todd [21] showed that

H ′′(w) ∈ Iso
(
Ω,Ω�

) ∀w ∈ Ω, and(2.2)

H ′′(x) = H ′′(wH(x, s)
) ◦H ′′

� (s) ◦H ′′(wH(x, s)
)
.(2.3)

It is customary to change the inner product 〈·|·〉 to 〈·|·〉f := 〈H ′′(f) · |·〉, where f is a
fixed element in Ω. We will always assume that 〈·|·〉 is already of this kind, i.e., that
there exists an element f ∈ Ω such that H ′′(f) = idΩ is the identity when the Hessian
is computed with respect to this inner product. Under this assumption it is easy to
show that Ω� = Ω and H� = H + c for some constant c. Hence, in this framework we
can reformulate properties (2.2) and (2.3) as follows:

H ′′(w) ∈ G(Ω),(2.4)

H ′′(x) = H ′′(wH(x, s)
) ◦H ′′(s) ◦H ′′(wH(x, s)

)
.(2.5)

It follows from these properties that Ω can allow a self-scaled barrier only if it is a
symmetric cone; see the definition below. On the other hand, every symmetric cone
allows a self-scaled barrier; see, e.g., [8, 2].

Equation (2.5) is a reformulation of an identity which is called the fundamental
formula in Jordan algebra theory; see (2.8) below. This identity is one of the keys to
proving the isotropy conjecture, as it allows one to express all the Hessians of H in
terms of the Hessian H ′′(e) at a single point e ∈ Ω and in terms of the Hessians of
the standard logarithmic barrier function (cf. (1.1))

F (x) = lnϕΩ(x),(2.6)

which is self-scaled [8]. Rothaus [24] showed that for every cone automorphism θ ∈
G(Ω) there exists a unique ω ∈ O(Ω) and a unique w ∈ int(Ω) such that θ has the
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polar decomposition θ = ω ◦ F ′′(w). Note that since O(Ω) ⊂ O(V ) and F ′′(w) is
a self-adjoint positive definite automorphism of V , Rothaus’s polar decomposition
is identical to Cartan’s polar decomposition; see, e.g., [14]. The nontrivial part of
Rothaus’s result is the fact that both factors lie in G(Ω). The uniqueness of Cartan’s
polar decomposition trivially implies the following proposition.

Proposition 1. The set of self-adjoint positive definite automorphisms of V that
preserve Ω coincides with

{
F ′′(w) : w ∈ Ω

}
.

If the regular cone Ω ⊂ V is self-dual with respect to the inner product 〈·|·〉
and is homogeneous, i.e., if the orbit of any element x ∈ Ω under the action of the
symmetry group G(Ω) is Ω (a property which is also called transitivity), then Ω is
a symmetric cone. Symmetric cones have been intensively studied in the theory of
Euclidean Jordan algebras.

A Jordan algebra V over the field R or C is a commutative algebra with a multi-
plicative identity element e and such that the Jordan algebra law

x2(xy) = x(x2y)(2.7)

holds for all x, y ∈ V . By L let us denote the left translation L(x)y = xy, and by P
the so-called quadratic representation

P (x) = 2L(x)2 − L(x2)

of elements x ∈ V . The Jordan algebra law (2.7) can be equivalently formulated as
(xy)x2 = x(yx2). This weak associativity condition is strong enough to ensure that
the subalgebra generated by {e, x} in V is associative. An element x ∈ V is said to
be invertible if there exists an element y in the subalgebra generated by x and e such
that xy = e. It is known that an element x ∈ V is invertible if and only if P (x) is
invertible. In this case P (x)−1 = P (x−1) holds true. If x and y are invertible, then
P (x)y is invertible and (P (x)y)−1 = P (x−1)y−1. Moreover, the so-called fundamental
formula

P (P (x)y) = P (x)P (y)P (x)(2.8)

holds for any elements x, y ∈ V ; see Proposition II.3.2(iii) in [7].

A Euclidean Jordan algebra is a finite-dimensional real Jordan algebra V equipped
with an associative inner product 〈·|·〉, i.e., an inner product that satisfies the law

〈xy|z〉 = 〈y|xz〉 ∀x, y, z ∈ V.

Henceforth the Euclidean space V introduced in section 1 is always assumed to be a
Euclidean Jordan algebra. The reader may bear in mind the example of the space
Sym(n,R) of n × n real symmetric matrices, which becomes a Euclidean Jordan
algebra when it is endowed with the Jordan product (1/2)(XY + Y X) and the inner
product 〈X|Y 〉 = tr(XY ).

A Jordan frame of V is a system of orthogonal primitive idempotents
{
c1, . . . , cr

}
,

where r is the rank of V . The spectral theorem for Euclidean Jordan algebras (see,
e.g., Theorem III.1.2 of [7]) states that for every element x ∈ V there exist a Jordan
frame

{
c1, . . . , cr

}
and a set of real numbers

{
λ1, . . . , λr

}
(the eigenvalues of x) such

that x =
∑r
i=1 λici.
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By virtue of the power associative property xp · xq = xp+q (see, e.g., [7]), the
Jordan algebra exponential map

exp : V → V,

x �→
∞∑
n=0

xn/n!

is well defined. This map is bijective with image set Ω := expV . Here Ω coincides
with the interior of the set of square elements of V , and this is also the set of invertible
squares of V . A fundamental theorem of Euclidean Jordan algebras asserts that

(i) Ω is a symmetric cone and
(ii) every symmetric cone in a real Euclidean space arises in this way.

Note that in the example V = Sym(n,R) the mapping exp is the standard matrix
exponential, and the corresponding symmetric cone is the open convex cone of positive
definite n× n matrices Ω = Sym(n,R)+.

Symmetric cones have been completely classified. There are five types of ir-
reducible symmetric cones: The cones Sym(n,R)+, the cones of positive definite
Hermitian and Hermitian quaternion n × n matrices, the Lorentzian cones, and a
27-dimensional exceptional cone. General symmetric cones are direct products of ir-
reducible symmetric cones. The connected component Aut(V )◦ of the identity idV
in the Jordan algebra automorphism group Aut(V ) is a subgroup of O(Ω). Ω is ir-
reducible if and only if V is simple, and in this case we have Aut(V )◦ = O(Ω). For
all of these statements, see [7] and the references therein. Throughout this section we
will assume that V is a simple Euclidean Jordan algebra with the associative inner
product 〈x|y〉 = tr(xy) and that Ω is the symmetric cone associated with V .

The symmetric cone Ω carries a G(Ω)-invariant Riemannian metric defined by

γx(u, v) = 〈P (x−1)u|v〉 ∀x ∈ Ω, u, v ∈ V.

For this metric the Jordan inversion x → x−1 is an involutive isometry on Ω that
fixes e. The curve t �→ P (a1/2)(P (a−1/2)b)t is the unique geodesic that joins a to b in
Ω, and the Riemannian distance δ(a, b) is given by δ(a, b) = (

∑n
i=1 log

2 λi)
1/2, where

the λi are the eigenvalues of P (a−1/2)b. The geometric mean a#b of two elements
a, b ∈ Ω is defined by

a#b = P (a1/2)(P (a−1/2)b)1/2.

This is the unique midpoint (geodesic middle) of a and b for the Riemannian distance
δ. The metric δ is a Bruhat–Tits metric, i.e., a complete metric satisfying the semi-
parallelogram law, with midpoint a#b; see [16] for further details. For example, if V =
Sym(n,R) and Ω = Sym(n,R)+, then we have A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

The following basic properties of geometric means will be useful for our purpose.
Proposition 2 (see [17]). Let a and b be elements of Ω. Then
(i) the quadratic equation P (x)a−1 = b has the unique solution a#b in Ω,
(ii) a#b = b#a (the commutativity property),
(iii) (a#b)−1 = a−1#b−1 (the inversion property),
(iv) P (a#b) = P (a)#P (b) = P (a1/2)(P (a−1/2)P (b)P (a−1/2))1/2P (a1/2), and
(v) g(a#b) = g(a)#g(b) for all g ∈ G(Ω) (the transformation property).

Let F (x) = −ln det(x) be the standard logarithmic barrier function on the sym-
metric cone Ω, where det is the determinant function of the Jordan algebra V ;
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see [7]. Then one can see that F ′(x) = −x−1 and the Hessian of F is given by
F ′′(x) = P (x−1). Proposition 2 implies that the geometric mean a#b−1 is the scaling
point of a and b ∈ Ω defined by F . Indeed,

F ′′(a#b−1)a = P
(
(a#b−1)−1

)
a = P (a−1#b)a = b,

that is, wF (a, b) = a#b−1.

3. Self-scaled barriers for irreducible symmetric cones. This is the main
section of the article. Theorem 5 below proves the isotropy conjecture raised in [10],
the missing piece in the classification theory of self-scaled barriers that motivated our
research.

Lemma 3. Let Ω be an irreducible symmetric cone and α : Ω → Ω a function
such that

x−1#y = α(x)−1#α(y)(3.1)

for all x, y ∈ Ω. Then α = λ · idΩ for some positive real number λ.
Proof. Upon exchanging the roles of x and y, Proposition 2(i) implies that con-

dition (3.1) is equivalent to

α(x) = P (y−1#x)α(y).(3.2)

Setting y = e and using e−1#x = x1/2 in (3.2), we get

α(x) = P (x1/2)α(e)(3.3)

for all x ∈ Ω. Let us show that k(α(e)) = α(e) for all k ∈ Aut(V )◦. Applying (3.2)
and (3.3) to both x and y, we get

P (x1/2)α(e) = P (y−1#x)α(y) = P (y−1#x)
(
P (y1/2)α(e)

)
,

and hence we obtain the identity α(e) = (P (x−1/2)P (y−1#x)P (y1/2))α(e) for all
x, y ∈ Ω. Set

K := {P (x−1/2)P (y−1#x)P (y1/2) : x, y ∈ Ω}.

It follows from the definition of the geometric mean and from the fundamental formula
that

P (a#b) = P (a1/2)(P (P (a−1/2)b))1/2P (a1/2).

Together with Proposition 2(ii) this implies

P (x−1/2)P (y−1#x)P (y1/2)

= P (x−1/2)P (x#y−1)P (y1/2)

= P (x−1/2)
(
P (x1/2)P

(
P (x−1/2)y−1

)1/2
P (x1/2)

)
P (y1/2)

= P
(
P (x1/2)y

)−1/2
P (x1/2)P (y1/2).

Therefore, the set K can be written as K =
{
P
(
P (x)y2

)−1/2
P (x)P (y)|x, y ∈ Ω

}
.

By Koecher’s Theorem 4.9(b) (see [15]), K generates Aut(V )◦. This implies that the
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point α(e) is fixed by all Jordan automorphisms k ∈ Aut(V )◦. Finally, Corollary
IV.2.7 of [7] (in which the assumption of irreducibility for Ω is essential) says that the
group Aut(V )◦ acts transitively on the set of primitive idempotents of V . The spectral
theorem applied to α(e) therefore implies that α(e) = λe for some positive real number
λ. Together with (3.3) this implies that α(x) = P (x1/2)(λe) = λP (x1/2)(e) = λx for
all x ∈ Ω.

Corollary 4. Let H be an arbitrary self-scaled barrier for the irreducible sym-
metric cone Ω. Then there exists a positive constant λ such that H ′′(x) = λ · F ′′(x)
for all x ∈ Ω.

Proof. Since the HessiansH ′′(x) are positive definite cone automorphisms, Propo-
sition 1 implies that there exists a well-defined function Υ : Ω→ Ω such that

H ′′(x) = P (Υ(x)−1).(3.4)

Since H is self-scaled, we have

P (Υ(x)−1)
(3.4),(2.5)

= H ′′(wH) ◦H ′′(y) ◦H ′′(wH)

= P (Υ(wH)−1) ◦ P (Υ(y)−1) ◦ P (Υ(wH)−1)

(2.8)
= P (P (Υ(wH)−1)Υ(y)−1)

for all x, y ∈ Ω, where wH = wH(x, y) denotes the scaling point of x and y for the
self-scaled barrier H. The quadratic representation P is injective on Ω; see Lemma
2.3 of [17]. Therefore, the identity above shows that

Υ(x)−1 = P
(
Υ(wH)−1

)
Υ(y)−1

for all x, y ∈ Ω. By Proposition 2, we have

Υ(wH)−1 = Υ(y)#Υ(x)−1 = Υ(x)−1#Υ(y)(3.5)

for all x, y ∈ Ω. Now, y = H ′′(wH)(x) = P (Υ(wH)−1)(x) by definition of wH , and
Proposition 2(i) shows that we have Υ(wH)−1 = x−1#y, which together with (3.5)
implies

x−1#y = Υ(x)−1#Υ(y)

for all x, y ∈ Ω. The proof is now completed by Lemma 3.
Theorem 5. If H is a self-scaled barrier for Ω, then there exist constants c1 > 0

and c0 ∈ R such that

H : x→ −c1 ln det(x) + c0 ∀x ∈ Ω.

Proof. It follows from Corollary 4 and the fundamental theorem of differential
and integral calculus that H is of the form c1F + ϕ + c0, where c1 = λ > 0, c0 ∈ R,
and ϕ ∈ V is a linear form on V , i.e., there exists an element y ∈ V such that
ϕ : x �→ tr(yx) for all x ∈ V . One of the conditions in the definition of a ν-self-
concordant barrier B for a convex open domain D is that the length of the Newton
step B′′(x)−1[−B′(x)] at x ∈ D, measured in the Riemannian metric ‖.‖x defined by
B′′(x), be uniformly bounded by ν1/2 (see, e.g., [20, 21, 23]); i.e.,

‖B′′(x)−1[−B′(x)]‖2x :=
〈
B′′(x)

[−B′′(x)−1[B′(x)]
]| −B′′(x)−1B′(x)

〉
=
〈
B′(x)|(B′′(x)

)−1
[B′(x)]

〉 ≤ ν.
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In particular, in the case of H this means that

ν ≥ ‖H ′(x)‖2x = ‖y − λx−1‖2x
C.S.≥ (‖y‖x − ‖λx−1‖x

)2
Cor.4
=

(
tr
(
λ−1(P (x)y)y

)1/2 − (λ−1(P (x)(λx−1))(λx−1)
)1/2)2

= λ−1
(
tr((P (x)y)y)1/2 − λr1/2

)2

for all x ∈ Ω. But clearly, this implies that y = 0.
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[7] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monograph,
Oxford University Press, New York, 1994.
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AN IMPLEMENTABLE ACTIVE-SET ALGORITHM FOR
COMPUTING A B-STATIONARY POINT OF A MATHEMATICAL
PROGRAM WITH LINEAR COMPLEMENTARITY CONSTRAINTS∗
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Abstract. We consider a mathematical program with a smooth objective function and linear
inequality/complementarity constraints. We propose an ε-active set algorithm which, under a uni-
form LICQ on the ε-feasible set, generates iterates whose cluster points are B-stationary points of
the problem. If the objective function is quadratic and ε is set to zero, the algorithm terminates
finitely. Some numerical experience with the algorithm is reported.

Key words. MPEC, B-stationary point, ε-active set
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1. Introduction. We consider the following mathematical program with equi-
librium constraints (MPEC):

minimize f(z)

subject to Gi(z) ≥ 0, i = 1, . . . ,m,

Hi(z) ≥ 0, i = 1, . . . ,m,

Gi(z)Hi(z) = 0, i = 1, . . . ,m,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q,

(1)

where f is a real-valued continuously differentiable function on �n and Gi, Hi, gj , hl
are real-valued affine functions on �n.

This problem has been of much interest, and many algorithms aimed at global
convergence have been proposed for its solution, as is evidenced by [1, 2, 5, 7, 10]
and the extensive references therein. However, these algorithms in general are only
guaranteed to compute either a B-stationary point under the nondegeneracy (lower-
level strict complementarity) assumption, which is somewhat restrictive in practice,
or a C-stationary point for the problem, rather than the desired B-stationary point.
Scholtes and Stöhr [13] showed that a trust region method converges to a B-stationary
point, provided that the trust region radii do not tend to zero. However, it is not clear
whether we can expect the latter condition to hold in the degenerate case. A modifica-
tion of this method was proposed in the Ph.D. thesis of Stöhr, for which boundedness
of trust region radii away from zero and global convergence to a B-stationary point
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were shown under LICQ (for MPEC) and upper-level strict complementarity, plus
some mild assumptions [15, Theorem 2.4, Corollary 3.1]. Recently, Fukushima and
Pang [3] considered a continuation method based on a smoothed approximation of
MPEC and showed, under LICQ (for MPEC) and an “asymptotic weak nondegen-
eracy” assumption, convergence of a second-order stationary point of the smoothed
problem to a B-stationary point of MPEC as the smoothing parameter tends to zero.
Subsequently, Scholtes [12] showed an analogous result for a method based on another
smoothed approximation of MPEC. However, the algorithms considered in [3, 12] are
conceptual and, with the exception of Stöhr’s method, global convergence to a B-
stationary point has yet to be established for an implementable algorithm for solving
(degenerate) MPECs. A piecewise sequential quadratic programming algorithm of
Luo, Pang, and Ralph [7] is shown to be locally superlinearly/quadratically conver-
gent to a B-stationary point under LICQ plus a second-order sufficient condition [7,
Corollary 6.4.4], [8].

The purpose of this paper is to propose an implementable ε-active set algorithm
for solving MPEC (1) and establish global convergence of the proposed algorithm to
a B-stationary point of (1) under a uniform LICQ on the ε-feasible set. Moreover, we
show that if the objective function is quadratic and ε is set to zero, then the algorithm
terminates finitely at a B-stationary point of (1).

A few words about notation: Since functions Gi, Hi, gj , and hl are all assumed to
be affine, the gradients of these functions are constant vectors. Nevertheless, we will
throughout write ∇Gi(z

k), ∇Hi(z
k), etc., to specify the point under consideration.

This will better illustrate the nature of the proposed algorithm and might suggest
possible extension to problems involving nonlinear constraints. Throughout, ‖ · ‖1
and ‖ · ‖ denote, respectively, the 1-norm and the 2-norm.

2. An ε-active set and B-stationary point. Let P denote the set of all pairs
(A,B) such that A and B are subsets of {1, . . . ,m} and A ∪ B = {1, . . . ,m}. Fix
ε ≥ 0. For each (A,B) ∈ P, define the restricted ε-feasible set:

Fε[A,B] := { z ∈ �n : ε ≥ Gi(z) ≥ 0, i ∈ A,

Gi(z) ≥ 0, i ∈ B \A,

ε ≥ Hi(z) ≥ 0, i ∈ B,

Hi(z) ≥ 0, i ∈ A \B,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q } .
Note that the sets {Fε[A,B] : (A,B) ∈ P} are not mutually disjoint. Define the
ε-feasible set for MPEC (1):

Fε :=
⋃

(A,B)∈P
Fε[A,B].

Then, for ε = 0, Fε is just the feasible set for MPEC (1). For each z ∈ Fε, define the
ε-active index sets:

Aε(z) := {i : Gi(z) ≤ ε},
Bε(z) := {i : Hi(z) ≤ ε},
Iε(z) := {j : gj(z) ≥ −ε}.
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By the definition of Fε, we always have Aε(z) ∪Bε(z) = {1, . . . ,m}.
For any feasible solution z̄ ∈ F0 of MPEC (1), let T (z̄;F0) denote the tangent

cone of F0 at z̄. Then z̄ is called a B-stationary point of MPEC (1) if it satisfies

∇f(z̄)T d ≥ 0 ∀ d ∈ T (z̄;F0).

In MPEC, the tangent cone T (z̄;F0) is normally represented as a finite union of
closed convex cones [7] and hence, in general, is nonconvex, unless the nondegeneracy
(lower-level strict complementarity) condition is satisfied. This fact gives rise to a
combinatorial nature of MPEC that makes a problem intractable. Recent attempts
to identify a favorable class of MPECs have been focused on constraint qualifications
pertaining to MPEC which enable us to characterize a B-stationary point in a simple
and convenient manner [8, 11, 14, 16]. In particular, each feasible solution z̄ of MPEC
(1) is a feasible solution of the restricted problem:

minimize f(z)

subject to Gi(z) = 0, i ∈ A,

Gi(z) ≥ 0, i ∈ B \A,

Hi(z) = 0, i ∈ B,

Hi(z) ≥ 0, i ∈ A \B,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q,

(2)

with A = A0(z̄) and B = B0(z̄). We associate with z̄ a relaxed problem, denoted R(z̄),
which is obtained from the restricted problem (2) by replacing the equality constraints
Gi(z) = 0 and Hi(z) = 0 for i ∈ A ∩ B with the inequality constraints Gi(z) ≥ 0
and Hi(z) ≥ 0. The restricted problem and the relaxed problem are both ordinary
nonlinear programs with linear constraints, and LICQ for one implies LICQ for the
other. Moreover, z̄ is a Karush–Kuhn–Tucker (KKT) point of the relaxed problem
R(z̄) if and only if z̄ is a KKT point of the restricted problem (2) with nonnegative
KKT multipliers associated with the equality constraints Gi(z) = 0 and Hi(z) = 0
for i ∈ A ∩ B. Notice that the above definition of a B-stationary point, also used in
[3, 11], coincides with the notion of a (primal) stationary point used in [7, p. 115] and
[8]. This definition differs from one used in [14], although, under the LICQ for the
restricted and relaxed problems, the two definitions are equivalent.

The following theorem, which links KKT points of the relaxed problem to B-
stationary points of MPEC, plays an essential role in our analysis.

Theorem 2.1. Let z̄ be a feasible solution of MPEC (1) such that the LICQ
holds for the relaxed problem R(z̄). Then z̄ is a KKT point of the relaxed problem
R(z̄) if and only if z̄ is a B-stationary point of MPEC (1).

This theorem has been proved under a more general setting in [11] (see also [7,
Proposition 4.3.7], [8], [14], [16, p. 384] for related results and discussions). The sig-
nificance of Theorem 2.1 lies in showing that, under the LICQ for the relaxed problem
R(z̄), B-stationarity for MPEC can be completely characterized by the KKT condi-
tions for problem R(z̄), which is an ordinary nonlinear program. This observation,
first suggested in [7, Proposition 4.3.7] and clarified in [8], has paved the way for de-
veloping conceptual methods that generate a sequence converging to a B-stationary
point of MPEC under the LICQ for the relaxed problem [3, 12]. It also motivated
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in [8] the development and the local superlinear/quadratic convergence analysis of a
piecewise sequential quadratic programming method.

Theorem 2.1 motivates the following conceptual active set method for computing
a B-stationary point of MPEC. For a given index set pair (A,B) ∈ P, let ẑ be a KKT
point of the restricted problem (2). Then A0(ẑ) ⊇ A and B0(ẑ) ⊇ B, so that if the
KKT multipliers associated with the equality constraints Gi(z) = 0, i ∈ A ∩ B0(ẑ),
and Hi(z) = 0, i ∈ A0(ẑ) ∩ B, are all nonnegative, then ẑ is a KKT point of R(ẑ)
and we terminate the method. Otherwise, we choose one of these equality constraints
with negative multiplier and we drop the corresponding index from either A or B.
Under the LICQ, the restricted problem corresponding to the resulting index set pair
(A,B) has a feasible descent direction d from ẑ, which we then use to obtain a feasible
solution znew with f(znew) < f(ẑ). We replace A and B by A0(z

new) and B0(z
new),

respectively, and reiterate.
The above active set method is conceptual since, in practice, the KKT point ẑ can

be computed only approximately. To make it implementable, we need a notion of an
approximate KKT point which we will make precise in the next section; see (4)–(7).
Also, to prevent cycling of the active sets, we need to be able to take a sufficiently
large step from ẑ in the descent direction d so as to achieve sufficient descent each
time the active sets change. This is achieved by working with ε-feasible set Fε and
ε-active index sets Aε(·), Bε(·), Iε(·) for ε ≥ 0. In particular, the stepsize will be at
least in the order of ε; see (13). Accordingly, we assume the following uniform LICQ
on Fε for some fixed ε ≥ 0:

η <

∥∥∥∥∥∥
∑

i∈Aε(z)

∇Gi(z)vi +
∑

i∈Bε(z)

∇Hi(z)wi −
∑

j∈Iε(z)
∇gj(z)λj −

q∑
l=1

∇hl(z)µl

∥∥∥∥∥∥
1

whenever z ∈ Fε and max
i,j,l
{|vi|, |wi|, |λj |, |µl|} > 1,

where η > 0 is some constant. Notice that since Gi, Hi, gj , hl are affine for all i, j, l,
we can equivalently replace η by 0 in this assumption. However, the constant η will
play a useful role in our algorithm and its analysis. Recall that z̄ ∈ F0 implies
A0(z̄) ∪ B0(z̄) = {1, . . . ,m}. Hence, for ε = 0, the uniform LICQ on F0 essentially
amounts to LICQ (in the sense of ordinary nonlinear programming) for the relaxed
problem R(z̄) being satisfied at every feasible solution z̄ of MPEC (1).

3. An ε-active set algorithm. In this section, we describe the ε-active set
algorithm for solving MPEC (1). At each iteration k ∈ {0, 1, . . .}, given the current
iterate zk ∈ Fεk [Ak, Bk] with some εk ∈ [0, ε] and index set pair (Ak, Bk) ∈ P, we
compute an approximate KKT point of the following subproblem (compare with (2)):

minimize f(z)

subject to Gi(z) = Gi(z
k), i ∈ Ak,

Gi(z) ≥ 0, i ∈ Bk \Ak,
Hi(z) = Hi(z

k), i ∈ Bk,

Hi(z) ≥ 0, i ∈ Ak \Bk,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q.

(3)
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This is a linearly constrained nonlinear program with zk as a feasible solution, so we
can compute using a feasible descent algorithm with starting point zk.

Theorem 2.1 and the discussion preceding it suggest that, under uniform LICQ,
a KKT point ẑk of (3) is an approximate B-stationary point of MPEC (1), provided
that εk is sufficiently small and the KKT multipliers associated with the equality
constraints Gi(z) = Gi(z

k), i ∈ Ak ∩ Bεk(ẑ
k), and Hi(z) = Hi(z

k), i ∈ Aεk(ẑ
k) ∩

Bk, are nearly nonnegative. Note that the latter condition implies that the KKT
multipliers associated with the constraints involving Gi and Hi for i ∈ Aεk(ẑ

k) ∩
Bεk(ẑ

k) are nearly nonnegative. This is because the constraints involving Gi, i ∈
Aεk(ẑ

k) \Ak, are inequality constraints in (3), so the corresponding KKT multipliers
are nonnegative, and the same is true for the constraints involvingHi, i ∈ Bεk(ẑ

k)\Bk.
Our algorithm seeks such a point ẑk by successively generating an approximate KKT
point of the subproblem (3) with dynamically adjusted index sets Ak and Bk.

A rough sketch of our algorithm is stated below. A more detailed description will
be given shortly. In what follows, we assume uniform LICQ on Fε for some ε ≥ 0.

Step 0. Choose initial ε0 ∈ [0, ε], (A0, B0) ∈ P, and z0 ∈ Fε0 [A0, B0]. Let k := 0.
Step 1. Compute an approximate KKT point ẑk of the subproblem (3).
Step 2. If one of the KKT multipliers associated with the equality constraints Gi(z) =

Gi(z
k), i ∈ Ak ∩ Bεk(ẑ

k), and Hi(z) = Hi(z
k), i ∈ Aεk(ẑ

k) ∩ Bk, is below
a negative threshold, remove the corresponding index from the εk-active set
so that the objective function value may be decreased sufficiently by moving
from ẑk along a descent direction dk. This yields a new εk-feasible point z̃k

with a lower objective value; proceed to Step 3. Otherwise, set z̃k = ẑk and
proceed to Step 3.

Step 3. Decrease εk to obtain εk+1, and project z̃k onto Fεk+1
[Aεk(z̃

k), Bεk(z̃
k)] to

obtain an εk+1-feasible solution zk+1. Set Ak+1, Bk+1 to be the corresponding
εk+1-active index sets. Increment k by 1 and go to Step 1.

The algorithm thus generates a sequence {zk} such that {f(zk)} is almost decreasing,
while maintaining εk-feasibility to the original MPEC (1) for a decreasing sequence
{εk}. Now we describe Steps 1, 2, and 3 in detail. Both the accuracy of the approx-
imate KKT point for subproblem (3) and the negative threshold for the multipliers
will be controlled by a parameter νk ∈ [0, 1] that, like εk, is decreased to zero with k.

In Step 1, we compute a point ẑk to be an approximate KKT point of the sub-
problem (3) in the sense that

ẑk ∈ Fεk [Ak, Bk], f(ẑk) ≤ f(zk),(4)

and, for some δk ∈ [0, ηνk/2], there exist multipliers (vki )i∈Âk , (wki )i∈B̂k , (λkj )j∈Ik ,
(µkl )

q
l=1 satisfying

‖rk‖1 ≤ δk,

vki ≥ 0 ∀i ∈ Âk \Ak,
wki ≥ 0 ∀i ∈ B̂k \Bk,

λkj ≥ 0 ∀j ∈ Ik,

(5)

where η is the constant in the uniform LICQ, rk is the residual vector given by
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rk := −∇f(ẑk) +
∑
i∈Âk

∇Gi(ẑ
k)vki +

∑
i∈B̂k

∇Hi(ẑ
k)wki

−
∑
j∈Ik
∇gj(ẑ

k)λkj −
q∑
l=1

∇hl(ẑ
k)µkl ,

(6)

and Âk, B̂k, Ik are εk-active index sets given by

Âk := Aεk(ẑ
k), B̂k := Bεk(ẑ

k), Ik := Iεk(ẑ
k).(7)

In subsection 3.1, we discuss how such ẑk can be computed in finite time by applying a
feasible descent method to the subproblem (3), starting at zk. Notice that subproblem
(3) need not have a unique KKT point.

In Step 2, we observe from (7) and εk ≤ ε that

Aε(ẑ
k) ⊇ Âk ⊇ Ak, Bε(ẑ

k) ⊇ B̂k ⊇ Bk, Iε(ẑ
k) ⊇ Ik.(8)

Moreover, Ak ∪Bk = Âk ∪ B̂k = {1, . . . ,m}. By (5), we have three cases:
(a) vkik < −νk for some index ik ∈ Ak ∩ B̂k;

(b) wkik < −νk for some index ik ∈ Âk ∩Bk;

(c) vki ≥ −νk and wki ≥ −νk for all i ∈ Âk ∩ B̂k.
Note that (a) and (b) are not mutually exclusive.

In cases (a) and (b), we find a descent direction dk for the objective function f
at ẑk, along which εk-feasibility for MPEC (1) is maintained. In particular, when
νk > 0, dk is a solution of the linear system

∇f(ẑk)T d ≤ −ηνk/2,
−e ≤ d ≤ e,

∇Gik(ẑ
k)T d ≥ 0 in case (a),

∇Gik(ẑ
k)T d = 0 in case (b),

∇Gi(ẑ
k)T d = 0 ∀i ∈ Âk \ {ik},

∇Gi(ẑ
k)T d ≥ −Gi(ẑ

k) ∀i ∈ Aε(ẑ
k) \ Âk,

∇Hik(ẑ
k)T d = 0 in case (a),

∇Hik(ẑ
k)T d ≥ 0 in case (b),

∇Hi(ẑ
k)T d = 0 ∀i ∈ B̂k \ {ik},

∇Hi(ẑ
k)T d ≥ −Hi(ẑ

k) ∀i ∈ Bε(ẑ
k) \ B̂k,

∇gj(ẑ
k)T d ≤ 0 ∀j ∈ Ik,

∇gj(ẑ
k)T d ≤ −gj(ẑk) ∀j ∈ Iε(ẑ

k) \ Ik,
∇hl(ẑ

k)T d = 0 l = 1, . . . , q;

(9)

when νk = 0, dk is a solution of (9) with “≤ −ηνk/2” replaced by “< 0.” Here e
denotes the vector of 1’s. The existence of dk is justified by Lemma 3.2 in subsec-
tion 3.2. We note that the nonpositive quantities −Gi(ẑ

k), −Hi(ẑ
k), −gj(ẑk) on the

right-hand side of (9) can alternatively be replaced by zero. However, the resulting
linear system would have a smaller solution set. Once dk is found, we compute the
maximum εk-feasible stepsize

t̄k := min{tmax, sup{t : ẑk + tdk ∈ Fεk}},(10)
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where tmax > 0 is a chosen constant, and set

νk+1 := νk, z̃k := ẑk + tkd
k,(11)

where tk is given by the Armijo rule:

tk = largest t ∈ {t̄k, σ1t̄k, σ
2
1 t̄k, . . .} satisfying

f(ẑk + tdk) ≤ f(ẑk) + σ2t∇f(ẑk)T dk,
(12)

with σ1 ∈ (0, 1) and σ2 ∈ (0, 1) chosen constants. We then proceed to Step 3. Notice
that t̄k is computable by a minimum ratio formula. Moreover, we have

t̄k ≥ min
{
tmax, εk/max

i,j
{‖∇Gi(ẑ

k)‖1, ‖∇Hi(ẑ
k)‖1, ‖∇gj(ẑ

k)‖1}
}

(13)

and, by a standard argument for the Armijo stepsize rule, tk > 0.

In case (c), if εk and νk are both below some chosen tolerances εtol and νtol,
respectively, then we terminate the method and output ẑk as an approximate B-
stationary point of MPEC (1). Otherwise, we decrease νk by setting

νk+1 := ω1νk, z̃k := ẑk,(14)

where ω1 ∈ (0, 1) is a chosen constant. We then proceed to Step 3.

In Step 3, we decrease εk by setting

εk+1 := min{max{ρ(νk+1), ω2εk}, εk} = mid{ω2εk, ρ(νk+1), εk},(15)

where ω2 ∈ (0, 1) is a chosen constant and ρ : �+ → �+ is a chosen continuous
function satisfying ρ(ν) = 0 ⇔ ν = 0. Thus, the two accuracy parameters εk and νk
are linked through ρ. We then update zk and (Ak, Bk) by

zk+1 := arg min
z∈Fεk+1

[Ãk,B̃k]
‖z − z̃k‖,

(Ak+1, Bk+1) := (Aεk+1
(zk+1), Bεk+1

(zk+1)),

(16)

where Ãk := Aεk(z̃
k) and B̃k := Bεk(z̃

k), and return to Step 1.

Summarizing the above arguments, we formally state the algorithm as follows.

The ε-active set algorithm for MPEC (1).

Step 0. Choose arbitrary constants σ1 ∈ (0, 1), σ2 ∈ (0, 1), tmax ∈ (0,∞), ω1 ∈ (0, 1),
ω2 ∈ (0, 1), and a continuous function ρ : �+ → �+ such that ρ(ν) = 0 ⇔
ν = 0. Choose ε0 ∈ [0, ε], εtol ∈ [0, ε0], ν0 ∈ [0, 1], νtol ∈ [0, ν0], (A

0, B0) ∈ P,
and z0 ∈ Fε0 [A0, B0]. Let k := 0.

Step 1. Compute an approximate KKT point ẑk ∈ Fεk [Ak, Bk] of the subproblem (3)

in the sense that (4)–(6) hold, with Âk, B̂k, Ik given by (7). Proceed to Step
2.
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Step 2. In case (a) or (b), find a dk satisfying (9), set t̄k by (10) and set tk by (12),
determine νk+1 and z̃k by (11), and proceed to Step 3. In case (c), if εk ≤ εtol
and νk ≤ νtol, then terminate; otherwise, determine νk+1 and z̃k by (14), and
proceed to Step 3.

Step 3. Determine εk+1 by (15), and zk+1 and (Ak+1, Bk+1) by (16). Increment k by
1 and return to Step 1.

As described, the algorithm requires knowledge of η in choosing δk. If η is not
known, we can estimate η on-line using the following back-tracking scheme with an
initial η chosen arbitrarily: In Step 3, if (a) or (b) occurs but (9) does not have a
solution, then decrease η by a constant fraction and repeat iteration k. Under the
uniform LICQ, η would be decreased only a finite number of times (see the proof of
Lemma 3.2), and the convergence result given in Theorem 4.1 would still hold for this
variant of the algorithm.

The initial z0 can be found by computing z0 to be an ε0-feasible solution of (1),
i.e., z0 is a feasible solution of (1) with Gi(z)Hi(z) = 0 replaced by min{Gi(z), Hi(z)}
≤ ε0. Then set A0 = Aε0(z

0), B0 = Bε0(z
0). Thus, computing z0 requires the

approximate solution of a linear complementarity problem, for which many algorithms
are available.

In (14), instead of setting νk+1 to ω1νk, one can more generally set νk+1 to be the
term after νk along some prespecified decreasing sequence (not necessarily geometric)
tending to zero. The term ω2εk in (15) can be similarly generalized. The updating
rule for εk enforces that εk goes to zero at the rate of ρ(νk). Thus εk, which measures
primal feasibility, and νk, which measures dual feasibility, can go to zero at different
rates, depending on the choice of the function ρ.

3.1. Computing ẑk.
Lemma 3.1. For any Âk ⊇ Ak, B̂k ⊇ Bk, Ik ⊆ {1, . . . , p}, there exist (vki )i∈Âk ,

(wki )i∈B̂k , (λkj )j∈Ik , (µ
k
l )
q
l=1 satisfying (5) with δk > 0 (respectively, δk = 0) and rk

given by (6) whenever the following linear system (respectively, the following linear
system with “≤ −δk” replaced by “< 0”) has no solution:

∇f(ẑk)T d ≤ −δk,
−e ≤ d ≤ e,

∇Gi(ẑ
k)T d = 0 ∀ i ∈ Ak,

∇Gi(ẑ
k)T d ≥ 0 ∀ i ∈ Âk \Ak,

∇Hi(ẑ
k)T d = 0 ∀ i ∈ Bk,

∇Hi(ẑ
k)T d ≥ 0 ∀ i ∈ B̂k \Bk,

∇gj(ẑ
k)T d ≤ 0 ∀j ∈ Ik,

∇hl(ẑ
k)T d = 0 ∀ l = 1, . . . , q,

(17)

where e denotes the vector of 1’s.
Proof. First observe that

Âk = Ak ∪ (Âk \Ak), B̂k = Bk ∪ (B̂k \Bk).

Then, by Farkas’s lemma, system (17) has no solution if and only if the following dual
linear system has a solution:



732 MASAO FUKUSHIMA AND PAUL TSENG

0 > −δkλ0 + eTπ+ + eTπ−,

0 = ∇f(ẑk)λ0 + π+ − π− −
∑
i∈Âk

∇Gi(ẑ
k)vi −

∑
i∈B̂k

∇Hi(ẑ
k)wi

+
∑
j∈Ik
∇gj(ẑ

k)λj +

q∑
l=1

∇hl(ẑ
k)µl,

λ0 ≥ 0, π+ ≥ 0, π− ≥ 0,

vi ≥ 0 ∀ i ∈ Âk\Ak,
wi ≥ 0 ∀ i ∈ B̂k\Bk,

λj ≥ 0 ∀ j ∈ Ik.

(18)

The first inequality in the above system implies that λ0 > 0 and that (eTπ+ +
eTπ−)/λ0 ≤ δk. Then, dividing the whole system by λ0 and setting rk = (π+−π−)/λ0

and vki = vi/λ0, w
k
i = wi/λ0, λ

k
j = λj/λ0, µ

k
l = µl/λ0, we obtain condition (5) with

rk given by (6), because

‖rk‖1 = ‖π+ − π−‖1/λ0 ≤ (‖π+‖1 + ‖π−‖1)/λ0 = (eTπ+ + eTπ−)/λ0 ≤ δk.

Suppose that (17) with “≤ −δk” replaced by “< 0” has no solution. Then (17)
has no solution for every δk > 0, so the preceding argument shows that, for every
δk > 0, there exists rk ∈ �n such that ‖rk‖1 ≤ δk and the following linear system (cf.
(5) and (6)) has a solution:

vi ≥ 0 ∀i ∈ Âk \Ak,
wi ≥ 0 ∀i ∈ B̂k \Bk,

λj ≥ 0 ∀j ∈ Ik,∑
i∈Âk

∇Gi(ẑ
k)vi +

∑
i∈B̂k

∇Hi(ẑ
k)wi −

∑
j∈Ik
∇gj(ẑ

k)λj −
q∑
l=1

∇hl(ẑ
k)µl = ∇f(ẑk) + rk.

By a result of Hoffman [4], the least 2-norm solution of the above system is in the
order of the right-hand side. Since rk → 0 as δk → 0, so that the right-hand side
converges, then the least 2-norm solution of the above system is bounded and any
cluster point is a solution of this system with rk = 0.

For the case of εk > 0 and νk > 0, a point ẑk such that (4) holds and (17)
has no solution is computable in finite time by any feasible descent method for the
linearly constrained subproblem (3), with starting point zk, whose generated points
converge in subsequence to a KKT point of (3). Specifically, it would be enough to
find a point ẑk sufficiently near to a KKT point z of problem (3) so that A0(z) ⊆ Âk,
B0(z) ⊆ B̂k, I0(z) ⊆ Ik, and ‖∇f(ẑk)−∇f(z)‖1 < δk. For such ẑk, the system (17)
has no solution, because any solution of (17) would be a feasible descent direction for
subproblem (3) at z, contradicting z being a KKT point of (3). For the case of εk = 0
and νk = 0 and f quadratic, such a ẑk is a KKT point of (3) and is computable in
finite time by using a feasible descent method coupled with an active set identification
strategy.

3.2. Existence of dk.
Lemma 3.2. Suppose there exists an index ik ∈ Ak ∩Bk such that (a) vkik < −νk

or (b) wkik < −νk. Then, under the uniform LICQ, the linear system (9) has a solution
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whenever νk > 0, and the linear system (9) with “≤ −ηνk/2” replaced by “< 0” has
a solution when νk = 0.

Proof. Let νk > 0, and suppose that system (9) does not have a solution. Then,
by Farkas’s lemma, its dual system has a solution so that, by the same argument as
in the proof of Lemma 3.1 and using (8), we can show that there exist (vi)i∈Aε(ẑk),
(wi)i∈Aε(ẑk), (λj)j∈Iε(ẑk), (µl)

q
l=1 satisfying

‖r‖1 ≤ ηνk/2,

vik ≥ 0 in case (a), wik ≥ 0 in case (b),

vi ≥ 0 ∀ i ∈ Aε(ẑ
k) \ Âk,

wi ≥ 0 ∀ i ∈ Bε(ẑ
k) \ B̂k,

λj ≥ 0 ∀ j ∈ Iε(ẑ
k),

where

r := −∇f(ẑk) +
∑

i∈Aε(ẑk)

∇Gi(ẑ
k)vi +

∑
i∈Bε(ẑk)

∇Hi(ẑ
k)wi

−
∑

j∈Iε(ẑk)

∇gj(ẑ
k)λj −

q∑
l=1

∇hl(ẑ
k)µl.

(19)

Subtracting (6) from (19) yields

r − rk = −
∑

i∈Aε(ẑk)

∇Gi(ẑ
k)(vki − vi)−

∑
i∈Bε(ẑk)

∇Hi(ẑ
k)(wki − wi)

+
∑

j∈Iε(ẑk)

∇gj(ẑ
k)(λkj − λj) +

q∑
l=1

∇hl(ẑ
k)(µkl − µl),

with vki (respectively, wki , λ
k
j ) set to zero if it is not defined in (5). Since vik−vkik > νk

in case (a) and wik − wkik > νk in case (b), while δk ≤ ηνk/2 so that ‖rk‖1 ≤ δk ≤
ηνk/2, we would have ‖r − rk‖1 ≤ ‖r‖1 + ‖rk‖1 ≤ ηνk, contradicting the uniform
LICQ at ẑk. Thus, system (9) has a solution.

When νk = 0, again by the same argument as in the proof of Lemma 3.1, we have
r = 0 in (19). Since νk = 0 implies δk = 0, we have rk = 0 in (5). Hence, by the same
reasoning as above, we can derive a contradiction. The proof is complete.

4. Convergence to a B-stationary point. To establish convergence of the
ε-active set algorithm, we make the following assumptions:

A1. The objective function f is bounded below on Fε.
A2. The uniform LICQ on Fε holds.
A3. The generated sequences {zk} and {ẑk} are bounded.

Assumption A3 would be implied by the boundedness of Fε. A more general sufficient
condition for this assumption to hold will be given in Lemma 4.2 at the end of this
section. In our convergence analysis, we suppose that εtol = νtol = 0 when ε0 > 0 and
ν0 > 0, so that the algorithm may generate an infinite sequence {zk}.

Theorem 4.1. Under assumptions A1–A3, the following hold for the sequence
{(zk, ẑk, z̃k, εk, νk)} generated by the ε-active set algorithm:

(a) If ε0 > 0, ν0 > 0, εtol = νtol = 0, and f is Lipschitz continuous with constant
L on a set Z containing {zk} and {z̃k}, then εk ↓ 0, νk ↓ 0, and every cluster point
of {zk} is a B-stationary point of MPEC (1).
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(b) If ε0 = ν0 = 0 and f is quadratic, then there exists a k̄ ∈ {0, 1, . . .} such that
ẑk̄ is a B-stationary point of MPEC (1).

Proof. We have from (16) that zk ∈ Fεk for all k, and from (4), (11), (12), (14)
that

f(z̃k) ≤ f(ẑk) ≤ f(zk) and ẑk, z̃k ∈ Fεk ∀ k.(20)

Let K := {k : Case (a) or (b) occurs in iteration k} and K′ := {k : Case (c) occurs in
iteration k}.

(a) Suppose ε0 > 0, ν0 > 0, and f is Lipschitz continuous with constant L on set
Z containing {zk} and {z̃k}. If νk → 0, then |K′| = ∞, δk → 0, and the updating
formula for εk would imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′ would be a
KKT point of the relaxed problem R(z̄), which is a B-stationary point of MPEC (1)
under the uniform LICQ. Suppose instead νk �→ 0, so that |K′| < ∞, |K| = ∞, and
ν = limk→∞ νk > 0. We will obtain a contradiction below.

For each iteration k, z̃k satisfies all constraints defining Fεk+1
[Ãk, B̃k], except for

possibly

Gi(z) ≤ εk+1 ∀ i ∈ Ãk,

Hi(z) ≤ εk+1 ∀ i ∈ B̃k.

Then, by a well-known lemma of Hoffman [4], there exists a constant τ > 0, which
depends only on ∇Gi,∇Hi,∇gj ,∇hl, such that

‖zk+1 − z̃k‖ ≤ τ


∑
i∈Ãk

∣∣[Gi(z̃
k)− εk+1]+

∣∣+ ∑
i∈B̃k

∣∣[Hi(z̃
k)− εk+1]+

∣∣



= τ


∑
i∈Ãk

∣∣[Gi(z̃
k)− εk+1]+ − [Gi(z̃

k)− εk]+
∣∣

+
∑
i∈B̃k

∣∣[Hi(z̃
k)− εk+1]+ − [Hi(z̃

k)− εk]+
∣∣



≤ τ


∑
i∈Ãk

|εk+1 − εk|+
∑
i∈B̃k

|εk+1 − εk|



≤ 2τm(εk − εk+1),(21)

where the equality follows from the fact that z̃k ∈ Fεk [Ãk, B̃k] and the second in-
equality uses the nonexpansive property of [·]+ := max{0, ·} with respect to | · |. Since
f is Lipschitz continuous with constant L on Z containing zk+1 and z̃k, it follows that

f(zk+1) ≤ f(z̃k) + L‖zk+1 − z̃k‖ ≤ f(z̃k) + 2Lτm(εk − εk+1).(22)

This together with (20) yields

f(zk+1) ≤ f(zk) + 2Lτm(εk − εk+1) ∀ k.
Since, by our assumption, {f(zk)} is bounded below and {εk} is monotonically non-
increasing and positive, this in turn implies that {f(zk)} converges and so f(zk+1)−
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f(zk)→ 0. Since, for each k ∈ K,

f(z̃k) = f(ẑk + tkd
k)

≤ f(ẑk) + σ2tk∇f(ẑk)T dk

≤ f(zk)− σ2tkηνk/2

≤ f(zk)− σ2tkην/2,

this and (22) imply {tk}k∈K → 0.
The Armijo stepsize rule for determining tk implies, for each k ∈ K, either (i)

tk = t̄k or (ii) tk < t̄k. Since ν = limk→∞ νk > 0, the updating rule (15) for εk+1

implies limk→∞ εk > 0. So it follows from (13), together with the boundedness of
{ẑk}, that {t̄k} is bounded away from zero. Since {tk}k∈K → 0, this implies that case
(i) can occur for only a finite number of iterations k ∈ K, so it must be that case (ii)
occurs for all k ∈ K sufficiently large, in which case (12) yields

f(ẑk + (tk/σ1)d
k)− f(ẑk) > σ2(tk/σ1)∇f(ẑk)T dk.

Since {ẑk} is assumed bounded and −e ≤ dk ≤ e for all k ∈ K, this together with the
fact that {tk}k∈K → 0 would yield in the limit

∇f(ẑ∞)T d∞ ≥ σ2∇f(ẑ∞)T d∞,

where (ẑ∞, d∞) is any cluster point of {(ẑk, dk)}k∈K. Then we would have from
σ2 ∈ (0, 1) that ∇f(ẑ∞)T d∞ ≥ 0, contradicting the fact that ∇f(ẑk)T dk ≤ −ηνk/2 ≤
−ην/2 for all k ∈ K.

(b) Suppose ε0 = ν0 = 0 and that f is quadratic. Then we have εk = νk = 0 for
all k, and hence the conditions (5) yield that ẑk is a KKT point of the subproblem
(3). So it suffices to show that case (c) occurs for some k̄ ∈ {0, 1, . . .}, because then
the algorithm terminates with ẑk being a KKT point of the relaxed problem R(ẑk),
and hence, by Theorem 2.1, a B-stationary point of MPEC (1) under the LICQ for
R(ẑk).

For each k ∈ K, we have from tk > 0 and zk+1 = z̃k that

f(zk+1) = f(ẑk + tkd
k) ≤ f(ẑk) + σ2tk∇f(ẑk)T dk < f(ẑk) ≤ f(zk),

so the values f(ẑk), k ∈ K, are distinct. On the other hand, since the subproblem (3)
is a quadratic program, a lemma from [9] shows that the set of values

{ f(z) : z is a KKT point of (3) }

is finite. Since εk = 0 for all k and the number of index set pairs (A,B) ∈ P is finite,
the number of distinct quadratic programs of the form (3) is finite. Therefore, there
cannot be an infinite number of indices k ∈ K, because each ẑk, k ∈ K, is a KKT
point of a quadratic program of the form (3). Hence there must be an index k ∈ K′.
This completes the proof.

Theorem 4.1(a) concludes that εk ↓ 0 and νk ↓ 0. Thus, if instead of εtol = νtol = 0
we set εtol > 0, νtol > 0, then finite termination of the algorithm can be concluded.
Notice that assumption A2 involves the ε used in the ε-active set algorithm. If an
ε for which A2 holds is not known a priori, we can initialize ε arbitrarily in the
algorithm, and whenever a dk satisfying (9) does not exist in case (a) or (b) of Step
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2,1 we decrease ε and restart the algorithm at Step 0. The next lemma gives sufficient
conditions for assumption A3 to hold.

Lemma 4.2. Suppose there exists L > 0 such that

F̃ε0 := {z ∈ Fε0 : f(z) ≤ f(z0) + 2Lτmε0}
is bounded and f is Lipschitz continuous on Z := F̃ε0 + 2τmε0B with constant L,
where B denotes the unit sphere in �n. Then {zk} and {ẑk} lie in F̃ε0 , and {z̃k} lies
in Z. In particular, these sequences are all bounded.

Proof. An induction argument using (20), (21), and (22) yields, for each k ∈
K ∪ K′,

zk, ẑk ∈ Fεk , f(z̃k) ≤ f(ẑk) ≤ f(zk) ≤ f(z0) + 2Lτm(ε0 − εk),

and hence zk, ẑk ∈ F̃ε0 and z̃k ∈ Z.

5. Some numerical experience. To gain some understanding of the practical
performance of the ε-active set algorithm, we implemented in MATLAB a version of
this algorithm for the two cases of quadratic f and nonquadratic f . We report below
the implementation details and our numerical experience.

We first describe the case of quadratic f . In our implementation, we set ε0 =
ν0 = 0 since f is quadratic. We also set σ1 = 0.5, σ2 = 0.001. To account for
roundoff errors, any number below 10−12 in magnitude is treated as zero. In Step 1,
we set ẑk to be a KKT point of the quadratic program (3), with (vki )

m
i=1 and (wki )

m
i=1

being Lagrange multipliers associated with the first four sets of equations/inequalities.
This is implemented by calling the quadratic program solver from the MATLAB
Optimization Toolbox (Version 1.5.2), with zk as the starting point. In Step 2, the
index ik is chosen to minimize min{vki , wki } among all indices i ∈ Ak ∩Bk. We choose
dk to minimize ∇f(ẑk)T d among all d satisfying the constraints of (9), ignoring the
first inequality. This is implemented by calling the linear program solver from the
MATLAB Optimization Toolbox. We stop at Step 2 of iteration k when vki ≥ 0, wki ≥
0 for all i ∈ Âk ∩ B̂k.

In our testing, we use the MATLAB program QPECgen (Version 1.1) of Jiang
and Ralph [6] to generate test problems. This program generates random instances
of mathematical programs with quadratic objective function and affine variational
inequality constraints. We set the QPECgen parameters as in Table 8 of [6]. The
problems thus generated are special cases of (1) with

f convex quadratic, Hi(x, y) = yi ∀i, q = 0,

where x ∈ �n−m and y ∈ �m. The dimensions n,m, p for the generated problems
are shown in Table 1. The values of second_deg and mono_M, which are QPECgen
parameters that control the degree of degeneracy (failure of lower-level strict comple-
mentarity) and the monotonicity of [Gi(x, y)]

m
i=1 in y, are also shown.

To generate the feasible starting point z0, we considered solving

minimize
∑m
i=1 Gi(z)Hi(z)

subject to Gi(z) ≥ 0, i = 1, . . . ,m,

Hi(z) ≥ 0, i = 1, . . . ,m,

gj(z) ≤ 0, j = 1, . . . , p,

1This can be detected from solving (9) as a linear program.
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for a global optimal solution. However, the MATLAB quadratic program solver was
unable to find a global optimal solution of this nonconvex quadratic program. Thus,
we use a less direct scheme for generating z0. We first modify the problem by negating
the linear terms in the objective function. Then we apply the ε-active set algorithm
to the modified problem, initialized with the recommended solution that is provided
by QPECgen. This generates a feasible solution of (1) which we take to be z0. (We
cannot use the recommended solution as z0, because it is already a B-stationary
point.)

The performance of the algorithm on the test problems is reported in Table 1. As
can be seen from Table 1, the algorithm terminated in a finite number of iterations
on each problem. Moreover, on all except problems 9 and 10, the final z is verified
to be a B-stationary point since the gradients of the active constraints were linearly
independent. (In particular, the determinant of CTC, where C is the matrix with
columns being the gradients of the active constraints, is a large positive number.
On problems 9 and 10, this determinant is below 10−12 in magnitude and hence
is treated as zero.) Since f is convex, each B-stationary point is a local optimal
solution of MPEC (1). For the first 8 problems, the final f -value agrees with those
reported in Table 8 of [6] up to the fifth significant digit. The number of iterations
increases significantly with n and m, especially on the two largest monotone problems.
The reason for this is not well understood, but it does not appear to be related to
degeneracy. For example, on the last problem of Table 1, the final solution has 3
degenerate indices, and yet the number of iterations is small relative to the problem
size. The work at each iteration k varies, depending on the effort to solve the quadratic
program (3) using the warm starting point zk and the effort to solve the linear program
derived from the system (9).

Table 1
Performance of the ε-active set algorithm on QPECgen problems.

(n,m, p) second deg mono M iter1 initial f2 final f3 deg4

(58, 50, 4) 0 1 13 −45.682 −142.823 0
(108, 100, 4) 0 1 12 −620.389 −664.385 0
(158, 150, 4) 0 1 32 −475.081 −535.741 0
(208, 200, 4) 0 1 239 −55.876 −109.594 0
(58, 50, 4) 4 1 14 61.830 −41.876 4
(108, 100, 4) 4 1 12 −555.222 −599.936 4
(158, 150, 4) 4 1 32 −450.023 −536.443 4
(208, 200, 4) 4 1 179 19.916 −23.781 4
(58, 50, 4) 4 0 15 −78.398 −137.869 1
(108, 100, 4) 4 0 17 −165.875 −245.399 0
(158, 150, 4) 4 0 34 −349.095 −382.025 1
(208, 200, 4) 4 0 25 −39.048 −39.674 3

1The number of iterations until termination.
2This is f(z0).
3This is f(zk), where k indexes the last iteration.
4This is the cardinality of Ak ∩Bk, where k indexes the last iteration.

We next describe the case of nonquadratic f . Our implementation for this case
is similar to that for the quadratic case but with the following differences: (i) we set

ε0 = ν0 = 10−6, ω1 = ω2 = 0.1, ρ(ν) = ν,

and we use an initial estimate of η = 10−4; (ii) in Step 1, we use a sequential quadratic
programming (SQP) method to compute ẑk as an approximate KKT point of the
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nonlinear program (3), with (vki )
m
i=1 and (wki )

m
i=1 being Lagrange multipliers associated

with the first four sets of equations/inequalities. More precisely, starting at z = zk,
we iteratively update z by solving a quadratic program obtained by replacing f in (3)
with its quadratic approximation at z. Letting z� denote the optimal solution of this
quadratic program, we perform an inexact line search, using an Armijo rule analogous
to (12), from z in the direction z� − z to obtain the new z. We terminate the SQP
method and set ẑk = z when

either ‖z� − z‖∞ < 10−12 or ∇f(z)T (z� − z) > −10−14.

Each quadratic program is solved using the solver from the MATLAB Optimization
Toolbox, with the current z as the starting point.

In our testing, we use a modification of the QPECgen problems from Table 1,
whereby a cubic function

∑n
i=1(zi)

3 is added to the quadratic objective function.
The starting point z0 is chosen to be the same as in the quadratic case. Hence any
change in the number of iterations from the quadratic case is due (mainly) to the
change in the objective function. Notice that the added cubic function has the effect
of pushing z towards zero, which on some problems enhances the degree of degeneracy
upon termination.

Table 2
Performance of the ε-active set algorithm on modified QPECgen problems.

(n,m, p) second deg mono M iter1 initial f2 final f3 deg4 nq5

(58, 50, 4) 0 1 18 −31.190 −135.466 0 62
(108, 100, 4) 0 1 10 −601.857 −645.175 0 39
(158, 150, 4) 0 1 32 −443.478 −504.749 0 122
(208, 200, 4) 0 1 233 −44.091 −98.463 0 443
(58, 50, 4) 4 1 19 78.157 −35.457 0 66
(108, 100, 4) 4 1 13 −536.606 −580.979 1 48
(158, 150, 4) 4 1 32 −416.060 −505.686 0 123
(208, 200, 4) 4 1 152 30.998 −9.030 8 248
(58, 50, 4) 4 0 17 −69.105 −168.218 1 55
(108, 100, 4) 4 0 16 −155.402 −236.762 0 48
(158, 150, 4) 4 0 21 −323.154 −346.061 3 43
(208, 200, 4) 4 0 16 −36.958 −37.405 5 37

5The number of quadratic programs solved until termination.

The performance of the algorithm on the test problems is reported in Table 2.
From Table 2, it can be seen that the number of iterations is roughly comparable
to that shown in Table 1 for the case of quadratic f . However, unlike the quadratic
case, where one quadratic program needs to be solved per iteration, here two or more
quadratic programs need to be solved per iteration on average. The work to solve
each quadratic program varies, depending on the starting point. The efficiency of the
algorithm can conceivably be improved by using a method more efficient than our
simple SQP method to compute ẑk. Like the quadratic case, on all except problems
9 and 10, the final z is verified to be a B-stationary point since the gradients of the
active constraints were linearly independent.

6. Conclusion. We have proposed an active set algorithm for solving mathe-
matical programs with linear complementarity constraints and have established con-
vergence to a B-stationary point of the problem under the uniform LICQ on the ε-
feasible set. To the authors’ knowledge, this is the first implementable algorithm that
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enjoys global convergence to a B-stationary point without a nondegeneracy (lower-
level strict complementarity) or upper-level strict complementarity assumption. We
have also reported some numerical results that support the theoretical advantage of
the algorithm.

Acknowledgments. The authors thank Stefan Scholtes, the two anonymous
referees, and the Associate Editor, Daniel Ralph, for their helpful comments and
suggestions on the original version of this paper.
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COMPUTING A B-STATIONARY POINT OF A MATHEMATICAL
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Abstract. In [M. Fukushima and P. Tseng, SIAM J. Optim., 12 (2002), pp. 724–739], an ε-active
set algorithm was proposed for solving a mathematical program with a smooth objective function
and linear inequality/complementarity constraints. It is asserted therein that, under a uniform LICQ
on the ε-feasible set, this algorithm generates iterates whose cluster points are B-stationary points of
the problem. However, the proof has a gap and shows only that each cluster point is an M-stationary
point. We discuss this gap and show that B-stationarity can be achieved if the algorithm is modified
and an additional error bound condition holds.
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1. Introduction. In a recent paper by the authors [3], an ε-active set algo-
rithm was proposed for solving the following mathematical program with equilibrium
constraints (MPEC):

minimize f(z)

subject to Gi(z) ≥ 0, i = 1, . . . ,m,

Hi(z) ≥ 0, i = 1, . . . ,m,

Gi(z)Hi(z) = 0, i = 1, . . . ,m,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q,

(1)

where f is a real-valued continuously differentiable function on �n and Gi, Hi, gj , hl
are real-valued affine functions on �n. In Theorem 4.1(a) of [3], it is asserted that
every cluster point of iterates generated by the algorithm is a B-stationary point of
(1). However, the proof has a gap and shows only that every cluster point is an
M-stationary point. We will discuss this gap and a modified algorithm that achieves
B-stationarity under an additional error bound condition.

The gap occurs on [3, page 734] in the line “If νk → 0, then |K′| =∞, δk → 0, and
the updating formula for εk would imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′

would be a KKT point of the relaxed problem R(z̄), which is a B-stationary point of
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MPEC (1) under the uniform LICQ.” In particular, we have for all k ∈ K′ that

vki ≥ −νk and wki ≥ −νk ∀ i ∈ Âk ∩ B̂k,(2)

where Âk, B̂k are given by [3, eq. (7)] and vki , w
k
i are multipliers associated with ẑk

(see [3, eqs. (5), (6)]).1 Thus, if a subsequence {ẑk}k∈K′′ (K′′ ⊆ K′) converges to
some z̄, then by further passing to a subsequence if necessary, we can assume that
the index sets Âk and B̂k are constant (i.e., Âk = Ā, B̂k = B̄ for some Ā, B̄) for all
k ∈ K′′. Since z̄ satisfies the uniform LICQ, {(vki )i∈Ā, (wki )i∈B̄}k∈K′′ also converges
to some (v̄i)i∈Ā, (w̄i)i∈B̄ .2 By (2),

v̄i ≥ 0 and w̄i ≥ 0 ∀ i ∈ Ā ∩ B̄.

This together with [3, eqs. (5), (6)] implies that z̄ is an M-stationary point (see [4, 5]
and (5) below). If in addition

Ā ∩ B̄ = A0(z̄) ∩B0(z̄),(3)

then z̄ is a B-stationary point of (1). In general, however, we can only assert that
Ā ∩ B̄ ⊆ A0(z̄) ∩B0(z̄). This is the gap.

2. A modified ε-active set algorithm. We now describe a way, based on the
active set identification approach of Facchinei, Fischer, and Kanzow [1], to modify the
ε-active set algorithm so that (3) holds under an additional error bound condition.
To simplify the notation, we will consider only the complementarity constraints, i.e.,
we assume p = q = 0 in (1). The general case can be treated analogously. The
Lagrangian associated with (1) is

L(z, v, w) := f(z) +

m∑
i=1

(Gi(z)vi +Hi(z)wi).

We assume that there exists a computable continuous function R : �n × �m ×
�m → [0,∞) providing a local Hölder error bound at each M-stationary point z̄ that
is not B-stationary, i.e., there exist scalars τ > 0, γ > 0, and δ > 0 (depending on z̄)
such that

‖(z, v, w)− (z̄, v̄, w̄)‖ ≤ τR(z, v, w)γ whenever ‖(z, v, w)− (z̄, v̄, w̄)‖ ≤ δ,(4)

where the multiplier vectors v̄, w̄ satisfy

∇zL(z̄, v̄, w̄) = 0,

{
v̄i ⊥ Gi(z̄) ≥ 0
w̄i ⊥ Hi(z̄) ≥ 0

}
, Gi(z̄)Hi(z̄) = 0,

{
v̄iw̄i ≥ 0

v̄i ≥ 0 or w̄i ≥ 0

}
∀i.

(5)
Here, a ⊥ b means ab = 0. Due to uniform LICQ, v̄, w̄ are uniquely determined by z̄.
In fact, (5) characterizes M-stationarity for any z̄ ∈ �n. We also assume that

R(z̄, v̄, w̄) = 0 ⇐⇒ (z̄, v̄, w̄) satisfies (5).(6)

1Throughout, we use the same notation as [3].
2This follows from [3, eq. (6)], ‖rk‖1 ≤ δk → 0 (see [3, eq. (5)]), and the fact that if bk = Ckuk

for all k and bk → b ∈ �q , Ck → C ∈ �q×p with C having linearly independent columns, then
uk → u ∈ �p with u being the unique solution of b = Cu.
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The “residual” function R(z, v, w) can be constructed analogous to the NLP and
NCP cases [1, 2]. In particular, consider

R(z, v, w) := ‖∇zL(z, v, w)‖+

m∑
i=1

(
|min{Gi(z), |vi|}|+ |min{Hi(z), |wi|}|

+ |Gi(z)Hi(z)|+ |min{0, viwi}|+ |min{0, vi}min{0, wi}|
)
.

(7)

Then, R is continuous and satisfies (6). Arguing as in the proof of Corollary 6.6.4
in [2], we have that the local error bound (4) holds if the M-stationary point z̄ is
isolated and f and ∇f are continuous and subanalytic (G and H, by being affine, are
automatically continuous and subanalytic). A referee suggests that the assumption
of z̄ being isolated is benign when G and H are affine. In particular, it is readily
shown that the M-stationary points of (1) are isolated if f is strictly convex on the
null space of the active constraint gradients. Alternatively, it can be shown that the
local error bound (4) holds with γ = 1 if a certain second-order sufficient condition
holds at z̄. This is a topic for further research.

Let θ : (0,∞) → (0,∞) be any continuous nondecreasing function satisfying
limt↓0 t/θ(tγ) = 0 for any γ > 0. An example is θ(t) = −C/ log(min{t, 0.9}) with
C > 0. Using (4), (6) and following [1, 2], the function

Θ(z, v, w) := θ(R(z, v, w))

has the active set identification property that, for any M-stationary point z̄ that is
not B-stationary and corresponding multiplier vectors v̄, w̄, we have

lim
(z,v,w)→(z̄,v̄,w̄)

Gi(z)

Θ(z, v, w)
=

{
0 if Gi(z̄) = 0,
∞ if Gi(z̄) > 0,

and similarly with “Gi” replaced by “Hi.”
Let us define

Āk :=

{
i ∈ {1, . . . ,m} :

Gi(ẑ
k)

Θ(ẑk, vk, wk)
≤ 1

}
,

B̄k :=

{
i ∈ {1, . . . ,m} :

Hi(ẑ
k)

Θ(ẑk, vk, wk)
≤ 1

}
,

where the ith component of vk is vki if i ∈ Âk and is zero otherwise (and wk is
defined analogously). Since (ẑk, vk, wk) satisfies [3, eqs. (4)–(6)], if (2) holds, then
R(ẑk, vk, wk) would tend to zero as ẑk → z̄ and εk, δk, νk tend to zero and, for ẑk

sufficiently near z̄, we would have (vk, wk) sufficiently near (v̄, w̄) (due to [3, A2]) and

Āk = A0(z̄), B̄k = B0(z̄),(8)

as well as

Aε(ẑ
k) ⊇ Āk ⊇ Âk, Bε(ẑ

k) ⊇ B̄k ⊇ B̂k,(9)

where ε ≥ 0 is defined as in [3] (see page 727 therein).3 Let

ε̄k := max

{
εk,max

i∈Āk
Gi(ẑ

k),max
i∈B̄k

Hi(ẑ
k)

}
.(10)

3The first containment in (9) holds whenever Θ(ẑk, vk, wk) ≤ ε, which in turn holds whenever
R(ẑk, vk, wk) is sufficiently small. By (8) and [3, eq. (7)], the second containment in (9) holds
whenever A0(z̄) ⊇ Aεk (ẑk), which in turn holds whenever ẑk is near z̄ and εk is sufficiently small.
The other two containments can be argued similarly.
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Since ε̄k ≥ εk, [3, eq. (4)] implies that ẑk ∈ Fε̄k [Ak, Bk] for all k. In fact, it can be
seen that ẑk remains an approximate KKT point of the subproblem [3, eq. (3)] (in the
sense of [3, eqs. (4)–(6)]) when εk is replaced by ε̄k and Âk, B̂k are correspondingly
replaced by Aε̄k(ẑk), Bε̄k(ẑk). Thus, we can modify Step 2 of the ε-active set algorithm
by possibly making this replacement when we are in case (c) and (9) holds.

The modified ε-active set algorithm for MPEC (1).
This is the same as the ε-active set algorithm in [3, pp. 730–731], except that
when we are in case (c) in Step 2, we do the following: If

(9) holds, Āk ∩ B̄k �= Âk ∩ B̂k, ε̄k < ε̄(11)

(ε̄ is a threshold which initially can be any positive scalar below ε), then
repeat Step 2 with εk replaced by ε̄k (and with Âk, B̂k redefined accordingly,
i.e., they are replaced by Aε̄k(ẑk), Bε̄k(ẑk) in Step 2, (9), (11)), and update
ε̄ ← ε̄/2. Otherwise, if εk ≤ εtol and νk ≤ νtol, then terminate; otherwise,
determine νk+1 and z̃k by [3, eq. (14)], and proceed to Step 3.

If (11) holds, then εk < ε̄k,
4 which in turn implies Āk = Aε̄k(ẑk) and B̄k =

Bε̄k(ẑk).5 Thus, when Step 2 is repeated, the second relation in (11) is violated.
Theorem 2.1. Under assumptions [3, A1–A3], the following results hold for the

sequence {(zk, ẑk, z̃k, εk, νk)} generated by the modified ε-active set algorithm, with
K̄ := {k : at iteration k, Step 2 is repeated}.

(a) Suppose that each M-stationary point z̄ of MPEC (1) that is not B-stationary
satisfies (4), where (v̄, w̄) satisfies (5) and R satisfies (6). If ε0 > 0, ν0 > 0, εtol =
νtol = 0, f is Lipschitz continuous with constant L on a set Z containing {zk} and
{z̃k}, and |K̄| < ∞ (respectively, |K̄| = ∞), then εk ↓ 0, νk ↓ 0, and every cluster
point of {ẑk} (respectively, {ẑk}k∈K̄) is a B-stationary point of MPEC (1).

(b) If ε0 = ν0 = 0 and f is quadratic, then there exists a k̄ ∈ {0, 1, . . .} such that
ẑk̄ is a B-stationary point of MPEC (1).

Proof. The first paragraph of the proof is identical to the proof of [3, Thm. 4.1], ex-
cept we defineK := {k : We enter Step 3 from case (a) or (b) in Step 2 at iteration k}
and K′ := {k : We enter Step 3 from case (c) in Step 2 at iteration k}. The proof of
(b) is identical to the proof of [3, Thm. 4.1(b)]. We prove (a) below.

(a) Suppose νk → 0. Then |K′| = ∞, δk → 0, and the updating formulas for
εk and ε̄ imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′ is an M-stationary point
of MPEC (1). First, suppose |K̄| < ∞, so that ε̄ > 0 is constant after a while. Let
{ẑk}k∈K′′ (K′′ ⊆ K′) be any subsequence converging to z̄. Since [3, eqs. (4)–(6)] and
(2) hold for all k ∈ K′′, we have from [3, A2] and the same argument as in section
1 that {(vk, wk)}k∈K′′ → (v̄, w̄) satisfying (5). By (6), R(z̄, v̄, w̄) = 0. Since R is
continuous, {R(ẑk, vk, wk)}k∈K′′ → 0. If z̄ is not B-stationary for (1), then the error
bound (4) would hold and this would imply that (8) and (9) hold for all k ∈ K′′

sufficiently large. Moreover, {ε̄k}k∈K′′ → 0, so that ε̄k < ε̄ for all k ∈ K′′ sufficiently

4If εk = ε̄k, then (10) and [3, eq. (7)] would imply Āk ⊆ Âk and B̄k ⊆ B̂k, so (9) would yield

Āk = Âk and B̄k = B̂k, contradicting (11).
5Why? Since εk < ε̄k, we have from (10) and the definition of Āk and B̄k that

ε̄k = max

{
max
i∈Āk

Gi(ẑ
k), max

i∈B̄k
Hi(ẑ

k)

}
≤ Θ(ẑk, vk, wk).

Thus, if i 	∈ Āk, then Gi(ẑ
k) > Θ(ẑk, vk, wk) ≥ ε̄k. By (10), if i ∈ Āk, then Gi(ẑ

k) ≤ ε̄k. This shows
that Āk = Aε̄k (ẑk). An analogous argument shows that B̄k = Bε̄k (ẑk).
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large. Thus, at each such iteration k ∈ K′′, we would have upon entering Step 3 that
Āk ∩ B̄k = Âk ∩ B̂k (since (11) must be violated). Then it would follow from (2) and
(8) that z̄ is a B-stationary point of (1), a contradiction. Second, suppose |K̄| = ∞.
Then, as we discussed earlier, for each iteration k ∈ K̄, the second relation in (11) is
violated upon entering Step 3, i.e., Āk ∩ B̄k = Âk ∩ B̂k. Then, an argument similar
to the one above shows that every cluster point z̄ of {ẑk}k∈K̄ is a B-stationary point
of (1).

Suppose instead νk �→ 0, so that |K′| < ∞, |K| = ∞, and ν = limk→∞ νk > 0.
The remainder of the proof is identical to the proof of [3, Thm. 4.1(a)], except that,
due to εk being replaced by ε̄k in Step 2 for all iterations k ∈ K̄, instead of [3, eq.
(22)] we have

f(zk+1) ≤ f(z̃k) + 2Lτm(εk − εk+1 + Δk) ∀ k,

where Δk := ε̄k if k ∈ K̄ and Δk := 0 otherwise. Since (11) holds at each iteration
k ∈ K̄ and ε̄ is halved at each such iteration, it follows that

∑∞
k=0 Δk =

∑
k∈K̄ ε̄k <∞.

Then it can be argued similarly as in the proof of [3, Thm. 4.1(a)] that {f(zk)}
converges and so on.

We illustrate the assumptions of Theorem 2.1 with the following example of (1):

minimize f(z) subject to z1 ≥ 0, z2 ≥ 0, z1z2 = 0.

This example satisfies assumption [3, A2] for any ε ≥ 0. If f(z) = (z2)
p (p ≥ 1),

then assumption [3, A1] also holds and each M-stationary point, which is of the form
(z̄1, 0) with z̄1 ≥ 0, is B-stationary. If f(z) = z4

1 + z2
2 − z2, then assumptions [3, A1,

A3] also hold and the M-stationary points, (0, 0) and (0, 1
2 ), are isolated with (0, 1

2 )
B-stationary. For R given by (7), the error bound (4) holds at (0, 0). However, if
f(z) = z2

2−z2, then the M-stationary point z̄ = (0, 0), with multipliers v̄ = 0, w̄ = −1,
is not B-stationary and is not isolated. Moreover, for any continuous R satisfying (6),
the error bound (4) does not hold at (0, 0). This is because, for any fixed δ > 0, (δ, 0) is
M-stationary with multipliers v = 0, w = −1, so R((δ, x2), 0,−1)→ R(δ, 0), 0,−1) = 0
as x2 → 0. But ‖((δ, x2), 0,−1)− ((0, 0), 0,−1)‖ → δ as x2 → 0.
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provides robust performance in the presence of norm-bounded parameter uncertainties in the system
model. The robust performance of the proposed method is achieved by minimizing an upper bound
on the worst-case variance of the estimation error for all admissible systems. Our method is recursive
and computationally efficient. In our simulations, the new method provides superior performance
to some of the existing robust filtering approaches. In particular, when applied to the problem of
target tracking, the new method has led to a significant improvement in tracking performance. Our
work shows that the robust SDP technique and the interior point algorithms can bring substantial
benefits to practically important engineering problems.
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1. Introduction. Consider the following classical discrete-time linear state-
space model:

{
xi+1 = Fixi +Giui, x0 given,
y
i

= Hixi + vi, i ≥ 0,
(1.1)

where Fi ∈ Rn×n, Gi ∈ Rn×m, and Hi ∈ Rp×n are known matrices which describe
the dynamic system, and xi describes the state of the system at time i, while ui and vi
denote the process and measurement noise terms, respectively. In many linear filtering
applications, we are faced with the problem of estimating the states of the dynamic
system (1.1) from the noisy measurements y

i
(see [6, 11, 8]). A popular solution

to this problem is given by the Kalman filter [6, 11, 8] which, under some standard
assumptions on the statistics of the noise sources and initial state, minimizes the mean
squared estimation error (MSE). The MSE is the trace of E{(xi − x̂i)(xi − x̂i)

T },
where E denotes the statistical expectation and x̂i denotes the estimate of xi at time
i. Moreover, the Kalman filter is recursive and computationally efficient. In its
“innovations form,” the Kalman filter is given by

x̂i+1 = Fix̂i +KK,i

(
y
i
−Hix̂i

)
, x̂0 = 0,(1.2)
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where the so-called Kalman gain matrix KK,i can be computed via the following
(analytic) recursion:

KK,i = FiPiH
T
i

(
Ri +HiPiH

T
i

)−1
,

Pi+1 = (Fi −KK,iHi)Pi (Fi −KK,iHi)
T
+ [Gi −KK,i ]

[
Qi 0
0 Ri

] [
GT
i

−KT
K,i

]
,

where Qi = E{uiuTi } and Ri = E{vivTi } are the noise covariance matrices. (The
statistical assumptions made here are stated in section 2.) The matrix Pi in the
recursion is the error covariance matrix E{(xi−x̂i)(xi−x̂i)T }. However, one drawback
of the Kalman filter is that it requires precise knowledge of the system matrices Fi,
Gi, and Hi and noise covariances Qi and Ri, because even a small deviation from
the “nominal” values of these matrices can induce substantial performance loss in the
Kalman filter. As a result, the Kalman filter can be ineffective in practice especially
when we are faced with imprecise knowledge of the dynamic system mode or, in
other words, when the matrices Fi, Gi, and Hi are known only approximately. This
sensitivity of the Kalman filter has led researchers to tackle robust filtering problems,
in which the objective is to design estimators which provide acceptable performance
in the presence of uncertainties in the models of the dynamic system and the noise.

One approach to robust filtering is that of H∞ filtering (see [5] and references
therein). In that approach no statistical model of the disturbances ui and vi is em-
ployed; they are merely assumed to have finite energy. The idea is to obtain an estima-
tor which minimizes (or, in the suboptimal case, bounds) the maximum energy gain
from the disturbances to the estimation errors. This modelling paradigm also allows
us to incorporate unstructured uncertainties in the dynamic system model (1.1) (see,
for example, [4, 17]). An advantage of the H∞ approach is that the solution closely
resembles the Kalman filter and can be efficiently implemented. Therefore, in appli-
cations in which statistical knowledge of the disturbances and information regarding
the structure of the modelling uncertainties are difficult to acquire, H∞ filters are an
appropriate choice. Unfortunately, when the system model and the noise processes
are known quite accurately, the Kalman filter may actually perform substantially bet-
ter than the H∞ filter. This is because the uncertainty model for the H∞ filter is
unstructured, and hence the H∞ filter may be attempting to provide robustness to
disturbances and modelling errors which rarely, or never, occur, at the expense of
filter performance in the presence of more likely disturbances and modelling errors.
In many applications, including target tracking, we have some knowledge of the struc-
ture of the uncertainties in the system model and partial knowledge of disturbance
statistics. It is natural to expect that careful incorporation of this knowledge into the
estimator will lead to appreciable improvement in estimator performance. A major
challenge is to determine whether this can be done in a computationally efficient man-
ner. From recent work in the control field, it appears that determining filters which
provide optimal robustness to highly structured uncertainties can be computationally
expensive [1].

An alternative to the Kalman and H∞ filtering methods is to find a “robust
Kalman filter” which minimizes (an upper bound on) the variance of the estimation
error in the presence of a system model with norm-bounded structured parametric
uncertainty and bounded uncertainty in the noise statistics. Models of this type
are common in control theory (e.g., [7] and references therein) and are particularly
appropriate in the context of target tracking. Previous approaches to this problem,
with no uncertainty in the noise statistics, have been based on analytic recursions on
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some performance bounds [13, 15]. Note that robust H∞ designs which bound the
worst-case error energy gain in the presence of the same system model uncertainties
are also available [9, 16].

In this paper we derive a new robust filtering algorithm using the recently de-
veloped robust semidefinite programming (SDP) technique [2]. The new method is
recursive in the sense that the subproblem solved at each step depends on the so-
lution at the previous step, and is computationally efficient since each subproblem
is a semidefinite program of a fixed size which can be efficiently solved using an in-
terior point algorithm. We demonstrate the performance of the novel algorithm in
a standard benchmark example and in a target-tracking example, and show that it
can provide superior performance to the existing approaches to this particular prob-
lem [13, 15], and to the Kalman and H∞ approaches. Our work shows that the robust
SDP technique and the interior point algorithms [12, 14] can bring substantial benefits
to a practically important engineering problem.

The paper is organized as follows. In section 2 the robust state estimator problem
is introduced. Then, in section 3, this problem is formulated as convex optimization
and solved in polynomial-time using the recent robust SDP technique. In section 4,
simulation results are presented and, in section 5, some concluding remarks are given.

Throughout this paper, for a square matrix X, the notation X ≥ 0 (resp., X ≤ 0)
means X is symmetric and positive semidefinite (resp., negative semidefinite).

2. Problem formulation. Consider the following time-varying, discrete-time,
uncertain linear state-space model:{

xi+1 = [Fi +∆Fi]xi +Giui, x0,
y
i

= [Hi +∆Hi]xi + vi, i ≥ 0,
(2.1)

where Fi ∈ Rn×n, Gi ∈ Rn×m, and Hi ∈ Rp×n are known matrices which describe
the nominal system. The matrices ∆Fi and ∆Hi represent the parameter uncertain-
ties in the dynamic model. They are assumed to have the following structure:[

∆Fi
∆Hi

]
=

[
C1,i

C2,i

]
ZiEi with ZTi Zi ≤ I,(2.2)

where C1,i ∈ Rn×r, C2,i ∈ Rp×r, and Ei ∈ Rt×n are known matrices. We re-
mark that the above model (2.2) of uncertainties has been used extensively in the
robust control literature (e.g., [7] and references therein). The process noise {ui},
the measurement noise {vi}, and the initial state x0 in (2.1) are all assumed to be
random. These random variables have known mean values, which we can take to be
zero without loss of generality, and partially known covariances, as follows:

E




 ui
vi
x0




 uj
vj
x0



T

 =


Qiδij 0 0
0 Riδij 0
0 0 Π0


 ,(2.3)

where δij denotes the Kronecker delta function that is equal to unity for i = j and zero
elsewhere, Qi = Q̄i + ∆Qi, and Ri = R̄i + ∆Ri. The matrices Q̄i ∈ Rm×m, R̄i ∈
Rp×p, and Π0 ∈ Rn×n are assumed to be known and describe the nominal second-
order statistics of the noise and the initial state. The matrices ∆Qi and ∆Ri represent
the uncertainties in the noise statistics and satisfy the following bounds:

−εI ≤ ∆Qi ≤ εI, −εI ≤ ∆Ri ≤ εI.(2.4)
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Notice that when there is no uncertainty in the system model (2.1), namely ε = 0 and
Ei = 0, then we recover the standard linear time-varying state-space model (1.1).

Let us use Θi = {∆Qi,∆Ri,Zi} to denote the uncertainty variable at stage i and
define the uncertainty region at stage i as

Ωi = { Θi : Θi satisfies (2.2) and (2.4) }.

The problem is to estimate the state-sequence {xi, i ≥ 0}, or some linear combination
of this sequence {si = Lixi, i ≥ 0}, where Li is a known matrix, from the corrupted
measurements. The goal of the robust filter is to provide a uniformly small estimation
error for any process and measurement noise satisfying (2.3) and (2.4) and for all
admissible modelling uncertainties satisfying (2.2). These a priori bounds on the
uncertainties represent the designer’s partial knowledge of the noise statistics and
system model. They are to be incorporated into the problem formulation to guarantee
robust performance.

To formulate the robust filtering problem, consider the following form of state
estimator:

x̂i+1 = Aix̂i +Ki(yi −Hix̂i), x̂0 = 0,(2.5)

where Ai, Ki are filtering matrices to be determined, and x̂i denotes the estimate
of the state xi. The above estimator is written in an innovation form that is similar
to the structure of the Kalman filter given in (1.2). Notice that we use the nominal
innovation (y

i
−Hix̂i), even though ∆Hi may be nonzero. This structure is used for

convenience, but it is general enough to generate all the full-order estimators, since
Ai and Ki are free parameters. The goal of a robust filtering algorithm is to choose
these free parameters to minimize (a function of) the estimation error covariance
E{(xi − x̂i)(xi − x̂i)T }.

To express that goal precisely, we consider the following augmented system, which
represents the cascade of the system in (2.1) and the estimator in (2.5):

x̄i+1 =
[
F̄i + C̄iZiĒi

]
x̄i + Ḡiūi,(2.6)

where 


x̄i =

[
xi
x̂i

]
, ūi =

[
ui
vi

]
,

F̄i =

[
Fi 0
KiHi Ai −KiHi

]
, Ḡi =

[
Gi 0
0 Ki

]
,

C̄i =

[
C1,i

KiC2,i

]
, Ēi = [Ei 0] .

Note that the state vector of the cascade, x̄i, contains both xi (the states of the model)
and the estimates x̂i, and hence the dimension of the state vector is doubled. The
Lyapunov equation that governs the evolution of the covariance matrix Σi = E{x̄ix̄Ti }
can be written as

Σi+1 =
[
F̄i + C̄iZiĒi

]
Σi
[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ,(2.7)
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where Wi = blockdiag (Qi,Ri). The error covariance Pi+1 can be obtained from

(2.7) by premultiplying [I − I] and postmultiplying [I − I]T ; i.e.,

Pi+1 = F̂iΣiF̂
T
i +GiQiG

T
i +KiRiK

T
i ,(2.8)

where

F̂i =
[
(Fi +C1,iZiEi −KiHi −KiC2,iZiEi) (KiHi −Ai)

]
.

Now the finite-horizon robust state estimator problem can be stated as follows.
PROBLEM. At each stage i, choose the filtering matrices {Aj}ij=0 and {Kj}ij=0

so as to minimize the worst-case weighted error covariance matrix DPi+1; i.e.,

min
Kj ,Aj
∀j≤i

max
Θj∈Ωj
∀j≤i

Tr (DPi+1),(2.9)

or equivalently,

min
Kj ,Aj
∀j≤i

max
Θj∈Ωj
∀j≤i

Tr
(
D [I − I]Σi+1 [I − I]T

)
,(2.10)

where Tr (·) denotes the trace of a matrix (·) and D ∈ Rn×n is a positive semidefinite
weighting matrix.

We have stated the robust state estimation problem in a rather general weighted
form which includes many special cases. If we wish to estimate {xi}, choosing D = I
will suffice, whereas to estimate {si = Lixi}, choosing D = LiL

T
i will suffice. We

can also weight the estimation accuracy of the states as desired, or add additional
terms to D, as long as it remains positive semidefinite. As we will observe later in
section 4, adding additional terms to D may improve the numerical stability of the
finite-horizon filtering solutions.

The above minimax formulation is intended to incorporate robustness into the
filter solution. In particular, Tr (DPi+1), as recursively defined by (2.8), depends on
all the uncertainties Θ0, . . . ,Θi as well as on the filtering matricesK0,A0, . . . ,Ki,Ai.
The maximum weighted trace of Pi+1,

max
Θj∈Ωj
∀j≤i

Tr (DPi+1),

represents the worst-case weighted error covariance when subject to the prescribed
uncertainties. Therefore, the goal of robust filter design is to select the filtering
matrices so that the worst-case weighted error covariance is minimized.

As given by (2.9) or (2.10), the robust filter design problem is nonlinear and
nonsmooth and hence is computationally difficult. Furthermore, the problem ap-
parently lacks convexity, which is essential in the development of computationally
efficient algorithms. A further difficulty with the formulation (2.9) or (2.10) is that it
is nonrecursive, in the sense that the problem dimension increases linearly in i. This
nonrecursive feature makes it necessary to solve from scratch for the filtering matrices
K0,A0, . . . ,Ki,Ai at each stage i, which is clearly undesirable and impractical.

In practice, we typically fix K0,A0, . . . ,Ki−1,Ai−1 at stage i and solve only for
Ki,Ai. However, such simplification only partially fixes the problem since the un-
certainties Θ0, . . . ,Θi still enter into the maximization of Tr (DPi+1), indicating that
the problem dimension still increases linearly with i. Our objective is to reformulate
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problem (2.9) in a recursive way such that at each stage i we have only to determine
Ki,Ai by solving a subproblem with a fixed dimension (i.e., independent of i).

To reformulate problem (2.9), we consider a sequence of matrices

{Γi+1(Ki,Ai) : i = 1, 2, . . .},
which are not dependent on the uncertainties {Θi : i = 1, 2, . . .}. These matrices will
serve as upper bounds for the covariance matrices {Σi+1 : i = 1, 2, . . .} which are
dependent on the uncertainty vectors {Θi : i = 1, 2, . . .}, as well as on Ki and Ai.
In particular, we will have

Γi+1(Ki,Ai) ≥ Σi+1 ∀Θi ∈ Ωi, i = 1, 2, . . . .(2.11)

There are, of course, many choices for an upper bound Γi+1(Ki,Ai) that will satisfy
(2.11). Our objective should be to choose the one which, together with some Ki and
Ai, will yield the minimum weighted error covariance DPi+1. By the relation

Pi+1 =
[
I −I ] Σi+1

[
I −I ]T ,

we see that an upper bound on Σi+1 naturally leads to an upper bound on Pi+1.
Thus we can approximately minimize DPi+1 by minimizing the trace of the matrix

D
[
I −I ]Γi+1(Ki,Ai)

[
I −I ]T ,

which is an upper bound of DPi+1. In particular, we choose Γi+1, Ki, and Ai to

minimize Tr
(
D
[
I −I ]Γi+1

[
I −I ]T)

subject to Γi+1, Ki, Ai satisfying (2.11).
(2.12)

The optimization problem (2.12) involves the constraint (2.11), which involves all
of the uncertainty vectors {Θi : i = 1, 2, . . .} and {Ki,Ai : i = 1, 2, . . .}, thus making
the amount of computation increase with i. To resolve this issue of dimensionality
increase, we shall define the constraint recursively as follows. Specifically, let b > 0 be
a chosen scalar bound and let Σ̄0 = Σ0. For i ≥ 0, suppose Σ̄i, an upper bound on
Σi, has been computed and is already available. Consider the following minimization
problem in the matrix variables {Γi+1,Ki,Ai}:

minimize Tr
(
D
[
I −I ]Γi+1

[
I −I ]T)

subject to Γi+1 ≥
[
F̄i + C̄iZiĒi

]
Σ̄i
[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi ∈ Ωi,

Tr (Γi+1) ≤ b.
(2.13)
We choose Σ̄i+1 to be the optimal value of Γi+1 in (2.13). Therefore our reformulation
of (2.9) can now be stated as the following.

REFORMULATION OF THE ROBUST FILTERING PROBLEM. Let Σ̄0 = Σ0. For each
i ≥ 0 compute, recursively, the matrix Σ̄i+1 and the robust filtering matrices Ai and
Ki as the minimizing solution of (2.13).

We remark that the second constraint in (2.13), Tr (Γi+1) ≤ b, is used to ensure
that the matrix Γi+1 is bounded. This is important because otherwise the optimal
solution of (2.13), Σ̄i+1, may become progressively ill-conditioned as i becomes large.
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An alternative way of preventing ill-conditioning is to impose the following structure
on Γi+1,

Γi+1 =

[
Γ̄+ Γ̂ Γ̄
Γ̄ Γ̄

]
for some symmetric matrices Γ̄, Γ̂,(2.14)

and to use the following constraint:

Tr (Γ̂) ≥ β Tr (Γ̄),(2.15)

where β > 0 is a constant. The above structure (2.14) for Γi+1 mimics the structure
of the joint covariance matrix of the state of a system and its optimal estimate in the
Kalman sense, and is maintained in [13]. The bound (2.15) is used to ensure that the

condition number of Γi+1 does not become unbounded when Γ̄ and Γ̂ become large.
Indeed, notice that

Γi+1 =

[
Γ̄+ Γ̂ Γ̄
Γ̄ Γ̄

]
=

[
I I
0 I

] [
Γ̂ 0
0 Γ̄

] [
I 0
I I

]
,

so we only need to bound the condition number for the matrix blockdiag{Γ̂, Γ̄}. By
the above factorization of Γi+1 and the fact that the right-hand side of the first
constraint in (2.13) is bounded from below by a positive definite matrix, we obtain

that blockdiag{Γ̂, Γ̄} is bounded from below by a positive definite matrix. Thus, the

smallest eigenvalue of the matrix blockdiag{Γ̂, Γ̄} is bounded away from zero. In the

meantime, the constraint (2.15) and the fact that we are minimizing Γ̂ implies that

the largest eigenvalue of the matrix blockdiag{Γ̂, Γ̄} is also bounded. This implies
the boundedness of the condition number of Γi+1 at optimal solution.

As a result of the above discussion, we have the following alternative formulation
(to (2.13)):

minimize Tr
(
D
[
I −I ]Γi+1

[
I −I ]T)

subject to Γi+1 ≥
[
F̄i + C̄iZiĒi

]
Σ̄i
[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi ∈ Ωi,

Γi+1 satisfying (2.14) and (2.15).
(2.16)
In the remainder of this paper, we will focus on the first formulation (2.12), but the
second formulation (2.16) can also be treated in an analogous fashion.

We point out that the dimension of problem (2.13) is fixed rather than growing
linearly with i. Moreover, it will be shown that (2.13) is convex and can be reformu-
lated as a semidefinite program. The latter can be solved very efficiently via interior
point methods [14, 10, 12]. Before we explain how to solve (2.13), we need to show
that Σ̄i defined by (2.13) does provide an upper bound for Σi for all i ≥ 0. We have
the following theorem.

Theorem 2.1. Let Σ̄0 = Σ0. For i ≥ 1, let Σ̄i be defined as in (2.13). Then
there holds

Σ̄i ≥ Σi ∀Θj ∈ Ωj , j = 1, 2, . . . , i− 1.(2.17)

Proof. The theorem can be proved by mathematical induction. In particular, for
i = 0 we have Σ̄0 = Σ0. Suppose that (2.17) holds for i = k. Since Σ̄k+1 is the
optimal solution of (2.13), it follows from the constraint of (2.13) that

Σ̄k+1 ≥
[
F̄k + C̄kZkĒk

]
Σ̄k
[
F̄k + C̄kZkĒk

]T
+ ḠkWkḠ

T
k ∀Θk ∈ Ωk.(2.18)
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By the inductive hypothesis we have

Σ̄k ≥ Σk ∀Θj ∈ Ωj , j = 1, 2, . . . , (k − 1).

Combining this with (2.18), we obtain

Σ̄k+1 ≥
[
F̄k + C̄kZkĒk

]
Σk
[
F̄k + C̄kZkĒk

]T
+ ḠkWkḠ

T
k

= Σk+1 ∀Θj ∈ Ωj , j = 1, 2, . . . , k,

where the last step is due to (2.7) for the particular value of Θj which represents the
actual error in the model. This completes the induction proof.

In common with the existing approaches to the finite-horizon robust filtering
problem, we do not have a sufficient condition for the convergence of the estimator
Σ̄i as i tends to infinity. However, we now provide some necessary conditions. (These
conditions are analogous to those in [13].)

Theorem 2.2. Suppose the system (2.1)–(2.4) is time-invariant in the sense that
the data matrices Hi, C1,i, C2,i, Gi, Ei, R̄i, and Q̄i are fixed and independent of
i. Then the solution Σ̄i converges to some Σ̄ only if the set of uncertain systems
(2.1)–(2.2) is quadratically stable.

Proof. Let ui and vi be zero. By constraint (2.13) and the fact that Σ̄i → Σ̄, we
have

Σ̄ ≥ [F̄+ C̄ZiĒ
]
Σ̄
[
F̄+ C̄ZiĒ

]T ∀Zi with ‖Zi‖ ≤ 1.

This shows that the augmented linear system (2.6) is quadratically stable. This
is because the above relation easily implies that the quadratic Lyapunov function
V (x̄, i) = −x̄Ti Σ̄x̄i ≥ 0 and that, for all admissible systems, V (x̄, i + 1) ≤ V (x̄, i)
if the process noise ūi = 0. By construction, xi is a component of x̄i; therefore the
quadratic stability of (2.6) (in this time-invariant case) implies the quadratic stability
of (2.1)–(2.2) for all admissible systems.

3. Robust SDP solution. In this section, we shall develop an SDP [14] formu-
lation for the robust state estimator problem (in particular, the problem (2.13)). This
will then allow for efficient numerical solutions via recent interior point methods. We
begin by noting that the finite-horizon robust state estimator problem (2.13) has a
constraint of the form

Γi+1 ≥
[
F̄i + C̄iZiĒi

]
Σ̄i
[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi = (∆Qi,∆Ri,Zi) ∈ Ωi,

(3.1)
which contains an uncertainty vector Θi = (∆Qi,∆Ri,Zi). Recall that Wi =
blockdiag(Q̄i +∆Qi, R̄i +∆Ri) and that by (2.4) we have

−εI ≤ ∆Qi ≤ εI, −εI ≤ ∆Ri ≤ εI.
Therefore, by choosing the upper bound for Wi, the constraint (3.1) holds for all
Θi = (∆Qi,∆Ri,Zi) ∈ Ωi if and only if the following holds:

Γi+1 ≥
[
F̄i + C̄iZiĒi

]
Σ̄i
[
F̄i + C̄iZiĒi

]T
+ ḠiW̄iḠ

T
i ∀Zi with ‖Zi‖ ≤ 1,

where

W̄i = blockdiag(Q̄i + εI, R̄i + εI).
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We rearrange the above inequality as follows:

Γi+1 −
[
F̄i + C̄iZiĒi Ḡi

] [ Σ̄i 0
0 W̄i

] [
F̄i + C̄iZiĒi Ḡi

]T ≥ 0
∀Zi with ‖Zi‖ ≤ 1.

Using the Schur complement, the above constraint is equivalent to
 Σ̄−1

i 0 (F̄i + C̄iZiĒi)
T

0 W̄−1
i ḠT

i

(F̄i + C̄iZiĒi) Ḡi Γi+1


 ≥ 0 ∀Zi with ‖Zi‖ ≤ 1.(3.2)

Note that both Σ̄i and W̄i are positive definite and hence invertible.
For each fixed Zi with ‖Zi‖ ≤ 1, the above constraint (3.2) is a so-called lin-

ear matrix inequality (LMI) in the matrix variables {Γi+1, Ai, Ki} which is convex.
(Recall that the matrix variables {Ai, Ki} are buried, linearly, in F̄i, Ḡi, and C̄i.)
Thus the feasible region described by the above constraint is the intersection of convex
regions described by an infinite number of linear matrix inequalities parameterized by
Zi. This implies that the feasible region of (2.13) is convex. It is now clear that the
original robust filtering problem (2.13) is equivalent to

minimize Tr
(
D
[
I −I ]Γi+1

[
I −I ]T)

subject to {Γi+1, Ai, Ki} satisfying (3.2),

Tr (Γi+1) ≤ b.
(3.3)

The formulation (3.3) is given as an SDP, except that the data matrices are subject
to uncertainty Zi. Therefore it cannot be solved by standard SDP methods. The
constraints in (3.3) imply that the solution must remain feasible for all allowable per-
turbations. This is precisely the intent of a robust filter solution. An SDP problem for
which the data matrices are uncertain is called a robust SDP. In the next subsection,
we introduce a technique for converting a robust SDP into a standard SDP, which
can then be solved efficiently by the recent interior point methods.

3.1. The robust SDP. SDP is a convex optimization problem and can be solved
in polynomial time using efficient algorithms such as the primal-dual interior point
methods [14, 10, 12]. An SDP consists of minimizing a linear objective subject to an
LMI constraint,

minimize cTα

subject to B(α) = B0 +

q∑
k=1

αkBk ≥ 0,

where c ∈ Rq, α = (α1, α2, . . . , αq)
T , and the symmetric matrices Bk = BTk ∈ Rl×l,

k = 0, . . . , q, are some given data matrices. In our case, these data matrices are
subject to uncertainty. We can incorporate some linear uncertainty into B(α) in the
following way. Let B(α,∆) be a symmetric matrix-valued function of two variables α
and ∆ of the form

B(α,∆) = B(α) +N∆M(α) +M(α)T∆TNT ,(3.4)
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where B(α) is defined in (3.1), N and M(α) are given matrices, ∆ is a perturbation
which is unknown but bounded. We define the robust feasible set by

A = {α ∈ Rq | B(α,∆) ≥ 0 for every ∆ with ‖∆‖ ≤ 1} .
The robust SDP is then defined as

minimize cTα
subject to α ∈ A.(3.5)

The following lemma shows how such a robust SDP can be solved using a conventional
SDP. It is a simple corollary of a classical result on quadratic inequalities referred to
as the S-procedure, and its proof is detailed in [2].

Lemma 3.1. Let B = BT , N, and M be real matrices of appropriate size. We
have

B+N∆M+MT∆TNT ≥ 0(3.6)

for every ∆, ‖∆‖ ≤ 1, if and only if there exists a scalar ρ such that[
B− ρNNT MT

M ρI

]
≥ 0.(3.7)

As a consequence, the robust SDP (3.5) can be formulated as the following standard
SDP in variables α and ρ:

minimize cTα

subject to

[
B(α)− ρNNT M(α)T

M(α) ρI

]
≥ 0.

(3.8)

We now return to the problem in (3.3) and factorize the LMI constraint matrix
(3.2) according to the structure in (3.4). In such a factorization, the decision variable
α in (3.4) will correspond to a concatenation of the elements of the matrix variables
Γi+1, Ai, and Ki in (3.2), and the perturbation ∆ in (3.4) will correspond to Zi in
(3.2). The factorization is given by

B(α) =


 Σ̄−1

i 0 F̄Ti
0 W̄−1

i ḠT
i

F̄i Ḡi Γi+1


 ,(3.9)

where

F̄i =

[
Fi 0
KiHi Ai −KiHi

]
, Ḡi =

[
Gi 0
0 Ki

]
, W̄i =

[
Q̄i + εI 0
0 R̄i + εI

]
,

and

N∆M(α) +M(α)T∆TNT =


 0 0 (C̄iZiĒi)

T

0 0 0
C̄iZiĒi 0 0


(3.10)

with

C̄iZiĒi =

[
C1,iZiEi 0
KiC2,iZiEi 0

]
.
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The matrices N and M(α) are given by

M(α) =
[
0 0 CT1,i CT2,iK

T
i

]
,

N =



ETi
0
0
0


 .(3.11)

Now we are in a position to apply Lemma 3.1 to convert the robust SDP (3.3) into
the following standard SDP in the variables Γi+1, Ai, Ki, and ρ:

minimize Tr
(
D
[
I −I ]Γi+1

[
I −I ]T)

subject to

[
B(α)− ρNNT M(α)T

M(α) ρI

]
≥ 0,

Tr (Γi+1) ≤ b,

(3.12)

where the variable α contains columns of the matrices Γi+1, Ki, and Ai, and the
matrices B(α), N, and M(α) are given by (3.9) and (3.11), respectively.

Note that, for each i, problem (3.12) is fixed in dimension (i.e., does not grow with
i). It is a standard SDP problem which has a unique solution and satisfies the usual
regularity condition, provided that the primal and dual of (3.12) are strictly feasible
and for every α, M(α) �= 0 and [ N MT (α) ]T is full column-rank. As such, the
problem can be solved very efficiently by an interior point method; in particular, by the
homogeneous self-dual method [10, 12]. In our computational experience, the number
of iterations required to solve each SDP is fixed (no more than 8), and therefore the
proposed technique can be regarded as a recursive filtering method.

To make a formal comparison of the computational complexity of our robust
filtering method with those of [15, 13], we need to recall the notations of our model
(2.1): n denotes the number of states, m denotes the number of inputs, and p denotes
the number of measured outputs. Xie’s method [15] is a “one-shot” method, and hence
the robust observer matrix is calculated only once. The cost of this computation
is O((n + p)3). However, Xie’s method [15] works only for time-invariant systems.
On the other hand, Theodor’s method [13] is iterative. The cost per iteration is
O((n + p)3 + n2m). Our method is also iterative. Using a general purpose interior
point SDP solver requires O((n +m + p)5/2(n2 + np)2) per filtering iteration. It is
interesting to examine the above costs as the number of states in the model, n, grows.
In that case, the total computational cost of Xie’s method [15] is O(n3), while the
cost per (filtering) iteration of Theodor’s method [13] and of our proposed method
are O(n3) and O(n6.5), respectively. It is also interesting to examine the above costs
as the number of measured outputs, p, grows. In that case, the total cost of Xie’s
method [15] is O(p3), while the cost per (filtering) iteration of Theodor’s method [13]
and of our method are O(p3) and O(p4.5), respectively. We believe it is possible to
reduce the complexity per iteration for our method by exploiting the sparsity structure
present in our problem. This is an interesting issue for future investigation.

We now make an observation regarding the scaling of the matrices C̄i and Ēi. In
particular, these two matrices can be scaled and replaced by C̄i/µ and µĒi, respec-
tively. Such a scaling does not change the formulation of (3.3), nor does it affect the
formulation of (3.12), because the latter is completely equivalent to the former. This
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shows that the solutions to our reformulated robust filtering problem are independent
of the scaling factor µ. This property is in contrast to the robust filter proposed
in [13], where the solutions are “highly sensitive” [13] to the choice of µ. The scale
invariance of our method with the choice of µ is a clear advantage.

However, our method also has a disadvantage in that it is sensitive to the choice
of b in the second constraint in (3.12), Tr (Γi+1) ≤ b. This constraint is used to ensure
that the matrix Γi+1 is bounded. This is important because otherwise the optimal
solution of (3.12), Σ̄i+1, may become progressively ill-conditioned as i becomes large.
This phenomenon has been observed in computer simulations. In general, large values
of b will allow the matrices {Σ̄i : i = 1, 2, . . .} to become rather ill-conditioned, while
small values of b may render the subproblem (3.12) infeasible. The same remark
applies to the alternative formulation (2.16), where a value of β > 0 needs to be
selected. Through computer experiments we found that both formulations led to
filters with similar behavior and performance.

4. Numerical examples. In this section, the performance of the proposed ro-
bust state-estimation method is illustrated via simulation results. Two numerical
examples are given here; the first one is the same problem as that used in [13, 15],
and the second one is a target-tracking problem.

4.1. Example 1. In this example the following discrete-time linear uncertain
state-space model is used:

xi+1 =

[
0 −0.5
1 1 + δ

]
xi +

[−6
1

]
ui, |δ| < 0.3,

yi = [−100 10 ]xi + vi,(4.1)

si = [ 1 0 ]xi,

where ui and vi are uncorrelated zero-mean white noise signals with variances Q̄ = 1
and R̄ = 1, respectively. The value of ε in (2.4) is set to zero, so that there is no
uncertainty in the knowledge of noise statistics. The uncertainty in (4.1) is described
by the matrices

C1 = [0 10]T , C2 = 0, E = [0 0.03]

and the scalar parameter z, |z| ≤ 1.
To determine the robust filter at each instant i, we use the Matlab toolbox

SeDuMi [12] to solve the robust SDP (3.12). This code requires no initialization since
it is based on the self-dual formulation of the SDP. Solving the SDP (3.12) at each
instant i with b = 900 and D = diag(1, 5) yields a robust state estimator [of the form
(2.5)] which converges to

A =

[−0.1711 −0.4624
1.4080 1.1786

]
and K =

[−0.0051
0.0047

]
.

Note that for stability reasons the estimator (as seen in D) weights the second compo-
nent of xi more heavily than the first component even though the goal is to estimate
the first component of xi. In our simulation studies, the proposed technique is com-
pared with the Kalman and H∞ filters and the robust filters of [13, 15]. For this
purpose, steady-state Kalman and H∞ filters are designed for the nominal system of
(4.1), i.e., δ = 0. We then apply these filters to system (4.1) with δ = 0, δ = 0.3,
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Table 1
Steady-state estimation error variances for different filters (results are averaged over 100 runs).

Filter δ = −0.3 δ = 0 δ = 0.3
Nominal Kalman filter 551.2 36.0 8352.8
Nominal H∞ filter 96.0 47.2 893.9
The robust filter of [13] 51.4 51.3 54.4
The robust filter of [15] 64.0 61.4 64.4
The robust filter of [3] 51.5 49.1 53.8
Proposed robust filter 46.2 45.6 51.9

Table 2
Steady-state estimation error variances for our method and the method of [3].

Filter δ = −0.09 δ = 0 δ = 0.09
The robust filter of [3] 37.75 38.19 41.47
Proposed robust filter 37.38 37.78 40.31

and δ = −0.3. The steady-state estimation error variances (i.e., E{(si − ŝi)
2} for

sufficiently large i) for the filters are displayed in Table 1. It is clear from the table
that the proposed robust filter performs far better than the nominal Kalman and H∞

filters in the presence of modelling error.
Both our method and the methods of [13, 15] require the tuning of a certain

parameter. In our case, we need to adjust the parameter b in order to prevent the
iterates from becoming ill-conditioned, and the diagonal elements of D in order to get
the best estimator. The methods of [13, 15] require the adjustment of the factor µ
in the scaling of Ci/µ and µEi. Our experiments suggest that our method works for
b ∈ [880, 5000], while the method of [13] converges for µ ∈ (0, 1.703] and diverges for
values outside this range. The best performance is achieved with µ = 1.703. (Note
that the authors of [13] reported their choice of µ = 2.2, but our own implementation
of their method showed that this value of µ leads to divergence instead.)

The filter performance for the robust filter of [15] stated in Table 1 is quoted from
[13]. We should point out that we could not reproduce the design of the robust filter
[13] using their design method. With our own (simple) MATLAB implementation of
their method, we could only produce a filter with µ = 1.703, whose error covariances
are 51.4, 51.3, and 54.4, rather than 46.6, 45.2, and 54.1 (as claimed in [13]) for
model errors of δ = −0.3, 0, and 0.3, respectively. From Table 1, we can see that
the performance of the robust filters [13, 15] are inferior to the filter designed by the
robust SDP method: the worst-case performance (for δ = −0.3, 0, 0.3) is 51.9 for
our proposed robust filter, and is 54.2 and 64.4, respectively, for the robust filters of
[13] and [15]. From this example, it appears that our robust filter design is slightly
superior.

Recently our approach has been further extended by Fu, de Souza, and Luo [3],
who introduced multiple scaling factors in the SDP formulation and showed perfor-
mance improvement when compared to the single-scaling-factor case. It should be
pointed out that the single-scaling-factor case of [3] corresponds to the algorithm
considered in this paper, except that we have an additional boundedness constraint
Tr (Γi+1) ≤ b in our SDP subproblem (3.12). We simulated the single-scaling-factor
case of [3] in Table 1 for comparison. From the simulation results, our method is
slightly superior to the method of [3] in the single-scaling-factor case. This is due
to the differences in the way the ill-conditioning of the bound on the covariance ma-
trix is handled. The simulation results stated in [3] are for C1 = [0 3]T (instead of
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Fig. 1. Trajectories of the target-tracking model with uncertainty δ = −0.05 (left), δ = 0
(middle), δ = 0.05 (right).

C1 = [0 10]T ), which means that the simulated cases in [3] have only 30% of the
uncertainty considered in Table 1. We also compared our method with the method
of [3] for the case C1 = [0 3]T , and the simulation results show that our method is
still slightly superior to the method of [3] (Table 2).

4.2. A tracking example. In this example a target-tracking case is considered.
The discrete-time state-space model is given by

xi+1 =

[
0.95 −0.1 + δ
0.05 0.95

]
xi +

[
1
1

]
ui, |δ| < 0.05,

yi = [ 1 0 ]xi + vi,(4.2)

si = [ 1 0 ]xi,

where ui and vi are uncorrelated zero-mean white noise signals with variances Q̄ = 1
and R̄ = 1, respectively. The value of ε in (2.4) is set to zero, so that there is no
uncertainty in the knowledge of noise statistics. The uncertainty in (4.2) is described
by the matrices

C1 = [0.05 0]T , C2 = 0, E = [0 1]

and the uncertainty parameter z, |z| ≤ 1.

In this model, the state vector xi represents the position of a target in a two-
dimensional coordinate system, and the observation yi is a noise-corrupted version of
the first coordinate. The target is making a counter-clockwise turn starting from the
position x0 = [500, 500]T . The unknown parameter δ describes the uncertainty in the
turning rate of the trajectory. Three possible trajectories from this model are shown
in Figure 1.

Solving the SDP (3.12) for each value of i, with b = 1100 and D = diag(1, 7),
yields a robust state estimator (of the form (2.5)) which converges to

A =

[
0.9500 −0.1016
0.0500 0.9644

]
and K =

[
0.7560
0.0130

]
.
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Table 3
Steady-state estimation error variances for different filters for the tracking problem (results are

averaged over 100 runs).

Filter δ = −0.05 δ = 0 δ = 0.05
Nominal Kalman filter 6425.2 1.4 11404.0
The robust filter of [13] 199.7 53.6 703.5
The robust filter of [15] 1309.6 666.9 549.2
Proposed robust filter 187.9 52.8 693.4

We have compared our method with the methods of [13, 15], as well as the nominal
Kalman filter. The result is shown in Table 3.

From the simulation results, it appears that the filter designed by our method
is superior to the filters obtained via the methods of [13] and [15]. In designing the
filters by the methods of [13, 15], we have adjusted their corresponding adjustable
parameters (e.g., the parameter µ in the scaling of Ci/µ and µEi) and picked the
filters which generate the best performance guarantees. The method of [15] requires
that an additional parameter, denoted ε in [15], be tuned. We tuned this parameter
to a value of 10 in our implementation. Note that, in the presence of uncertainty, the
nominal Kalman filter performs far worse than the robust filters, as expected.

We have also compared our robust filter design to the robust filters of [13, 15]
in higher-dimensional cases. We found that the relative steady-state performance
of these filters is similar to that in the above examples. From the computational
standpoint, our method is quite efficient, as the SDP solved at each instant has a fixed
dimension, and the interior point method used to solve it is fast. However, our method
does incur a greater per-sample computational cost than methods based on analytic
recursions, such as the Kalman filter and the robust Kalman filter in [13]. (The
robust filter in [15] is a “one-shot” filter which does not vary with i.) For example, on
a 200MHz Pentium Pro workstation, using a general purpose SDP solver [12] under
the Matlab environment, the per-sample computation time of our method in the
above examples was around 1s, whereas that of the method in [13] was around 5ms.
(Recall, however, that the performance of the method in [13] is “highly sensitive”
to the parameter which must be tuned.) In future work, it will be useful to design
special purpose interior point algorithms which exploit the matrix structure of the
SDP in (3.12) to reduce the per-sample computational complexity of our new method.
Such a reduction of computational complexity is essential if one is to implement the
proposed robust filtering algorithm on a DSP (digital signal processing) chip for a
real-time filtering application.

5. Conclusions. In this paper, we have proposed a new state estimator for linear
uncertain systems. The method is robust to norm-bounded parameter uncertainties
on the system model as well as to bounded uncertainties on the noise statistics. In
the new technique, the estimation problem was formulated as a convex optimization
problem, which is then solved using the recent primal-dual self-dual interior point
method. This requires at most 8 iterations (or matrix inversions) and therefore can
be regarded as a recursive filtering method. The formulation guarantees the existence
of robust solutions via a semidefinite program and, under some conditions, the solution
to that semidefinite program is unique. The proposed technique compared favorably
with the well-known Kalman and H∞ filters and the “robust” filters of [13, 15]. When
applied to the problem of target tracking, the new method has led to a significant
improvement in tracking performance.
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Abstract. We consider the general nonlinear optimization problem in 0-1 variables and provide
an explicit equivalent positive semidefinite program in 2n − 1 variables. The optimal values of both
problems are identical. From every optimal solution of the former, one easily finds an optimal solution
of the latter, and conversely, from every solution of the latter, one may construct an optimal solution
of the former. For illustration, the equivalent positive semidefinite program is explicated for quadratic
0-1 programs and MAX-CUT in R

3. For unconstrained 0-1 programs, a special representation in
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1. Introduction. This paper is concerned with the general nonlinear problem
in 0-1 variables

P → p∗ := min
x∈{0,1}n

{g0(x) | gk(x) ≥ 0, k = 1, . . . ,m},(1.1)

where all the gk(x) : R
n → R are real-valued polynomials of degree 2vk − 1 if odd,

or 2vk if even. Equality constraints are allowed via two opposite inequalities. This
general formulation encompasses 0-1 linear and nonlinear programs, among them the
quadratic assignment problem. In the MAX-CUT problem, the discrete set {0, 1}n is
replaced by {−1, 1}n.

In our recent work [7], and for general optimization problems involving poly-
nomials, we have provided a sequence {Qi} of positive semidefinite (psd) programs
(or semidefinite program (SDP) relaxations) with the property that inf Qi ↑ p∗ as
i → ∞, under a certain assumption on the semialgebraic constraint set {gk(x) ≥
0, k = 1, . . . ,m}. The approach was based on recent results in real algebraic geome-
try on the representation of polynomials, positive on a compact semialgebraic set, a
theory dual to the theory of moments. For general 0-1 programs—that is, with the
additional constraint x ∈ {0, 1}n—we have shown in Lasserre [8] that this assumption
on the constraint set is automatically satisfied and the SDP relaxations {Qi} simplify
to a specific form with at most 2n− 1 variables, no matter how large i might be. The
approach followed in [7] and [8] is different in spirit from the lift and project iterative
procedure of Lovász and Schrijver [9] for 0-1 programs (see also extensions in Kojima
and Tunçel [5]), which requires that a weak separation oracle be available for the
homogeneous cone associated with the constraints. In the lift and project procedure,
the description of the convex hull of the constraint set is implicit (via successive pro-
jections), whereas we provide in this paper an explicit description of the equivalent
psd program, with a simple interpretation. Although different, our approach is closer
in spirit to the successive linear program (LP) relaxations in the RLT (reformulation
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linearization technique) procedure of Sherali and Adams [12] for 0-1 linear programs,
in which each of the linear original constraints is multiplied by suitable polynomials
of the form Πi∈J1xiΠj∈J2(1 − xj) and then linearized in a higher dimension space
via several changes of variables to obtain an LP. The last relaxation in the hierarchy
of RLT produces the convex hull of the feasible set. This also extends to a special
class of 0-1 polynomial programs and mixed integer programs (see Sherali and Adams
[12, 13]).

The contribution of the present paper is threefold.
(a) First, we show that in addition to the asymptotic convergence already proved

in [7, 8], the sequence of SDP relaxations {Qi} is in fact finite; that is, the optimal
value p∗ is also min Qi for all i ≥ n + v with v := maxk vk. Moreover, every optimal
solution y∗ of Qi is the (finite) vector of moments of some probability measure sup-
ported on optimal solutions of P. Therefore, every 0-1 program is in fact equivalent
to a continuous psd program in 2n − 1 variables for which an explicit form as well
as a simple interpretation are available. The projection of the feasible set defined by
the linear matrix inequality (LMI) constraints of this psd program onto the subspace
spanned by the first n variables provides the convex hull of the original constraint
set. Note that the result holds for arbitrary 0-1 constrained programs, that is, with
arbitrary polynomial criteria and constraints. (No weak separation oracle is needed
as in the lift and project procedure [9].) This is because the theory of representation
of polynomials positive on a compact semialgebraic set and its dual theory of mo-
ments make no assumption on the semialgebraic set, except compactness (it can be
nonconvex, disconnected). For illustration purposes, we provide the equivalent psd
programs for quadratic 0-1 programs and MAX-CUT problems in R

3.
(b) As a by-product, for unconstrained 0-1 problems P, we show that with g0(x)

an arbitrary polynomial, g0(x)− p∗ can be written as a sum of squares of degree less
than n + v, weighted by the polynomials x2

k − xk defining the integrality constraints.
For instance, for an arbitrary quadratic form x′Qx we obtain that

x′Qx− p∗ =
∑
j

qj(x)2 +

n∑
k=1

(x2
k − xk)


∑

j

ukj(x)2 −
∑
j

vkj(x)2


(1.2)

for some polynomials {qj(x)} of degree at most n+1 and some polynomials {ukj(x)},
{vkj(x)} of degree at most n. A similar result also holds for MAX-CUT problems
(in (1.2) replace (x2

k − xk) by (x2
k − 1)). Hence, getting an optimal solution of an

unconstrained 0-1 program at a relaxation of order less than n depends on our ability
to represent g0(x)− p∗ as in (1.2), but with polynomials of degree less than n.

(c) For practical computational purposes, the preceding results are of little value,
for the number of variables grows exponentially with the size of the problem. For-
tunately, in many cases, the optimal value is also the optimal value of some Qi for
i 
 n. For instance, on a sample of 50 randomly generated MAX-CUT problems in
R

10, the optimal value p∗ was always obtained at the Q2 relaxation (in which case Q2

is a psd program with “only” 385 variables, compared with 210−1 = 1023). However,
when solving Qi, one would like to determine whether the optimal value p∗ is indeed
achieved in the case of multiple optimal solutions of P (as in MAX-CUT problems
where both x∗ and −x∗ are solutions); it is not easy to check by a direct inspection of
an optimal solution y∗ of Qi whether y∗ is the vector of moments of some probability
measure supported on optimal solutions of P. Our next contribution is to provide a
test at an optimal solution of Qi to detect whether p∗ = min Qi. This test amounts to
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checking whether two moment matrices have same rank. The proof relies on a recent
deep result of Curto and Fialkow [2] on the K-moment problem.

In a sense, one may say that nonlinear 0-1 optimization problems are “easier”
than nonconvex continuous optimization problems. For the former, an equivalent psd
program is available and the sequence of SDP relaxations is finite, whereas for the
latter only asymptotic convergence is ensured (with, however, finite termination in
many cases, that is, when the polynomial g0(x) − p∗ has a certain representation in
terms of weighted squares (see Lasserre [7])).

2. Notation and definitions. We adopt the notation in Lasserre [7], which,
for the sake of clarity, we reproduce here.

Given any two real-valued symmetric matrices A,B, let 〈A,B〉 denote the usual
scalar product trace(AB) and let A  B (resp., A � B) stand for A − B positive
semidefinite (resp., A−B positive definite). Let

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

2
n, . . . , x

r
1, . . . , x

r
n(2.1)

be a basis for the vector space of real-valued polynomials of degree at most r, and let
s(r) be its dimension. Then, an r-degree polynomial p(x) : R

n → R is written

p(x) =
∑
α

pαx
α, x ∈ R

n,

where

xα = xα1
1 xα2

2 · · ·xαn
n , with

n∑
i=1

αi = k,

is a monomial of degree k with coefficient pα. Denote by p = {pα} ∈ R
s(r) the

coefficients of the polynomial p(x) in the basis (2.1). Hence, the respective vectors of
coefficients of the polynomials gi(x), i = 0, 1, . . . ,m, in (1.1) are denoted {(gi)α} =
gi ∈ R

s(wi), i = 0, 1, . . . ,m, if wi is the degree of gi.
We next define the important notions of moment matrix and localizing matrix.

2.1. Moment matrix. Given an s(2r)-sequence (1, y1, . . .), let Mr(y) be the
moment matrix of dimension s(r) (denoted M(r) in Curto and Fialkow [2]), with rows
and columns labelled by (2.1). For illustration purposes, consider the two-dimensional
case. The moment matrix Mr(y) is the block matrix {Mi,j(y)}0≤i,j≤r defined by

Mi,j(y) =




yi+j,0 yi+j−1,1 . . . yi,j
yi+j−1,1 yi+j−2,2 . . . yi−1,j+1

. . . . . . . . . . . .
yj,i yi+j−1,1 . . . y0,i+j


 .(2.2)

Thus, with n = 2 and r = 2, one obtains

M2(y) =




1 | y10 y01 | y20 y11 y02

− − − − − − −
y10 | y20 y11 | y30 y21 y12

y01 | y11 y02 | y21 y12 y03

− − − − − − −
y20 | y30 y21 | y40 y31 y22

y11 | y21 y12 | y31 y22 y13

y02 | y12 y03 | y22 y13 y04




.
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Another more intuitive way of constructing Mr(y) is as follows. If Mr(y)(1, i) = yα
and Mr(y)(j, 1) = yβ , then

Mr(y)(i, j) = yα+β , with α + β = (α1 + β1, . . . , αn + βn).(2.3)

Mr(y) defines a bilinear form 〈., .〉y, on the space Ar of real-valued polynomials of
degree at most r, by

〈q(x), v(x)〉y := 〈q,Mr(y)v〉, q(x), v(x) ∈ Ar,

and if y is a sequence of moments of some measure µy, then

〈q,Mr(y)q〉 =

∫
q(x)2 µy(dx) ≥ 0,(2.4)

so that Mr(y)  0.

2.2. Localizing matrix. If the entry (i, j) of the matrix Mr(y) is yβ , let β(i, j)
denote the subscript β of yβ . Next, given a polynomial θ(x) : R

n → R with coefficient
vector θ, we define the matrix Mr(θy) by

Mr(θy)(i, j) =
∑
α

θαy{β(i,j)+α}.(2.5)

For instance, with

M1(y) =


 1 y10 y01

y10 y20 y11

y01 y11 y02


 and x �→ θ(x) = a− x2

1 − x2
2,

we obtain

M1(θy) =


 a− y20 − y02, ay10 − y30 − y12, ay01 − y21 − y03

ay10 − y30 − y12, ay20 − y40 − y22, ay11 − y31 − y13

ay01 − y21 − y03, ay11 − y31 − y13, ay02 − y22 − y04


 .

In a manner similar to what we have in (2.4), if y is a sequence of moments of some
measure µy, then

〈q,Mr(θy)q〉 =

∫
θ(x)q(x)2 µy(dx)(2.6)

for every polynomial q(x) : R
n → R with coefficient vector q ∈ R

s(r). Therefore,
Mr(θy)  0 whenever µy has its support contained in the set {θ(x) ≥ 0}. In Curto
and Fialkow [2], Mr(θy) is called a localizingmatrix (denoted by Mθ(r+v) if deg θ = 2v
or 2v − 1).

The theory of moments identifies those sequences y = (y1, . . .) with Mr(y)  0
that are moment-sequences. The K-moment problem identifies those sequences y that
are moment-sequences of a measure with support contained in the semialgebraic set
K. In duality with the theory of moments is the theory of representation of positive
polynomials, which dates back to Hilbert’s 17th problem. For details and recent
results, the interested reader is referred to Curto and Fialkow [1, 2], Jacobi [3], Jacobi
and Prestel [4], Simon [14], Schmüdgen [11], and the many references therein.
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3. Main result. Consider the 0-1 optimization problem P in (1.1) where the
gi(x) are all real-valued polynomials, i = 0, . . . ,m. Let

K := {x ∈ {0, 1}n | gi(x) ≥ 0, i = 1, . . . ,m}
be the feasible set.

For the sake of simplicity in later proofs, we treat the 0-1 integrality constraints
x2
i = xi as two opposite inequalities gm+i(x) = x2

i −xi ≥ 0 and gm+n+i(x) = xi−x2
i ≥

0, and we redefine the set K to be

K = {gi(x) ≥ 0, i = 1, . . . ,m + 2n}.(3.1)

However, in view of the special form of the constraints gm+k(x) ≥ 0, k = 1, . . . , 2n,
we will provide a simpler form of the SDP relaxations {Qi} below.

Depending on its parity, let wk := 2vk or wk := 2vk − 1 be the degree of the
polynomial gk(x), k = 1, . . . ,m + 2n. When needed below, for i ≥ maxk wk, the
vectors gk ∈ R

s(wk) are extended to vectors of R
s(i) by completing them with zeros.

As we minimize g0, we may and will assume that its constant term is zero, that is,
g0(0) = 0.

For optimization purposes, we could use the integrality constraints x2
k = x, k =

1, . . . , n, to simplify the polynomials gk, k = 0, . . . ,m. However, for the representation
results of section 3.2, we need to consider the polynomials gk, k = 0, . . . ,m, as given
in their original form.

For i ≥ maxk vk, consider the following family {Qi} of psd programs:

Qi




min
y

∑
α

(g0)αyα

Mi(y)  0,
Mi−vk(gky)  0, k = 1, . . . ,m + 2n,

(3.2)

with respective dual problems

Q
∗
i




min
X,Zk	0

−X(1, 1)−
m+2n∑
k=1

gk(0)Zk(1, 1)

〈X,Bα〉+

m+2n∑
k=1

〈Zk, Ck
α〉 = (g0)α ∀α �= 0,

(3.3)

where we have written

Mi(y) =
∑
α

Bαyα, Mi−vk(gky) =
∑
α

Ck
αyα, k = 1, . . . ,m + 2n,

for appropriate real-valued symmetric matrices Bα, C
k
α, k = 1, . . . ,m + 2n.

Note that the localizing matrices Mi−vk(gky) are easily obtained from the data
{gk(x)} of the problem by (2.5).

Interpretation of Qi. The LMI constraints of Qi state necessary conditions for y to
be the vector of moments up to order 2i, of some probability measure µy with support
contained in K. This clearly implies that inf Qi ≤ p∗, as the vector of moments of the
Dirac measure at a feasible point of P is feasible for Qi.

Interpretation of Q
∗
i . Let X,Zk  0 be a feasible solution of Q

∗
i with value ρ.

Write

X =
∑
j

tjt
′
j and Zk =

∑
j

tkjt
′
kj , k = 1, . . . ,m + 2n.
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Then, from the feasibility of (X,Zk) in Q
∗
i , it was shown in Lasserre [7, 8] that

g0(x)− ρ =
∑
j

tj(x)2 +

m+2n∑
k=1

gk(x)


∑

j

tkj(x)2


 ,(3.4)

where the polynomials {tj(x)} and {tkj(x)} have respective coefficient vectors {tj}
and {tkj} in the basis (2.1).

As ρ ≤ p∗, g0(x) − ρ is nonnegative on K (strictly positive if ρ < p∗); one
recognizes in (3.4) a decomposition into a weighted sum of squares of the polynomial
g0(x) − p∗, strictly positive on K, as in the theory of representation of polynomials,
strictly positive on a compact semialgebraic set K (see, e.g., Schmüdgen [11], Putinar
[10], Jacobi [3], Jacobi and Prestel [4]). Indeed, when the set K has a certain property
(satisfied here), the “linear” representation (3.4) holds (see Lasserre [7, 8]).

Hence, both programs Qi and Q
∗
i illustrate the duality between the theory of

moments and the theory of positive polynomials. Among other results, it has been
shown in Lasserre [8, Theorem 3.3] (see also Lasserre [7, Theorem 4.2]) that

inf Qi ↑ p∗ as i→∞.(3.5)

In view of the construction of the localizing matrices in (2.5) and the form of the
polynomials gk for k > m, the constraints Mi−1(gm+ky)  0 and Mi−1(gm+n+ky)  0
for k = 1, . . . , n (equivalently, Mi−1(gm+ky) = 0) simply state that the variable yα
with α = (α1, . . . , αn) can be replaced with the variable yβ with βi := 1 whenever
αi ≥ 1. Therefore, a simpler form of Qi is obtained as follows.

Ignore the constraints Mi−vk(gky)  0 for k = m + 1, . . . ,m + 2n corresponding
to the integral constraints, and make the above substitution yα → yβ in the matrices
Mi(y) and Mi−vk(gk(y)), k = 1, . . . ,m. For instance, in R

2 (n = 2), the matrix

M2(y) =




1 | y10 y01 | y20 y11 y02

− − − − − − −
y10 | y10 y11 | y30 y21 y12

y01 | y11 y02 | y21 y12 y03

− − − − − − −
y20 | y30 y21 | y40 y31 y22

y11 | y21 y12 | y3,1 y22 y13

y02 | y12 y03 | y22 y13 y04




(3.6)

is replaced with

M̂2(y) =




1 | y10 y01 | y10 y11 y01

− − − − − − −
y10 | y10 y11 | y10 y11 y11

y01 | y11 y01 | y11 y11 y01

− − − − − − −
y10 | y10 y11 | y10 y11 y11

y11 | y11 y11 | y11 y11 y11

y01 | y11 y01 | y11 y11 y01




,(3.7)

and only the variables y10, y01, y11 appear in all the relaxations Qi. Interpreted in
terms of polynomials, the integrality constraints x2 = x imply that a monomial
xα1

1 xα2
2 · · ·xαn

n can be replaced by

xβ1

1 xβ2

2 · · ·xβn
n with βi =

{
0 if αi = 0,
1 if αi ≥ 1.

(3.8)
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Therefore, there are no more than 2n − 1 variables yβ (the number of monomials of
degree at most n), and the relaxation Qi has the simplified form

Qi




min
y

∑
α

(g0)αyα

M̂i(y)  0,

M̂i−vk(gky)  0, k = 1, . . . ,m,

(3.9)

where the LMI constraints associated with the integral constraints are removed and
the moment matrix Mi(y) as well as the localizing matrices Mi−vk(gky), k = 1, . . . ,m,

have incorporated the substitutions yα → yβ indicated above and are denoted M̂i(y)

and M̂i−vk(gky).
We begin with the following crucial result.
Proposition 3.1. (a) All the relaxations Qi involve at most 2n−1 variables yα.
(b) For all the relaxations Qi with i > n, one has

rank Mi(y) = rank Mn(y).(3.10)

Proof. Part (a) is just a consequence of the comment preceding Proposition 3.1.
To get (b), observe that with i > n, one may write

Mi(y) =


 Mn(y) | B

− −
B′ | C




for appropriate matrices B,C, and we next prove that each column of B is identical
to some column of Mn(y).

Indeed, remember from (2.3) how an element Mi(y)(k, p) can be obtained. Let
yγ = Mi(y)(k, 1) and yα = Mi(y)(1, p). Then

Mi(y)(k, p) = yη with ηi = γi + αi, i = 1, . . . , n.(3.11)

Now, consider a column Bj of B, that is, some column Mi(y)(., p) of Mi(y), with first
element yα = Bj(1) = Mi(y)(1, p). Therefore, the element B(k) (or, equivalently,
the element Mi(y)(k, p)) is the variable yη in (3.11). Note that α corresponds to a
monomial in the basis (2.1) of degree larger than n, say α1 · · ·αn. Associate to this
column Bj the column v := Mn(y)(., q) of Mn(y), whose element v(1) = Mn(y)(1, q) =
yβ (for some q) with βi = 0 if αi = 0 and 1 otherwise, for all i = 1, . . . , n. Then the
element v(k) = Mn(y)(k, q) is obtained as

v(k) = yδ with δi = γi + βi, i = 1, . . . , n.

But then, as for each entry yα of Mj(y), we can make the substitution αi ↔ 1
whenever αi ≥ 1; it follows that the element v(k) is identical to the element B(k). In
other words, each column of B is identical to some column of Mn(y).

If we now write

Mj(y) = [A|D] with A :=


 Mn(y)

−
B′


 and D :=


 B
−
C


 ,

then, with exactly same arguments, every column of D is also identical to some column
of A, and consequently, (3.10) follows.
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For instance, when n = 2, the reader can check that M3(y) (or M̂3(y)) has the

same rank as M2(y) (or M̂2(y)) in (3.6) (or in (3.7)). We now can state our main
result in the following theorem.

Theorem 3.2. Let P be the problem defined in (1.1) and let v := maxk=1,...,m vk.
Then for every i ≥ n + v

(a) Qi is solvable with p∗ = min Qi, and to every optimal solution x∗ of P corre-
sponds the optimal solution

y∗ := (x∗
1, . . . , x

∗
n, . . . , (x∗

1)2i, . . . , (x∗
n)2i)(3.12)

of Qi;
(b) every optimal solution y∗ of Qi is the (finite) vector of moments of a proba-

bility measure finitely supported on s optimal solutions of P, with s = rank Mi(y) =
rank Mn(y).

Proof. Let y be an admissible solution of Qn+v. From Proposition 3.1, we have
that rank Mi(y) = rank Mn(y) for all i > n (in particular, for i = n+v). From a deep
result of Curto and Fialkow [2, Theorem 1.6, p. 6], it follows that y is the vector of
moments of some rank Mn(y) atomic measure µy. (Mn+1(y) is called a flat positive
extension of Mn(y), and it follows that Mn+1(y) admits unique flat extension moment
matrices Mn+2(y), Mn+3(y), etc. (see Curto and Fialkow [2, p. 3]).) Moreover, from
the constraints Mn+v−vk(gky)  0 for all k = 1, . . . ,m + 2n, it also follows that µy is
supported on K (see Theorem 1.6 in Curto and Fialkow [2, p. 6], stated in dimension 2
for the complex plane, but also valid for n real or complex variables (see the comments
on page 2 in [2])). In the notation of Theorem 1.6 in Curto and Fialkow [2], M(n)
is our moment matrix Mn(y), and the localizing matrix Mgk(n + vk) is our localizing
matrix Mn+v−vk(gk(y)) associated with the constraint gk(x) ≥ 0.

But then, as µy is supported on K, it also follows that

∑
α

(g0)αyα =

∫
K

g0(x) µy(dx) ≥ p∗.

From this and inf Qi ≤ p∗, statement (a) in Theorem 3.2 follows for i = n + v. For
i > n + v, the result follows from p∗ ≥ inf Qi+1 ≥ inf Qi for all i. Finally, y∗ in (3.12)
is obviously admissible for Qi with value p∗ and therefore is an optimal solution of
Qi.

(b) follows from same arguments as in (a). First observe that from (a), Qi is
solvable for all i ≥ n + v. Now, let y∗ be an optimal solution of Qi. From (a),
we have that y∗ is the vector of moments of an atomic measure µy∗ supported on
s (= rank Mn(y)) points x1, . . . , xs ∈ K; that is, with δ{.} the Dirac measure at “.”,

µy∗ =

s∑
j=1

γjδxj
with γj ≥ 0,

s∑
j=1

γj = 1.

Therefore, from g0(xj) ≥ p∗ for all j = 1, . . . , s and from

p∗ = min Qi =
∑
α

(g0)αy
∗
α

=

∫
K

g0(x) µy∗(dx) =

s∑
j=1

γjg0(xj),

it follows that each point xj must be an optimal solution of P.
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Hence, Theorem 3.2 shows that every 0-1 program is equivalent to the psd program
Qn+v with 2n − 1 variables. An alternative proof of Theorem 3.2 which does not
invoke results of algebraic geometry is proposed in the recent work of Laurent [6],
where the relaxations {Qi} are shown to be stronger than the Sherali and Adams
linear relaxations [12]. As the latter converge in finitely many steps, so do the former.

Remark 3.3. As a consequence of Proposition 3.1, in all relaxations Qi in (3.9)

with i > n, one may replace the constraint M̂i(y)  0 by M̂n(y)  0. Indeed, if

M̂n(y)  0, then, from the definition of M̂i(y) and the proof of Proposition 3.1, it

follows that M̂i(y)  0 whenever i > n.

Moreover, and in the same spirit, at any relaxation Qi, the matrix M̂i(y) can be

reduced in size. When looking at the kth column M̂i(y)(., k), if M̂i(y)(1, k) = M̂i(y)(p)

for some p < k, then the whole column M̂i(y)(., k) as well as the corresponding line

M̂i(y)(k, .) can be deleted. For instance, with M̂2(y) as in (3.7), the constraint

M̂2(y) =




1 | y10 y01 | y10 y11 y01

− − − − − −
y10 | y10 y11 | y10 y11 y11

y01 | y11 y01 | y11 y11 y01

− − − − − −
y10 | y10 y11 | y10 y11 y11

y11 | y11 y11 | y11 y11 y11

y01 | y11 y01 | y11 y11 y01



 0

is equivalent to the constraint


1 | y10 y01 | y11

− − − −
y10 | y10 y11 | y11

y01 | y11 y01 | y11

− − − −
y11 | y11 y11 | y11



 0,

for the 4th and 6th columns of M̂2(y) are the same as the 2nd and 3rd columns. Thus,

in the matrix M̂i(y), one retains only the columns (and the rows) corresponding to
the monomials in the basis (2.1) that are distinct after the simplification x2

i = xi. The

same simplification occurs for the matrices of the LMI constraints M̂i−vk(gky)  0.

Therefore, in the Qi relaxation (3.9), the above simplification of the matrix M̂i(y) is

an r × r matrix with r :=
∑i
k=0

(
i
k

)
= 2i.

Finally, in view of Remark 3.3, the relaxation Qn+v has the equivalent simpler
form 


min
y

∑
α

(g0)αyα

M̂n(y)  0,

M̂n+v−vk(gky)  0, k = 1, . . . ,m,

(3.13)

since M̂n(y)  0 implies M̂n+v(y)  0.
Interpretation. The interpretation of the relaxation Qn+v is as follows. The

unknown variables {yα} should be interpreted as the moments of some probability
measure µ, up to order n + v. The LMI constraints Mn+v−vk(gky)  0 state that∫

gk(x)q(x)2 dµ ≥ 0 for all polynomials of degree ≤ n + v − vk(3.14)
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(as opposed to only gk(x) ≥ 0 in the original description). The integrality constraints

x2
i = xi are hidden in the special form of the matrix M̂n(y). The result of Curto

and Fialkow [2] used in the proof of Theorem 3.2 ensures that the support of µ is
concentrated on {0, 1}n ∩ [∩mk=1{gk(x) ≥ 0}].

Therefore, the projection of the feasible set of Qn+v onto the subspace spanned
by {y10...0, . . . , y0...01} is the convex hull of the original constraint set K := {0, 1}n ∩
[∩mk=1{gk(x) ≥ 0}].

3.1. Examples. For illustration purposes, we provide below the explicit de-
scription of the equivalent psd programs for quadratic 0-1 programs and MAX-CUT
programs in R

3, respectively.
Quadratic 0-1 programs. Consider the quadratic program min{x′Ax |x ∈

{0, 1}3} for some real-valued symmetric matrix A ∈ R
3×3. As the only constraints

are the integral constraints x ∈ {0, 1}n, this is equivalent to the psd program

min A11y100 + A22y010 + A33y001 + A12y110 + A13y101 + A23y011

M̂3(y) =




1 y100 y010 y001 y110 y101 y011 y111

y100 y100 y110 y101 y110 y101 y111 y111

y010 y110 y010 y011 y110 y111 y011 y111

y001 y101 y011 y001 y111 y101 y011 y111

y110 y110 y110 y111 y110 y111 y111 y111

y101 y101 y111 y101 y111 y101 y111 y111

y011 y111 y011 y011 y111 y111 y011 y111

y111 y111 y111 y111 y111 y111 y111 y111



 0,

where we have used Remark 3.3 and the simplified form of M̂3(y).
MAX-CUT. In this case, the criterion is g0(x) := x′Ax for some real-valued

symmetric matrix A = {Aij} ∈ R
3×3 with zeros on the diagonal, and the constraint

set is {−1, 1}3. The fact that we look for solutions in {−1, 1}n instead of in {0, 1}n
leads to obvious modifications in the relaxations {Qi}. The integral constraints are
now x2

i = 1 for all i = 1, . . . , n. Therefore, in a relaxation Qi, the analogue of what

we did for 0-1 programs in order to obtain the matrices M̂i(y) is as follows. In the
matrix Mi(y), replace any entry yα by yβ with βi = 1 whenever αi is odd and βi = 0

otherwise. Remark 3.3 on the simplified form of M̂i(y) and the fact that M̂i(y)  0

can be replaced with M̂n(y)  0 whenever i > n are also valid.
Hence, similarly to quadratic 0-1 programs, MAX-CUT in R

3 is equivalent to the
psd program

min A12y110 + A13y101 + A23y011

M̂3(y) =




1 y100 y010 y001 y110 y101 y011 y111

y100 1 y110 y101 y010 y001 y111 y011

y010 y110 1 y011 y100 y111 y001 y101

y001 y101 y011 1 y111 y100 y010 y110

y110 y010 y100 y111 1 y011 y101 y001

y101 y001 y111 y100 y011 1 y110 y010

y011 y111 y001 y010 y101 y110 1 y100

y111 y011 y101 y110 y001 y010 y100 1



 0,

where we have also used the simplified form of M̂3(y).
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When solving randomly generated MAX-CUT problems in R
3 with the Matlab

LMI toolbox, we obtained optimal solutions y of the form

y =




y100

y010

y001

y110

y101

y011

y111




=




0
0
0
±1
±1
±1
0




,

because, as there are always two optimal solutions x∗ and −x∗, the optimal solution
y we obtained is the moment of a probability measure that gives weights of 1/2 and
1/2 to x∗ and −x∗, respectively. That is why the first moments y100, y010, and y001

vanish, as well as the third moment y111. Adding a term like, say, εy100 into the
criterion with ε very small permits one to recover the optimal solution x∗ or −x∗ that
minimizes εx1. Thus, a MAX-CUT problem in R

n is equivalent to a psd program
with 2n − 1 variables and a single LMI constraint of size 2n × 2n.

3.2. A duality result. We also have the following representation result.
Proposition 3.4. Assume that there is no duality gap between the primal psd

program Qn+v and its dual Q
∗
n+v, and that Q

∗
n+v is solvable. Then

g0(x)− p∗ =

r0∑
j=1

qj(x)2 +

m∑
k=1

gk(x)


 rk∑
j=1

qkj(x)2


(3.15)

+
n∑
l=1

(x2
l − xl)


 sn∑
j=1

(vlj(x)2 − wlj(x)2)




for some polynomials {qj(x)} of degree at most n + v, some polynomials {qkj(x)} of
degree at most n + v − vk, and some polynomials {vlj(x), wlj(x)} of degree at most
n + v − 1.

Proof. The proof follows from the interpretation of the dual psd programs {Q∗
i }

in terms of the representation of polynomials that are strictly positive on a com-
pact semialgebraic set, here the set K := {0, 1}n ∩ [∩mk=1{gk(x) ≥ 0}] (see Lasserre
[7, 8]).

Proposition 3.4 states that g0(x)−p∗, which is nonnegative on K, can be written as
a sum of squares of polynomials of degree at most n+ v, weighted by the polynomials
gk(x) defining the constraint set K.

Even though we did not prove the absence of a duality gap, we believe that this
is the reason behind the finite termination of the relaxation procedure at step n.

For unconstrained 0-1 programs we even obtain the following.
Proposition 3.5. Let g0(x) : R

n → R be an arbitrary polynomial of degree at
most 2(n + 1). Then, with p∗ := minx∈{0,1}n g0(x),

g0(x)− p∗ =
∑
j

qj(x)2 +

n∑
k=1

(x2
k − xk)


∑

j

ukj(x)2 − vkj(x)2


(3.16)

for some polynomials {qj(x), ukj(x), vkj(x)} of degree at most n + 1.
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Similarly, with p∗ := minx∈{−1,1}n g0(x),

g0(x)− p∗ =
∑
j

qj(x)2 +

n∑
k=1

(x2
k − 1)


∑

j

ukj(x)2 − vkj(x)2


(3.17)

for some polynomials {qj(x), ukj(x), vkj(x)} of degree at most n + 1.
Proof. Consider the unconstrained problem P in {0, 1}n. In this case, from

Theorem 3.2, Qn+1 provides the optimal value p∗ (as v = 1). We have seen that in

Qn+1, one may replace Mn+1(y)  0 by the constraint M̂n(y)  0 (see Remark 3.3
and (3.13)); that is, Qn+1 is equivalent to solving the psd program


min
y

∑
α

(g0)αyα

M̂n(y)  0.
(3.18)

Next, to each (of the 2n) admissible solution x ∈ {0, 1}n of P corresponds a vector

(x1, . . . , xn, x1x2, . . . , x
n
1 , . . . , xnn) =: y ∈ R

2n−1

that is admissible for Qn+1 (the psd program (3.18)). Label as y(k), k = 1, . . . , 2n,

every such solution. Let z :=
∑2n

k=1 αky
(k) with αk > 0 and

∑
k αk = 1. Clearly,

M̂n(z) =

2n∑
k=1

αkM̂n(y(k))  0,

so that z is admissible for Qn+1. In addition, from the definition of the moment ma-
trix Mn(y) it follows that Mn(y(k)) is the rank-one matrix (1, y(k))(1, y(k))′, and thus

M̂(y(k)) is also a rank-one matrix. Moreover, the vectors (1, y(k)), k = 1, . . . , 2n,

are obviously linearly independent. Therefore, as M̂n(z) is the 2n × 2n matrix∑2n

k=1 αkM̂n(y(k)), it follows that M̂n(z) � 0. Hence, the psd program (3.18) sat-
isfies Slater’s interior point condition. As p∗ > −∞, from a standard strong duality
result in convex optimization (see, e.g., Sturm [15, Theorem 2.24]), the dual is solv-
able and there is no duality gap. But if we remember that (3.18) has the equivalent
form 


min
y

∑
α

(g0)αyα

Mn+1(y)  0,
Mn(gky) = 0, k = 1, . . . , n

(3.19)

(with gk(x) = x2
k − xk), the result follows from the interpretation of an optimal

solution of the dual psd program (see Lasserre [7]).
Hence, the ability to solve exactly an unconstrained 0-1 polynomial program or

a MAX-CUT problem at some relaxation Qi with i < n depends on whether or not
the representation (3.16) (or (3.17)) can hold with polynomials of degree less than i.

Despite its theoretical interest, Theorem 3.2 is of little value for computational
purposes, because the number of variables is exponential in the size of the problem.
However, in many cases, low order relaxations (that is, with i 
 n) will provide the
optimal value p∗. Therefore, one would like to have a test to detect whether some
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relaxation Qi achieves the optimal value p∗. One way is to determine by inspection
whether an optimal solution y of Qi is a moment vector. This will be the case if,
for instance, rank Mr(y) = 1. However, in the case in which P has multiple optimal
solutions (as in MAX-CUT problems), it can happen that y is a convex combination
of moments of Dirac measures supported on the optimal solutions, which in general
is not easy to detect.

We next provide a criterion to test whether the SDP relaxation Qi indeed achieves
the optimal value p∗.

Theorem 3.6. Let P be the problem defined in (1.1) and let v := maxk=1,...,m vk.
Let y∗ be an optimal solution of Qi with i < n + v. If

rank Mi−v+1(y∗) = rank Mi−v(y∗),(3.20)

then min Qi = p∗ and y∗ is the vector of moments of a probability measure supported
on s = rank Mi(y

∗) = rank Mi−v(y∗) optimal solutions of P.
Proof. The proof mimics that of Theorem 3.2. By the flat extension theorem

(see Curto and Fialkow [2]), it follows that rank Mi−v+k(y∗) = rank Mi−v(y∗) for
all k ≥ 1. It then suffices to apply Theorem 1.1 of Curto and Fialkow [2], which
states that there exists a rank Mi−v(y∗) atomic measure µy∗ with moment vector y∗.
Moreover, from the constraints Mi−vk(gky

∗)  0 for all k = 1, . . . ,m + 2n, it follows
that µy∗ is supported on K, and the result follows as in the proof of Theorem 3.2.
Again, in the notation of Theorem 1.6 in Curto and Fialkow [2], we have M(i−v)  0,
and M(i − v) has a flat positive extension M(i − v + 1) (hence unique flat positive
extensions M(i − v + k) for all k ≥ 1), with Mgk(i − v + vk)  0 for all k = 1, . . . ,
m + 2n.

To illustrate the power of the SDP relaxations Qi, we have run a sample of 50
MAX-CUT problems in R

10 (minx∈{−1,1}n x′Qx), where Q is a symmetric matrix with
a null diagonal and with nondiagonal entries randomly generated, uniformly between
0 and 1. (In some examples, zeros and negative entries were allowed.) In all cases,
the Q2 SDP relaxation provided the optimal value. The corresponding psd program
has one LMI constraint (M̂2(y)  0) of dimension 56× 56 and has 385 variables yβ .

4. Conclusion. We have provided an equivalent continuous psd program for
arbitrary constrained nonlinear 0-1 programs. For practical computation, it appears
that in some (many?) cases, an SDP relaxation of low order suffices. However, for
large or even moderate size problems, the resulting SDP relaxations Qi might still be
too large for the present status of SDP programming packages, as soon as i is larger
than, say, 3. A topic of further research is to test the efficiency of the above SDP
relaxations when compared to the different LP-based relaxations in the literature,
notably the Sherali and Adams RLT technique [12, 13].
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Abstract. We explicitly calculate characteristic functions of cones of generalized polynomials
corresponding to Chebyshev systems on intervals of the real line and the circle. Thus, in principle, we
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1. Introduction. To apply a modern interior-point technique as it is developed
in [6], it is necessary to know a self-concordant barrier for a feasible domain of a
given convex optimization problem. Given a convex domain in a finite-dimensional
vector space, there exists an explicit formula for at least one such barrier, the so-called
universal barrier function [6]. For example, let K be a closed convex pointed cone in
Rn with a nonempty interior. Consider

Φ(p) = ln

∫
K∗

e−〈c,p〉dµ(c),(1.1)

where p ∈ int(K),K∗ is the cone dual to K, and µ is the standard Lebesgue measure
on Rn. Then Φ after an appropriate normalization is the so-called homogeneous self-
concordant barrier function. The knowledge of such a function in a “computable” form
enables one, in principle, to develop interior-point algorithms (along with complexity
estimates) for optimization problems whose feasibility domain is the intersection of
K with an affine subspace in Rn and for many other related problems (through the
barrier calculus).

Unfortunately, expression (1.1) requires the evaluation of multidimensional inte-
grals over geometrically complicated domains for the computation of the value of Φ,
its gradient, and the Hessian at a given point p ∈ int(K). This is, in general, compu-
tationally too expensive, taking into account the original task in question, i.e., solving
a convex optimization problem.

There are a number of situations in which (1.1) can be more or less explicitly
calculated. Several of the corresponding cones belong to the class of symmetric cones,
and (1.1) is then easily expressed in terms of the attached Jordan algebra (see, e.g.,
[3]). A part of the theory of interior-point algorithms admits an infinite-dimensional
generalization [7], but the concept of the universal barrier function seems to be essen-
tially finite-dimensional.

In the present paper we significantly expand the class of cones for which (1.1)
can be explicitly calculated. Correspondingly, we expand the class of optimization
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problems to which the modern interior-point technique can be applied. Namely, we
consider cones of generalized nonnegative polynomials generated by Chebyshev sys-
tems on the intervals of the real line or the unit circle. For such cones we find more or
less explicit expressions for (1.1) only slightly more complicated (in a computational
sense) than those for symmetric cones. In particular, practically all cones considered
by Nesterov in [5] can be treated from our viewpoint. Note, however, that the repre-
sentation of a given cone as a “cone of squares” (and hence the reducibility of a given
problem to semidefinite programming), which is crucial for Nesterov’s construction,
does not play any role in our approach. Thus, our results are applicable to a broader
class of cones. The calculation of (1.1) is new even for most of the cones considered
in [5].

2. Chebyshev systems. We start with several examples of Chebyshev systems.
We then formulate several important properties of such systems.

Definition 1. A system of real functions u0, . . . , un defined on an abstract set
E is called a Chebyshev system (T -system) of order n on E if the determinant

det(ui(tj)),

i, j = 0, 1, . . . , n, does not vanish for any pairwise distinct t0, . . . , tn ∈ E.
If the set E is endowed with a topology, one usually assumes that the functions

u0, . . . , un are continuous on E.
In this paper we are mostly interested in the cases in which E = [a, b] ⊂ R or

E = S1 (unit circle). In the latter case, S1 may be viewed as an interval [a, b] with
identified endpoints. A T -system on a circle is a T -system of functions on [a, b) with
the additional property that uk(a) = uk(b), k = 0, 1, . . . , n.

Consider several examples of T -systems.
Example 1. Let ui(t) = ti, i = 0, 1, . . . , n, t ∈ [a, b]. This is a T -system, as it easily

follows from the properties of the Vandermonde determinant.
Example 2. The functions

1

t + α0
,

1

t + α1
, . . . ,

1

t + αn
,

0 < α0 < α1 < · · · < αn, form a T -system on any interval [a, b] such that a+α0 > 0.
Example 3. The functions

exp(α0t), exp(α1t), . . . , exp(αnt)

form a T -system on any interval [a, b].
Example 4. If f : [a, b]→ R is an n times continuously differentiable function on

[a, b] such that f (n)(t) > 0, t ∈ [a, b], then the functions

1, t, . . . , tn−1, f(t)

form a T -system on [a, b].
Example 5. The functions

1, sint, . . . , sin(nt), cost, . . . , cos(nt)

form a periodic T -system on [0, 2π] of the order 2n.
One can show that every periodic T -system has an even order. For a detailed

discussion of the examples given above and many more examples, see, e.g., [4].
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Given a T -system u0, . . . , un on the interval [a, b], consider the cone K of nonneg-
ative generalized polynomials associated with this system:

K =

{
p =

n∑
i=0

aiui : p(t) ≥ 0 ∀t ∈ [a, b]

}
.

We can associate with K the dual cone

K∗ =

{
(c0, . . . , cn)T ∈ Rn+1 :

n∑
i=0

ciai ≥ 0 ∀p =

n∑
i=0

aiui ∈ K

}
.

Theorem 1. We have

int(K) = {p ∈ K : p(t) > 0 ∀t ∈ [a, b]} 	= ∅.

The vector (c0, . . . , cn)T ∈ K∗ if and only if there exists a Borel measure σ on [a, b]
such that

ci =

∫ b

a

ui(t)dσ(t), i = 0, 1, . . . , n.(2.1)

For a proof of Theorem 1, see, e.g., [4].
If in the representation (2.1) the corresponding measure σ is concentrated in a

finite number of points

a ≤ ξ1 < ξ2 < · · · < ξm ≤ b,

then (2.1) takes the form:

ci =

m∑
j=0

ρjui(ξj), i = 0, 1, . . . ,m,(2.2)

ρj > 0. Following [4], the points ξj involved in the representation (2.2) will be called
the roots, and the coefficients ρj will be called the weights. We further introduce the
notation ε(t), a ≤ t ≤ b, where ε(t) = 2, a < t < b, ε(a) = ε(b) = 1. The sum

m∑
j=1

ε(ξj)

will be called the index of the representation (2.2). A representation (2.2) is called
principal if its index is equal to n+ 1, where n is the order of the Chebyshev system
u0, . . . , un. Consider the possible types of principal representations. If n = 2ν−1, ν =
1, 2, . . . , then either all ξj ∈ (a, b),m = ν, or ξj ∈ (a, b), j = 2, 3, . . . , ν, ξ1 = a, ξν+1 =
b,m = ν + 1. In the former case the corresponding representation (2.2) is called the
lower principal representation, and in the latter case the representation (2.2) is called
the upper principal representation. If n = 2ν, then either ν roots ξj , j = 2, 3, . . . , ν+1,
belong to (a, b) and ξ1 = a,m = ν + 1, or ν roots ξj , j = 1, 2, . . . , ν, belong to (a, b)
and ξν+1 = b,m = ν + 1. In the former case the representation (2.2) is called the
lower principal representation, and in the latter case the representation (2.2) is called
the upper principal representation. Thus, a principal representation is upper or lower
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according to whether it has or has not a root at the right endpoint b of the interval
[a, b].

Theorem 2. Given a T -system u0, . . . , un on the interval [a, b], each point c ∈
int(K∗) (see (2.1)) has exactly one lower principal representation and exactly one
upper principal representation.

This result admits the following modification for the case of a periodic T -system
on the interval [a, b), n = 2ν.

Theorem 3. Each point c ∈ int(K∗) admits a unique representation (2.2) with
m = ν + 1, one of whose roots ξ1, . . . , ξν+1 is a prescribed point ξ ∈ [a, b).

For a proof of Theorems 2 and 3, see, e.g., [4].

3. Calculation of characteristic functions. We now use principal represen-
tations of elements of K∗ to calculate the characteristic function of the cone K gener-
ated by a Chebyshev system u0, . . . , un. We assume that u0, . . . , un are continuously
differentiable functions on the interval [a, b].

Let us start with the case n = 2ν − 1. Given p ∈ K, we wish to calculate

F (p) =

∫
K∗

e−〈c,p〉dµ(c),(3.1)

where µ is the standard Lebesgue measure on Rn+1. We use the lower principal
representation (2.2) to parametrize int(K∗):

ci =

ν∑
j=1

ρjuj(ξi),(3.2)

i = 0, 1, . . . , 2ν − 1. According to Theorem 2, the map (3.2) gives a one-to-one corre-
spondence between

Rν
+ × {ξ ∈ Rν : a < ξ1 < ξ2 < · · · < ξν < b}

and int(K∗). Here R+ = {x ∈ R : x > 0}. We will denote this map by Φ =
Φ(ρ1, . . . , ρν , ξ1, . . . , ξν). We obviously have

∂Φ

∂ρj
= u(ξj),

j = 1, 2, . . . , ν, where

u(ξj) = (u0(ξj), . . . , u2ν−1(ξj))
T ∈ R2ν ,

∂Φ

∂ξj
= ρju

′
(ξj),

j = 1, 2, . . . , ν. Thus, the Jacobian of this map is equal to

| det(u(ξ1), . . . , u(ξν), ρ1u
′
(ξ1), . . . , ρνu

′
(ξν)) |

=

(
ν∏
k=1

ρk

)
| det(u(ξ1), u

′
(ξ1), . . . , u(ξν), u

′
(ξν)) | .
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Making the change of variables in (3.1) and using the Fubini theorem, we obtain

F (p) =

∫
a≤ξ1<ξ2,...,ξν≤b

| det(u(ξ1), u
′
(ξ1), . . . , u(ξν), u

′
(ξν)) |

×
(∫

R+

ρ1e
−p(ξ1)ρ1dρ1· · ·

∫
R+

ρνe
−p(ξν)ρνdρν

)
dξ1 . . . dξν .

Here we used the observation that if p = a0u0 + · · ·+ anun, then

〈c, p〉 =
n∑
i=0

ciai =

n∑
i=0

ν∑
j=1

ρjui(ξj)ai

=

ν∑
j=1

ρj

n∑
i=0

aiui(ξj) =

ν∑
j=1

ρjp(ξj).

Let

V (ξ1, ξ2, . . . , ξν) = det(u(ξ1), u
′
(ξ1), . . . , u(ξν), u

′
(ξν)).

Since ∫ +∞

0

xe−αxdx =
1

α2
, α > 0,

we obtain

F (p) =

∫
a<ξ1<···<ξν<b


 ν∏
j=1

1

p(ξj)2


 | V (ξ1, . . . , ξν) | dξ1 . . . dξν .(3.3)

Observe that the function under the integral sign in (3.3) is symmetric with respect
to variables ξ1, . . . , ξν . Hence,

F (p) =
1

ν!

∫ b

a

· · ·
∫ b

a


 ν∏
j=1

1

p(ξj)2


 | V (ξ1, . . . , ξν) | dξ1 . . . dξν .

Lemma 1. The function V (ξ1, . . . , ξν) does not change sign on [a, b]ν .
Proof. Consider, first, the case in which a < ξ1 < ξ2 < · · · < ξν < b. Let

η1, . . . , ην be such that

ξ1 < η1 < ξ2 < η2 . . . ξν < ην ≤ b.(3.4)

Since u0, . . . , u2ν−1 is a T -system, we can assume without loss of generality that

γ(ξ1, . . . , ξν , η1, . . . , ην) := det[u(ξ1), u(η1), u(ξ2), u(η2), . . . , u(ξν), u(ην)] > 0

for any ξ, ηi satisfying (3.4). By the mean value theorem we have

γ(ξ1, . . . , ξν , η1, . . . , ην)

=

ν∏
i=1

(ηi − ξi) det[u(ξ1), u
′
(θ1), u(ξ2), u

′
(θ2), . . . , u(ξν), u

′
(θν)] > 0
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for some ξi < θi < ηi, i = 1, 2, . . . , ν. Hence,

det[u(ξ1), u
′
(θ1), u(ξ2), u

′
(θ2), . . . , u(ξν), u

′
(θν)] > 0.

Taking the limit when ηi → ξi, i = 1, 2, . . . , ν, we obtain

V (ξ1, . . . , ξν) ≥ 0

for all a < ξ1 < ξ2 < · · · < ξν < b. Using the continuity of V , we obtain

V (ξ1, . . . , ξν) ≥ 0

for a ≤ ξ1 ≤ ξ2 ≤ ξν ≤ b. Our final observation is that

V (ξσ(1), ξσ(2), . . . , ξσ(ν)) = V (ξ1, . . . , ξν)

for any permutation σ of the set {1, 2, . . . , ν}. Hence, V (ξ1, ξ2, . . . , ξν) ≥ 0 for all ξi
satisfying a ≤ ξi ≤ b, i = 1, 2, . . . , ν.

Using Lemma 1, we obtain

F (p) =
ε

ν!

∫ b

a

· · ·
∫ b

a

det[ũ(ξ1), ũ
′
(ξ1), . . . , ũ(ξν), ũ

′
(ξν)]dξ1 . . . dξν ,(3.5)

where

ũ(ξ) =
u(ξ)

p(ξ)
, ε = ±1.

The next proposition, which comes from de Bruijn (see [1]), is crucial for the evalu-
ation of the characteristic function. Recall the definition of the Pfaffian of an even-
dimensional skew-symmetric matrix (see, e.g., [1]):

Pf(B) =
1

n!2n

∑
σ∈Σ(2n)

(−1)signσbσ(1)σ(2)bσ(3)σ(4) · · · bσ(2n−1)σ(2n).

Here the summation is taken over the set of all permutations of the set [1, 2n].
Proposition 1. Let (X,µ) be a measurable space with a finite positive measure

µ on X. Suppose that ψ1, . . . , ψ2n, φ1, . . . , φ2n are integrable functions on X. Let

D = D(t1, . . . , tn)

be the determinant of the matrix with kth row

φk(t1), ψk(t1), φk(t2), ψk(t2), . . . , φk(tn), ψk(tn),

k = 1, 2, . . . , 2n, t1, t2, . . . , tn ∈ X. Then

Λ =

∫
X

· · ·
∫
X

Ddµ(t1) . . . dµ(tn) = n!Pf(B).

Here B = (bij) is a 2n× 2n skew-symmetric matrix with

bij =

∫
X

[φi(x)ψj(x)− φj(x)ψi(x)]dµ(x).
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Proof. Using the definition of the determinant, we have

D(t1, . . . , tn)

=
∑

σ∈Σ(2n)

(−1)signσφσ(1)(t1)ψσ(2)(t1)φσ(3)(t2)ψσ(4)(t2) · · ·φσ(2n−1)(tn)ψσ(2n)(tn).

Hence,

Λ =
∑

σ∈Σ(2n)

(−1)signσk̃σ(1)σ(2)k̃σ(3)σ(4) · · · k̃σ(2n−1)σ(2n),

where

k̃ij =

∫
X

φi(t)ψj(t)dµ(t).

Observe now that, in the expression above, k̃ij can be substituted by its skew-
symmetric part lij = (kij − kji)/2. Indeed, consider a two-form

β =
∑

1≤i,j≤2n

αijei ∧ ej ∈
2∧

(R2n).

Here e1, . . . , e2n is a canonical basis in R2n, and αij are some real numbers.
Taking n times the wedge product of β with itself, we obtain

β ∧ β ∧ · · · ∧ β =


 ∑
σ∈Σ(2n)

(−1)signσασ(1)σ(2) · · ·ασ(2n−1)σ(2n)


ω,

ω = e1 ∧ e2 ∧ · · · ∧ e2n−1 ∧ e2n.

On the other hand,

β =
∑

1≤i<j≤2n

(αij − αji)ei ∧ ej =
∑

1≤i,j≤2n

γijei ∧ ej ,

where γij = (αij − αji)/2. Hence,

β ∧ β ∧ · · · ∧ β =


 ∑
σ∈Σ(2n)

(−1)signσγσ(1)σ(2) · · · γσ(2n−1)σ(2n)


ω.

Applying this observation to our situation, we obtain

Λ =
1

2n

∑
σ∈Σ(2n)

(−1)signσbσ(1)σ(2)bσ(3)σ(4) · · · bσ(2n−1)σ(2n).

Hence,

Λ = n!Pf(B).
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We are now in position to calculate the characteristic function of a cone generated
by a Chebyshev system of odd order. Applying Proposition 1 to (3.5), we obtain the
following theorem.

Theorem 4. Let u0, . . . , u2ν−1 be a Chebyshev system of continuously differen-
tiable functions on the interval [a, b]. Let p be a generalized polynomial strictly positive
on [a, b]. Then

F (p) = εPf(B(p)),

where B(p) = (bij(p)),

bij(p) =

∫ b

a

ui(t)u
′
j(t)− uj(t)u

′
i(t)

p(t)2
dt,

i, j = 0, 1, . . . , 2ν − 1, ε = ±1.
The case of an even-order Chebyshev system is slightly more complicated. Let

u0, . . . , u2ν be a Chebyshev system of continuously differentiable functions on an in-
terval [a, b]. Assume that

u0(a) = 1, ui(a) = 0, i = 1, . . . , 2ν.(3.6)

By Theorem 2, each point (c0, c1, . . . , c2ν)T ∈ int(K∗) admits a unique representation
of the form:

ci =

ν+1∑
j=1

ρjui(ξj),(3.7)

i = 0, 1, . . . , 2ν, ξ1 = a < ξ2 < · · · < ξν+1 < b. Consider the map

Φ : Rν+1
+ × {ξ ∈ Rν : a < ξ2 < · · · < ξν+1 < b} → int(K∗)

defined by (3.7). As is easily seen, the Jacobian of this map J has the form:

J =| det[u(a), u(ξ2), . . . , u(ξν+1), ρ2u
′
(ξ2), . . . , ρν+1u

′
(ξν+1)] | .

Here u(ξ) = (u0(ξ), u1(ξ), . . . , u2ν(ξ))T . Observe now that, according to our as-
sumption, u(a) = e1. Thus, expanding J over the first column, we obtain

J =

ν+1∏
i=2

ρi | det[ũ(ξ2), ũ
′
(ξ2), . . . , ũ(ξν+1), ũ

′
(ξν+1)] |,

where

ũ(ξ) = [u1(ξ), . . . , u2ν(ξ)]T .

Obviously, u1, . . . , u2ν form a Chebyshev system on (a, b]. Hence, we can apply
Lemma 1 to conclude that

F (p) =
ε

ν!

∫ +∞

0

e−p(a)ρ1dρ1

×
∫
a<ξ2<···<ξν+1<b

det[ũ(ξ2), ũ
′
(ξ2), . . . , ũ(ξν+1), ũ

′
(ξν+1)]

×
(∫ +∞

0

e−p(ξ2)ρ2ρ2dρ2· · ·
∫ +∞

0

e−p(ξν+1)ρν+1ρν+1dρν+1

)
dξ2 . . . dξν+1,
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where ε = ±1. By applying Proposition 1, we obtain the following theorem.
Theorem 5. Let u0, . . . , u2ν be a Chebyshev system of an even order of contin-

uously differentiable functions on the interval [a, b] such that u(a) = e1. Let, further,
p be a generalized polynomial strictly positive on [a, b]. Then

F (p) = ε
Pf(B(p))

p(a)
,

where B(p) = (bij(p)),

bij(p) =

∫ b

a

ui(ξ)u
′
j(ξ)− uj(ξ)u

′
i(ξ)

p(ξ)2
dξ,

i, j = 1, 2, . . . , 2ν. Here ε = ±1.
Similarly, using Theorem 3, we obtain the following.
Theorem 6. Let u0, . . . , u2ν be a periodic Chebyshev system of continuously

differentiable functions on the interval [a, b] such that u(a) = e1. Let p be a generalized
polynomial strictly positive on [a, b]. Then

F (p) = ε
Pf(B(p))

p(a)
,

where B(p) = (bij(p)),

bij(p) =

∫ b

a

ui(ξ)u
′
j(ξ)− uj(ξ)u

′
i(ξ)

p(ξ)2
dξ,

i, j = 1, . . . , 2ν. Here ε = ±1.
Observe now that the assumption made in Theorems 5 and 6 does not restrict

the generality of our approach.
Lemma 2. Let u0, u1, . . . , un be a Chebyshev system on a set E. Let a ∈ E. One

can always choose a basis v0, . . . , vn in span(u0, . . . , un) such that v0(a) = 1, vi(a) =
0, i = 1, 2, . . . , n.

Proof. Indeed, for any pairwise distinct points ti, i = 0, . . . , n, there exists vi ∈
span(u0, . . . , un) such that vi(tj) = δij , i, j = 0, . . . , n (see, e.g., [4]).

Remark 1. Since F (p) > 0, p ∈ int(K), in Theorems 4–6, we conclude that
Pf(B(p)) does not change the sign on int(K). Furthermore, since det(B(p)) =
Pf(B(p))2 (see, e.g., [1]), we can easily rewrite lnF (p) in terms of ln detB(p).

4. Examples. We present here several simple examples to show how our barrier
functions appear in low-dimensional situations and to illustrate possible applications
of our results. First, observe that from general considerations (see, e.g., [6]) it fol-
lows that, given a cone K of generalized nonnegative polynomials corresponding to a
Chebyshev system,

Φ(p) = α lnF (p), p ∈ int(K),

is a homogeneous self-concordant barrier. Here F (p) is the characteristic function
of the cone K calculated in the previous section, and α is some positive constant
depending in general on K. Here we use the standard normalization in the inequality
between the second and the third derivatives of F . Then the barrier parameter of F
has a universal bound (see [6]).
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Example 6. Let [aj , bj ] ⊂ R, j = 1, 2, . . . , l, and ui(t) = ti, i = 0, 1, . . . , n. Denote
by K[a,b] the cone of nonnegative polynomials of degree less than or equal to n on the
interval [a, b]. Let, further,

K =
l⋂

j=1

K[aj ,bj ].

Then

Φ(p) =
l∑

j=1

αj lnFj(p)

is a homogeneous self-concordant barrier for the cone K. Here αj are some positive
constants, and Fj are the characteristic functions of the cones K[aj ,bj ] calculated in the
previous section. This result easily follows from the general barrier calculus developed
in [6].

Example 7. Let u0 = 1, u1 be a Chebyshev system of order one on an interval
[a, b]. We assume that u1 is a continuously differentiable function. In this situation
the cone of generalized positive polynomials

K = {(c0, c1)T ∈ R2 : c0 + c1u1(t) ≥ 0, t ∈ [a, b]}

has a very simple structure. Indeed, one can easily see that the map p→ (p(a), p(b))T

defines a linear isomorphism of K onto the nonnegative orthant in R2. According to
Theorem 4, the characteristic function of the cone K has the form:

F (p) = εb01(p), p ∈ int(K),

where ε = ±1 and

b01(p) =

∫ b

a

u
′
1(t)dt

[c0 + c1u1(t)]2
.

An easy calculation shows that

b01(p) =
u1(b)− u1(a)

p(a)p(b)
.

Observe that u(a) 	= u(b), since 1, u1 form a Chebyshev system on [a, b]. We thus
obtain that

Φ(p) = − ln p(a)− ln p(b) + ln | u1(b)− u1(a) |

is a homogeneous self-concordant barrier. Here α = 1. Of course, this is not a
surprising result due to the above-mentioned isomorphism.

Example 8. Consider a periodic Chebyshev system u0(t) = 1, u1(t) = sin t, u2(t) =
cos t on the interval [0, 2π]. Let v0(t) = u0(t), v1(t) = u1(t), v2(t) = u2(t)− u0(t). The
basis v0, v1, v2 of the vector space span(u0, u1, u2) satisfies the condition v(0) = e1 ∈
R3. Let

p(t) = a + b cos t + c sin t > 0, t ∈ [0, 2π].
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According to Theorem 6,

F (p) = ε
I(p)

p(0)
,

where

I(p) =

∫ 2π

0

v
′
1(t)v2(t)− v1(t)v

′
2(t)

p(t)2
dt

=

∫ 2π

0

1− cos t

p(t)2
dt.

Let

J(a, b, c) =

∫ 2π

0

(1− cos t)dt

a + b cos t + c sin t
.

Using an explicit formula for the primitive of the function

1− cos t

a + b cos t + c sin t

(see, e.g., [2]), we can easily calculate J(a, b, c) :

J(a, b, c) = 2π

[(
1 +

ab

b2 + c2

)
1√

a2 − b2 − c2
− b

b2 + c2

]
,

provided a >
√
b2 + c2. It is then obvious that

I(p) = −∂J
∂a

=
2π(a + b)

(a2 − b2 − c2)3/2
.

Since p(0) = a + b, we conclude that

F (p) =
2π

(a2 − b2 − c2)3/2
.

For the homogeneous self-concordant barrier, we thus obtain

Φ(p) =
2

3
lnF (p) = − ln(a2 − b2 − c2) +

2

3
ln(2π).

Observe that p(t) > 0 for all t ∈ [0, 2π] if and only if a >
√
b2 + c2. Thus K is,

in this case, the second order cone in R3, and the expression for the self-concordant
barrier is again not surprising.

5. Concluding remarks. In the present paper we explicitly calculated charac-
teristic functions for a broad class of convex cones generated by Chebyshev systems.
For the “cones of squares” considered in [5] our results complement in a quite for-
tunate way the results of Nesterov, who found explicit self-concordant barriers for
duals of cones of squares. It paves the way, at least in principle, for the construction
of primal-dual algorithms for corresponding optimization problems. Observe that an
important class of approximation problems involving cones generated by polynomial
splines is within the reach of the technique developed in the present paper.
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Abstract. We study the situation in which, having solved a linear program with an interior-
point method, we are presented with a new problem instance whose data is slightly perturbed from
the original. We describe strategies for recovering a “warm-start” point for the perturbed problem
instance from the iterates of the original problem instance. We obtain worst-case estimates of the
number of iterations required to converge to a solution of the perturbed instance from the warm-start
points, showing that these estimates depend on the size of the perturbation and on the conditioning
and other properties of the problem instances.

Key words. warm-start, reoptimization, interior-point methods, linear programming
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1. Introduction. This paper describes and analyzes warm-start strategies for
interior-point methods applied to linear programming (LP) problems. We consider
the situation in which one linear program, the “original instance,” has been solved
by an interior-point method, and we are then presented with a new problem of the
same dimensions, the “perturbed instance,” in which the data is slightly different.
Interior-point iterates for the original instance are used to obtain warm-start points
for the perturbed instance, so that when an interior-point method is started from
this point, it finds the solution in fewer iterations than if no prior information were
available. Although our results are theoretical, the strategies proposed here can be
applied to practical situations, an aspect that is the subject of ongoing study.

The situation we have outlined arises, for instance, when linearization methods
are used to solve nonlinear problems, as in the sequential LP algorithm. (One exten-
sion of this work that we plan to investigate is the extension to convex quadratic
programs, which would be relevant to the solution of subproblems in sequential
quadratic programming algorithms.) Our situation is different from the one con-
sidered by Gondzio [5], who deals with the case in which the number of variables or
constraints in the problem is increased and the dimensions of the problem data ob-
jects are correspondingly expanded. The latter situation arises in solving subproblems
arising from cutting-plane or column-generation algorithms, for example. The reader
is also referred to Mitchell and Borchers [8] and Gondzio and Vial [6] for consideration
of warm-start strategies in a cutting-plane scheme.

Freund [4] develops and analyzes a potential reduction algorithm from an infea-
sible warm-start, in which the iterate satisfies the equality constraints but is allowed
to violate nonnegativity.
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For our analysis, we use the tools developed by Nunez and Freund [10], which in
turn are based on the work of Renegar [11, 12, 13, 14] on the conditioning of linear
programs and the complexity of algorithms for solving them. We also use standard
complexity analysis techniques from the interior-point literature for estimating the
number of iterations required to solve a linear program to given accuracy.

We start in section 2 with an outline of notation and a restatement and slight
generalization of the main result from Nunez and Freund [10]. Section 3 outlines the
warm-start strategies that we analyze in the paper and describes how they can be
used to obtain reduced complexity estimates for interior-point methods. In section 4
we consider a warm-start technique in which a least-squares change is applied to a
feasible interior-point iterate for the original instance to make it satisfy the constraints
for the perturbed instance. We analyze this technique for central path neighborhoods
based on both the Euclidean norm and the ∞ norm, deriving in each case a worst-
case estimate for the number of iterations required by an interior-point method to
converge to an approximate solution of the perturbed instance. In section 5 we study
the technique of applying one iteration of Newton’s method to a system of equations
that is used to recover a strictly feasible point for the perturbed instance from a
feasible iterate for the original instance. Section 6 discusses the relationship between
the two warm-start strategies and the weighted versions of least-squares corrections.
A small example is used to illustrate the behavior of different correction strategies.
Finally, we conclude the paper with some discussions in section 7.

2. Preliminaries: Conditioning of LPs, central path neighborhoods,
bounds on feasible points. We consider the LP in the following standard form:

(P) min
x

cTx subject to (s.t.) Ax = b, x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given and x ∈ Rn. The associated dual
LP is given by the following:

(D) max
y,s

bT y s.t. AT y + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn. We borrow the notation of Nunez and Freund [10],
denoting by d the data triplet (A, b, c) that defines the problems (P) and (D). We
define the norm of d (differently from Nunez and Freund) as the maximum of the
Euclidean norms of the three data components:

‖d‖ def
= max(‖A‖2, ‖b‖2, ‖c‖2).(2.1)

We use the norm notation ‖ · ‖ on a vector or matrix to denote the Euclidean norm
and the operator norm it induces, respectively, unless explicitly indicated otherwise.

We use F to denote the space of strictly feasible data instances, that is,

F = {(A, b, c) : ∃ x, y, s with (x, s) > 0 such that Ax = b, AT y + s = c}.
The complement of F , denoted by FC , consists of data instances d for which either
(P) or (D) does not have any strictly feasible solutions. The (shared) boundary of F
and FC is given by

B = cl(F) ∩ cl(FC),
where cl(·) denotes the closure of a set. Since (0, 0, 0) ∈ B, we have that B �= ∅. The
data instances d ∈ B will be called ill-posed data instances, since arbitrarily small
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perturbations in the data d can result in data instances in either F or FC . The
distance to ill-posedness is defined as

ρ(d) = inf{‖∆d‖ : d+∆d ∈ B},(2.2)

where we use the norm (2.1) to define ‖∆d‖. The condition number of a feasible
problem instance d is defined as

C(d) def
=
‖d‖
ρ(d)

(with C(d) def
= ∞ when ρ(d) = 0).(2.3)

Since the perturbation ∆d = −d certainly has d+∆d = 0 ∈ B, we have that ρ(d) ≤
‖d‖ and therefore C(d) ≥ 1. Note, too, that C(d) is invariant under a nonnegative
multiplicative scaling of the data d; that is, C(βd) = C(d) for all β > 0.

Robinson [15] and Ashmanov [1] showed that a data instance d ∈ F satisfies
ρ(d) > 0 (that is, d lies in the interior of F) if and only if A has full row rank. For
such d, another useful bound on ρ(d) is provided by the minimum singular value of
A. If we write the singular value decomposition of A as

A = USV T =

m∑
i=1

σi(A)uiv
T
i ,

where U and V are orthogonal and S = diag(σ1(A), σ2(A), . . . , σm(A)), with σ1(A) ≥
σ2 ≥ · · · ≥ σm(A) > 0 denoting the singular values of A, then the perturbation

∆A = −σm(A)umvTm

is such that A + ∆A is singular, and moreover ‖∆A‖ = σm(A) due to the fact that
the Euclidean norm of a rank-one matrix satisfies the property

‖βuvT ‖2 = |β| ‖u‖2 ‖v‖2.(2.4)

We conclude that

ρ(d) ≤ σm(A).(2.5)

It is well known that for such d ∈ int(F) the system given by

Ax = b,(2.6a)

AT y + s = c,(2.6b)

XSe = µe,(2.6c)

(x, s) > 0(2.6d)

has a unique solution for every µ > 0, where e denotes the vector of ones in the
appropriate dimension, and X and S are the diagonal matrices formed from the com-
ponents of x and s, respectively. We denote the solutions of (2.6) by (x(µ), y(µ), s(µ))
and use P to denote the central path traced out by these solutions for µ > 0, that is,

P def
= {(x(µ), y(µ), s(µ)) : µ > 0} .(2.7)

Throughout this paper, we assume that the original data instance d lies in F
and that ρ(d) > 0. In sections 4 and 5, we assume further that the original data
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instance d has been solved by a feasible path-following interior-point method. Such a
method generates a sequence of iterates (xk, yk, sk) that satisfy the relations (2.6a),
(2.6b), and (2.6d) and for which the pairwise products xki s

k
i , i = 1, 2, . . . , n, are not

too different from one another, in the sense of remaining within some well-defined
“neighborhood” of the central path. The duality measure (xk)T sk is driven toward
zero as k → ∞, and search directions are obtained by applying a modified Newton’s
method to the nonlinear system formed by (2.6a), (2.6b), and (2.6c).

We now give some notation for feasible sets and central path neighborhoods as-
sociated with the particular problem instance d = (A, b, c). Let S and S0 denote the
set of feasible and strictly feasible primal-dual points, respectively; that is,

S = {(x, y, s) : Ax = b, AT y + s = c, (x, s) ≥ 0},
S0 = {(x, y, s) ∈ S : (x, s) > 0}.

(Note that d ∈ F if and only if S0 �= ∅.) We refer to the central path neighborhoods
most commonly used in interior-point methods as the narrow and wide neighborhoods.
The narrow neighborhood denoted by N2(θ) is defined as

N2(θ) = {(x, y, s) ∈ S0 : ‖XSe− (xT s/n)e‖2 ≤ θ(xT s/n)}(2.8)

for θ ∈ [0, 1). The wide neighborhood, which is denoted by N−∞(γ), is given by

N−∞(γ) = {(x, y, s) ∈ S0 : xisi ≥ γ(xT s/n) ∀ i = 1, 2, . . . , n},(2.9)

where ui denotes the ith component of the vector u, and the parameter γ lies in (0, 1].
We typically use a bar to denote the corresponding quantities for the perturbed

problem instance d+∆d. That is, we have

S̄ = {(x, y, s) : (A+∆A)x = (b+∆b), (A+∆A)T y + s = (c+∆c), (x, s) ≥ 0},
S̄o = {(x, y, s) ∈ S̄ : (x, s) > 0},

whereas

N̄2(θ) = {(x, y, s) ∈ S̄o : ‖XSe− (xT s/n)e‖2 ≤ θ(xT s/n)},(2.10a)

N̄−∞(γ) = {(x, y, s) ∈ S̄o : xisi ≥ γ(xT s/n) ∀ i = 1, 2, . . . , n}.(2.10b)

We associate a value of µ with each iterate (x, y, s) ∈ S (or S̄) by setting

µ = xT s/n.(2.11)

We call this µ the duality measure of the point (x, y, s). When (x, y, s) is feasible, it
is easy to show that the duality gap cTx− bT y is equal to nµ.

Finally, we state a modified version of Theorem 3.1 from Nunez and Freund [10],
which uses our definition (2.1) of the norm of the data instance and takes note of the
fact that the proof in [10] continues to hold when we consider strictly feasible points
that do not lie exactly on the central path P.
Theorem 2.1. If d = (A, b, c) ∈ F and ρ(d) > 0, then for any point (x, y, s)

satisfying the conditions

Ax = b, AT y + s = c, (x, s) > 0,(2.12)
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the following bounds are satisfied:

‖x‖ ≤ C(d)(C(d) + µn/‖d‖),(2.13a)

‖y‖ ≤ C(d)(C(d) + µn/‖d‖),(2.13b)

‖s‖ ≤ 2‖d‖C(d)(C(d) + µn/‖d‖),(2.13c)

where we have defined µ as in (2.11).
The proof exactly follows the logic of the proof in [10, Theorem 3.1], but differs

in many details because of our use of Euclidean norms on the matrices and vectors.
For instance, where the original proof defines a perturbation ∆A = −beT /‖x‖1, to
obtain an infeasible data instance, we instead use ∆A = −bxT /‖x‖22. We also use the
observation (2.4) repeatedly.

3. Warm starts and reduced complexity. Before describing specific strate-
gies for warm starts, we preview the nature of our later results and show how they
can be used to obtain improved estimates of the complexity of interior-point methods
that use these warm starts.

We start by recalling some elements of the complexity analysis of interior-point
methods. These methods typically produce iterates (xk, yk, sk) that lie within a neigh-
borhood such as (2.8) or (2.9) and for which the duality measure µk (defined as in
(2.11) by µk = (xk)T sk/n) decreases monotonically with k, according to a bound of
the following form:

µk+1 ≤
(
1− δ

nτ

)
µk,(3.1)

where δ and τ are positive constants that depend on the algorithm. Typically, τ is
0.5, 1, or 2, while δ depends on the parameters θ or γ that define the neighborhood
(see (2.8) and (2.9)) and on various other algorithmic parameters. Given a starting
point (x0, y0, s0) with duality measure µ0, the number of iterations required to satisfy
the stopping criterion

µ ≤ ε‖d‖(3.2)

(for some small positive ε) is bounded by

log(ε‖d‖)− logµ0

log (1− δ/nτ )
= O

(
nτ log

µ0

‖d‖ε
)
.(3.3)

It follows from this bound that, provided we have

µ0

‖d‖ = O(1/εη)

for some fixed η > 0—which can be guaranteed for small ε when we apply a cold-start
procedure—the number of iterations required to achieve (3.2) is

O(nτ | log ε|).(3.4)

Our warm-start strategies aim to find a starting point for the perturbed instance
that lies inside one of the neighborhoods (2.10) and for which the initial duality
measure µ̄0 is not too large. By applying (3.3) to the perturbed instance, we see that



WARM-START STRATEGIES 787

if µ̄0/‖d+∆d‖ is less than 1, then the formal complexity of the method will be better
than the general estimate (3.4).

Both warm-start strategies that we describe in subsequent sections proceed by
taking a point (x, y, s) from a neighborhood such as (2.8), (2.9) for the original in-
stance and calculating an adjustment (∆x,∆y,∆s) based on the perturbation ∆d to
obtain a starting point for the perturbed instance. The strategies are simple; their
computational cost is no greater than the cost of one interior-point iteration. They
do not succeed in producing a valid starting point unless the point (x, y, s) from
the original problem has a large enough value of µ = xT s/n. That is, we must re-
treat to a prior iterate for the original instance until the adjustment (∆x,∆y,∆s),
when added to this iterate, does not cause some components of x or s to become
negative. (Indeed, we require a stronger condition to hold: that the adjusted point
(x + ∆x, y + ∆y, s + ∆s) belong to a neighborhood such as those of (2.10).) Since
larger perturbations ∆d generally lead to larger adjustments (∆x,∆y,∆s), the prior
iterate to which we must retreat is further back in the iteration sequence when ∆d is
larger. Most of the results in the following sections quantify this observation. They
give a lower bound on µ/‖d‖—expressed in terms of the size of the components of
∆d, the conditioning C(d) of the original problem, and other quantities—such that
the warm-start strategy, applied from a point (x, y, s) satisfying µ = xT s/n and a
neighborhood condition, yields a valid starting point for the perturbed problem.

Our strategy contrasts with that of Gondzio, who uses the solution of the original
problem as a starting point in the computation of a central path point for the new
problem, which has additional columns in the matrix A. Our strategies instead rely
on a single correction to an interior-point iterate for the original problem to obtain a
loosely centered starting point for the modified problem. We focus just on correcting
the infeasibility of the linear equality conditions in (P) and (D), relying on the loose
centrality of the original iterate to provide us with sufficient centrality of the adjusted
starting point.

These results can be applied in a practical way when an interior-point approach
is used to solve the original instance. Let {(xk, yk, sk), k = 0, . . . ,K} denote the
iterates generated while solving the original problem. One can then store a subset of
the iterates {(xki , yki , ski), i = 0, 1, . . . , L} with k0 = 0, which is the shortest sequence
satisfying the property

µki+1 ≥ νµki ∀i = 0, 1, 2, . . .(3.5)

for some ν with 0 < ν � 1. Suppose that we denote the lower bound discussed in
the preceding paragraph by µ∗/‖d‖. Then the best available starting point from the
saved subsequence is the one with index k�, where % is the largest index for which

µk� ≥ µ∗.

Because of (3.5) and the choice of %, we have in fact that

µ∗ ≤ µk� ≤ (1/ν)µ∗.(3.6)

The warm-start point is then

(x̄0, ȳ0, s̄0) = (xk� , yk� , sk�) + (∆x,∆y,∆s),(3.7)

where (∆x,∆y,∆s) is the adjustment computed from one of our warm-start strategies.
The duality measure corresponding to this point is

µ̄0 = (x̄0)T s̄0/n = µk� + (xk�)T∆s+ (sk�)T∆x+∆xT∆s.
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By using the bounds on the components of (∆x,∆y,∆s) that are obtained during the
proofs of each major result, in conjunction with the bounds (2.13), we find that µ̄0

can be bounded above by some multiple of µ∗ +µk� . Because of (3.6), we can deduce
in each case that

µ̄0 ≤ κµ∗(3.8)

for some κ independent of the problem instance d and the perturbation ∆d. We
conclude, by applying (3.3) to the perturbed instance, that the number of iterations
required to satisfy the stopping criterion

µ ≤ ε‖d+∆d‖,(3.9)

starting from (x̄0, ȳ0, s̄0), is bounded by

O
(
nτ log

µ∗

‖d+∆d‖ε
)
.(3.10)

Since our assumptions on ‖∆d‖ usually ensure that

‖∆d‖ ≤ 0.5‖d‖,(3.11)

we have that

1

‖d+∆d‖ ≤
1

‖d‖ − ‖∆d‖ ≤
2

‖d‖ ,

so that (3.10) can be expressed more conveniently as

O
(
nτ log

µ∗

‖d‖ε
)
.(3.12)

After some of the results in subsequent sections, we will substitute for τ and µ∗ in
(3.12), to express the bound on the number of iterations in terms of the conditioning
C(d) of the original instance and the size of the perturbation ∆d.

Our first warm-start strategy, a least-squares correction, is described in section 4.
The second strategy, a “Newton step correction,” is based on a recent paper by
Yıldırım and Todd [18] and is described in section 5.

4. Least-squares correction. For much of this section, we restrict our analysis
to the changes in b and c only; that is, we assume

∆d = (0,∆b,∆c).(4.1)

Perturbations to A will be considered in section 4.3.
Given any primal-dual feasible point (x, y, s) for the instance d, the least-squares

correction for the perturbation (4.1) is the vector (∆x,∆y,∆s) obtained from the
solutions of the following subproblems:

min ‖∆x‖ s.t. A(x+∆x) = b+∆b,

min ‖∆s‖ s.t. AT (y +∆y) + (s+∆s) = c+∆c.

Because Ax = b and AT y + s = c, we can restate these problems as

min ‖∆x‖ s.t. A∆x = ∆b,(4.2a)

min ‖∆s‖ s.t. AT∆y +∆s = ∆c,(4.2b)
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which are independent of (x, y, s). Given the following QR factorization of AT ,

AT =
[
Y Z

] [ R
0

]
= Y R,(4.3)

where [Y Z] is orthogonal and R is upper triangular, we find by simple manipulation
of the optimality conditions that the solutions can be written explicitly as

∆x = Y R−T∆b,(4.4a)

∆y = R−1Y T∆c,(4.4b)

∆s = (I − Y Y T )∆c.(4.4c)

Contrary to a usual feasible interior-point step, ∆x is in the range space of AT , and
∆s is in the null space of A. Consequently,

∆xT∆s = 0.(4.5)

Our strategy is as follows: We calculate the correction (4.4) just once, then choose
an iterate (xk, yk, sk) for the original problem such that (xk + ∆x, sk + ∆s) > 0,
(xk +∆x, yk +∆y, sk +∆s) lies within either N̄2(θ) or N̄−∞(γ), and k is the largest
index for which these properties hold. We hope to be able to satisfy these requirements
for some index k for which the parameter µk is not too large. In this manner, we hope
to obtain a starting point for the perturbed problem for which the initial value of µ is
not large, so that we can solve the problem using a smaller number of interior-point
iterations than if we had started without the benefit of the iterates from the original
problem.

Some bounds that we use throughout our analysis follow immediately from (4.4):

‖∆s‖ ≤ ‖∆c‖, ‖∆x‖ ≤ ‖∆b‖
σm(A)

≤ ‖∆b‖
ρ(d)

,(4.6)

where, as in (2.5), σm(A) is the minimum singular value of A. These bounds follow
from the fact that I − Y Y T is an orthogonal projection matrix onto the null space of
A and from the observation that R has the same singular values as A. By defining

δb =
‖∆b‖
‖d‖ , δc =

‖∆c‖
‖d‖ ,(4.7)

we can rewrite (4.6) as

‖∆s‖ ≤ ‖d‖δc, ‖∆x‖ ≤ C(d)δb.(4.8)

We also define the following quantity, which occurs frequently in the analysis:

δbc = δc + 2C(d)δb.(4.9)

In the remainder of the paper, we make the mild assumption that

δb < 1, δc < 1.(4.10)
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4.1. Small neighborhood. Suppose that we have iterates for the original prob-
lem that satisfy the following property, for some θ0 ∈ (0, 1):

‖XSe− µe‖2 ≤ θ0µ, where µ = xT s/n.(4.11)

That is, (x, y, s) ∈ N2(θ0). Iterates of a short-step path-following algorithm typi-
cally satisfy a condition of this kind. Since (x, y, s) is a strictly feasible point, its
components satisfy the bounds (2.13). Note, too, that we have

‖XSe− µe‖ ≤ θ0µ ⇒ (1− θ0)µ ≤ xisi ≤ (1 + θ0)µ.(4.12)

Our first proposition gives conditions on δbc and µ that ensure that the least-
squares correction yields a point in the neighborhood N̄−∞(γ).
Proposition 4.1. Let γ ∈ (0, 1−θ0) be given, and let ξ ∈ (0, 1−γ−θ0). Assume

that ∆d satisfies

δbc ≤ 1− θ0 − γ − ξ

(n+ 1)C(d) .(4.13)

Let (x, y, s) ∈ N2(θ0), and suppose that (∆x,∆y,∆s) is the least-squares correction
(4.4). Then (x+∆x, y +∆y, s+∆s) lies in N̄−∞(γ) if

µ ≥ ‖d‖
ξ

3C(d)2δbc def
= µ∗

1.(4.14)

Proof. By using (4.12), (2.13), (4.8), and (4.9), we obtain a lower bound on
(xi +∆xi)(si +∆si) as follows:

(xi +∆xi)(si +∆si)

= xisi + xi∆si +∆xisi +∆xi∆si

≥ (1− θ0)µ− ‖x‖‖∆s‖ − ‖∆x‖‖s‖ − ‖∆x‖‖∆s‖
≥ (1− θ0)µ− C(d) (C(d) + µn/‖d‖) ‖d‖δc

− 2‖d‖C(d)2(C(d) + µn/‖d‖)δb − ‖d‖C(d)δbδc
≥ µ (1− θ0 − nC(d)δbc)− C(d)2‖d‖δbc − C(d)‖d‖δbδc
≥ µ (1− θ0 − nC(d)δbc)− 2C(d)2‖d‖δbc.(4.15)

Because of our assumption (4.13), the coefficient of µ in (4.15) is positive, and thus
(4.15) represents a positive lower bound on (xi +∆xi)(si +∆si) for all µ sufficiently
large.

For an upper bound on (x+∆x)T (s+∆s)/n, we have from (2.13), (4.8), and the
relation (4.5) that

(x+∆x)T (s+∆s)/n

≤ µ+ ‖∆x‖‖s‖/n+ ‖x‖‖∆s‖/n
≤ µ+ 2C(d)2‖d‖δb(C(d) + µn/‖d‖)/n+ C(d)‖d‖δc(C(d) + µn/‖d‖)/n
≤ µ(1 + C(d)δbc) + C(d)2‖d‖δbc/n.(4.16)

It follows from this bound and (4.15) that a sufficient condition for the conclusion of
the proposition to hold is that

µ(1− θ0 − nC(d)δbc)− 2C(d)2‖d‖δbc ≥ γµ(1 + C(d)δbc) + γC(d)2‖d‖δbc/n,
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which is equivalent to

µ ≥ ‖d‖C(d)2δbc(2 + γ/n)

1− θ0 − γ − C(d)δbc(n+ γ)
,(4.17)

provided that the denominator is positive. Because of condition (4.13), and using
γ ∈ (0, 1) and n ≥ 1, the denominator is in fact bounded below by the positive
quantity ξ, and thus the condition (4.17) is implied by (4.14).

Finally, we show that our bounds ensure the positivity of x + ∆x and s + ∆s.
It is easy to show that the right-hand side of (4.15) is also a lower bound on (xi +
α∆xi)(si + α∆si) for all α ∈ [0, 1] and all i = 1, 2, . . . , n. Because µ satisfies (4.17),
we have (xi + α∆xi)(si + α∆si) > 0 for all α ∈ [0, 1]. Since we know that (x, s) > 0,
we conclude that xi + ∆xi > 0 and si + ∆si > 0 for all i as well, completing the
proof.

Next, we seek conditions on δbc and µ that ensure that the corrected iterate lies
in a narrow central path neighborhood for the perturbed problem.
Proposition 4.2. Let θ > θ0 be given, and let ξ ∈ (0, θ − θ0). Assume that the

perturbation ∆d satisfies

δbc ≤ θ − θ0 − ξ

(2n+ 1)C(d) .(4.18)

Suppose that (x, y, s) ∈ N2(θ0) for the original problem and that (∆x,∆y,∆s) is the
least-squares correction (4.4). Then, (x+∆x, y +∆y, s+∆s) will lie in N̄2(θ) if

µ ≥ ‖d‖
ξ

4C(d)2δbc def
= µ∗

2.(4.19)

Proof. We start by finding a bound on the norm of the vector

[(xi +∆xi)(si +∆si)]i=1,2,...,n −
[
(x+∆x)T (s+∆s)/n

]
e.(4.20)

Given two vectors y and z in Rn, we have that∥∥∥[yizi]i=1,2,...,n

∥∥∥ ≤ ‖y‖ ‖z‖, ∣∣yT z∣∣ ≤ ‖y‖ ‖z‖.(4.21)

By using these elementary inequalities together with (4.5), (4.8), (4.9), and (2.13), we
have that the norm of (4.20) is bounded by∥∥∥[xisi]i=1,2,...,n − µe

∥∥∥+ 2 [ ‖∆x‖ ‖s‖+ ‖x‖ ‖∆s‖ ] + ‖∆x‖ ‖∆s‖
≤ θ0µ+ 2C(d)‖d‖δbc (C(d) + nµ/‖d‖) + C(d)‖d‖δbδc
≤ [θ0 + 2nC(d)δbc]µ+ 3‖d‖C(d)2δbc.

Meanwhile, we obtain a lower bound on the duality measure after the correction by
using the same set of relations:

(x+∆x)T (s+∆s)/n ≥ µ− [ ‖∆x‖ ‖s‖+ ‖x‖ ‖∆s‖ ] /n
≥ µ− C(d)‖d‖δbc(C(d) + nµ/‖d‖)/n
≥ µ [1− C(d)δbc]− C(d)2‖d‖δbc/n.(4.22)

Therefore, a sufficient condition for

(x+∆x, y +∆y, s+∆s) ∈ N̄2(θ)
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is that

[θ0 + 2nC(d)δbc]µ+ 3‖d‖C(d)2δbc ≤ θµ [1− C(d)δbc]− θC(d)2‖d‖δbc/n,

which after rearrangement becomes

µ [θ − θ0 − 2nC(d)δbc − θC(d)δbc] ≥ 3‖d‖C(d)2δbc + θ‖d‖C(d)2δbc/n.(4.23)

We have from (4.18) that the coefficient of µ on the left-hand side of this expression
is bounded below by ξ. By dividing both sides of (4.23) by this expression and using
θ ∈ (0, 1) and n ≥ 1, we find that (4.19) is a sufficient condition for (4.23). A similar
argument as in the proof of Proposition 4.1, together with the fact that µ∗

2 > µ∗
1,

ensures positivity of (x+∆x, s+∆s).
We now specialize the discussion of section 3 to show that Propositions 4.1 and

4.2 can be used to obtain lower complexity estimates for the interior-point warm-start
strategy.

Considering first the case of Proposition 4.1, we have from the standard analysis
of a long-step path-following algorithm that constrains its iterates to lie in N̄−∞(γ)
(see, for example, Wright [16, Chapter 5]) that the reduction in duality measure at
each iteration satisfies (3.1) with

τ = 1, δ = 2
3
2 γ

1− γ

1 + γ
min{σmin(1− σmin), σmax(1− σmax)},

where 0 < σmin < σmax < 1 are the lower and upper bounds on the centering pa-
rameter σ at each iteration. Choosing one of the iterates of this algorithm (x�, y�, s�)
in the manner of section 3 and defining the starting point as in (3.7), we have from
(4.16), (4.13), (4.14), and the conditions 0 < ξ < 1 and n ≥ 1 that

µ̄0 = (x̄0)T s̄0/n

≤ µ�(1 + C(d)δbc) + C(d)2‖d‖δbc/n ≤ µ�(1 + 1/n) + µ∗
1(ξ/n) ≤ 2µ� + µ∗

1.

Now from the property (3.6), it follows that

µ̄0 ≤ (1 + 2/ν)µ∗
1.

It is easy to verify that (4.13) implies that ‖∆d‖ ≤ ‖d‖/2, so that we can use the
expression (3.12) to estimate the number of iterations. By substituting τ = 1 and
µ∗ = µ∗

1 into (3.12), we obtain

O
(
n log

(
1

ε
C(d)2δbc

))
iterations.(4.24)

We conclude that if δbc is small in the sense that δbc � C(d)−2, then the estimate
(4.24) is an improvement on the cold-start complexity estimate (3.4), and thus it is
advantageous to use the warm-start strategy.

Taking now the case of a starting point in the smaller neighborhood of Propo-
sition 4.2, we set θ = 0.4, and the centering parameter σ to the constant value
1 − 0.4/n1/2. The standard analysis of the short-step path-following algorithm (see,
for example, [16, Chapter 4]) then shows that (3.1) holds with

τ = 0.5, δ = 0.4.
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By using the procedure outlined in section 3 to derive the warm-start point, the
argument of the preceding paragraph can be applied to obtain the following on the
number of iterations:

O
(
n1/2 log

(
1

ε
C(d)2δbc

))
.(4.25)

We conclude as before that improved complexity over a cold start is available, provided
that δbc � C(d)−2.

4.2. Wide neighborhood. We now consider the case in which the iterates for
the original problem lie in a wide neighborhood of the central path. To be specific, we
suppose that they satisfy xisi ≥ γ0µ for some γ0 ∈ (0, 1), that is, (x, y, s) ∈ N−∞(γ0).
Note that, in this case, we have the following bounds on the pairwise products:

γ0µ ≤ xisi ≤ (n− (n− 1)γ0)µ.(4.26)

Similarly to the upper bounds (2.13) on ‖x‖ and ‖s‖, we can derive lower bounds on
xi and si by combining (2.13) with (4.26) and using xi ≤ ‖x‖ and si ≤ ‖s‖:

xi ≥ γ0µ

2‖d‖C(d)(C(d) + nµ/‖d‖) ,(4.27a)

si ≥ γ0µ

C(d)(C(d) + nµ/‖d‖) .(4.27b)

These lower bounds will be useful in the later analysis. The following proposition
gives a sufficient condition for the least-squares corrected point to be a member of the
wide neighborhood for the perturbed problem. The proof uses an argument identical
to the proof of Proposition 4.1, with γ0 replacing (1− θ0).
Proposition 4.3. Given γ and γ0 such that 0 < γ < γ0 < 1, suppose that ξ is a

parameter satisfying ξ ∈ (0, γ0 − γ). Assume that ∆d satisfies

δbc ≤ γ0 − γ − ξ

(n+ 1)C(d) .(4.28)

Suppose also that (x, y, s) ∈ N−∞(γ0), and denote by (∆x,∆y,∆s) the least-squares
correction (4.4). Then a sufficient condition for

(x+∆x, y +∆y, s+∆s) ∈ N̄−∞(γ)(4.29)

is that

µ ≥ ‖d‖
ξ

3C(d)2δbc def
= µ∗

3.(4.30)

An argument like the one leading to (4.24) can now be used to show that a
long-step path-following method requires

O
(
n log

(
1

ε
C(d)2δbc

))
iterations(4.31)

to converge from the warm-start point to a point that satisfies (3.9).
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4.3. Perturbations in A. We now allow for perturbations in A as well as in
b and c. By doing so, we introduce some complications in the analysis that can be
circumvented by imposing an a priori upper bound on the values of µ that we are
willing to consider. This upper bound is large enough to encompass all values of µ
of interest from the viewpoint of complexity, in the sense that when µ exceeds this
bound, the warm-start strategy does not lead to an appreciably improved complexity
estimate over the cold-start approach.

For some constant ζ > 1, we assume that µ satisfies the bound

µ ≤ ζ − 1

n
‖d‖C(d) def

= µup,(4.32)

so that, for a subexpression that recurs often in the preceding sections, we have

C(d) + nµ/‖d‖ ≤ ζC(d).

For µ ∈ [0, µup], we can simplify a number of estimates in the preceding sections, to
remove their explicit dependence on µ. In particular, the bounds (2.13) on the strictly
feasible point (x, y, s) with µ = xT s/n become

‖x‖ ≤ ζC(d)2, ‖y‖ ≤ ζC(d)2, ‖s‖ ≤ 2ζ‖d‖C(d)2.(4.33)

Given a perturbation ∆d = (∆A,∆b,∆c) with ‖∆d‖ < ρ(d), we know that A+∆A
has full rank. In particular, for the smallest singular value, we have

σm(A+∆A) ≥ σm(A)− ‖∆A‖.(4.34)

To complement the definitions (4.7), we introduce

δA =
‖∆A‖
‖d‖ .(4.35)

As before, we consider a warm-start strategy obtained by applying least-squares
corrections to a given point (x, y, s) that is strictly feasible for the unperturbed prob-
lem. The correction ∆x is the solution of the following subproblem:

min ‖∆x‖ s.t. (A+∆A)(x+∆x) = b+∆b,(4.36)

which is given explicitly by

∆x = (A+∆A)T
[
(A+∆A)(A+∆A)T

]−1
(∆b−∆Ax),(4.37)

where we have used Ax = b. By using the QR factorization of (A+∆A)T as in (4.3)
and (4.4), we find the following bound on ‖∆x‖:

‖∆x‖ ≤ ‖∆b‖+ ‖∆A‖‖x‖
σm(A+∆A)

.(4.38)

By using (4.34), (2.5), and the definitions (4.7), (4.35), and (2.3), we have

‖∆x‖ ≤ ‖∆b‖+ ‖∆A‖‖x‖
σm(A)− ‖∆A‖ ≤

‖∆b‖+ ‖∆A‖‖x‖
ρ(d)− ‖∆A‖ =

δb + δA‖x‖
1/C(d)− δA

.
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In particular, when x is strictly feasible for the original problem, we have from (4.33)
that

‖∆x‖ ≤ C(d)δb + ζC(d)2δA
1− δAC(d) ,

while if we make the additional simple assumption that

δA ≤ 1

2C(d) ,(4.39)

then we have immediately that

‖∆x‖ ≤ 2C(d)δb + 2ζC(d)3δA.(4.40)

By using (4.39) again, together with (4.10) and the known bounds C(d) ≥ 1 and ζ > 1,
we obtain

‖∆x‖ ≤ 2C(d)δb + 2ζC(d)3δA ≤ 2C(d) + ζC(d)2 ≤ 3ζC(d)2.(4.41)

The dual perturbation is the solution of the problem

min ‖∆s‖ s.t. (A+∆A)T (y +∆y) + (s+∆s) = c+∆c.(4.42)

Once again, the minimum norm solution is unique and given by

∆s =
[
I − (A+∆A)T

(
(A+∆A)(A+∆A)T

)−1
(A+∆A)

]
(∆c−∆AT y).(4.43)

Therefore, we have the following upper bound:

‖∆s‖ ≤ ‖∆c‖+ ‖∆A‖‖y‖.(4.44)

Using (4.33), we have for (x, y, s) strictly feasible for the original problem that

‖∆s‖ ≤ ‖∆c‖+ ‖∆A‖ζC(d)2 ≤ ‖d‖δc + ζ‖d‖C(d)2δA.(4.45)

By using these inequalities, we can prove a result similar to Proposition 4.3.
Proposition 4.4. Suppose we are given γ and γ0 such that 0 < γ < γ0 < 1,

and a feasible primal-dual point (x, y, s) ∈ N−∞(γ0). Assume further that µ = xT s/n
satisfies (4.32) and that the perturbation component ∆A satisfies (4.39). For the
perturbation ∆d, suppose that (∆x,∆y,∆s) is the least-squares correction obtained
from (4.36) and (4.42). We then have

(x+∆x, y +∆y, s+∆s) ∈ N̄−∞(γ),(4.46)

provided that µ satisfies the following lower bound:

µ ≥ 19ζC(d)2 ‖d‖
γ0 − γ

max
(
δbc, ζC(d)3δA

) def
= µ∗

4.(4.47)

Proof. By using the upper bounds (4.40) and (4.41) on ‖∆x‖, (4.45) on ‖∆s‖,
and (4.33) on ‖x‖ and ‖s‖, we have

(xi +∆xi)(si +∆si)

≥ γ0µ− (‖x‖+ ‖∆x‖)‖∆s‖ − ‖s‖‖∆x‖
≥ γ0µ− [4ζC(d)2][‖d‖δc + ζ‖d‖C(d)2δA]

− [2‖d‖ζC(d)2][2C(d)δb + 2ζC(d)3δA]
≥ γ0µ− 4‖d‖ζC(d)3δb − 4‖d‖ζC(d)2δc − 8‖d‖ζ2C(d)5δA
≥ γ0µ− 4‖d‖ζC(d)2δbc − 8‖d‖ζ2C(d)5δA,
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where for the last inequality we have used the definition (4.9). By similar logic, and
using (4.5), we have for the updated duality measure that

(x+∆x)T (s+∆s)/n

≤ µ+ ‖∆x‖ ‖s‖/n+ ‖x‖ ‖∆s‖/n
≤ µ+ [2C(d)δb + 2ζC(d)3δA]2ζ‖d‖C(d)2/n+ ζC(d)2[‖d‖δc + ζ‖d‖C(d)2δA]/n
= µ+ 4ζC(d)3‖d‖δb/n+ ζC(d)2‖d‖δc/n+ 5ζ2C(d)5‖d‖δA/n
≤ µ+ 2ζC(d)2‖d‖δbc/n+ 5ζ2C(d)5‖d‖δA/n.

By comparing these two inequalities in the usual way and using γ ∈ (0, 1) and n ≥ 1,
we have that a sufficient condition for the conclusion (4.46) to hold is that

(γ0 − γ)µ ≥ 6‖d‖ζC(d)2δbc + 13‖d‖ζ2C(d)5δA.(4.48)

Since from (4.47), we have

6

19
(γ0 − γ)µ ≥ 6‖d‖ζC(d)2δbc,

13

19
(γ0 − γ)µ ≥ 13‖d‖ζ2C(d)5δA,

then (4.48) holds. Finally, the positivity of x+∆x and that of s+∆s can be shown
in a way similar to the proof of Proposition 4.1. Once again, the lower bound for
(xi +∆xi)(si +∆si) also holds for (xi + α∆xi)(si + α∆si) for any α ∈ [0, 1]. Using
the simple inequality a+ b ≤ 2max(a, b), we obtain

(xi + α∆xi)(si + α∆si) ≥ γ0µ− 8ζC(d)2‖d‖max
(
δbc, 2ζC(d)3δA

)
,

which yields a positive lower bound by (4.47), and the proof is complete.
By using an argument like the ones leading to (4.24) and (4.31), we deduce that

a long-step path-following algorithm that uses the warm start prescribed in Proposi-
tion 4.4 requires

O
(
n

[
log

(
1

ε
C(d)2δbc

)
+ log

(
1

ε
C(d)5δA

)])
iterations(4.49)

to converge to a point that satisfies (3.9).

5. Newton step correction. In a recent study, Yıldırım and Todd [18] analyzed
the perturbations in b and c in linear and semidefinite programming using interior-
point methods. For such perturbations they stated a sufficient condition on the norm
of the perturbation, which depends on the current iterate, so that an adjustment to
the current point based on applying an iteration of Newton’s method to the system
(2.6a), (2.6b), (2.6c) yields a feasible iterate for the perturbed problem with a lower
duality gap than that of the original iterate. In this section, we augment some of the
analysis of [18] with other results, like those of section 4, to find conditions on the
duality gap µ = xT s/n and the perturbation size under which the Newton step yields
a warm-start point that gives significantly better complexity than a cold start.

Each iteration of a primal-dual interior-point method involves solving a Newton-
like system of linear equations whose coefficient matrix is the Jacobian of the system
(2.6a), (2.6b), (2.6c). The general form of these equations is

A∆x = rp,
AT∆y + ∆s = rd,

S∆x + X∆s = rxs,
(5.1)
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where typically rp = b−Ax and rd = c−AT y−s. The choice of rxs typically depends
on the particular method being applied, but usually represents a Newton or higher-
order step toward some “target point” (x′, y′, s′), which often lies on the central path
P defined in (2.7).

In the approach used in Yıldırım and Todd [18] and in this section, this Newton-
like system is used to correct for perturbations in the data (A, b, c) rather than to
advance to a new primal-dual iterate. The right-hand side quantities are chosen
so that the adjustment (∆x,∆y,∆s) yields a point that is strictly feasible for the
perturbed problem and whose duality gap is no larger than that of the current point
(x, y, s).

In section 5.1, we consider the case of perturbations in b and c but not in A. In
section 5.2 we allow perturbations in A as well.

5.1. Perturbations in b and c. In our strategy, we assume that
• the current point (x, y, s) is strictly primal-dual feasible for the original prob-
lem;
• the target point (x′, y′, s′) used to define rxs is a point that is strictly feasible

for the perturbed problem for which x′
is

′
i = xisi for all i = 1, 2, . . . , n;

• the step is a pure Newton step toward (x′, y′, s′); that is, rp = ∆b, rd = ∆c,
and rxs = X ′S′e−XSe = 0.

Note that, in general, the second assumption is not satisfied for an arbitrary current
point (x, y, s) because such a feasible point for the perturbed problem need not exist.
However, Newton’s method is still well defined with the above choices of rp, rd, and
rxs, and that assumption is merely stated for the sake of a complete description of
our strategy.

Since A has full row rank by our assumption of ρ(d) > 0, we have, by substituting
our right-hand side in (5.1) and performing block elimination, that the solution is given
explicitly by

∆y = (AD2AT )−1(∆b+AD2∆c),(5.2a)

∆s = ∆c−AT∆y,(5.2b)

∆x = −S−1X∆s,(5.2c)

where

D2 def
= S−1X.(5.3)

Since A has full row rank and D is positive diagonal, AD2AT is invertible.
The following is an extension of the results in Yıldırım and Todd [18] to the case

of simultaneous perturbations in b and c. Note in particular that the Newton step
yields a decrease in the duality gap xT s.
Proposition 5.1. Assume that (x, y, s) is a strictly feasible point for d. Let

∆d = (0,∆b,∆c). Consider a Newton step (∆x,∆y,∆s) taken from (x, y, s) targeting
the point (x′, y′, s′) that is strictly feasible for the perturbed problem and satisfies
X ′S′e = XSe, and let

(x̃, ỹ, s̃)
def
= (x, y, s) + (∆x,∆y,∆s).(5.4)

Then if

∥∥∥∥
[

∆c
∆b

]∥∥∥∥
∞
≤ ∥∥[S−1

(
I −AT (AD2AT )−1AD2

) − S−1AT (AD2AT )−1
]∥∥−1

∞ ,

(5.5)
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(x̃, ỹ, s̃) is feasible for the perturbed problem and satisfies

x̃T s̃ ≤ xT s.(5.6)

Proof. By rearranging (5.2c) and writing it componentwise, we have

si∆xi + xi∆si = 0⇐⇒ ∆xi
xi

+
∆si
si

= 0, i = 1, 2, . . . , n.(5.7)

The next iterate will be feasible if and only if

∆xi
xi
≥ −1, ∆si

si
≥ −1, i = 1, 2, . . . , n.

By combining these inequalities with (5.7), we find that feasibility requires∣∣∣∣∆xi
xi

∣∣∣∣ ≤ 1,

∣∣∣∣∆si
si

∣∣∣∣ ≤ 1, i = 1, 2, . . . , n,

or, equivalently, ∥∥S−1∆s
∥∥
∞ =

∥∥X−1∆x
∥∥
∞ ≤ 1.(5.8)

By using (5.2a) and (5.2c), we have

‖S−1∆s‖∞
=
∥∥S−1[∆c−AT∆y]

∥∥
∞

=
∥∥S−1

[
∆c−AT (AD2AT )−1AD2∆c−AT (AD2AT )−1∆b

]∥∥
∞(5.9)

≤ ∥∥[S−1
(
I −AT (AD2AT )−1AD2

) − S−1AT (AD2AT )−1
]∥∥

∞

∥∥∥∥
[

∆c
∆b

]∥∥∥∥
∞

.

Hence, (5.5) is sufficient to ensure that ‖S−1∆s‖∞ ≤ 1.
By summing (5.7) over i = 1, 2, . . . , n, we obtain xT∆s + sT∆x = 0. It is also

clear from (5.7) that ∆xi and ∆si have opposite signs for each i = 1, 2, . . . , n, and
thus ∆xT∆s ≤ 0. Therefore, we have

(x+∆x)T (s+∆s) = xT s+ xT∆s+ sT∆x+∆xT∆s = xT s+∆xT∆s ≤ xT s,

proving (5.6).
Proposition 5.1 does not provide any insight about the behavior of the expression

on the right-hand side of (5.5) as a function of µ. To justify our strategy of retreating
to successively earlier iterates of the original problem, we need to show that the
expression in question increases as µ corresponding to (x, y, s) increases, so that we
can handle larger perturbations by considering iterates with larger values of µ. In
the next theorem, we will show that there exists an increasing function f(µ) with
f(0) = 0 that is a lower bound to the corresponding expression in (5.5) for all values
of µ. The key to our result is the following bound:

χ(H)
def
= sup

Σ∈D+

∥∥ΣHT (HΣHT )−1
∥∥
∞ <∞,(5.10)

where D+ denotes the set of diagonal matrices in Rn×n with strictly positive diagonal
elements (i.e., positive definite diagonal matrices) and ‖ · ‖∞ is the %∞ matrix norm
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defined as the maximum of the sums of the absolute values of the entries in each row.
This result, by now well known, was apparently first proved by Dikin [2]. For a survey
of the background and applications of this and related results, see Forsgren [3].
Theorem 5.2. Consider points (x, y, s) in the neighborhood N−∞(γ0) for the

original problem, with γ0 ∈ (0, 1) and µ = xT s/n as defined in (2.11). Then there
exists an increasing function f(µ) with f(0) = 0 such that the expression on the
right-hand side of (5.5) is bounded below by f(µ) for all (x, y, s) in this neighborhood.

Proof. Let (x, y, s) be a strictly feasible pair of points for the original problem,
which lies in N−∞(γ0) for some γ0 ∈ (0, 1). From (4.27) and (5.10), we have

∥∥S−1AT (AD2AT )−1
∥∥
∞ =

∥∥S−1D−2D2AT (AD2AT )−1
∥∥
∞

≤ ∥∥X−1
∥∥
∞
∥∥D2AT (AD2AT )−1

∥∥
∞

≤
(
1

µ

)
2‖d‖C(d)

γ0
(C(d) + nµ/‖d‖)χ(A).(5.11)

The first inequality is simply the matrix norm inequality. Since D2 = XS−1, and
x and s are strictly feasible, D2 is a positive definite diagonal matrix, and thus the
bound in (5.10) applies.

Similarly, consider the following:

∥∥S−1
(
I −AT (AD2AT )−1AD2

)∥∥
∞(5.12)

=
∥∥S−1D−1

(
I −DAT (AD2AT )−1AD

)
D
∥∥
∞ .

Note that (I−DAT (AD2AT )−1AD) is a projection matrix onto the null space of AD;
therefore, its %2-norm is bounded by 1. Using the elementary matrix norm inequality
‖P‖∞ ≤ n1/2‖P‖2 for any P ∈ Rn×n, we obtain the following sequence of inequalities:

∥∥S−1
(
I −AT (AD2AT )−1AD2

)∥∥
∞

=
∥∥S−1D−1(I −DAT (AD2AT )−1AD)D

∥∥
∞

≤ ∥∥X−1/2S−1/2
∥∥
∞
∥∥I −DAT (AD2AT )−1AD

∥∥
∞
∥∥X1/2S−1/2

∥∥
∞

≤ max
i=1,2,...,n

1√
xisi

n1/2 max
i=1,2,...,n

√
xi
si

≤ n1/2 1√
γ0µ

max
i=1,2,...,n

xi√
xisi

≤
(
1

µ

)
n1/2C(d)

γ0
(C(d) + nµ/‖d‖) ,(5.13)

where we used D2 = XS−1, xisi ≥ γ0µ, and (2.13).
If we consider the reciprocal of the right-hand side of expression (5.5), we obtain

∥∥[S−1
(
I −AT (AD2AT )−1AD2

) − S−1AT (AD2AT )−1
]∥∥

∞
≤ ∥∥S−1

(
I −AT (AD2AT )−1AD2

)∥∥
∞ +

∥∥S−1AT (AD2AT )−1
∥∥
∞

≤
(
1

µ

)
n1/2C(d)

γ0
(C(d) + {nµ}‖d‖) +

(
1

µ

)
2‖d‖C(d)

γ0
(C(d) + nµ/‖d‖)χ(A),(5.14)
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which follows from (5.11) and (5.13). Therefore, (5.14) implies

1

‖[S−1 (I −AT (AD2AT )−1AD2) − S−1AT (AD2AT )−1]‖∞
≥ f(µ)

def
=

γ0µ

C(d) (n1/2 + 2‖d‖χ(A)
)
[C(d) + nµ/‖d‖] .(5.15)

It is easy to verify our claims both that f is monotone increasing in µ and that
f(0) = 0.

Note that Proposition 5.1 guarantees only that the point (x̃, ỹ, s̃) is feasible for
the perturbed problem. To initiate a feasible path-following interior-point method,
we need to impose additional conditions to obtain a strictly feasible point for the
perturbed problem that lies in some neighborhood of the central path. For example,
in the proof, we imposed only the condition (x̃, s̃) ≥ 0. Strict positivity of x̃ and s̃
could be ensured by imposing the following condition, for some ε ∈ (0, 1):

xi +∆xi ≥ εxi, si +∆si ≥ εsi ∀ i = 1, 2, . . . , n.(5.16)

Equivalently, we can replace the necessary and sufficient condition ‖S−1∆s‖∞ ≤ 1 in
(5.8) by the condition (ε− 1)e ≤ S−1∆s ≤ (1− ε)e, that is,

‖S−1∆s‖∞ ≤ 1− ε,

in the proof of Proposition 5.1. With this requirement, we obtain the following bounds:

εxi ≤ x̃i ≤ (2− ε)xi, εsi ≤ s̃i ≤ (2− ε)si.(5.17)

Note that if (∆x,∆y,∆s) is the Newton step given by (5.2), then ∆xi∆si ≤ 0 for all
i = 1, 2, . . . , n. First, consider the case ∆xi ≥ 0, which implies x̃i ≥ xi. We have from
(5.17) that

x̃is̃i ≥ xis̃i ≥ εxisi.(5.18)

A similar set of inequalities holds for the case ∆si ≥ 0. Thus, if we define µ̃ = x̃T s̃/n,
we obtain

µ̃ ≥ εµ.(5.19)

Note that by (5.6), we already have µ̃ ≤ µ. With this observation, we can relate
the neighborhood in which the original iterate (x, y, s) lies to the one in which the
adjusted point (x̃, ỹ, s̃) lies.
Proposition 5.3. Let (x, y, s) be a strictly feasible point for d, and suppose that

∆d = (0,∆b,∆c) and ε ∈ (0, 1) are given. Consider the Newton step of Proposition 5.1
and the adjusted point (x̃, ỹ, s̃) of (5.4). If∥∥∥∥

[
∆c
∆b

]∥∥∥∥
∞

(5.20)

≤ 1− ε

‖[S−1(I −AT (AD2AT )−1AD2) − S−1AT (AD2AT )−1]‖∞
,

with D defined in (5.3), then (x̃, ỹ, s̃) is strictly feasible for d + ∆d with µ̃ ≤ µ.
Moreover, if (x, y, s) ∈ N−∞(γ0) for the original problem with γ0 ∈ (0, 1), then (x̃, ỹ, s̃)
satisfies (x̃, ỹ, s̃) ∈ N̄−∞(εγ0).
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Proof. It suffices to prove the final statement of the theorem. If we assume that
(x, y, s) ∈ N−∞(γ0), then, using (5.18) and (5.6), we have

x̃is̃i ≥ εxisi ≥ εγ0µ ≥ εγ0µ̃,(5.21)

which implies that (x̃, ỹ, s̃) ∈ N̄−∞(εγ0), as required.
We now have all the tools to be able to prove results like those of section 4.

Suppose that the iterates of the original problem lie in a wide neighborhood with
parameter γ0. For convenience we define

‖∆d‖∞ def
=

∥∥∥∥
[

∆b
∆c

]∥∥∥∥
∞

= max(‖∆b‖∞, ‖∆c‖∞).(5.22)

We also define the relative perturbation measure δd as follows:

δd
def
=
‖∆d‖∞
‖d‖ .(5.23)

Note from (4.7) and (4.9) that

δd = max

(‖∆b‖∞
‖d‖ ,

‖∆c‖∞
‖d‖

)
≤ max(δb, δc) ≤ δbc.

Hence, it is easy to compare results such as Proposition 5.4 below, which obtain a
lower bound on µ in terms of δd, to similar results in preceding sections.

Note that Theorem 5.2 provides a lower bound f(µ) on the term on the right-
hand side of (5.5). Therefore, combining this result with Proposition 5.3, we conclude
that a sufficient condition for the perturbation ∆d to satisfy (5.20) is that ‖∆d‖∞ is
bounded above by the lower bound (5.15) multiplied by (1− ε), that is,

‖∆d‖∞ ≤ (1− ε)γ0µ

C(d) (n1/2 + 2‖d‖χ(A)
)
(C(d) + nµ/‖d‖) ,

which by rearrangement yields

µ ≥ C(d)2‖∆d‖∞(n1/2 + 2‖d‖χ(A))

(1− ε)γ0 − nC(d)‖∆d‖∞(n1/2 + 2‖d‖χ(A))/‖d‖ ,(5.24)

provided that the denominator of this expression is positive. To ensure the latter
condition, we impose the following bound on δd:

δd =
‖∆d‖∞
‖d‖ <

(1− ε)γ0

nC(d)(n1/2 + 2‖d‖χ(A))
.(5.25)

Indeed, when this bound is not satisfied, the perturbation may be so large that the
adjusted point (x̃, ỹ, s̃) may not be feasible for d+∆d no matter how large we choose
µ for the original iterate (x, y, s).

We now state and prove a result like Proposition 4.3 that gives a condition on
‖∆d‖∞ and µ sufficient to ensure that the adjusted point (x̃, ỹ, s̃) lies within a wide
neighborhood of the central path for the perturbed problem.
Proposition 5.4. Let γ and γ0 be given with 0 < γ < γ0 < 1, and suppose that

ξ satisfies ξ ∈ (0, γ0 − γ). Assume that δd satisfies

δd ≤ γ0 − γ − ξ

nC(d)(n1/2 + 2‖d‖χ(A))
.(5.26)
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Suppose that (x, y, s) ∈ N−∞(γ0) for the original problem, and let (x̃, ỹ, s̃) be as defined
in (5.4). Then if

µ ≥ ‖d‖
ξ
C(d)2δd

(
n1/2 + 2‖d‖χ(A)

)
def
= µ∗

5,(5.27)

we have (x̃, ỹ, s̃) ∈ N̄−∞(γ).
Proof. Setting ε = γ/γ0, we note that (5.26) satisfies condition (5.25), and so the

Newton step adjustment yields a strictly feasible point for the perturbed problem.
By the argument preceding the proposition, (5.24) gives a condition sufficient for the
resulting iterate to lie in N̄−∞(γ) by Proposition 5.3 since γ = εγ0 by the hypothesis.
However, (5.26) implies that the denominator of (5.24) is bounded below by ξ; hence,
(5.24) is implied by (5.27), as required.

The usual argument can now be used to show that a long-step path-following
method requires

O
(
n log

(
1

ε
C(d)2δd

(
n1/2 + ‖d‖χ(A)

)))
iterations(5.28)

to converge from the warm-start point to a point that satisfies (3.9).

5.2. Perturbations in A. In this section, we also allow perturbations in A (i.e.,
we let ∆d = (∆A,∆b,∆c)) and propose a Newton step correction strategy to recover
warm-start points for the perturbed problem from the iterates of the original problem.

The underlying idea is the same as that in section 5.1. Given a strictly feasible
iterate (x, y, s) ∈ N−∞(γ0) for the original problem, we apply Newton’s method to
recover a feasible point for the perturbed problem by keeping the pairwise products
xisi fixed. As in section 4.3, we impose an upper bound on µ that excludes values
of µ that are not likely to yield an adjusted starting point with significantly better
complexity than a cold-start strategy. In particular, we assume that µ satisfies (4.32)
for some ζ > 1. Let

Ā
def
= A+∆A.(5.29)

Given a feasible iterate (x, y, s) for the original problem, the Newton step correction
is then given by the solution to

Ā∆x = ∆b−∆Ax,

ĀT∆y + ∆s = ∆c−∆AT y,
S∆x + X∆s = 0.

(5.30)

Under the assumption that Ā has full row rank, the solution to (5.30) is then given
by

∆y = (ĀD2ĀT )−1(ĀD2(∆c−∆AT y) + ∆b−∆Ax),(5.31a)

∆s = ∆c−∆AT y − ĀT∆y,(5.31b)

∆x = −S−1X∆s,(5.31c)

where D2 = S−1X as in (5.3).
By a similar argument, a necessary and sufficient condition to have strictly feasible

iterates for the perturbed problem is

‖S−1∆s‖∞ ≤ 1− ε for some ε ∈ (0, 1).(5.32)
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By Proposition 5.3, the duality gap of the resulting iterate will also be smaller than
that of the original iterate. We will modify the analysis in section 5 to incorporate
the perturbation in A and will refer to the previous analysis without repeating the
propositions.

Using (5.31), we get

S−1∆s = S−1(I − ĀT (ĀD2ĀT )−1ĀD2)(∆c−∆AT y)

− S−1ĀT (ĀD2ĀT )−1(∆b−∆Ax).

Therefore, ‖S−1∆s‖∞ is bounded above by

∥∥[S−1(I − ĀT (ĀD2ĀT )−1ĀD2) − S−1ĀT (ĀD2ĀT )−1]
∥∥
∞

∥∥∥∥
[

∆c−∆AT y
∆b−∆Ax

]∥∥∥∥
∞

.

By Theorem 5.2, the first term in this expression is bounded above by 1/f̄(µ), where
f̄(µ) is obtained from f(µ) in (5.15) by replacing χ(A) by χ(Ā). For the second term,
we extend the definition in (5.22) to account for the perturbations in A as follows,

‖∆d‖∞ def
= max(‖∆b‖∞, ‖∆c‖∞, ‖∆A‖∞, ‖∆AT ‖∞),(5.33)

and continue to define δd as in (5.23). We obtain that∥∥∥∥
[

∆c−∆AT y
∆b−∆Ax

]∥∥∥∥
∞

≤ max{‖∆c‖∞ + ‖∆AT ‖∞‖y‖∞, ‖∆b‖∞ + ‖∆A‖∞‖x‖∞}
≤ max{‖∆d‖∞(1 + ‖y‖∞), ‖∆d‖∞(1 + ‖x‖∞)}
≤ ‖∆d‖∞(1 + ζC(d)2)
≤ 2‖∆d‖∞ζC(d)2,(5.34)

where we used (5.33), (4.33), ζ > 1, and C(d) ≥ 1 to derive the inequalities. By
combining the two upper bounds we obtain

‖S−1∆s‖∞ ≤
(
1

µ

)
1

γ0
2ζC(d)3

(
n1/2 + 2‖d‖χ(Ā)

)
(C(d) + nµ/‖d‖) ‖∆d‖∞.(5.35)

Therefore, a sufficient condition to ensure (5.32) is obtained by requiring the upper
bound in (5.35) to be less than 1 − ε. Rearranging the resulting inequality yields a
lower bound on µ,

µ ≥ 2ζC(d)4 (n1/2 + 2‖d‖χ(Ā)
) ‖∆d‖∞

γ0(1− ε)− 2ζnC(d)3 (n1/2 + 2‖d‖χ(Ā)
) ‖∆d‖∞/‖d‖ ,(5.36)

provided that the denominator is positive, which is ensured by the condition

δd =
‖∆d‖∞
‖d‖ <

γ0(1− ε)

2ζnC(d)3 (n1/2 + 2‖d‖χ(Ā)
) .(5.37)

The proof of the following result is similar to that of Proposition 5.4.
Proposition 5.5. Let γ and γ0 be given with 0 < γ < γ0 < 1, and suppose that

ξ satisfies ξ ∈ (0, γ0 − γ). Assume that ∆d satisfies

δd ≤ γ0 − γ − ξ

2ζnC(d)3 (n1/2 + 2‖d‖χ(Ā)
) .(5.38)
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Suppose that (x, y, s) ∈ N−∞(γ0) and that (x̃, ỹ, s̃) is the adjusted point defined in
(5.4). Then we have (x̃, ỹ, s̃) ∈ N̄−∞(γ), provided that

µ ≥ ‖d‖
ξ

2ζC(d)4δd
(
n1/2 + 2‖d‖χ(Ā)

)
def
= µ∗

6.(5.39)

The usual argument can be used again to show that a long-step path-following
method requires

O
(
n log

(
1

ε
C(d)4δd

(
n1/2 + ‖d‖χ(Ā)

)))
iterations(5.40)

to converge from the warm-start point to a point that satisfies (3.9).

6. Comparison of the strategies. Here we comment on the relationship be-
tween the Newton step correction strategy of section 5, the least-squares correction
strategy of section 4, and a weighted least-squares approach described below. In par-
ticular, we discuss the effects of weighting in different situations and show that the
strategies of sections 4 and 5 jointly retain all the benefits of the weighted least-squares
strategy. The weighted least-squares strategy is discussed in section 6.1, relationships
between the strategies in various circumstances are discussed in section 6.2, and some
numerical results are presented in section 6.3.

6.1. Weighted least-squares strategy. When the data perturbations are con-
fined to the vectors b and c, we can define n× n positive diagonal matrices Σ and Λ
and solve the following variants on the subproblems (4.2):

min ‖Σ∆x‖ s.t. A∆x = ∆b,(6.1a)

min ‖Λ∆s‖ s.t. AT∆y +∆s = ∆c.(6.1b)

The solutions are as follows:

∆xΣ = Σ−2AT (AΣ−2AT )−1∆b,(6.2a)

∆yΛ = (AΛ2AT )−1AΛ2∆c,(6.2b)

∆sΛ = (I −AT (AΛ2AT )−1AΛ2)∆c.(6.2c)

When Σ = Λ = I, we recover the least-squares solutions (4.4). Alternative scalings
include the following:

Σ = X−1, Λ = S−1(6.3)

and

Σ = D−1 = X−1/2S1/2, Λ = D = X1/2S−1/2.(6.4)

The second scaling is of particular interest, as a comparison of (6.2) with the sub-
stitutions (6.4) yields corrections quite similar to (5.2). The difference arises from
the fact that the Newton step contains an additional condition that couples ∆x and
∆s; namely, X∆s+ S∆x = 0. If the perturbation is confined to b (that is, ∆c = 0),
then the correction in x given by the Newton step scheme (5.2) is the same as the
one obtained from (6.2a) with Σ as defined in (6.4). In this case, the Newton step
correction reduces to a weighted least-squares correction.
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In fact, Mitchell and Todd [9] use a similar weighted least-squares strategy in a
column-generation framework. Assuming that x̃ is feasible for problem (P), a new
column a is introduced so that (x̃, 0) is feasible for the new problem. Then, in order to
obtain a strictly feasible point to restart the interior-point algorithm, a step is taken
in the direction given by (d, 1), where d solves (6.1a) with Σ = X−1 and ∆b = −a.
The reader is also referred to [7] and the references therein for consideration of other
directions.

The weighted least-squares approach suffers some disadvantages relative to the
approaches of sections 4 and 5. When the weighting matrices Σ and Λ depend on x and
s, the solutions (6.2) must be computed afresh for each candidate initial point, whereas
for unweighted least-squares, a single solution suffices (4.4). Unlike the Newton step,
the weighted least-squares approach does not guarantee a smaller value of µ than at
the initial point.

6.2. Relating the strategies. We now focus on the primal correction ∆x ob-
tained from the least-squares, weighted least-squares, and Newton step strategies. In
deciding how to choose ∆x, we need to recover primal feasibility while ensuring that
our choice of ∆x does not unnecessarily compromise the positivity of x. The strategy
of section 4 minimizes the norm ‖∆x‖, while in section 5 our analysis of the New-
ton step strategy used the quantity ‖X−1∆x‖∞ (and its dual counterpart) to bound
the size of the perturbations that could be corrected by this strategy. The weighted
least-squares approach in which we aim to minimize ‖X−1∆x‖ explicitly is a natural
alternative to both these strategies. We now discuss this strategy in the case in which
the perturbation is confined to b, that is, ∆c = 0 and ∆A = 0.

Suppose we partition A as [B N ], where B represents the “basic” columns for
the original problem—the columns i such that x∗

i > 0 for some solution x∗ of problem
(P). Consider first the case in which ∆b does not lie in the range of B. Since A is
assumed to have full row rank, there exist vB and vN �= 0 such that

BvB +NvN = ∆b.(6.5)

From (6.2a), we have

∆x = Σ−2ATw, where AΣ−2ATw = ∆b = BvB +NvN .

It follows that

BΣ−2
B BTw +NΣ−2

N NTw = BvB +NvN ,

where ΣB and ΣN are the appropriate partitions of Σ. Since ∆b does not lie in the
range space of B, we have ‖∆xN‖ = ‖Σ−2

N NTw‖ ≥ α for some α > 0. If Σ is defined
as in (6.3), we have from ‖xN‖ = O(µ) that

‖X−1
N ∆xN‖ ≥ α

max(xN )i
≥ ᾱ

µ

for some constant ᾱ > 0. A similar result applies when we choose the scaling as in
(6.4), and thus the Newton step strategy will also yield a large value of ‖X−1

N ∆xN‖
under these circumstances. Clearly the unweighted least-squares strategy (Σ = I)
also will yield a correction ∆xN with ‖∆xN‖ ≥ α, so in this case too we may have
to back off to a much earlier iterate of the interior-point method for the original
problem before the correction strategy yields a feasible starting point. The point here
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is that, even though we are minimizing ‖X−1∆x‖ explicitly in the weighted strategy,
we cannot expect ∆xN to be appreciably smaller than in the other strategies when
∆b does not lie in the range of B.

If ∆b does lie in the range space of B, then there are two cases. First, consider the
case in which B has full column rank. The analysis of Yıldırım and Todd [17] can be
modified to show that the weighted least-squares correction using Σ = X−1 converges
to (vT , 0)T as µ tends to 0, where v is the (unique) vector such that Bv = ∆b. In
[17], it is shown that the strategy of section 5 also converges to (vT , 0)T as µ ↓ 0, so
that the Newton step strategy gives asymptotically the same results as the weighted
least-squares strategy in this case. Second, if B does not have full column rank, then
it is shown in [17] that the Newton step strategy yields a correction ∆x for which
‖X−1∆x‖ is well-behaved, in the sense that it remains bounded asymptotically as µ
tends to 0. The analysis in [17] is based on a technical lemma (Lemma 5.1) which
holds for the Newton step but does not necessarily hold for the weighted least-squares
correction with Σ = X−1. Hence, when ∆b lies in the range space of B, it appears
that the Newton step correction behaves at least as well as the weighted least-squares
strategy that uses the scaling Σ = X−1, at least asymptotically as µ ↓ 0.

Let us examine further the case in which B has full column rank and ∆b is in
the range space of B, but the perturbation is not necessarily small. In the notation
of (6.5), we have that there exists a unique vector vB such that

BvB = ∆b.(6.6)

If an interior-point method has been used to solve the original problem, and if we are
close to the solution obtained with such a method, then the basic components (those
contained in the subvector xB) will be bounded away from zero, while the components
of xN will have size O(µ). By setting v = (vTB , 0)

T , we note that Av = BvB = ∆b,
so that v is feasible in both (4.2a) and (6.1a). In fact, we would expect v to be
near-optimal in (6.1a) because it would yield an objective of size O(‖∆b‖), and both
weighting schemes (6.3) and (6.4) discourage solutions in which ∆xN is appreciably
different from zero. As discussed above, we would also expect v to be near-optimal
for the Newton step strategy. The plain least-squares strategy, on the other hand,
does not discriminate between B and N components and may give a solution in which
∆xN is not especially small.

If it happens that x+v ≥ 0, then x+v will lie very close to a primal solution of the
perturbed problem whenever x lies near a solution of the original problem. Hence,
we would expect the weighted least-squares strategy to perform very well from an
initial point that is an advanced iterate for the original problem, provided that the
perturbation ∆b can be accommodated without a change of basis. The plain least-
squares method will usually perform less well, because it will be necessary to choose an
initial point from the iterates for the original problem with an appreciably larger value
of µ, to ensure that xN +∆xN is nonnegative. In general, we would expect to need
a µ that is bounded below by a multiple of ‖∆b‖ in the plain least-squares strategy,
whereas much smaller values of µ may be permissible in the other two strategies.

In the more interesting case in which the perturbation is large enough to force a
change of basis, it is not at all clear that the weighted least-squares and Newton step
strategies retain their advantage over plain least-squares. To be specific, if we do not
have xB +∆xB ≥ 0, it will be necessary to back up to an initial point in which the
components of xN are large enough to allow some of the perturbation to be absorbed
by the ∆xN components
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The need for backing up sufficiently far along the central path can also be mo-
tivated with reference to the dual problem (D) and to the geometry of the central
path. When the perturbation is large enough to change the basis, the dual solution
will usually change to a different vertex of its feasible polytope. Consequently, the
central paths P (see (2.7)) for the original and perturbed problems (and therefore the
neighborhoods N2 and N̄2, and N−∞ and N̄−∞) diverge significantly as µ ↓ 0. For
large µ, however, the paths and neighborhood are quite similar for the original and
perturbed problems. We need to choose µ sufficiently large that the neighborhoods
are broad enough, and have a wide enough overlap, to ensure that the adjusted point
(x+∆x, y +∆y, s+∆s) lies inside the appropriate neighborhood for the perturbed
problem.

We conclude that in the case of a perturbation to b, the strategies of sections 4
and 5 capture the potential advantages of using a weighted least-squares correction.
Similar arguments can be made for the dual-only scaling, due to the symmetry between
the primal and the dual problems.

6.3. Numerical results. We illustrate the remarks of the previous subsec-
tion—particularly the remarks about the relative performance of the strategies when
the primal perturbation is and is not large enough to force a change of basis—with
the following simple problem in R2:

minx1 + x2 s.t. x1 − x2 = ε, x ≥ 0,(6.7)

where ε > 0 is a constant. We set ε = 10−2 throughout this section. This problem
is well-conditioned (a large perturbation to the data is needed to make it infeasible)
and has solution x = (ε, 0)T . Its dual is

max εy s.t.

[
1
−1

]
y + s =

[
1
1

]
, s ≥ 0.

Since ε > 0, the dual solution is s∗ = (0, 2)T , y∗ = 1. It is easy to show that the
central path defined by (2.6) is as follows:

x(µ) =

(
µ+ ε

2
+

1

2

√
ε2 + µ2,

µ− ε

2
+

1

2

√
ε2 + µ2

)T
,(6.8a)

s1(µ) =
µ

x1(µ)
, s2(µ) =

µ

x2(µ)
, y(µ) = 1− s1(µ).(6.8b)

Note that for µ ε we have that

x(µ) ≈ (µ, µ)T , s(µ) = (1, 1)T , y(µ) ≈ 0.(6.9)

We plot (x(µ), y(µ), s(µ)) for various values of µ in Table 6.1.
We consider perturbations to the right-hand side ε of the equality constraint in

(6.7); namely, ∆b = β. For β > −ε, the solution of the perturbed primal can be
attained without a change of basis. The solution of the perturbed primal becomes
x = (ε + β, 0)T , while the solution of the dual remains unchanged. For β < −ε,
however, the solution of the perturbed primal becomes x = (0,−(β + ε))T , while the
solution of the dual becomes s∗ = (2, 0)T , y∗ = 1. Even for the latter case, we still
have for µ −(β+ ε) that the limits (6.9) hold, indicating that central paths for the
original and perturbed problems are quite similar for larger values of µ.
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Table 6.1
Central path points for (6.7), with ε = 10−2.

µ x y s

1.e-5 (1.0e-2,5.0e-6) 1.0e0 (1.0e-3, 2.0e0)
1.e-4 (1.0e-2, 5.0e-5) 9.9e-1 (1.0e-2, 2.0e0)
1.e-3 (1.1e-2, 5.2e-4) 9.0e-1 (9.5e-2, 1.9e0)
5.e-3 (1.3e-2, 3.1e-3) 6.2e-1 (3.8e-1, 1.6e0)
1.e-2 (1.7e-2, 7.1e-3) 4.1e-1 (5.9e-1, 1.4e0)
2.e-2 (2.6e-2, 1.6e-2) 2.4e-1 (7.6e-1, 1.2e0)
1.e-1 (1.1e-1, 9.5e-2) 5.0e-2 (9.5e-1, 1.0e0)
5.e-1 (5.1e-1, 5.0e-1) 1.0e-2 (9.9e-1, 1.0e0)

By solving (4.4), we find that the plain least-squares adjustment is

∆xLS = (β/2,−β/2), ∆yLS = 0, ∆sLS = 0

(independently of x). By substituting (6.3) into (6.2), we obtain the following weighted
least-squares adjustments:

∆xWLS =
β

x2
1 + x2

2

[
x2

1

−x2
2

]
, ∆yWLS = 0, ∆sWLS = 0.

Finally, we obtain the Newton step adjustment by substituting (6.4) into (6.2):

∆xNS =
β

(x1

s1
+ x2

s2
)

[
x1/s1

−x2/s2

]
, ∆sNS = −X−1S∆xNS , AT∆yNS +∆sNS = 0.

The primal corrections ∆xWLS and ∆xNS coincide when (x, y, s) is on the central
path, confirming our previous observation regarding the asymptotic coincidence. The
dual correction is of course different for the two strategies.

In Tables 6.2, 6.3, and 6.4 we indicate the effects of the plain least-squares,
weighted least-squares, and Newton step adjustments for perturbations β = −0.1ε,
β = −ε, and β = −10ε, respectively. We tabulate the following quantities against a
selection of values of µ:

• The values of µ obtained after each of the adjustment strategies, that is,
µ(x+∆x, s+∆s) = (x+∆x)T (s+∆s)/2, provided that all components of
(x+∆x, s+∆s) are positive. If not, we enter “-”.

• The centrality indicators (x+∆x)i(s+∆s)i/µ(x+∆x, s+∆s), i = 1, 2. If
any components of (x+∆x, s+∆s) are nonpositive, we enter “-”.

A good starting point for the perturbed problem is one for which the centrality indi-
cators are not too far from 1 in all components (all greater than 10−1, say), while the
value of µ(x+∆x, s+∆s) is as small as possible.

In Table 6.2, the perturbation is small enough that a basis change is not needed
and, as expected, the weighted least-squares and Newton adjustments perform well.
Even when the central path point with µ = 10−5 is used as the basis for adjustment,
well-centered starting points with small duality gaps are obtained from both strategies.
The plain least-squares approach does not give particularly good adjusted points
when applied at the central path points with µ = 10−5 or µ = 10−4, but becomes
comparable for higher values of µ (that is, when the initial point is taken to be slightly
further back along the central path).

In Table 6.3, where the perturbation is large enough to make the problem degen-
erate, the performances of the plain and weighted least-squares adjustment strategies
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Table 6.2
Centrality of adjusted points for various µ, with ε = 10−2 and β = −10−3.

µ µLS Centrality µWLS Centrality µNS Centrality

1.e-5 5.1e-4 (1.9e-2, 2.0e0) 9.5e-6 (9.5e-1, 1.1e0) 1.0e-5 (9.9e-1, 1.0e0)
1.e-4 6.0e-4 (1.6e-1, 1.8e0) 9.5e-5 (9.5e-1, 1.1e0) 1.0e-4 (1.0e0, 1.0e0)
1.e-3 1.5e-3 (6.6e-1, 1.3e0) 9.5e-4 (9.5e-1, 1.1e0) 1.0e-3 (1.0e0, 1.0e0)
5.e-3 5.3e-3 (9.1e-1, 1.1e0) 4.9e-3 (9.5e-1, 1.0e0) 5.0e-3 (1.0e0, 1.0e0)
1.e-2 1.0e-2 (9.5e-1, 1.0e0) 9.9e-3 (9.6e-1, 1.0e0) 1.0e-2 (1.0e0, 1.0e0)
2.e-2 2.0e-2 (9.8e-1, 1.0e0) 2.0e-2 (9.8e-1, 1.0e0) 2.0e-2 (1.0e0, 1.0e0)
1.e-1 1.0e-1 (1.0e0, 1.0e0) 1.0e-1 (1.0e0, 1.0e0) 1.0e-1 (1.0e0, 1.0e0)
5.e-1 5.0e-1 (1.0e0, 1.0e0) 5.0e-1 (1.0e0, 1.0e0) 5.0e-1 (1.0e0, 1.0e0)

Table 6.3
Centrality of adjusted points for various µ, with ε = 10−2 and β = −10−2.

µ µLS Centrality µWLS Centrality µN Centrality

1.e-5 5.0e-3 (1.0e-3, 2.0e0) 5.0e-6 (1.0e-3, 2.0e0) 5.0e-6 (2.0e-3, 2.0e0)
1.e-4 5.1e-3 (1.0e-2, 2.0e0) 5.0e-5 (1.0e-2, 2.0e0) 5.0e-5 (2.0e-2, 2.0e0)
1.e-3 5.5e-3 (9.5e-2, 1.9e0) 5.5e-4 (9.5e-2, 1.9e0) 5.5e-4 (1.9e-1, 1.8e0)
5.e-3 8.1e-3 (3.8e-1, 1.6e0) 3.6e-3 (3.8e-1, 1.6e0) 3.6e-3 (6.6e-1, 1.3e0)
1.e-2 1.2e-2 (5.9e-1, 1.4e0) 8.5e-3 (5.9e-1, 1.4e0) 8.5e-3 (8.8e-1, 1.1e0)
2.e-2 2.1e-2 (7.6e-1, 1.2e0) 1.9e-2 (7.6e-1, 1.2e0) 1.9e-2 (9.8e-1, 1.0e0)
1.e-1 1.0e-1 (9.5e-1, 1.0e0) 1.0e-1 (9.5e-1, 1.0e0) 9.8e-2 (1.0e0, 1.0e0)
5.e-1 5.0e-1 (9.9e-1, 1.0e0) 5.0e-1 (9.9e-1, 1.0e0) 5.0e-1 (1.0e0, 1.0e0)

Table 6.4
Centrality of adjusted points for various µ, with ε = 10−2 and β = −10−1.

µ µLS Centrality µWLS Centrality µN Centrality

1.e-5 - - - - - -
1.e-4 - - - - - -
1.e-3 - - - - - -
5.e-3 - - - - - -
1.e-2 - - - - - -
2.e-2 - - - - - -
1.e-1 1.0e-1 (5.1e-1, 1.5e0) 9.8e-2 (4.9e-1, 1.5e0) 7.5e-2 (9.7e-1, 1.0e0)
5.e-1 5.0e-1 (9.0e-1, 1.1e0) 5.0e-1 (9.0e-1, 1.1e0) 5.0e-1 (1.0e0, 1.0e0)

are similar. For both strategies, we need to adjust from a central path point with
value around µ = 10−3 or µ = 5×10−3 to obtain a well-centered starting point for the
perturbed problem. The Newton step correction strategy yields adjusted points that
are better centered, but again we need to use the central path point with µ = 10−3

to obtain a reasonably adjusted point.
In Table 6.4, the perturbation is large enough to force a change of basis, and we

see that all approaches behave in a similar fashion. To obtain a starting point that is
well centered, we need to choose a central path point from the original problem with
a duality gap of µ = 10−1.

7. Conclusions. We have described two schemes by which the iterates of an
interior-point method applied to an LP instance can be adjusted to obtain starting
points for a perturbed instance. We have derived worst-case estimates for the number
of iterations required to obtain convergence from these warm starting points. These



810 E. ALPER YILDIRIM AND STEPHEN J. WRIGHT

estimates depend chiefly on the size of the perturbation, on the conditioning of the
original problem instance, and on a key property of the constraint matrix.

In future work, we plan to extend the techniques to infeasible interior-point meth-
ods and perform computational experiments to determine the practical usefulness of
these techniques. We will also investigate extensions to wider classes of problems,
such as convex quadratic programs and linear complementarity problems.
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Dikin’s result.

We are grateful to the referees for their careful reading of the first version of the
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Abstract. We present efficiently verifiable sufficient conditions for the validity of specific NP-
hard semi-infinite systems of linear matrix inequalities (LMIs) arising from LMIs with uncertain data
and demonstrate that these conditions are “tight” up to an absolute constant factor. In particular,
we prove that given an n × n interval matrix Uρ = {A | |Aij − A∗

ij | ≤ ρCij}, one can build a
computable lower bound, accurate within the factor π

2
, on the supremum of those ρ for which all

instances of Uρ share a common quadratic Lyapunov function. We then obtain a similar result for the
problem of quadratic Lyapunov stability synthesis. Finally, we apply our techniques to the problem
of maximizing a homogeneous polynomial of degree 3 over the unit cube.
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relaxations of combinatorial problems
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1. Introduction. In this paper, we focus on the following “matrix cube” prob-
lem:

MatrCube: Given an affine mapping u → B(u) = B0 +
∑L
�=1 u�B

�

from RL to the space Sm of m × m real symmetric matrices and
ρ > 0, check whether the image

C[ρ] = {A | ∃(u, ‖u‖∞ ≤ ρ) : A = B(u)}
of the box {‖u‖∞ ≤ ρ} under this mapping is contained in the cone
Sm+ of positive semidefinite matrices.

Problem MatrCube is closely related to what is called uncertain semidefinite pro-
gramming with interval uncertainty. Specifically, consider a linear matrix inequality
(LMI)

A0 +

n∑
j=1

xjAj � 0;(1)

here x ∈ Rn is the vector of variables, A0, . . . , An ∈ Sm, and A � B means that
A − B ∈ Sm+ . Assume that the data [A0, . . . , An] of the LMI “are uncertain”—we
only know that the data belong to a given uncertainty set U . Our aim is to find robust
solutions of the resulting “uncertain LMI,” i.e., solutions x of the semi-infinite system
of LMIs

A0 +

n∑
j=1

xjAj � 0 ∀[A0, . . . , An] ∈ U .(2)
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We say that the uncertainty is interval if U is the image of a box under an affine
mapping:

U = Uρ =
{
[A0, . . . , An] = [A

0
0, . . . , A

0
n] +

L∑
�=1

u�[A
�
0, . . . , A

�
n] | ‖u‖∞ ≤ ρ

}
.(3)

As an example, consider the following Lyapunov stability analysis problem.
(LSA): Given an uncertain linear time-varying system

d

dt
x(t) = A(t)x(t), A(t) ∈ A ∀t,(4)

where A is a given compact set of matrices, check whether the system
admits a quadratic Lyapunov function, i.e., whether there exists a
positive definite matrix X such that

d

dt
(xT (t)X−1x(t)) < 0

for all nonzero trajectories x(t) of (4).
Recall that the existence of a quadratic Lyapunov function is a standard sufficient
condition for the stability of the system (i.e., for the fact that x(t) → 0, t → ∞, for
every trajectory of the system, whatever is a (measurable) choice of A(·) taking values
in A). It is easily seen that the existence of a quadratic Lyapunov function for (4) is
equivalent to the solvability of the semi-infinite system of LMIs

(a) X � I,
(b) AX +XAT � −I ∀A ∈ A,(5)

and every solution X of the latter system defines a quadratic Lyapunov function for
(4). Note that (5) is of the form of (2), so that finding a quadratic Lyapunov stability
certificate for uncertain linear dynamic system (4) is exactly the same as solving a
semi-infinite system of LMIs (2) associated with an appropriately chosen uncertainty
set U . Note also that the latter set is an interval uncertainty, provided that A is also;
e.g., provided that A is an interval matrix:

A = Aρ = {A : |Aij −A∗
ij | ≤ ρDij ∀i, j}.(6)

(A∗ is the “nominal” matrix, D = [Dij ≥ 0]i,j is a “perturbation scale,” and ρ > 0 is
a “perturbation level.”)

The Lyapunov analysis example, as well as other examples which can be found
in [1, 2, 4, 6], demonstrates the importance of robust solutions to semidefinite prob-
lems affected by data uncertainty, in particular by interval uncertainty. Theoretically
speaking, the major difficulty with this concept is that (2) is a semi-infinite system
of LMIs, and as such it can be computationally intractable. However, the set X of
solutions to (2) is clearly closed and convex; it follows that, essentially (for details,
see [8]), the “computational tractability” of (2) (i.e., the ability to find efficiently a
point in X or to maximize efficiently a linear function over X ) is equivalent to the
possibility of solving efficiently the following associated analysis problem.

Anal[x]: Given a candidate solution x, check whether it satisfies (2).
The role of the matrix cube problem in the context of uncertain semidefinite program-
ming comes from the evident fact that in the case of interval uncertainty (3), problem
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Anal[x] is equivalent to problem MatrCube with the data

B� = A�0 +

n∑
j=1

xjA
�
j , � = 0, 1, . . . , L.

Unfortunately, the matrix cube problem in general is NP-hard. This is so even
in the case in which all “edges” B1, . . . , BL of the “matrix box” C[ρ] are of rank ≤ 2
(see [9] or section 4 below). Consequently, one is forced to look for verifiable sufficient
conditions for the inclusion C[ρ] ⊂ Sm+ . The simplest condition of this type is evident:

(S) Assume that there exist matrices X1, . . . , XL satisfying the sys-
tem of LMIs

(a) X� � ±ρB�, � = 1, . . . , L,

(b)
L∑
�=1

X� � B0.
(7)

Then C[ρ] ⊂ Sm+ .
In the context of semi-infinite system of LMIs (2) with interval uncertainty (3), con-
dition (S) results in the following system of LMIs in variables x, {X�}:

X� � ±ρ

A�0 + n∑

j=1

xjA
�
j


 , � = 1, . . . , L,

L∑
�=1

X� � A0
0 +

n∑
j=1

xjA
0
j .

(8)

This system is a “computationally tractable conservative approximation” of (2) in the
sense that whenever x can be extended to a feasible solution of (8), x is feasible for
(2) (by (S)).

The main result of this paper is as follows:
(N) The simple sufficient condition (S) for the inclusion C[ρ] ⊂ Sm+
is not too conservative, provided that the edges B1, . . . , BL of the
matrix box C[ρ] are of small ranks. Specifically, if (S) is not satisfied,
then a ϑ(µ)-enlargement C[ϑ(µ)ρ] of the box C[ρ] is not contained in
Sm+ . Here

µ = max
�=1,...,L

rank(B�),

and ϑ(µ) is a certain universal function such that

ϑ(1) = 1; ϑ(2) = π
2 = 1.57 . . . ; ϑ(3) = 1.73 . . . ; ϑ(4) = 2;

ϑ(µ) ≤ π
√
µ

2 ∀µ.
Note that in typical semi-infinite systems of LMIs arising in control, perturbation
of a single data entry results in small rank perturbations of the LMIs; whenever
this is the case, (S) and (N) allow us to build a “tight” (up to a moderate absolute
constant factor), computationally tractable conservative approximation of the semi-
infinite system in question, provided that the uncertainty is interval. For example,
in the Lyapunov stability analysis system (5), by perturbing a single entry in A, we
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perturb the left-hand side of the semi-infinite LMI (5.b) by a matrix of rank ≤ 2; as
we shall see, this observation combined with (N) allows us to build efficiently a lower
bound, tight up to the factor π2 , for the “Lyapunov stability radius” of an interval
matrix (i.e., for the supremum of those ρ > 0 for which all instances of the interval
matrix (6) share a common quadratic Lyapunov function).

The rest of this paper is organized as follows. In section 2, we prove our main
result (N). Section 3 is devoted to control applications of this result, specifically, those
in Lyapunov stability analysis and synthesis. In section 4, we establish links between
the matrix cube problem and the problem of maximizing a positive definite quadratic
form over the unit cube; in particular, we demonstrate that (N) allows us to rederive
the “π2 theorem” of Nesterov [12], which states that the standard semidefinite bound
on the maximum of a positive definite quadratic form over the unit cube is tight within
the factor π2 . In the concluding section 5, we apply our techniques to the problem of
maximizing a homogeneous polynomial of degree 3 over the unit cube.

In what follows, we frequently use the semidefinite duality; for the reader’s con-
venience, we list here the relevant results (for proofs, see, e.g., [11]). Consider a
semidefinite problem

(Pr) min
x


cTx :

n∑
j=1

xjAj −A0 � 0

 ;

here x ∈ Rn, A0, . . . , An ∈ Sm. It is assumed that no nontrivial linear combination
of the matrices A1, . . . , An is zero.

The semidefinite dual of (Pr) is the problem

(Dl) max
X

{Tr(A0X) : Tr(AjX) = cj , j = 1, . . . , n,X � 0} .

The duality is symmetric: (Dl) can be straightforwardly rewritten in the form of
(Pr), and the semidefinite dual of this reformulation is (equivalent to) (Pr). The
semidefinite duality theorem says that if (Pr) is bounded below and strictly feasible
(i.e.,

∑
j x̄jAj − A0 � 0, for certain x̄, where A � B means that A − B is positive

definite), then (Dl) is solvable and has the same optimal value as (Pr).

2. The matrix cube problem. The formal statement of our main result (N)
is given by the following.

Theorem 2.1. Consider problem MatrCube along with system of LMIs (7) in
matrix variables X1, . . . , XL, and let

µ = max
1≤�≤L

rank(B�)

(note 1 ≤ � in the max!). Then
(i) if system (7) is solvable, the matrix box C[ρ] is contained in the positive semidef-

inite cone Sm+ ;
(ii.a) if system (7) is unsolvable, the ϑ(µ)-enlargement C[ϑ(µ)ρ] of the matrix box

C[ρ] is not contained in the positive semidefinite cone, where the function ϑ(·) is given
by

1

ϑ(k)
= min

α

{∫
Rk

∣∣∣∣∣
k∑
i=1

αiu
2
i

∣∣∣∣∣ (2π)−k/2 exp
{
−u

Tu

2

}
du

∣∣∣∣
k∑
i=1

|αi| = 1
}
;(9)
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(ii.b) the function ϑ(·) satisfies the relations

ϑ(k) ≤ π
√
k

2
∀k; ϑ(2) =

π

2
.(10)

Proof. (i) is evident: If {X�}L�=1 solves (7), then u�B
� � −X� for all � and all

u� ∈ [−ρ, ρ] by (7.a), so that

‖u‖∞ ≤ ρ⇒ B0 +

�∑
�=1

u�B
� � B0 −

L∑
�=1

X� � 0

(we have used (7.b)), and thus C[ρ] ⊂ Sm+ .
(ii.a): Assume that (7) is unsolvable, and let us prove that in this case C[ϑ(µ)ρ] �⊂

Sm+ .
10. Since (7) is unsolvable, the optimal value in the semidefinite program

(P) min
t,{X�}

{
t | tI +B0 �

L∑
�=1

X�, X� � ±ρB�, � = 1, . . . , L
}

is positive. Since (P) is strictly feasible, it follows from the semidefinite duality
theorem that the semidefinite dual of (P), i.e., the program

(D) max
U,{Y�,Z�}


ρ

L∑
�=1

Tr([Y� − Z�]B
�)− Tr(UB0)

∣∣∣∣
Tr(U) = 1, U � 0,

Y� + Z� = U, � = 1, . . . , L,

Y�, Z� � 0, � = 1, . . . , L,




is solvable with a positive optimal value.
20. To proceed, we need the following simple result.
Lemma 2.2. Let U � 0 and B be a symmetric matrix of the same size as U .

Then

max
Y,Z	0:Y+Z=U

Tr([Y − Z]B) = max
V=V T ,‖V ‖≤1

Tr(V U1/2BU1/2) = ‖λ(U1/2BU1/2)‖1,

(11)

where λ(Z) is the vector of eigenvalues of a symmetric matrix Z (counted with their
multiplicities) and ‖Z‖ = ‖λ(Z)‖∞ is the operator norm of Z.

Proof. We clearly have

max
Y,Z	0:Y+Z=U

Tr([Y − Z]B) = max
P,Q	0:P+Q=I

Tr([U1/2PU1/2 − U1/2QU1/2]B)

= max
P,Q	0:P+Q=I

Tr([P −Q][U1/2BU1/2])

= max
V=V T :‖V ‖≤1

Tr(V [U1/2BU1/2]),

as stated in the first equality in (11). To get the second equality, it suffices to consider
the case in which the matrix U1/2BU1/2 is diagonal; in that case the equality becomes
evident.

In view of Lemma 2.2, the fact that (D) is solvable with positive optimal value
means that there exists U � 0 such that

ρ

L∑
�=1

‖λ(U1/2B�U1/2)‖1 > Tr(U
1/2B0U1/2).(12)
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We are about to provide a probabilistic interpretation of (12), and this interpretation
will lead us to (ii.a).

30. Let us write ξ ∼ N (0, Ik) to express that ξ is a random Gaussian k-
dimensional vector with zero mean and unit covariance matrix, and let

pk(u) = (2π)
−k/2 exp{−uTu/2}

be the corresponding Gaussian density. We need the following fact.
Lemma 2.3. Whenever k is an integer and B is a symmetric m×m matrix with

rank(B) ≤ k and ξ ∼ N (0, Im), one has

E
{|ξTBξ|} ≥ ‖λ(B)‖1

ϑ(k)
.

Proof. It suffices to consider the case in which B is diagonal; in this case the
relation in question immediately follows from the definition of ϑ(·).

40. Let ξ ∼ N (0, Im). We have

E

{
ϑ(µ)ρ

L∑
�=1

|ξTU1/2B�U1/2ξ|
}
= ρ

L∑
�=1

ϑ(µ)E
{
|ξTU1/2B�U1/2ξ|

}

≥ ρ
L∑
�=1

‖λ(U1/2B�U1/2)‖1

[by Lemma 2.3 and in view of rank(U1/2B�U1/2) ≤ rank(B�) ≤ µ]

> Tr(U1/2B0U1/2) [by (12)]

= E
{
ξTU1/2B0U1/2ξ

}
[evident],

so that there exists r ∈ Rm such that

L∑
�=1

ϑ(µ)ρ|rTU1/2B�U1/2r| > rTU1/2B0U1/2r.

Consequently, there exists a collection {ε� = ±1, � = 1, . . . , L} such that

rT

[
L∑
�=1

ϑ(µ)ρε�U
1/2B�U1/2

]
r > rTU1/2B0U1/2r,

i.e., the matrix B0 −∑L�=1 ϑ(µ)ρε�B
� is not positive semidefinite. Thus, C[ϑ(µ)ρ] �⊂

Sm+ , as claimed in (ii.a).

(ii.b): Let α ∈ Rk, ‖α‖1 = 1, β = [
α
−α ] ∈ R2k, and ξ ∼ N (0, I2k). Setting

J =

∫ ∣∣∣∣∣
k∑
i=1

u2
iαi

∣∣∣∣∣ pk(u)du,
we have

E

{∣∣∣∣∣
2k∑
i=1

ξ2i βi

∣∣∣∣∣
}
≤ E

{∣∣∣∣∣
k∑
i=1

ξ2i αi

∣∣∣∣∣+
∣∣∣∣∣

2k∑
i=k+1

ξ2i αi−k

∣∣∣∣∣
}
= 2J.(13)
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On the other hand, setting ηi = (ξi − ξi+k)/
√
2, ζi = (ξi + ξi+k)/

√
2, we get

∣∣∣∣∣
2k∑
i=1

ξ2i βi

∣∣∣∣∣ =
∣∣∣∣∣
k∑
i=1

2αiηiζi

∣∣∣∣∣ = 2 ∣∣η̂T ζ∣∣ , η̂ =



α1η1
...

αkηk


 , ζ =



ζ1
...
ζk


 .(14)

Note that ζ ∼ N (0, Ik) and η̂, ζ are independent. Setting

η̃ =



|α1η1|
...

|αkηk|


 ,

we have

E
{|η̂T ζ|} = E {‖η̂‖2}

∫
|t|p1(t)dt

[since η̂, ζ are independent and ζ ∼ N (0, Ik)]

= E {‖η̂‖2} 2√
2π
=

2√
2π

E {‖η̃‖2}

≥ 2√
2π

‖E {η̃} ‖2 =
2√
2π

√√√√ k∑
i=1

α2
i

(
2√
2π

)2

≥ 2

π
√
k
.

(15)

Combining (13), (14), and (15), we get 2J ≥ 4
π
√
k
, i.e., 1

J ≤ π
√
k

2 , which yields the

first relation in (10).
The second relation in (10) is given by the following computation:

1

ϑ(2)
= min

α∈R2,
‖α‖1=1

{∫ ∣∣α1u
2
1 + α2u

2
2

∣∣ p2(u)du

}
= min
θ∈[0,1]

∫ ∣∣θu2
1 − (1− θ)u2

2

∣∣ p2(u)du

=
1

2

∫ ∣∣u2
1 − u2

2

∣∣ p2(u)du

[since the function to be minimized is convex in θ and symmetric w.r.t. θ = 1/2]

=

[∫
|t|p1(t)dt

]2
=
2

π
.

Let us reformulate Theorem 2.1 in a more convenient form as follows.
Corollary 2.4. Consider a semi-infinite system of LMIs (2) with interval data

(see (3))

(Sys[ρ])
A0 +

n∑
j=1

xjAj � 0 ∀[A0, A1, . . . , An] ∈ Uρ,

Uρ =
{
[A0, A1, . . . , An] = [A

0
0, A

0
1, . . . , A

0
n] +

L∑
�=1

u�[A
�
0, A

�
1, . . . , A

�
n]

∣∣∣∣‖u‖∞ ≤ ρ

}
,
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and let

B�[x] = A�0 +

n∑
j=1

xjA
�
j , � = 0, 1, . . . , L,

µ = max
x,

1≤�≤L

rank(B�[x])

(note 1 ≤ � in the max!).
The system of LMIs in variables x, {X�}

(Appr[ρ])

X� � ±ρB�[x], � = 1, . . . , L,

L∑
�=1

X� � B0[x]

is a ϑ(µ)-tight approximation of (Sys[ρ]), i.e.,
(i) if x can be extended to a feasible solution of (Appr[ρ]), then x is feasible for

(Sys[ρ]);
(ii) if x cannot be extended to a feasible solution of (Appr[ρ]), then x is not feasible

for (Sys[ϑ(µ)ρ]).

2.1. Simplification of (7). From the computational viewpoint, a shortcoming
of the sufficient condition (7) for the inclusion C[ρ] ⊂ Sm+ is that the sizes of the LMI
system (7), although polynomial in the sizes of MatrCube, are “large”: The system

has 2L+1 “big” (m×m) LMIs and has Lm(m+1)
2 scalar decision variables. Our local

goal is to demonstrate that in the case in which µ ≡ max1≤�≤L rank(B�) is small, (7)
can be reduced to a much smaller system of LMIs.

Proposition 2.5. (i) Let S ∈ Sm be a matrix of rank k > 0, so that

S = PTRP

with invertible k × k symmetric matrix R and k ×m matrix P of rank k.
(i.1) A matrix X ∈ Sm satisfies the relation X � ±S if and only if there exist

k × k symmetric matrices Y , Z satisfying the relations

(a) X � 1
2P
T (Y + Z)P,

(b)

[
Y R
R Z

]
� 0.

(16)

(i.2) In particular, X � ±S if and only if there exists U � ±R such that X �
PTUP .

(ii) Consequently, the solvability of (7) is equivalent to the solvability of the system
of LMIs

(a)

[
Y� ρR�
ρR� Z�

]
� 0, � = 1, . . . , L,

(b)
L∑
�=1

PT� (Y� + Z�)P� � 2B0

(17)
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in matrix variables Y�, Z� ∈ Sk� , � = 1, . . . , L. Here k� = rank(B
�) (without loss of

generality, we can assume that k� > 0), and P�, R� = RT� are k� × m and k� × k�
matrices of rank k� such that B� = PT� R�P�, � = 1, . . . , L.

Proof. (i.1), “if” part: Assume that X,Y, Z satisfy (16); we should prove that
then X � ±S. To this end it suffices to verify that if Y,Z satisfy (16.b), then
1
2 (Y + Z) � ±R, which is immediate:

(16.b)⇒
{
0 ≤
[
ξ
εξ

]T [
Y R
R Z

] [
ξ
εξ

]
∀(ξ ∈ Rk, ε = ±1)

}

⇔
{
0 ≤ ξT (Y + Z)ξ + 2εξTRξ ∀(ξ ∈ Rk, ε = ±1)

}
⇒ 1

2 (Y + Z) � ±R.

(i.1), “only if” part: LetX � ±S. We should prove that there exist Y,Z satisfying
(16). Assume, on the contrary, that the system of LMIs (16) in variables Y,Z is
unsolvable, and consider the semidefinite program

t∗ = min
t,Y,Z


t :

tI + 2X − PT (Y + Z)P � 0,[
Y R
R Z

]
� 0


 .(18)

Since P is of rank k, the intersections of the levels sets of the objective with the
(nonempty!) feasible set of the problem are bounded, whence the problem is solvable;
unsolvability of (16) implies that the optimal value t∗ in the problem is positive. Since
(18) clearly is strictly feasible, it follows that the semidefinite dual of (18), which is
the semidefinite program

min
U,V,W,Q



−2Tr(UX)− 2Tr(RQT ) :

V = PUPT

W = PUPT[
V Q
QT W

]
� 0

Tr(U) = 1

U, V,W � 0



,(19)

is solvable with the same positive optimal value t∗. In other words, there exist U � 0
and Q such that

(a) Tr(UX) < Tr(RQT ),

(b)

[
PUPT Q
QT PUPT

]
� 0.

(20)

From (20.b), by standard arguments, it follows that Q = PU1/2MU1/2PT for appro-
priately chosen M such that MTM ≤ I. Consequently, (20.a) reads
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Tr(U1/2XU1/2︸ ︷︷ ︸
X̄

) < Tr(RPTU1/2MTU1/2P ) = Tr((U1/2SU1/2︸ ︷︷ ︸
S̄

)MT ).

Since MTM ≤ I, the quantity Tr(S̄MT ) is ≤ ‖λ(S̄)‖1, and we come to the relation
Tr(X̄) < ‖λ(S̄)‖1. This is the desired contradiction, since from X � ±S it follows
that X̄ � ±S̄, whence Tr(X̄) ≥ ‖λ(S̄)‖1. (Notice what happens in the orthonormal
basis, where S̄ becomes diagonal.) Thus (i.1) is proved.

(i.2): If X � PTUP with U � ±R, then of course X � ±PTRP = ±S. Con-
versely, ifX � ±S, then by (i.2) there exist Y,Z satisfying (16). Setting U = 1

2 (Y+Z),
we have X � PTUP by (16.a), and applying (i.1) to R rather than to S, we have
U � ±R.

(ii) is an immediate consequence of (i).
Note that when the ranks k� of the matrices B

�, � = 1, . . . , L, are much less
than the size m of these matrices, system (17) is much better suited for numerical
processing than (7). Indeed, the latter system has 2L + 1 “big” (m ×m) LMIs and

totally Lm(m+1)
2 scalar decision variables, while the former system has a single “big”

LMI, L “small” ones (of the sizes at most 2µ × 2µ, µ = max1≤�≤L k�), and no more
than Lµ(µ+ 1) scalar decision variables. A shortcoming of the reformulated system,
when compared with the original one, is that when the matrices B� depend affinely
on certain vectors of parameters x (as is the case in the semi-infinite LMI (2) with
interval uncertainty (3)), system (7) always is a system of LMIs in variables x, {X�}
(cf. (A[ρ])), while (17) is a system of LMIs in x, Y�, Z� only under the additional (and
restrictive) assumption that the matrices P� are independent of x. In section 3.2 we
shall see that in certain important applications this shortcoming can be avoided.

3. Application I: Quadratic Lyapunov stability analysis and synthesis.

3.1. Lyapunov stability analysis/synthesis. Consider a controlled time-
varying linear dynamic system

(a) d
dtx(t) = A(t)x(t) +B(t)u(t) [open-loop system],

(b) u(t) = Kx(t) [feedback],

⇓
(c) d

dtx(t) = [A(t) +B(t)K]x(t) [closed-loop system]

(21)

(x is n-dimensional, u is m-dimensional), which is uncertain in the sense that the
dependency t !→ [A(t), B(t)] is not known in advance; all we know is that

∀t : [A(t), B(t)] ∈ Uρ =
{
[A,B] | |Aij −B∗

ij | ≤ ρCij , |Bi� −B∗
i�| ≤ ρDi� ∀i, j, �} .

(22)
Here A∗, B∗ are given “nominal” data; C, D are given “scale matrices” with nonneg-
ative entries; and ρ ≥ 0 is the “perturbation level.”

Consider the following pair of problems.
Lyapunov stability analysis: Given A∗, B∗, C, D, and a feedback K, find the

supremum Ra
∗ of those ρ ≥ 0 for which all instances A + BK, [A,B] ∈ Uρ, of the

closed-loop system matrix (21.c) share a common quadratic Lyapunov function:
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(LA)
Ra

∗ = sup
ρ,X

{
ρ : X � I, [A+BK]X +X[A+BK]T � −I ∀[A,B] ∈ Uρ

}

= sup
ρ,X




ρ :

X � I

∀(uij , |uij | ≤ ρ, ui�, |ui�| ≤ ρ) :∑
i,j

uij Cij [E
ijX +XEij ]︸ ︷︷ ︸
Aij [X]

+
∑
i,�

ui�Di�[F
i�KX +XKT (F i�)T ]︸ ︷︷ ︸

Ai�[X]

� [−I − (A∗ +B∗K)X −X(A∗ +B∗K)T ]︸ ︷︷ ︸
A[X]




,

where Eij are the basic n× n matrices (1 in cell ij, zeros in other cells), and F i� are
the basic n×m matrices.

Lyapunov stability synthesis: Given A∗, B∗, C,D, find the supremum Rs
∗ of those

ρ ≥ 0 for which there exists a feedback K such that all instances A+BK, [A,B] ∈ Uρ,
of the closed-loop system matrix (21.c) share a common quadratic Lyapunov function:
(LS)
Rs

∗ = sup
ρ,X,K

{
ρ : X � I, [A+BK]X +X[A+BK]T � −I ∀[A,B] ∈ Uρ

}
= sup
ρ,X,Z

{
ρ : X � I, AX +XAT +BZ + ZTBT � −I ∀[A,B] ∈ Uρ

}
, [Z = KX]

= sup
ρ,X,Z




ρ :

X � I

∀(uij , |uij | ≤ ρ, ui�, |ui�| ≤ ρ) :

∑
i,j

uij Cij [E
ijX +XEij ]︸ ︷︷ ︸
Bij [X]

+
∑
i,�

ui�Di�[F
i�Z + ZT (F i�)T ]︸ ︷︷ ︸
Bi�[Z]

� [−I −A∗X −X(A∗)T −B∗Z − Z(B∗)T ]︸ ︷︷ ︸
B[X,Z]




,

where Eij are the basic n× n, and F i� are the basic n×m matrices.
As we can see, both problems (LA) and (LS) deal with solvability of semi-infinite

systems of LMIs. Consider the approximations of these systems as follow:

(ALA) ρa
∗ = max

ρ,X,{Xij ,Y i�}



ρ :

Aij [X] ≤ Xij ,−Aij [X] ≤ Xij ∀i, j,
Ai�[X] ≤ Y i�,−Ai�[X] ≤ Y i� ∀i, �,

ρ


∑
i,j

Xij +
∑
i,�

Y i�


 � A[X],




(ALS) ρs
∗ = max

ρ,X,Z,{Xij ,Y i�}



ρ :

Bij [X] ≤ Xij ,−Bij [X] ≤ Xij ∀i, j,
Bi�[Z] ≤ Y i�,−Bi�[Z] ≤ Y i� ∀i, �,

ρ


∑
i,j

Xij +
∑
i,�

Y i�


 � B[X,Z].
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Note that both (ALA) and (ALS) are generalized eigenvalue problems (see [3, 10])
and as such are “computationally tractable.”

Taking into account that the ranks of the matrices Aij [X], A
i�[X], Bij [X], B

i�[Z]
never exceed 2 and applying Corollary 2.4, we come to the following result.

Theorem 3.1. (i) Consider the Lyapunov stability analysis problem and assume
that the matrix A∗ + B∗K of the nominal closed-loop system is stable (i.e., all its
eigenvalues are in the open left half-plane). Then problem (ALA) is an approximation
of (LA) (i.e., the ρ,X-component of a feasible solution of (ALA) is a feasible solution
of (LA)), and the optimal value of (ALA) coincides with the one of (LA) within the
factor π2 :

ρa
∗ ≤ Ra

∗ ≤
π

2
ρa
∗.

(ii) Consider the Lyapunov stability synthesis problem and assume that the nom-
inal system is stabilizable (i.e., there exists a feedback K∗ such that the matrix A∗ +
B∗K∗ is stable). Then problem (ALS) is an approximation of (LS) (i.e., the ρ,X,Z-
component of a feasible solution of (ALS) is a feasible solution of (LS)), and the
optimal value in (ALS) coincides with the one of (LS) within the factor π2 :

ρs
∗ ≤ Rs

∗ ≤
π

2
ρs
∗.

3.2. Simplifications of (ALA) and (ALS). Although the dimensions of the
approximating semidefinite problems (ALA) and (ALS) are polynomial in the dimen-
sions of the original system (21), they are nevertheless of huge design dimension.
(They have a matrix variable per every uncertain entry in the data of (21).) This
fact may render the approximating problems too difficult for practical use. We are
about to demonstrate that the design dimensions of (ALA) and (ALS) can be reduced
dramatically.

Consider a “generic problem” of the same structure as (ALA), (ALS):
We are given ρ > 0 and L + 1 symmetric m × m matrices B0[x],
B1[x], . . . , BL[x] affinely depending on vector x of design variables,
with B�[x], � ≥ 1, of the form

B�[x] = a�b
T
� [x] + b�[x]a

T
� ,(23)

where a� �= 0 and the vectors b�[x] �≡ 0 are affine in x. We associate
with these data the semi-infinite system of LMIs in variables x, u

B0[x] +

L∑
�=1

u�B
�[x] � 0 ∀(u : ‖u‖∞ ≤ ρ),(24)

along with its “tractable conservative approximation”—the system
of LMIs in variables x and additional matrix variables X1, . . . , X� as
follows:

(P[ρ])
(a) X� � ±ρB�[x], � = 1, . . . , L,

(b)
L∑
�=1

X� � B0[x].

The problem is to simplify (P[ρ]), i.e., to pass from this system to a
system of LMIs in variables x and, perhaps, additional variables λ in
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such a way that the new system (let it be called (S[ρ])) is of smaller
design dimension than (P[ρ]) and is equivalent to (P[ρ]) in the sense
that an x can be extended to a feasible solution of (S[ρ]) if and only
if x can be extended to a feasible solution of (P[ρ]).

Note that both (ALA) and (ALS) are of the form of (P[ρ]).
The simplification of (P[ρ]) to follow is similar to the construction presented in

Proposition 2.5; it turns out that the specific form (23) of the dependence of B� on
x allows us to end up with an analogy of (17) which is a system of LMIs in x and
additional variables. The key to our simplification is the following simple fact (which
can be viewed as certain strengthening of Proposition 2.5(i) for the case in which
S = abT + baT ).

Lemma 3.2. Let a, b ∈ Rm be two nonzero vectors, and let X be an m × m
symmetric matrix. Then X � ±[abT + baT ] if and only if there exists a positive real
λ such that

X � λaaT +
1

λ
bbT .(25)

Proof. “If” part: It suffices to prove that if λ > 0, then λaaT + 1
λ � ±[abT + baT ],

which is immediate:

∀ξ : ξT
[
λaaT +

1

λ
bbT
]
ξ = λ(aT ξ)2 +

1

λ
(bT ξ)2 ≥ 2|aT ξ||bT ξ| ≥ |ξT [abT + baT ]ξ|.

“Only if” part: Assume that a, b �= 0 and X � ±[abT + baT ]; we should prove
that there exists λ > 0 such that X � [λaaT + 1

λbb
T ], or, a statement which is clearly

equivalent, that the system of LMIs

X � λaaT + µbbT ,[
µ 1
1 λ

]
� 0

(26)

is solvable. Assume, on the contrary, that the system is unsolvable. Since a, b �= 0,
the semidefinite problem

min
t,λ,µ


t :

tI +X � λaaT + µbbT ,[
µ 1
1 λ

]
� 0


(27)

clearly is solvable; but then the infeasibility of (27) means that the optimal value in
problem (27) is positive. Since the problem clearly is strictly feasible, the problem

max
U,p,q,r



−Tr(UX)− 2r :

p = bTUb

q = aTUa

Tr(U) = 1[
p r
r q

]
� 0

U � 0



,(28)

which is the semidefinite dual of (27), is solvable with positive optimal value. Since
at a feasible solution to this problem one clearly has |r| ≤ √

pq =
√
(aTUa)(bTUb),
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the latter fact is equivalent to the existence of U � 0 such that

2
√
(aTUa)(bTUb) > Tr(UX).(29)

Setting ā = U1/2a, b̄ = U1/2b, X̄ = U1/2XU1/2 and taking into account that X �
±[abT + baT ], we get

(a) X̄ � ±Q, Q = āb̄T + b̄āT ,

(b) Tr(X̄) < 2‖ā‖2‖b̄‖2.
(30)

This is the desired contradiction. Indeed, from (30.a) it follows that Tr(X̄) ≥ ‖λ(Q)‖1

(pass to the orthonormal basis where Q is diagonal); on the other hand, an im-
mediate computation demonstrates that ‖λ(Q)‖1 = 2‖ā‖2‖b̄‖2, which is > Tr(X̄)
by (30.b).

Lemma 3.2 underlies the following proposition.
Proposition 3.3. The LMI system (P[ρ]) is equivalent to the following system

of LMIs in variables x and additional variables Y ∈ Sm, λ ∈ RL:

(a)




Y −
L∑
�=1

λ�a�a
T
� b1[x] b2[x] . . . b�[x]

bT1 [x] λ1

bT2 [x] λ2

...
. . .

bTL[x] λL




� 0,

(b) ρY � B0[x].

(31)

Proof. We should prove that if x can be extended to a feasible solution of (P[ρ]),
then x can be extended to a feasible solution of (31), and vice versa.

10. Assume that x, {X�} is a feasible solution of (P[ρ]), and let J(x) be the set of
those � for which b�[x] = 0. Let us extend x to a feasible solution of (31) as follows:

1. For � ∈ J(x), we set λ� = 0.
2. For � �∈ J(x), we have a� �= 0, b�[x] �= 0, and ρ−1X� � ±[a�bT� [x] + b�[x]a

T
� ].

Applying Lemma 3.2, we can find λ� > 0 such that ρ−1X� � λ�a�a
T
� +

λ−1
� b�[x]b

T
� [x].

3. After we have defined λ� ≥ 0 for all � = 1, . . . , L, we set

Y =
∑
� �∈J(x)

[
λ�a�a

T
� + λ−1

� b�[x]b
T
� [x]
]
.

Let us prove that x, Y, {λ�} is feasible for (31). Indeed, (31.a) is readily given by the
definition of Y and the Schur complement lemma. (Note that a zero λ� on the diagonal
of the left-hand side matrix in (31.a) corresponds to a zero row and a zero column.)
Further, from the origin of λ�, � �∈ J(x), it follows that Y � ∑� �∈J(x) ρ

−1X� �
ρ−1
∑L
�=1X�, and since x, {X�} is feasible for (P[ρ]), we conclude that ρY � B0[x],

i.e., (31.b) is valid. Thus, x, Y, {λ�} is feasible for (31).
20. Now assume that x, Y, {λ�} is feasible for (31), and let us prove that x can be

extended to a feasible solution of (P[ρ]). Let, as above, J(x) be the set of those � for
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which b�[x] = 0. Note that from (31.a) it follows that λ� ≥ 0 for all �, and λ� > 0 for
� �∈ J(x). Let us set

X� = ρ

{
0, � ∈ J(x),
λ�a�a

T
� + λ−1

� b�[x]b
T
� [x], � �∈ J(x).

Applying Lemma 3.2, we see that (P[ρ].a) holds true. Now, by the Schur complement
lemma from (31.a), it follows that

ρ−1
∑
�

X� =
∑
� �∈J(x)

[
λ�a�a

T
� + λ−1

� b�[x]b
T
� [x]
] � Y ;

this observation combined with (31.b) implies the validity of (P[ρ].b). Thus, x, {X�}
is feasible for (P[ρ]).

We have reduced the system of LMIs (P[ρ]) to (31). In the original system, there
are (dimx+ LdimX) scalar design variables, while in the resulting system there are
just (dimx+ dimX + L) design variables. To realize how large the reduction in the
design dimension can be, consider the case in which (P[ρ]) is the problem (ALS). Here
x = X is a symmetric n × n matrix, and L is the total number of uncertain entries
in the underlying uncertain interval matrix [A,B]. Here the original system (P[ρ])
has L + 1 symmetric n × n matrix variables, i.e., totally (L+1)n(n+1)

2 scalar design
variables, and (2L+ 1) “large” (n× n) LMIs. The reformulated system (31) has just
two symmetric n×n matrix variables X, Y , and L ≤ n2+nm scalar variables λ�, i.e.,
totally L + n(n + 1) ≤ 2n2 + n(m + 1) scalar design variables. As for LMIs, system
(31) has one “large” (n×n) LMI (b) and one “very large” ((n+L)×(n+L)) LMI (a);
note, however, that this LMI is of very simple “arrow” structure and is very sparse.
Thus, (31) seems to be much better suited for numerical processing than (P[ρ]).

3.3. Extensions. An LMI region is a setH in the complex planeC representable
as

H = {z ∈ C | fH(z) ≡ P +Qz +QT z̄ ≺ 0},

where P = PT and Q are real k × k matrices and z̄ is the complex conjugate of z.
The simplest examples of LMI regions are

1. open left half-plane: fH(z) = z + z̄;

2. open disk {z | |z + q| ≤ r}, q ∈ R, r > 0: fH(z) = (
−r z̄ + q
z + q −r );

3. the interior of the sector {z | π − θ ≤ | arg(z)| ≤ π} (−π < arg(z) ≤ π,
0 < θ < π

2 ):

fH(z) =
(
(z + z̄) sin θ −(z − z̄) cos θ

(z − z̄) cos θ (z + z̄) sin θ

)
;

4. the stripe {z | h1 < &(z) < h2}: fH(z) = ( 2h1 − (z + z̄) 0
0 (z + z̄)− 2h2

).

It is known (see, e.g., [5]) that the spectrum Σ(A) of a real n × n matrix A belongs
to H if and only if there exists Y ∈ Sm, Y � 0, such that the k × k block matrix
M[X,A] with the m×m blocks

Mij [X,A] = PijX +QijAX +QjiXA
T , i, j = 1, . . . ,m,
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is negative definite. We can treat such an X as a certificate of the inclusion Σ(A) ⊂ H,
and for homogeneity reasons we can normalize this certificate to satisfy the relations
X � I,M[X,A] � −I. From now on, we speak about normalized certificates only.

The problem we are interested in now is as follows. Given an LMI region H and
an “uncertain interval matrix”

Uρ = {[A,B] ∈ Rn×n ×Rn×m |
|Aij −A∗

ij | ≤ ρCij , |Bi� −B∗
i�| ≤ ρDi�, 1 ≤ i, j ≤ n, 1 ≤ � ≤ m}

of the open-loop system (21), we ask what is the supremum R∗ of those ρ ≥ 0 for which
there exists a linear feedback K ∈ Rm×n such that all instances A+BK, [A,B] ∈ Uρ,
of the uncertain matrix of the closed-loop system share a common certificate X of the
inclusion Σ(A+BK) ⊂ H. This important problem in control is a natural extension
of the Lyapunov stability synthesis problem. The problem can be treated in the
same fashion as Lyapunov analysis/synthesis. Indeed, X � I certifies the inclusion
Σ(A + BK) ⊂ H for all [A,B] ∈ Uρ if and only if (X,K) solves the semi-infinite
system of matrix inequalities

M[X,A+BK] � −I ∀[A,B] ∈ Uρ.
Passing from the variables X,K to X,Z = KX, we convert this system to the semi-
infinite system of LMIs

∀ ([A,B] ∈ Uρ) :
N (X,Z,A,B) ≡ [PijX +QijAX +QijBZ +QjiXA

T +QjiZ
TBT
]
1≤i,j≤k � −I,

(32)
where [Mij ]1≤i,j≤k denotes block matrix with blocks Mij . We see that (X,Z) solves
(32) if and only if (X,Z) solves the semi-infinite system of LMIs

(I[ρ])
∀ ({uij , |uij | ≤ 1}, {vi�, |vi�| ≤ 1}) :

ρ


 ∑

(i,j):Cij>0

uijN 0(X,Z,CijE
ij , 0) +

∑
(i,�):Di�>0

vi�N 0(X,Z, 0, Di�F
i�)




−I −N (X,Z,A∗, B∗) � 0,

N 0(X,Z,A,B) =
[
QijAX +QijBZ +QjiXA

T +QjiZ
TBT
]
1≤i,j≤k ,

where the basic matrices Eij , F i� are the same as in (LA), (LS). As before, an evident
sufficient condition for X � I and Z to solve (I[ρ]) is the existence of matrices Xij ,
(i, j) ∈ C = {(i, j) | Cij > 0}, and Zi�, (i, �) ∈ D = {(i, �) | Di� > 0}, such that
(X,Z,Xij , Zi�) solves the system of LMIs

(II[ρ])

Xij � N 0(X,Z,CijE
ij , 0), Xij � −N 0(X,Z,CijE

ij , 0), (i, j) ∈ C,
Zi� � N 0(X,Z, 0, Di�F

i�), Zi� � −N 0(X,Z, 0, Di�F
i�), (i, �) ∈ D,

ρ


 ∑

(i,j)∈C
Xij +

∑
(i,�)∈D

Zi�


 � −I −N (X,Z,A∗, B∗),

X � I.
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Invoking Theorem 2.1, we arrive at the following result.
Theorem 3.4. Let the system (I[0]) (or, which is the same, (II[0])) be solvable,

and let

µ = max

[
max
X,Z,i,j

rank(N 0(X,Z,CijE
ij , 0)), max

X,Z,i,�
rank(N 0(X,Z, 0, Di�F

i�))

]
.

Then
(i) if (II[ρ]) is solvable, then so is (I[ρ]), and the (X,Z)-component of a solution

of the former system solves the latter system;
(ii) if (II[ρ]) is unsolvable, then so is (I[ϑ(µ)ρ]), where ϑ(·) is the function given

in (9).
In particular,

sup {ρ : (I[ρ]) is solvable}
sup {ρ : (II[ρ]) is solvable} ≤ ϑ(µ).(33)

Note that the denominator in (33) is the optimal value in an explicit generalized
eigenvalue problem and thus is efficiently computable. Note also that one always has
µ ≤ 2k, and that, for our list of the 4 simple LMI regions, µ = 2 in cases 1 and 2
(“half-plane” and “disk”), and µ = 4 in cases 3 and 4 (“sector” and “stripe”).

There are many other applications of Theorem 2.1 to semi-infinite systems of
LMIs (2) arising in control, provided that the uncertainty set U in (2) is an interval
uncertainty. In a typical control application, all matrices Aj in (2) share a common
block-diagonal structure and are such that when perturbing a single data entry, every
diagonal block in the matrix A0+

∑
j xjAj is perturbed by a small rank matrix, which

is exactly the case considered in Theorem 2.1.

4. Application II: Quadratic maximization over the unit cube. Here
we demonstrate that the MatrCube problem in its simplest form, where all the edge
matrices B� are very specific matrices of ranks ≤ 2, is equivalent to the problem

ω∗(Q) = max
x

{
xTQx : ‖x‖∞ ≤ 1} [Q � 0](34)

of maximizing a positive definite quadratic form over the unit cube. On one hand, this
observation says that MatrCube (already in the case of “rank 2 edges”) is NP-hard
(since (34) is). On the other hand, our observation allows us to extract from Theorem
2.1 a certain statement about the possibility of building efficiently a tight bound on
the optimal value in (34). As it turns out, this bound is exactly the one given by the
standard semidefinite relaxation of (34), and the corresponding “tightness” statement
coming from Theorem 2.1 is nothing but the “π2 Theorem” of Nesterov [12].

The link between the quadratic maximization over the unit cube and the matrix
cube problem is given by the following simple observation.

Proposition 4.1. Assume that Q in (34) is positive definite. Then

(a) ω ≥ ω∗(Q) ≡ max
x:‖x‖∞≤1

xTQx,

(i) *
(b) ωξTQ−1ξ ≥ ‖ξ‖2

1 ∀ξ,
(ii) *

(c) ωQ−1 + {A ∈ Sm : |Aij | ≤ 1, 1 ≤ i, j ≤ m} ⊂ Sm+ .

(35)
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Proof. Relation (a) means that the ellipsoid {x : xTQx ≤ ω} contains the unit
cube {x : ‖x‖∞ ≤ 1}. Passing to polars, this is exactly the same as saying that the
polar of the ellipsoid, which is the ellipsoid {ξ : ξTQ−1ξ ≤ ω−1}, is contained in the
polar of the unit cube, which is the set {ξ : ‖ξ‖1 ≤ 1}. But the latter inclusion is
exactly what is stated in (b). Thus we have proved the equivalence (i).

Now, (c) says exactly that

ωξTQ−1ξ +min
A

{
ξTAξ : A = AT , |Aij | ≤ 1

} ≥ 0 ∀ξ.(36)

The minimum in the left-hand side of this relation is equal to −‖ξ‖2
1. (Indeed, ξ

TAξ ≥
−‖ξ‖2

1 whenever |Aij | ≤ 1 for all i, j, and ξTAξ = −‖ξ‖2
1 for Aij = −sign(ξi)sign(ξj),

i, j = 1, . . . ,m.) Thus, (36) is equivalent to the relation ωξTQ−1ξ − ‖ξ‖2
1 ≥ 0 for all

ξ, which is nothing but (b). Thus we have proved the equivalence (ii).
Now, let Sij be the basic symmetric matrices (so that Sii has a single nonzero

entry, equal to 1, in the cell (i, i), and Sij , i �= j, has exactly two nonzero entries,
both equal to 1, in the cells (i, j) and (j, i)). Relation (35.b) says exactly that the
matrix box

C
[
1

ω

]
=


Q−1 +

∑
1≤i≤j≤m

uijS
ij : ‖u‖∞ ≤ 1

ω




is contained in the positive semidefinite cone. According to Theorem 2.1, a sufficient
condition for this inclusion is the solvability of the system of LMIs as follows:

Xij � ±ρSij , 1 ≤ i ≤ j ≤ m,

∑
1≤i≤j≤m

Xij � Q−1, ρ =
1

ω
.

(37)

Moreover, since the ranks of the edge matrices Sij are ≤ 2, Theorem 2.1 says that the
solvability of (37) is a “tight, within the factor π2 ” sufficient condition for the validity
of (35.b). Taking into account that the smallest value of ω for which (35.b) is valid is
exactly ω∗(Q) (Proposition 4.1), we arrive at the following.

Proposition 4.2. Let Q � 0. Consider the semidefinite program

ρ(Q) = max
ρ,Xij


ρ :

Xij � ±ρSij , 1 ≤ i ≤ j ≤ m∑
1≤i≤j≤m

Xij � Q−1


 .(38)

The reciprocal of the optimal value in this problem is an upper bound on the optimal
value ω∗(Q) in the problem of quadratic maximization (34), and this bound is tight
within the factor π2 :

ω∗(Q) ≤ 1

ρ(Q)
≤ π

2
ω∗(Q).(39)

Proposition 4.2 says that a certain quantity which is efficiently computable via
semidefinite programming (namely, 1/ρ(Q)) is a tight, within the factor π/2, upper
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bound on the maximum ω∗(Q) of the positive definite quadratic form xTQx over the
unit cube. We are about to demonstrate that our bound is nothing but the standard
semidefinite upper bound

ω∗(Q) = maxX {Tr(QX) : Xii ≤ 1, i = 1, . . . ,m,X � 0}

= min
λ

{
m∑
i=1

λi : Diag{λ} � Q

}
(40)

on ω∗(Q).
Proposition 4.3. For Q � 0, one has 1

ρ(Q) = ω∗(Q).
Proof. Let ei be the standard basic orths in Rm, so that Sij = 1

1+δij
[eie

T
j +eje

T
i ],

where δij are the Kronecker symbols. Applying Lemma 3.2, we see that

ρ(Q) = max


ρ : ∃X

ij :

Xij � ± ρ

1 + δij
[eie

T
j + eje

T
i ], 1 ≤ i ≤ j ≤ m∑

1≤i≤j≤m
Xij � Q−1




= max


ρ : ∃{Hij > 0}1≤i≤j≤m :

∑
1≤i≤j≤m

1

1 + δij

[
Hijeie

T
i +H−1

ij eje
T
j

] � 1

ρ
Q−1


 .

(41)
Let H be the set of all m × m matrices H = [Hij ] with positive entries such that
HijHji ≥ 1 for all i, j. It is immediately seen that (41) can be rewritten as

ρ−1(Q) = min
{
ω : ∃(H ∈ H) : Λ(H) � ωQ−1

}
= min

{
ω : ∃(H ∈ H) : Q � ωΛ−1(H)

}
,

(42)

where Λ(H) is the diagonal matrix with the diagonal entries

Λii(H) =

m∑
j=1

Hij , i = 1, . . . ,m.

Lemma 4.4. The matrices which can be represented as Λ−1(H), H ∈ H, are
exactly the positive definite diagonal matrices with trace ≤ 1.

Proof. A matrix M = Diag{µi} with µi > 0 and s ≡ ∑i µi ≤ 1 is Λ−1(H) for
H given by Hij =

µj

sµi
; note that H ∈ H due to s ≤ 1. It remains to prove that if

H ∈ H, then Tr(Λ−1(H)) ≤ 1. To this end observe that
(*) For positive reals µ1, . . . , µm, one has

∑
i

µi ≤ 1⇔ ∀{ai > 0} :
∑
i

a2
i

µi
≥
(∑

i

ai

)2

.

Indeed, ⇒ is given by the evident relation minµi>0:
∑

i µi≤1

∑
i a

2
i /µi = (

∑
i ai)

2 for

all ai > 0. To verify ⇐, set ai = µi in the inequality
∑
i a

2
i /µi ≥ (

∑
i ai)

2.
In view of (*), in order to prove that H ∈ H implies Tr(Λ−1(H)) ≤ 1, it suffices
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to verify that if H ∈ H and ai > 0, then
∑
i a

2
iΛii(H) ≥ (

∑
i ai)

2, which is immediate:

m∑
i=1

a2
iΛii(H) =

m∑
i,j=1

a2
iHij =

m∑
i=1

a2
iHii +

∑
i<j

[a2
iHij + a2

jHji]

≥
∑
i

a2
i + 2

∑
i<j

aiaj [since Hij > 0, HijHji ≥ 1]

=

(∑
i

ai

)2

.

By Lemma 4.4, as H runs through H, the matrix Λ−1(H) runs through the entire
set of positive definite diagonal matrices with trace ≤ 1, so that the matrix ωΛ−1(H)
runs through the entire set of positive definite diagonal matrices with trace ≤ ω.
Consequently, (42) implies that

ρ−1(Q) = min

{
m∑
i=1

λi : Q � Diag{λ}
}
,

so that ρ−1(Q) = ρ∗(Q) by (40).
Note that the fact that the bound (40) on the optimal value ω∗(Q) of (34) is tight

within the factor π2 is known; it is the “
π
2 Theorem” of Nesterov [12], established

originally via a construction based on the famous MAXCUT-related “random hyper-
plane” technique of Goemans and Williamson [7]. Surprisingly, the alternative proof
that we have developed, although it exploits randomization, seemingly uses nothing
like the random hyperplane technique.

5. Maximizing a homogeneous polynomial of degree 3 over the unit
cube. Let B[x1, x2, x3] be a symmetric 3-linear form onRm, and let P [x] = B[x, x, x]
be the associated homogeneous polynomial; i.e.,

P [x] =

m∑
j=1

xj(x
TBjx), where Bj ∈ Sm.

Consider the problem of computing

ω(P ) = max
x

{P [x] : ‖x‖∞ ≤ 1}

along with the semidefinite program

ω∗(P ) = min
λ,X1,...,Xm



m∑
j=1

λj :
∑
j

Xj � Diag{λ}, Xj � ±Bj , j = 1, . . . ,m

 ,(43)

where Bj are the matrices of the symmetric bilinear forms B[ej , ·, ·]; here ej , j =
1, . . . ,m, are the standard basic orths in Rm. We intend to demonstrate that ω∗(P )
is an upper bound on ω(P ), and that the quality of this bound basically depends only
on the “width”

d(P ) = max
1≤j≤m

rank(Bj)

of P .
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Theorem 5.1. One has

ω(P ) ≤ ω∗(P ) ≤ 4.652ϑ(d(P )) ln(m+ 1)ω(P ) ≤ 7.31
√
d(P ) ln(m+ 1)ω(P ),(44)

where ϑ(·) is given by (9).
Proof. The proof is very much in the spirit of the matrix cube Theorem 2.1; it

uses a probabilistic argument in order to validate the solvability/unsolvability of a
certain deterministic inequality system.

10. Let λ,X1, . . . , Xm be a feasible solution of (43). We have

‖x‖∞ ≤ 1⇒ P [x] =
∑
j

xj(x
TBjx) ≤

∑
j

|xj |(xTXjx) ≤
∑
j

xTXjx

≤ xTDiag{λ}x ≤
∑
j

λj ,

which gives the first inequality in (44).
20. Let us prove the second inequality in (44); without loss of generality we may

assume that P �≡ 0, so that ω(P ) > 0. Problem (43) is strictly feasible and bounded
below, so that its optimal value ω∗(P ) is equal to that of its (solvable) semidefinite
dual problem:

ω∗(P ) = max
U,Yj ,Zj



∑
j

Tr([Yj − Zj ]Bj) :

U, Yj , Zj � 0,
Yj + Zj = U,

Ujj = 1, j = 1, . . . ,m.


(45)

Invoking Lemma 2.2, we see that there exists U such that

(a) U � 0,

(b) Ujj = 1, j = 1, . . . ,m,

(c)
∑
j

‖λ(U1/2BjU
1/2)‖1 = ω∗(P ).

(46)

Now let V = U1/2 and let ξ ∼ N (0, Im). By Lemma 2.3 and (46.c) we have

ϑ(d(P ))E



∑
j

|ξTV BjV ξ|

 ≥

∑
j

‖λ(V BjV )‖1 = ω∗(P ).(47)

At the same time, by (46.b) the Euclidean norms of the rows of V are equal to 1, so
that

‖V ξ‖∞ = max
1≤j≤m

|ζj |, ζj ∼ N (0, 1),

whence, as is well known,

E
{‖Y ξ‖2

∞
} ≤ 2 ln(m+ 1).(48)
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To make the paper self-contained, here is a derivation of (48). We have

t > 0⇒

ψ(t) ≡ Prob {|ζj | > t} = 2
∫ ∞

t

1√
2π
exp

{
−τ

2

2

}
dτ

≤ 2
∫ ∞

t

1√
2π

τ

t
exp

{
−τ

2

2

}
dτ =

√
2

π
t−1 exp

{
− t

2

2

}
⇒

Prob

{
max
j≤m

|ζj | > t

}
≤ min[1,mψ(t)] ≤ min

[
1,m

√
2

π
t−1 exp

{
− t

2

2

}]

⇒

E

{
max
j≤m

|ζj |2
}

= 2

∫
t>0

tmin[1,mψ(t)]dt︸ ︷︷ ︸
Jm

≤ 2
∫
t>0

min

[
t,m

√
2

π
exp

{
− t

2

2

}]
dt

≤ 2
∫ τ

0

tdt+ 2

√
2

π
m

∫ ∞

τ

exp

{
− t

2

2

}
dt

≤ τ2 + 2

√
2

π
mτ−1 exp

{
−τ

2

2

}
.

The resulting bound

E

{
max
j≤m

|ζj |2
}
≤ 2Jm ≤ τ2 + 2

√
2

π
mτ−1 exp

{
−τ

2

2

}
(49)

is valid for all m and all τ > 0. Assuming m ≥ 3 and setting τ = √2 ln (m/2), one
can easily conclude from (49) that 2Jm ≤ 2 ln(m + 1) for all m ≥ 25. Numerical
computation of Jm for m ≤ 25 demonstrates that the latter inequality holds true for
all m.

Combining (47), (48), we get

E



∑
j

|ξTV BjV ξ|

 ≥ ω∗(P )

2ϑ(d(P )) ln(m+ 1)
E
{‖V ξ‖2

∞
}
,(50)

and the left-hand side in this inequality is positive. It follows that there exist η ∈ Rm

and a vector ε ∈ Rm with entries ±1 such that

ηT


∑
j

εjBj


 η ≥ ω∗(P )

2ϑ(d(P )) ln(m+ 1)
and ‖η‖∞ = 1,

whence

max
ε,η

{B[ε, η, η] : ‖ε‖∞ ≤ 1, ‖η‖∞ ≤ 1} ≥ ω∗(P )
2ϑ(d(P )) ln(m+ 1)

.(51)

On the other hand,

B[x+ ty, x+ ty, x+ ty] = B[x, x, x] + 3tB[x, x, y] + 3t2B[x, y, y] + t3B[y, y, y],
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whence

∀t �= 0 ∀x, y :

B[x, y, y] =
B[x+ ty, x+ ty, x+ ty] +B[x− ty, x− ty, x− ty]− 2B[x, x, x]

6t2
.

It follows that

max
ε,η

{B[ε, η, η] : ‖ε‖∞ ≤ 1, ‖η‖∞ ≤ 1} ≤ (1 + t)3 + 1

3t2
ω(P ) ∀t > 0,

which combines with (51) to yield the relation

ω∗(P )
2ϑ(d(P )) ln(m+ 1)

≤ min
t>0

(1 + t)3 + 1

3t2
ω(P ) ≤ 2.326ω(P ),

and the second inequality in (44) follows. The third inequality follows from ϑ(d) ≤
π
√
d

2 ; see (10).
Remark. There are two simple cases in which d(P ) is small. The first is when

P [x] is “of small rank”: P [x] =
∑L
�=1(p

T
� x)

3 with a small L (since clearly d(P ) ≤ L).
The second case is when P is of a “band” structure; i.e., the quantity

κ = max
1≤i≤j≤k≤m

{k − i : B[ei, ej , ek] �= 0}

is small (since clearly d(P ) ≤ 2κ+ 1).
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Abstract. This paper presents a time-stepping complementarity approach for computing a
numerical trajectory of a system of rigid bodies under frictionless contact. Such a system is formulated
as a time-dependent (ordinary) differential complementarity problem (DCP), which consists of an
ordinary differential equation (ODE) coupled with a complementarity condition. The phenomenon
of impact plays an essential role when modeling a mechanical system of this type. Within the time-
stepping scheme, which uses a high-order ODE discretization, we include an impact detection routine
and an impact law governing the behavior of the system over the duration of an impact. We report
computational results for the application of the overall numerical scheme to computing the solution
trajectories of several realistic mechanical systems.

Key words. contact problems, complementarity, numerical methods, time-stepping

AMS subject classifications. 74M15, 74M10, 74M20, 90C33, 74S20
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1. Introduction. Inspired by the pioneering work of Lötstedt [17, 18], the study
of rigid-body contact mechanics has sparked substantial interest recently; see [1, 2,
5, 11, 10, 22, 21, 23, 24, 25, 28, 27, 30, 31, 29, 33]. A general mathematical model
for such mechanical problems leads to a differential complementarity problem (DCP)
over time, consisting of an ordinary differential equation (ODE) in time coupled with
an instantaneous complementarity problem; for more details, see the cited references.
Complementarity problems involving derivatives of functions are not unprecedented
in the mathematical programming literature. For example, see [14, 13] for a treat-
ment of a parameterized complementarity problem involving derivatives that arises
when modeling a particular problem in the field of structural mechanics. Such DCPs
can be viewed as extensions of differential algebraic equations (DAEs), whereby bi-
lateral constraints (equations) of the DAE are augmented by unilateral constraints
(inequalities); see [4]. Unlike the contact problems involving elastic bodies (for an
overview, see [16, 15]), when modeling rigid bodies the phenomenon of impact plays
an essential role. Several of the papers cited above (e.g., [25, 22, 5]) utilize the power
of mathematical programming to solve for the behavior of the system during impact.
These theoretical models necessitate the development of numerical schemes for their
solution.

Our paper is closely related to several recent works. The theoretical results in
section 2, which we developed independently, closely parallel those in Chapter 6 of [10];
see also the references cited therein. The numerical algorithm presented in section 6
shares common ideas with the time-stepping schemes of Stewart and Trinkle [30, 31]
and Anitescu and Potra [1]. Our work can therefore be considered a synthesis of the
recent work by these authors, whereby we present both the theoretical and numerical
treatment in a coherent framework. Specifically, our theory defines a “numerical
solution” that is computed by our proposed algorithm.
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Previous numerical methods for the solution of the rigid-body contact problem
(e.g., [28, 22, 19, 7, 2]) mostly involve only basic low-order methods (typically re-
lated to Euler’s method). A notable exception is [27], in which Stewart presents a
framework for a high-order numerical scheme for ODEs with discontinuous right-hand
sides. As Stewart’s algorithm is designed to handle general ODEs with discontinuous
right-hand sides, he does not exploit structure inherent in those ODEs resulting from
models of rigid bodies. A recent work by Heemels, Schumacher, and Weiland [11]
presents a time-stepping approach to solving a linear time-invariant DCP pertaining
to the frictionless contact problem with affine functions (in the state variables), which
describes the system dynamics and constraints.

There are several very important distinctions between our numerical scheme and
those mentioned above. In particular, the time-stepping schemes of Stewart–Trinkle
and Anitescu–Potra employ a fixed step-size. Recently, Stewart [28] established a
convergence theory of the Stewart–Trinkle scheme as the step-size goes to zero. How-
ever, if one is interested in computing an approximate trajectory for a system of rigid
bodies over time (with or without friction), there must be some flexibility in the choice
of step-size from one iteration to the next.

In particular, by fixing the step-size h at the beginning of execution, such an
algorithm cannot guarantee any better than h/2 accuracy in determining the times at
which impacts occur. The error bound for the numerical calculation of impact times
is first-order, regardless of the theoretical global error properties of the time-stepping
scheme employed. For the purposes of a convergence analysis, the behavior of the
approximate solution produced by the time-stepping scheme in the limit as h ↓ 0 is of
paramount interest. As a result, this first-order error in determining an impact time
does not present a problem. However, if one’s goal is to calculate an approximate
trajectory via a high-order time-stepping scheme, this first-order error bound can
become problematic.

One remedy for this difficulty is to attempt to predict or detect impact. In order
to predict impact, an algorithm must estimate the state variables at the next time-
step without actually executing a time-step. If an impact is detected, a new step-size
is chosen (smaller than the original step-size) so that the next time-step is as close
as possible to the impact time. In order to detect impact, an algorithm uses the
previous and current state iterates to estimate the impact time (usually with some
kind of interpolating polynomial and root-finding subroutine). After the impact time
is estimated, the current state iterate is discarded and the algorithm backtracks to
the previous state iterate. Then, after adjusting the step-size so that the next state
iterate will occur at the estimated impact time, the algorithm steps forward. In both
prediction and detection, adaptive step-sizing (at least in the neighborhood of an
impact time) is vital to obtaining accurate estimates of impact times.

Although briefly mentioned in [29], such a prediction/detection/correction pro-
cedure was not part of the overall Stewart–Trinkle algorithm presented in [30]. This
issue is something that plagues any attempt to calculate trajectories of systems of
rigid bodies. Allowing for adaptive step-sizing allows for the possibility of impact
prediction/detection (referred to as “event detection” in [27] and [11]), which can
dramatically reduce the possibility of various numerical difficulties. Furthermore, al-
most all commercial-quality ODE solvers use adaptive step-sizing in some way to
add robustness to the solver. A reasonable conclusion is that adaptive step-sizing
should be a component of any practical time-stepping scheme for the calculation of
trajectories of a system of rigid bodies.
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In this work, we present a time-stepping framework that allows for a high-order
discretization of the ODE component of the DCP used to model frictionless systems
of rigid bodies. We focus on frictionless contact here as a first step toward a com-
prehensive investigation of rigid-body systems. A subsequent work will deal with the
frictional problems. The algorithm presented in this paper relies heavily on adaptive
step-sizing techniques, as we focus on obtaining physically meaningful iterates rather
than on the convergence properties of the underlying time-stepping scheme as the
step-size tends to zero. In order to model impact more accurately, we use an impact
law related to the widely accepted impact models presented in [22, 11, 25], which
are also used in [29, 1]. In [29], Stewart embeds his impact model directly into his
time-stepping scheme. In this work, we draw a distinction between the impact model
and the time-stepping scheme, thereby allowing end users the option of replacing our
impact model with any other model of their choosing, so long as certain properties
hold for the alternate model. The effectiveness of our algorithm is demonstrated on
six realistic mechanical models using the trapezoidal ODE discretization technique,
for which the global error is quadratic in step-size. The first two involve a sliding
rod, a common example for problems of this type; e.g., see [5] and [29]. The sec-
ond two examples involve a rigid double pendulum and a rigid wall. Finally, the
last two examples involve two rigid carts, a rigid wall, and a hook and are borrowed
from [11, 5].

Next, we discuss some notational issues. By ‖·‖ we denote the standard Eu-
clidean norm of vectors on R

k. By R
k
+ ⊆ R

k we denote the nonnegative orthant in
k dimensions. Given some vector c ∈ R

k, by diag c we denote the diagonal matrix
for which the ith diagonal element is given by ci for i = 1, . . . , k. Given an index set
α ⊆ {1, . . . , k}, we denote the complement of α in {1, . . . , k} as ᾱ. Given a vector
q ∈ R

k, we denote the subvector of q that lies in the rows indexed by α ⊂ {1, . . . , k} as
qα ∈ R

|α|, where |α| is the cardinality of the index set α. We use a similar shorthand
to denote the submatrices of a matrix [12]. Given a matrix M ∈ R

k×k and index sets
α ⊆ {1, . . . , k} and β ⊆ {1, . . . , k}, we denote the submatrix that lies in the rows of
M indexed by α and the columns indexed by β as Mαβ . We say the submatrix Mαα is
a principal submatrix. By M·β we mean Mαβ , where α = {1, . . . , k}, and similarly, by
Mα· we mean Mαβ , where β = {1, . . . , k}. Note that indexing takes precedence over
transposition. That is, GT

αβ = (Gαβ)
T
. Throughout this work, we use the labeling

convention vin to represent the ith element of the vector vn, where “n” is simply a
label, not an index. By vαn we denote the vector consisting of the entries of vn lying
in the index set α. Similarly, by Wαn we denote the matrix composed of those rows
of Wn lying in α.

Given a function g : R
k → R

m that is twice differentiable on R
k, we have the

following three notational conventions. For each l = 1, . . . ,m, grad gl : R
k → R

k

denotes the gradient of gl given by [grad gl(q)]j = ∂gl(q)
∂qj

for all q ∈ R
k and j = 1, . . . , k,

and ∇2gl : R
k → R

k×k denotes the Hessian of gl given by
[∇2gl(q)

]
ij

= ∂2gl(q)
∂qi∂qj

for all

q ∈ R
k, i = 1, . . . , k, and j = 1, . . . , k. Finally, Jg : R

k → R
m×k denotes the Jacobian

of g given by [Jg(q)]i,j = ∂gi(q)
∂qj

for all q ∈ R
k, i = 1, . . . ,m, and j = 1, . . . , k. Note

that the ith row of the matrix Jg(q) is given by the row vector grad gi(q)
T

for all
q ∈ R

k.

2. A dynamics model. In this section, we present a well-established model for
the dynamics of a frictionless multi-rigid-body system with n degrees of freedom (see,
for example, [5, 29]). We begin with the classical Newton–Euler ODE, given by
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M(q)ν̇ = f(q, ν, t),

where q : R → R
nq denotes the system orientation; ν : R → R

6n denotes the system
velocity; the function f(q, ν, t) represents the sum of all external, noncontact forces
acting on the system; and the function M(q) is the mass matrix. Additionally, we
must parameterize the orientation. Letting nq denote the number of parameters used,
we define a function G : R

nq → R
6n×nq mapping ν to q̇ as follows:

q̇ = G(q)ν.

When modeling mechanical systems with frictionless contact, the classical approach
proves insufficient. One must impose unilateral nonpenetration conditions on the
bodies in the system and introduce the unilateral contact forces required to maintain
these conditions. Assuming that there are nc possible contacts in the system, we define
a function Ψn : R

nq → R
nc and require that Ψin be positive if there is a gap between

the bodies at the ith contact point, zero if the bodies are touching, or negative if the
bodies are interpenetrating each other. We denote the normal contact force vector
by cn : R → R

nc . Since the normal force between two bodies should be zero when
the bodies are separated, we require that cin be zero in this case. Since we wish to
explicitly forbid interpenetration, we require that Ψn be nonnegative always. Thus,
we have a complementarity relationship between Ψn and cn, given by

0 ≤ Ψn(q) ⊥ cn ≥ 0.

With the inclusion of these contact forces, the Newton–Euler ODE must be modified
as follows:

M(q)ν̇ = f(q, ν, t) + Wn(q)T cn,

where

Wn(q) = JΨn(q)G(q).

Combining these results, the general model for a frictionless multi-rigid-body system
is given by

M(q)ν̇ = f(q, ν, t) + Wn(q)T cn,

q̇ = G(q)ν,

0 ≤ Ψn(q) ⊥ cn ≥ 0


∀t ∈ [t0, T ],(1)

subject to conditions given by

q = q0 +

∫ t

t0

q̇ds and ν = ν0 +

∫ t

t0

ν̇ds,(2)

where t0 is the initial time, T > t0 is the horizon (or final time), and the pair
{
q0, ν0

}
is the initial data.

The model given by (1) is a special kind of DCP used in the literature (for
example, see [17, 5, 29, 33]) to model frictionless systems of rigid bodies. We make
the following assumptions regarding DCP (1).
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(A1) The function M : R
nq → R

6n×6n is symmetric, and there exist positive

constants c and c′ such that c′ ‖ν‖2 ≤ νTM(q)ν ≤ c ‖ν‖2 for all ν ∈ R
6n and

q ∈ R
nq .

(A2) The functions M−1 and G are globally Lipschitz, f(·, ·, t) : R
nq ×R

6n → R
6n

is globally Lipschitz for all t ∈ [t0, T ] (with Lipschitz constant independent
of t), and f is globally continuous.

(A3) The functions Ψn, JΨn, and ∇2Ψin (for i = 1, . . . , nc) are globally Lipschitz.
(A4) The function Wn has full row rank uniformly on R

nq .
(A5) The initial orientation is feasible, i.e., Ψn(q0) ≥ 0.
(A6) For α =

{
i : Ψin(q0) = 0

}
, either Wαn(q0)ν0 ≥ 0 or Wαn(q0)ν0 ≤ 0.

Note that (A1) is a consequence of energy considerations, and the conditions (A2)
and (A3) are common sufficiency results in order for the classical equation of motion
M(q)ν̇ = f(q, ν, t) to have a unique solution on [t0, T ]. The upper bound on the
quadratic form in (A1) implies that the matrix M(q) is uniformly nonsingular for all
q ∈ R

nq . Thus the function M admits a matrix-inverse function M−1 : R
nq → R

6n×6n

such that M(q)M−1(q) = I for all q ∈ Rnq , where I is the 6n × 6n identity matrix.
Furthermore, the upper and lower bounds on the quadratic form in (A1) imply that
M and M−1, respectively, are uniformly positive definite on R

nq . The condition (A4)
is a constraint qualification on the nonpenetration constraint. Condition (A5) is self-
explanatory, while (A6) states that, over the set of active contacts, either all normal
relative velocities are nonnegative or all are nonpositive. This condition will allow us
to prove some existence results later in this paper.

In the interest of rigor and consistency with Stewart (see [28]), we postulate
that q is continuous and that q̇(t) and ν(t) are piecewise continuous with jump-
discontinuities. Consequently, the derivative ν̇(t) does not exist in the classical sense
as the limit of the slope of a secant. Instead, we must think of ν̇(t) as a generalized
function involving the Dirac delta function, denoted by δ(t), satisfying (2). This
explains why we incorporate the initial conditions into (2) instead of writing them
explicitly in the usual way: q(t0) = q0 and ν(t0) = ν0. Furthermore, we must
generalize our notions of nonnegativity and orthogonality accordingly. Letting Co+
denote the space of all nonnegative continuous scalar-valued functions, we say that
“cn ≥ 0” and “cn ⊥ Ψn” if

∫ t

to

φ(s)cin(s)ds ≥ 0 and

∫ t

to

φ(s)cin(s)Ψin(s)ds = 0,(3)

respectively, for all i = 1, . . . , nc and φ(t) ∈ Co+.

3. An impact model. Impact occurs when two rigid bodies collide. The notion
of a rigid body is an idealization, obscuring the highly complex process of restitution
that occurs during the collision. An impact law is a mathematical model for this
process, reinitializing the system velocities at the time of impact.

Throughout the remainder of this section, we assume that an impact occurs at
t∗ ∈ [t0, T ] and use the following shorthand notation:

ν∗+ = lim
τ↓0

ν(t∗ + τ), ν∗− = lim
τ↓0

ν(t∗ − τ), and q∗ = q(t∗).

More generally, we use the superscript ∗ to denote the value of a function at t∗.
Similarly, we use the + and − superscripts to indicate right-hand and left-hand limits,
respectively, at t∗. Note that if t∗ = t0, then we take ν∗− = ν0 and ν∗+ = ν0+.
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When an impact occurs at the ith contact point, we must have Ψin(q∗) = 0.
Consequently, we define the impact index set α at t∗ as follows:

α = {i : Ψin(q∗) = 0} .
In the language of mathematical programming, α denotes the active set of the non-
penetration constraint at time t∗. To simplify notation, we also define the normal
relative velocity vn as follows:

vn(q, ν) =
d

dt
Ψn(q) = Wn(q)ν.

At the time of impact, the normal contact force cn contains an impulsive part so that

lim
τ↓0

∫ t∗+τ

t∗−τ
cndt = λn ∈ R

nc .

We refer to λn as the impulse coefficient vector.
In this section, we present an impact law similar to those appearing in [1, 27, 29,

30]. Our goal is to capture as much physical reality as possible without overburdening
the model with a high degree of complexity. To this end, we require our impact law
to satisfy each of the following properties.

(R1) Momentum is conserved at the time of impact.
(R2) The total change in kinetic energy is nonpositive at the time of impact.
(R3) The condition 0 ≤ Ψn(q∗) ⊥ λn ≥ 0 holds at the time of impact.

Integrating the ODE given by

ν̇ = M−1(q) (f(q, ν, t) + W T

n (q)cn)

with respect to t from t∗ − τ to t∗ + τ , we have∫ t∗+τ

t∗−τ
ν̇dt = ν(t∗ + τ)− ν(t∗ − τ) =

∫ t∗+τ

t∗−τ
M−1(q) (f(q, ν, t) + W T

n (q)cn) dt.

Passing to the limit at τ ↓ 0 and observing that the only impulsive term on the right
is the one containing cn, we have

ν∗+ − ν∗− = M−1(q∗)W T

n (q∗)λn.

After some algebraic manipulation, we have

M(q∗)ν∗+ = M(q∗)ν∗− + W T

n (q∗)λn,

which, along with

q̇∗+ = G(q∗)ν∗+,

represents conservation of momentum at the time of impact.
In order to satisfy (R3), we must require explicitly that

λαn ≥ 0 and λᾱn = 0.

Furthermore, an impact law should model the impact restitution process. To this end,
for each contact i = 1, . . . , nc, we introduce the ith coefficient of restitution εi ∈ [0, 1]
and the unilateral restitution law

v∗+αn + diag εαv
∗−
αn ≥ 0.
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If λin > 0, we require that

v∗+in = −εiv∗−in .

We summarize these three requirements via the following complementarity problem:

λᾱn = 0 and 0 ≤ v∗+αn + diag εαv
∗−
αn ⊥ λαn ≥ 0.

Combining the above complementarity problem with conservation of momentum, we
obtain our impact law given by

M(q∗)ν∗+ = M(q∗)ν∗− + W T
n (q∗)λn,

q̇∗+ = G(q∗)ν∗+,

λᾱn = 0, and 0 ≤ v∗+αn + diag εαv
∗−
αn ⊥ λαn ≥ 0.


(4)

We now have the following theorem.
Theorem 3.1. The impact law given by (4) has a unique solution {q̇∗+, ν∗+, λn}.
Proof. As a consequence of conservation of momentum, we have

v∗+αn = v∗−αn + Wαn(q∗)M−1(q∗)W T

αn(q∗)λαn.

Substituting for v∗+αn in (4), we obtain the following linear complementarity problem
(LCP):

0 ≤ (I + diag εα) v∗−αn + Wαn(q∗)M−1(q∗)W T

αn(q∗)λαn ⊥ λαn ≥ 0.

From (A3), Wn(q∗) has full row rank. From (A1), M−1(q∗) is positive definite. Thus,
for the above LCP, the defining matrix Wαn(q∗)M−1(q∗)W T

αn(q∗) is positive definite.
As a result, there exists a unique solution λαn (see [8]). Thus, λn is uniquely deter-
mined. The uniqueness of q̇∗+ and ν∗+ follows immediately from (4).

Before proceeding to the main results of this section, we prove the following
proposition.

Proposition 3.2. For any impact time t∗ > t0 with nonempty impact set α,
v∗−αn ≤ 0.

Proof. We must have that

Ψαn(q(t∗)) = Ψαn(q(t)) +

∫ t∗

t

vαnds = 0

for all t ∈ [t0, t
∗]. Since Ψn ≥ 0 on [t0, t

∗], we must have that

∫ t∗

t

vαnds ≤ 0

on [t0, t
∗]. In particular, the above inequality must hold for any arbitrarily small

left-hand neighborhood of t∗. By assumption (A3), vαn is continuous on [t0, t
∗], and

thus we must have v∗−αn ≤ 0.
Note that by (A6), either v0

αn ≤ 0 or v0
αn ≥ 0. We may disregard the latter case

because, although technically an impact has occurred, λαn = 0. In effect, this signifies
a purely degenerate impact.
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Theorem 3.3. The unique solution to (4) satisfies (R1), (R2), and (R3).
Proof. Clearly the impact law satisfies (R1) and (R3) as a result of its construc-

tion. All that remains to be shown is that (R2) is satisfied. Recall the following
ODE:

M(q)ν̇ = f(q, ν, t) + W T

n (q)cn.

Taking the inner product of the above ODE with ν and then integrating with respect
to t from t∗ − τ to t∗ + τ , we have

∫ t∗+τ

t∗−τ
ν̇TM(q)νdt =

∫ t∗+τ

t∗−τ
(f(q, ν, t)T + cTnWn(q)) νdt.

Taking the limit as τ ↓ 0 and observing that cn is the only generalized function on
the right-hand side, the above equation reduces to

lim
τ↓0

∫ t∗+τ

t∗−τ
ν̇TM(q)νdt = lim

τ↓0

∫ t∗+τ

t∗−τ
cTnWnνdt =

1

2
λT

nWn(q∗)(ν∗+ + ν∗−);

see [20, 21] for details of the calculus of differential measures that yields the second
equality in the above expression. Using the fact that

ν̇TM(q)ν =
1

2

d

dt
(νTM(q)ν)− νT

(
d

dt
M(q)

)
ν,

we arrive at the work-energy theorem for rigid-body impact given by

1

2
(ν∗+)TM(q∗)ν∗+ − 1

2
(ν∗−)TM(q∗)ν∗− =

1

2
λT

nWn(q∗)
(
ν∗+ + ν∗−

)
.

Physically, the above equation states that over the duration of an impact, the change
in kinetic energy is equal to the work done by the impulsive part of the normal force.
Denoting the change in kinetic energy over the duration of the impact by ∆K and
combining the work-restitution component of our impact law with the above work-
energy relation, we see that the change in kinetic energy is given by

∆K =
1

2
λT

αn [I − diag εα]︸ ︷︷ ︸
≥0

Wαn(q∗)ν∗−︸ ︷︷ ︸
≤0, by Propostion 3.2

≤ 0,

so that the impact law given by (4) satisfies (R2). Note that Propostion 3.2 does not
apply if t∗ = t0. However, for t∗ = t0, (A6) applies and either v0

αn ≤ 0 or v0
αn ≥ 0. In

the latter case, this is a degenerate impact and λαn = 0, so that (R2) is still satisfied.
This completes our proof.

We now compare the impact law given by (4) with three well-known impact laws.
If we take ε = 0 in (4), we recover the LCP formulation of the impact law presented
in [11], which originated from Moreau (see [21]). This impact law is a special case of
the impact law given by (4) and consequently satisfies (R1), (R2), and (R3). However,
the impact law presented in the cited references has the unfortunate shortcoming of
implicitly assuming that all coefficients of restitution are zero. Thus all rigid-body
collisions are completely inelastic.

In a separate paper [22], Moreau presents an impact law that includes a dissipation
index (denoted by δ) that functions like the coefficient of restitution ε. Using δ, he
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defines the postimpact velocity to be a weighted average of the right-hand and left-
hand limits of the velocity. This weighted average allows for the possibility of partially
elastic impacts, as does our impact law. However, in [22], Moreau did not explicitly
formulate a quadratic program or complementarity problem for the computation of
the postimpact velocity involving δ, as is done in (4).

The third impact law, attributed to Newton and described in [25], relates the
normal gap velocities before and after impact through a diagonal system of linear
equations. One can then uniquely obtain the impulsive forces exerted on the system
at impact by invoking conservation of momentum. Clearly Newton’s law satisfies (R1)
by construction. Pfeiffer and Glocker show that Newton’s law satisfies (R2) but fails
to guarantee nonnegative impulse coefficient vectors and therefore does not satisfy
(R3); for more details, see [25].

4. A force-equilibrium model. For some fixed time t, whenever the system
orientation and velocity vectors (denoted by q and ν, respectively) are known but the
normal contact force (denoted by cn) is not, we must rely on a force-equilibrium law
to determine cn. There are two situations in which this calculation is necessary. The
first situation occurs at the initial time t0. Without loss of generality, we assume that
there is no impact initially. We use the same force-equilibrium approach to determine
the initial value of the normal force (denoted by c0n). The second situation occurs im-
mediately following impact. We use the impact law presented in the previous section
to solve for the system velocity and the impulsive part of the normal force (denoted
by λn) immediately following an impact. Since the system orientation is continuous
on [t0, T ], its value is the same immediately before and after impact. However, we still
must determine the value of the nonimpulsive part of cn. After using the impact law
to reinitialize the system velocity, we must appeal to a force-equilibrium argument in
order to determine the contact forces at the instant immediately following impact.

Since the same force-equilibrium approach is used in either of the above two
situations, we restrict the remainder of this section to the case in which we wish
to calculate the initial normal contact force. We assume that we are given initial
conditions q0 and ν0 and that v0

αn ≥ 0. We are not given initial values for the contact
force vector c0n; rather, this must be calculated to be consistent with (1) at t = t0
with q(t0) = q0 and ν(t0) = ν0. (Throughout this section, the 0 superscript indicates
that the function in question is evaluated at t = t0.) In this section, we use a limiting
argument to derive a mathematical representation of this force-equilibrium law.

We begin by defining the contact index set β at time t0 as follows:

β =
{
i ∈ α : v0

in = 0
} ⊆ α,

where α is the impact index set and vn is the normal relative velocity (both are defined
in the previous section). Furthermore, we define the normal relative acceleration an

as follows:

an =
d2

dt2
Ψn =

d

dt
vn.

Using a second-order Taylor series to expand the function Ψn(q(t)) around t = t0, we
have

Ψn(q(t)) = Ψn(q0) + (t− t0)v0
n +

1

2
(t− t0)2a0

n + o((t− t0)2).
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Since Ψᾱn(q0) > 0, we must have that c0ᾱn = 0. For i ∈ α the above Taylor series
reduces to

Ψαn(q(t)) = (t− t0)v0
αn +

1

2
(t− t0)2a0

αn + o((t− t0)2).

Since we have assumed v0
αn ≥ 0, there exists a positive scalar τ chosen sufficiently

small such that vα ∩ β̄,n > 0 on [t0, t0 + τ). As a result,

Ψα ∩ β̄,n(q(t)) =

∫ t

t0

vα ∩ β̄,nds > 0

on (t0, t0 + τ), which implies that cα ∩ β̄,n = 0 on (t0, t0 + τ). Since Ψα ∩ β̄,n(q0) = 0,
we are free to choose c0α ∩ β̄,n = 0, thus ensuring that cα ∩ β̄,n is continuous at t0. For
i ∈ β, the Taylor series further reduces to

Ψβn(q(t)) =
1

2
(t− t0)2a0

βn + o((t− t0)2).

Note that, since

Ψβn(q(t)) ≥ 0 ⇐⇒ 2

(t− t0)2
Ψβn(q(t)) ≥ 0,

we require that

2

(t− t0)2
Ψβn(q(t)) = a0

βn + 2
o((t− t0)2)

(t− t0)2
≥ 0

in a right-hand neighborhood of t0 chosen sufficiently small. Taking the limit as t ↓ t0
and substituting the result into the complementarity condition in (1), we arrive at
the frictionless force-equilibrium law, given by

M(q0)ν̇0 = f(q0, ν0, t0) + W T
βn(q0)c0βn,

c0β̄n = 0 and 0 ≤ a0
βn ⊥ c0βn ≥ 0.

}
(5)

Now we have the following theorem guaranteeing the existence and uniqueness of a
solution to the frictionless force-equilibrium law (5).

Theorem 4.1. The force-equilibrium law (5) has a unique solution
{
ν̇0, c0n

}
.

Proof. By (A1), M−1(q0) exists, and thus solving for ν̇0 and substituting the
result into the expression for a0

βn, we have

a0
βn = Wβn(q0)M−1(q0)f(q0, ν0, t0) +

[
(G(q0)ν0)T∇2Ψin(q0)G(q0)ν0

]
i∈β

+ Wβn(q0)M−1(q0)Wβn(q0)c0βn.

Thus, the complementarity problem in (5) is an LCP with the defining matrix
Wβn(q0)M−1(q0)Wβn(q0). By (A1), M−1(q0) is positive definite and, by (A3), Wβn(q0)
has full row rank. As a result, the defining matrix must be positive definite. Thus
c0βn exists uniquely (see [8] for details). Then ν̇0 follows uniquely from (5).
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5. Frictionless locally smooth solutions. In this section, we develop the con-
cept of a locally smooth solution to the frictionless multi-rigid-body contact problem
given by (1). After stating a precise definition, we state and prove results regarding
the existence of such a solution. As we will see, these results play vital roles in section
6, where we define what is meant by a numerical solution to (1).

Definition 5.1. Given some initial time t0 and initial data pair
{
q0, ν0

}
, sup-

pose there exist some positive scalar τ and a function triple {q, ν, cn} that satisfy the
following conditions:

(C1) q : R→ R
nq is continuously differentiable on [t0, t0 + τ) with q(t0) = q0;

(C2) ν : R→ R
6n is continuously differentiable on [t0, t0 + τ) with ν(t0) = ν0;

(C3) cn : R→ R
nc is Lipschitz on [t0, t0 + τ); and

(C4) {q, ν, cn} satisfies (1) on [t0, t0 + τ).
Then, we say that {q, ν, cn} is a locally smooth solution to the frictionless multi-rigid-
body contact problem on [t0, t0 + τ) with initial conditions

{
q0, ν0

}
.

As with the related field of DAEs (see [4]), it is not true in general that all possible
initial data lead to locally smooth solutions. Initial data that do so are said to be
consistent (borrowing terminology from the field of DAEs). Using Definition 5.1, we
define consistency as follows.

Definition 5.2. We say that the pair
{
q0, ν0

} ∈ R
nq × R

6n is consistent at
time t0 if there exists a positive scalar τ such that a locally smooth solution exists on
[t0, t0 + τ) with initial conditions

{
q0, ν0

}
.

We have the following necessary condition regarding consistent initial conditions.
Theorem 5.3. If the pair

{
q0, ν0

}
is consistent at t = t0, then

v0
αn = Wαn(q

0)ν0 ≥ 0,

where the index set α is defined as

α =
{
i : Ψin(q

0) = 0
}
.

Proof. From Definition 5.2, there exist a positive scalar τ1 and a locally smooth
solution {q, ν, cn} on [t0, t0 + τ1). As an immediate consequence, we have Ψn(q) ≥ 0
on [t0, t0 + τ1). Suppose there exists an index i ∈ α such that v0

in < 0. Since i ∈ α,
we have

Ψin(q) =

∫ t

t0

vinds ∀ t ∈ [t0, t0 + τ1).

The functions q and ν, and as a result vn, are continuously differentiable on [t0, t0+τ1).
Thus, there exists a positive scalar τ2 ≤ τ1 such that vin < 0 on [t0, t0 + τ2). Thus we
have

Ψin(q) =

∫ t

t0

vinds < 0 ∀ t ∈ [t0, t0 + τ2),

contradicting the previously established nonnegativity of Ψin(q) on (t0, t0+τ1). There-
fore, vαn ≥ 0, concluding our proof.

Whether the converse to Theorem 5.3 holds remains an open question. However,
we can make a physically reasonable assumption and prove a slightly weaker version.
In order to do so, we must assume that after using the force-equilibrium law given
by (5), the relative normal acceleration an and the normal contact force cn are nonde-
generate when restricted to the index set β =

{
i : Ψin(q0) = v0

in = 0
}

. This additional
assumption gives us the following extremely useful sufficiency condition.
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Theorem 5.4. Suppose that the following two conditions hold.
(S1) For α =

{
i : Ψin(q

0) = 0
}
, we have that v0

αn = Wαn(q
0)ν0 ≥ 0.

(S2) For all i ∈ β =
{
i ∈ α : v0

in = 0
}
, a0

in = 0 implies c0in > 0.

Then the pair
{
q0, ν0

}
is consistent at t = t0.

Proof. To begin, we define the function

b(q, ν, t) =
[
νTG(q)T∇2Ψin(q)G(q)ν

]
i∈β + Wβn(q)M−1(q)f(q, ν, t)

and the function

A(q) = Wβn(q)M−1(q)W T

βn(q).

Defining the state vector

y =

[
q
ν

]
: R→ R

nq+6n,

consider the finite-dimensional functional linear complementarity problem (FLCP)
given by

0 ≤ b(y, t) + A(y)x ⊥ x ≥ 0.(6)

Since M−1 is uniformly positive definite on R
nq by assumption (A1), and since Wn has

full row rank uniformly on R
nq by assumption (A4), it is an elementary result that A is

uniformly positive definite on R
nq . By assumptions (A1), (A2), and (A4), A and b(·, t)

are both Lipschitz on any closed, bounded set B ⊆ R
nq+6n. Then by Theorem A.3, for

every t there exists a unique function x(·, t) : R
nq+6n → R

nc satisfying (6) that is itself
Lipschitz on B. By the same proof as in Theorem A.3, we can establish that x(y, t) is
jointly continuous in (y, t). Therefore, by Picard’s existence and uniqueness theorem
for ODEs (see [9], for example), there exist a positive scalar τ1 chosen sufficiently
small and a unique differentiable function y : R → R

nq+6n on [t0, t0 + τ1) satisfying
the ODE

ẏ =

[ [
0 I

]
y

M−1(y)
(
f(y, t) + W T

βn(y)x(y)
)
]
,

subject to the initial condition

y(t0) = y0 ≡
[
q0

ν0

]
,

where, for every t ∈ [t0, t0 + τ1), the vector y(t) ∈ B. Thus, x is also continuous
on [t0, t0 + τ1). Consequently, we have that on [t0, t0 + τ1) there exist continuously
differentiable functions q : R→ R

nq and ν : R→ R
6n, as well as a continuous function

x : R→ R
|β| satisfying the differential complementarity system given by

M(q)ν̇ = f(q, ν, t) + Wβn(q)Tx,

q̇ = G(q)ν,

0 ≤ b(q, ν, t) + A(q)x ⊥ x ≥ 0,

q(t0) = q0, and ν(t0) = ν0.




(7)
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At this point, we remark that at t = t0, (7) reduces to the force equilibrium law.
Therefore we must have that x(t0) = c0βn.

By hypothesis, Ψᾱn(q0) > 0 and by (A3), Ψn is continuous on [t0, t0 +τ1), so there
exists a positive scalar τ2 ≤ τ1 such that Ψᾱn(q) ≥ 0 on [t0, t0 + τ2). The function vn

is continuously differentiable on [t0, t0 + τ2) by (A3). Since v0
α ∩ β̄,n > 0, there exists a

positive scalar τ3 ≤ τ2 such that vα ∩ β̄,n > 0 on [t0, t0 + τ3). Thus we have

Ψα ∩ β̄,n(q) =

∫ t

t0

vα ∩ β̄,nds > 0

on [t0, t0 + τ3). Since q and ν are continuously differentiable on [t0, t0 + τ3), aβn =
b(q, ν, t) + A(q)x ≥ 0 is continuous on [t0, t0 + τ3). Thus, we have

Ψβn(q) =

∫ t

t0

∫ s

t0

aβndrds ≥ 0

on [t0, t0 + τ3). Combining these three results involving Ψn, we have Ψn(q) ≥ 0 on
[t0, t0 + τ3).

Since c0βn and a0
βn are nondegenerate and x(t0) = c0βn, it must be true that x(t0)

and a0
βn are also nondegenerate. If xi(t0) > 0, then there exists a positive scalar

τ4 ≤ τ3 such that xi > 0 on [t0, t0 + τ4). Therefore ain = 0 on [t0, t0 + τ4), so that

Ψin(q) =

∫ t

t0

∫ s

t0

aindrds = 0

on [t0, t0 + τ4). Similarly, if xi(t0) = 0, then a0
in > 0 and there exists a positive

scalar τ5 ≤ τ4 such that ain > 0 on [t0, t0 + τ5). Therefore xi = 0 on [t0, t0 + τ5).
Summarizing, we have shown that

0 ≤ Ψβn(q) ⊥ x ≥ 0 ∀ t ∈ [t0, t0 + τ5).

Then, taking cβn = x and cβ̄n = 0, we must have that {q, ν, cn} is a local solution on
[t0, t0 + τ5). In particular, note that {q, ν, cn} is unique. Thus, the pair

{
q0, ν0

}
is

consistent.
As a result of Theorem 5.3, if the initial conditions

{
q0, ν0

}
are not consistent,

then v0
αn �≥ 0. Then, by (A6), we must have that v0

αn ≤ 0 with v0
in < 0 for at least one

i ∈ α. However, the following corollary to Theorem 5.4 shows that if this is the case,
then the impact law given by (4) may be able to reinitialize the system velocities in
such a way as to produce a consistent pair of initial conditions given by

{
q0, ν0+

}
.

Corollary 5.5. Suppose that an impact occurs at time t0 and that ν0+ is
produced from

{
q0, ν0

}
via the impact law (4). Further suppose that the pair

{
c0n , a

0
n

}
is calculated from

{
q0, ν0+

}
via the force-equilibrium law (5). If a0

in = 0 implies that

c0in > 0 for all i ∈ β =
{
i : Ψin(q

0) = v0
in = 0

}
, then the pair

{
q0, ν0+

}
is consistent.

Proof. By (A6), either v0
αn ≥ 0 or v0

αn ≤ 0, where α =
{
i : Ψin(q0) = 0

}
. In the

former case, Theorem 5.4 applies directly. Without loss of generality, we assume the
latter case. From the complementarity condition in (4), we have that

v0+
αn + εαv

0
αn ≥ 0.

Since v0
αn ≤ 0, we must have that v0+

αn ≥ 0. Thus, by Theorem 5.4, the pair
{
q0, ν0+

}
is consistent.
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In the next section, we will present a time-stepping method for the numerical
simulation of the system trajectories. In particular, we will make use of the concept of
consistent data when defining a numerical solution. As the above corollary indicates,
the impact law will be used to reinitialize the system whenever a locally smooth
solution fails to exist.

6. A numerical algorithm. In this section, we present a time-stepping algo-
rithm for the numerical simulation of the frictionless multi-rigid-body contact problem
given by (1). It is well known (for example, see [4]) that one-step methods are better
suited than their multistep counterparts for time-stepping algorithms that encounter
frequent discontinuities in the unknown function. This is because, at a bare minimum,
all time-stepping methods assume the state variable to be continuous on the inter-
val from which data is drawn. When the state estimates at the previous time-step
are consistent, this continuity property holds for sufficiently small forward interval.
Thus a one-step method is applicable. However, a p-step (p > 1) method requires
that the state variables be sufficiently smooth over the interval [tm−p+1, tm+1]. Since
this requirement is likely to be violated when simulating a multi-rigid-body contact
problem, we restrict our attention to one-step methods. In particular, we focus on
Runge–Kutta methods (see [3, 26, 4, 6]).

In particular, we focus on the trapezoidal discretization, given by

qm+1 = qm +
h

2
(q̇m + q̇m+1),

νm+1 = νm +
h

2
(ν̇m + ν̇m+1),


(8)

where m is the index of the time-step tm, qm is the estimate of q(tm), and νm is the
estimate of ν(tm). The initial estimates q0 and ν0 are precisely the initial conditions
given to the original (continuous) frictionless multi-rigid-body contact problem (1).
If there is an impact at t0, we can use our impact law (4) to reinitialize the system
velocities at t0. This can be done “off-line.” Thus, for the purposes of a time-stepping
scheme, we may assume without loss of generality that no impact occurs at t0.

Our approach to discretizing (1) is very similar to that taken in [1, 2, 31, 29]. First,
we calculate {q̂, ν̂}, our predicted estimates of q(tm+1) and ν(tm+1), respectively, by
solving the following implicit system of equations:

M(q̂)ˆ̇ν = f(q̂, ν̂, tm+1) + Wn(q̂)cmn ,

ν̂ = νm +
h

2
(ν̇m + ˆ̇ν),

q̂ = qm +
h

2
(G(qm)νm + G(q̂)ν̂).




(9)

Using {q̂, ν̂}, we then obtain cm+1
n , our estimate of cn(tm+1), by solving the following

contact LCP:

am+1
βn =

[
ν̂TG(q̂)T∇2Ψin(q̂)G(q̂)ν̂

]
i∈β

+ Wβn(q̂)M−1(q̂)f(q̂, ν̂, tm+1) + Wβn(q̂)M−1(q̂)W T
βn(q̂)cm+1

βn ,

cm+1
β̄n = 0, and 0 ≤ am+1

βn ⊥ cm+1
βn ≥ 0.


(10)
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Finally, we correct our rough estimates {q̂, ν̂} by solving the following implicit system
of equations for qm+1 and νm+1:

M(qm+1)ν̇m+1 = f(qm+1, νm+1, tm+1) + Wn(qm+1)cm+1
n ,

νm+1 = νm +
h

2
(ν̇m + ν̇m+1),

qm+1 = qm +
h

2
(G(qm)νm + G(qm+1)νm+1).




(11)

Before we proceed to the time-stepping algorithm, we define what is meant by a
numerical solution to the frictionless multi-rigid-body contact problem as follows.

Definition 6.1. The set of tuples {{qm, νm, um, tm}} indexed by m is said to be
a numerical solution to the frictionless multi-rigid-body contact problem (1) on [t0, T ]
if the following three conditions are satisfied.

(N1) The set of tuples {{qm, νm, um, tm}} satisfies (9), (10), and (11).
(N2) The set T = {tm} is a countable subset of [t0, T ] such that t0, T ∈ T . Also,

for any tm, tn ∈ T , if m < n, then tm < tn.
(N3) For each tuple {qm, νm, um, tm}, the pair {qm, νm} is consistent at tm.

In the above definition, note that {tm} could be countably infinite. We will
discuss the consequences of an accumulation point in {tm} later in this section. First,
we present the following time-stepping algorithm.

Step 0. Given h0, T , ε, q0, and ν0, use the force-equilibrium law given by (5) to
solve for the initial acceleration vector ν̇0 and normal contact force vector c0n.
Set k ← 0 and proceed to Step 1.

Step 1. Use a quadratic Taylor series approximation of Ψn around tk to predict
impact in the (k+1)st time-step. If an impact is predicted, determine the time
t∗ of earliest occurrence and set hk+1 ← t∗ − tk. Otherwise, set hk+1 ← h0.
In either case, set tk+1 ← tk + hk+1 and proceed to Step 2.

Step 2. If an impact was predicted in Step 1, augment the prediction equations given
by (9) by adding the scalar equation Ψin(q̂) = 0, where i is the index of any
contact point at which an impact is about to occur. Note that we now treat
the step-size hk+1 as an unknown. Solve the resulting augmented system for
hk+1, q̂, and ν̂. If no impact was predicted in Step 1, solve (9) for q̂ and ν̂.
Proceed to Step 3.

Step 3. Solve (10) to obtain ck+1
n and proceed to Step 4.

Step 4. Solve the correction equations given by (11) to obtain qk+1 and νk+1. Pro-
ceed to Step 5.

Step 5. If Ψin(qk+1) < 0 for some i = 1, . . . , nc, then set hk+1 ← hk+1/2 and go
back to Step 1. Otherwise, check for impact. If an impact occurs at tk+1, use
the impact law (4) to reinitialize νk+1, and the force-equilibrium law (5) to
solve for the acceleration vector ν̇k+1 and contact force vector ck+1

n . Proceed
to Step 6.

Step 6. Set k ← k + 1. If tk < T , proceed to Step 1. Otherwise, return.

A few comments regarding the above algorithm are in order.
First, we use Newton’s method to solve all nonlinear systems of equations. Instead

of using analytic formulae for the Jacobian matrix required by the Newton subroutine,
we implement a five-point centered difference approximation. Note that, in practice,
usually no more than one or two Newton iterations are needed. However, it is a
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good idea to place an upper bound on the number of iterations performed per time-
step. In our implementation, we use Lemke’s method for the solution of all LCPs
(see [8]).

Second, the set Tjump ∩ [t0, T ] may contain accumulation points (which we refer
to as “accumulation times”). To illustrate, let us consider the case of a vertically
bouncing ball on a hard surface, as was communicated by Trinkle [32]. With each
bounce, the ball loses energy, and thus the apex of its trajectory is lower and lower
with each subsequent bounce. It can be shown with a bit of algebra that the intervals
between jump-times for this system represent a geometrically decreasing sequence,
and that the limit of the partial sums of that sequence is finite. Therefore, the
ball comes to a complete stop in finite time. One possible approach to dealing with
this complication is to keep a round-off threshold, as discussed in [1]. Effectively,
when the maximum height of the ball above the table is below this threshold, we
round the height to zero. In our implementation, we use this approach. Another
possible approach suggested by Trinkle [32] is to set the coefficient of restitution to
zero temporarily when the normal relative velocity before impact (denoted by v∗−in ) is
below a prescribed threshold.

At this point, we note that the algorithm described above specifically uses the
implicit trapezoidal one-step method, which has a global error of O(h2) when applied
to ODEs. However, one could replace all instances of the trapezoidal method with
other, higher-order (when applied to ODEs) one-step methods. However, this will
result in a larger nonlinear system of equations that must be solved at every iteration.
Note that any discussion of global error is in reference to the global error properties of
those methods applied to ODEs, not to DCPs. In the next section, we present several
examples of this algorithm.

7. Numerical results. In this section, we present six examples of rigid-body
mechanical systems to which we apply the time-stepping complementarity algorithm
described in section 6. The first four of these examples involve nonlinear constraints,
and the last two examples have simple linear constraints. Note that, in all examples,
G(q) is the square identity matrix so that ν = q̇.

7.1. A rigid rod and an immovable table. The first two systems to which
we apply our algorithm are the “sliding rod” and “falling rod” (Figure 1); for more
information about the history of this class of contact problem, see [5] or [28]. Both
systems have the same dynamics and gap functions, as well as the same coefficients
of restitution, but differ in initial data. Both systems have three degrees of freedom
and consist of a rigid rod of length 2L with total mass m (with uniform mass density)
and an immovable horizontal surface (henceforth referred to as “the table”). In both
systems, we define the angle φ to be the angle formed at the unique intersection of
the left-most end point of the rod with a plane parallel to the horizontal surface of
the table. The remaining two degrees of freedom are covered by the position of the
center of mass of the rod, given by the pair (x, y). Note that since we assume the
contact to be frictionless, there are no forces acting in the horizontal direction. If we
define the generalized coordinate vector q as q = [ x y φ ]T , then the gap func-
tion is given by Ψn(q) = [ q2 − L sin (q3) q2 + L sin (q3) ]T , the mass matrix M(q)

is given by M(q) = mdiag [ 1 1 1
3L

2 ]T , and the total noncontact force exerted

on the system is given by f(q, q̇, t) = [ 0 −9.81m 0 ]T , where the gravitational
acceleration constant is 9.81 meters per second per second. In the sliding rod system,
the left-most end point of the rod begins in contact with the table (Figure 1(a)). In
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(d) Double pendulum with long
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Fig. 1. Examples involving rods or pendulums.
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(a) Two carts and a stopper.
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(b) Two carts, a stopper, and a hook.

Fig. 2. Examples involving two carts.



A TIME-STEPPING APROACH FOR FRICTIONLESS SYSTEMS 851

Table 1
Simulation parameters.

Simulation Parameters

Sliding rod L = m = 1
Falling rod L = m = 1
Double pendulum, short wall L1 = L2 = m1 = m2 = 1
Double pendulum, long wall L1 = L2 = m1 = m2 = 1
Two carts & wall m1 = m2 = k1 = k2 = 1
Two carts, wall, & hook m1 = m2 = k1 = k2 = 1

Table 2
Simulation initial data.

Simulation Initial data

Sliding rod q0 =
[

L√
2

L√
2

π
4

]T
, q̇0 =

[
0 0 0

]T
Falling rod q0 =

[
L√
2

1
2
+ L√

2

π
4

]T
, q̇0 =

[
0 0 0

]T
Double pendulum q0 =

[
π
3

π
5

]T
, q̇0 =

[
0 0

]T
& short wall

Double pendulum q0 =
[

π
3

π
5

]T
, q̇0 =

[
0 0

]T
& long wall

Two carts & wall q0 =

[
0.32024033
−0.43350467

]
, q̇0 =

[
0.37155103
−1.09145060

]
Two carts, q0 =

[
0.32024033
−0.43350467

]
, q̇0 =

[
0.37155103
−1.09145060

]
wall, & hook

Table 3
Coefficients of restitution used in simulations.

Simulation Coefficients of restitution

Sliding rod ε =
[

0.4 0.4
]T

Falling rod ε =
[

0.4 0.4
]T

Double pendulum & short wall ε = 0.3

Double pendulum & long wall ε =
[

0.1 0.1
]T

Two carts & wall ε = 0.3

Two carts, wall, & hook ε =
[

0.3 0.05
]T

the falling rod system, the rod begins with neither end in contact with the table, but
rather, is dropped from a positive height onto the table (Figure 1(b)).

7.2. A double pendulum with an immovable wall. The next two systems
that we consider involve a double pendulum consisting of a ceiling (anchor), two
point-masses, and two massless rods (Figure 1). The top mass (m1) is connected via
a massless rigid rod of length L1 to the ceiling. The bottom mass (m2) is connected
via a massless rigid rod of length L2 to the top mass. We define φ1 as the angle
between the vertical and the rod connecting the top mass to the ceiling, and φ2 as
the angle between the vertical and the rod connecting the bottom mass to the top
mass. If we define the generalized coordinate vector q as q = [ φ1 φ2 ]T , then the
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(d) Nonimpulsive reaction force exerted by

table at right end of rod vs. time.

Fig. 3. Output data from simulation of sliding rod.

mass matrix M(q) is given by

M(q) =


 (m1 + m2)L2

1 m2L1L2 cos (q1 − q2)

m2L1L2 cos (q1 − q2) m2L
2
2


 ,

and the total force exerted on the system by sources other than contact is given by

f(q, q̇, t) =


 −m2L1L2q̇

2
2 sin (q1 − q2)− 9.81(m1 + m2)L1 sin q1

m2L1L2q̇
2
1 sin (q1 − q2)− 9.81m2L2 sin q2


 ,

where the gravitational acceleration constant is 9.81 meters per second per second. In
the first double pendulum system (Figure 1(c)), there is an immovable wall of length
L1 extending downward from the ceiling. The bottom mass may move to the left past
the wall. However, the top mass is constrained so as to remain to the right of the
wall. This can be expressed with the gap function given by Ψn(q) = L1 sin q1. Note
that the constraint L1 sin q1 ≥ 0 is equivalent to q1 ≥ 0 (for q ∈ [0, π/2]), but we use
L1 sin q1 ≥ 0 as the constraint because the quantity L1 sin q1 is the horizontal position
of the top mass. Thus the constraint expresses the condition of being “to the right of
the wall.”

In the second double pendulum system (Figure 1(d)), we extend the immovable
wall downward to a length of L1 + L2 from the ceiling. Both masses are thus con-
strained to remain to the right of the wall. This can be expressed with the gap
function given by Ψn(q) = [ L1 sin q1 L1 sin q1 + L2 sin q2 ]T .
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Fig. 4. Output data from simulation of falling rod.

7.3. Two carts. The final two systems that we consider, borrowed from [11, 5],
involve two carts (Figure 2). In both systems, the left-most cart has mass m1 and
is connected to an immovable wall via a spring with stiffness coefficient k1. The
right-most cart has mass m2 and is connected via a spring with stiffness coefficient k2

to the left-most cart. We define x1 as the horizontal displacement from equilibrium
for the left-most cart. Similarly, we define x2 as the horizontal displacement from
equilibrium for the right-most cart. If we define the generalized coordinate vector q
as q = [ x1 x2 ]T , then the mass matrix M(q) is given by M(q) = diag [ m1 m2 ]T ,
and the total force exerted on the system by sources other than contact is given by
f(q, q̇, t) = [ −(k1 + k2)q1 + k2q2 k2(q1 − q2) ]T . Both systems have an immovable
wall, constraining the motion of the left-most cart. The first two-cart system has a
gap function given by Ψn(q) = q1.

In the second two-cart system (Figure 2(b)), the carts are connected via a hook,
forcing the two carts to remain within a fixed distance of each other. Note that both
carts are constrained simultaneously by the hook. This can be expressed with the gap
function given by Ψn(q) = [ q1 q1 − q2 ]T .

7.4. Simulation results. In this subsection, we present the results of our nu-
merical simulation of the six systems described in the previous section. All compu-
tations were performed on a dual-cpu Pentium II 350MHz machine with 128 MB of
RAM, running Red Hat Linux 7.1, and using version 5.3 of MATLABTM. We summa-
rize the parameters of our algorithm and models in Tables 1, 2, and 3. In Figures 3,
4, 5, 6, 7, and 8, we plot the gap functions and the nonimpulsive parts of the reaction
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(b) Nonimpulsive reaction force exerted at wall vs. time.

Fig. 5. Output data from simulation of double pendulum with short wall.

forces resulting from our simulations as functions of time. That is, when plotting
the reaction forces, we omit the impulses occurring at impact times. Notice that the
original complementarity relationship between the gap and the nonimpulsive reaction
force is preserved. In Figure 9, we present the energy data as a function of time for
both double pendulum systems. In particular, note that as is predicted by the impact
model, the kinetic energies contain jump-discontinuities whenever an impact occurs,
but the potential energies remain continuous over the entire time horizon. As a result,
note that the total energies of both systems are piecewise constant, monotonically de-
creasing functions of time with jump-discontinuities whenever an impact occurs. This
is consistent with the dissipative nature of our impact model. Finally, in Table 4
we summarize the number of times our algorithm needed to backtrack (Step 5) for
each simulation. Notice that the number of backtracks is much larger for the system
involving two carts, a wall, and a hook. This is because the coefficient of restitution
for the hook is very small, and in this simulation there is a long-sustained contact
involving the hook.
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Fig. 6. Output data from simulation of double pendulum with long wall.

Table 4
Frequency of backtracking.

Simulation Backtracks

Sliding rod 14
Falling rod 17
Double pendulum, short wall 0
Double pendulum, long wall 0
Two carts & wall 2
Two carts, wall, & hook 509

8. Conclusion. In this work we have presented a time-stepping numerical me-
thod for solving hybrid complementarity problems arising from frictionless rigid-body
mechanical systems. The method consists of the trapezoidal discretization method for
classical ODEs in addition to LCP methodology. We introduced a novel impact law in
the algorithm to correctly identify the system mode after impact. The algorithm was
tested on several systems of rigid bodies in contact. The numerical results obtained
were consistent with expected behavior of these systems.

Note that the absence of friction greatly facilitates the proofs of Theorems 5.3
and 5.4. Indeed, in the frictionless case, the LCP (6) is defined by a positive definite
matrix. When friction is present (which necessitates the inclusion of tangential forces),
we cannot expect such a well-behaved LCP; in fact, the corresponding problem in the
frictional case will be a nonlinear complementarity problem under the well-known
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(b) Nonimpulsive reaction force exerted by wall vs. time.

Fig. 7. Output data from simulation of two carts and a wall.

(elliptic) Coulomb friction law. Hence the Lipschitzian property of the force vector as
a function of the state variable is no longer as easy to verify as with the frictionless case
studied herein. In a subsequent work (see [34]), we plan to extend this methodology
to the case which includes elliptic Coulomb friction.

Appendix. Functional LCPs.
Definition A.1. Given a function A : R

k → R
m×m and a function b : R

k → R
m,

the finite-dimensional FLCP is to find a function u : R
k → R

m such that, for all
q ∈ D ⊆ R

k, 0 ≤ w(q) = b(q) + A(q)u(q) ⊥ u(q) ≥ 0.
Definition A.2. A function A : R

k → R
m×m is said to be uniformly positive

definite on D ⊆ R
l if there exists a positive constant c such that xTA(y)x ≥ c ‖x‖2

for all y ∈ D and x ∈ R
k.

Using Definition A.2, we have the following sufficiency result for the existence
and uniqueness of a solution to the finite-dimensional FLCP.
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Fig. 8. Output data from simulation of falling rod.

Theorem A.3. Given any function A : R
k → R

m×m that is both uniformly
positive definite and Lipschitz on some bounded set B ⊆ R

k and any function b :
R
k → R

m that is also Lipschitz on B, the finite-dimensional FLCP given by 0 ≤
w(q) = b(q) + A(q)u(q) ⊥ u(q) ≥ 0 for all q ∈ B has a unique solution u : R

k → R
m

that is Lipschitz on B.
Proof. For any q, q′ ∈ B, consider the two LCPs given by 0 ≤ w(q) = b(q) +

A(q)u(q) ⊥ u(q) ≥ 0 and 0 ≤ w(q′) = b(q′) + A(q′)u(q′) ⊥ u(q′) ≥ 0. For each q ∈ B,
the matrix A(q) is positive definite, as is the case for each q′ ∈ B. Therefore, by a
well-known result from the theory of LCPs (see [8]), there must exist unique vectors
u(q) and u(q′) satisfying the above two LCPs for every q, q′ ∈ B. All that remains
to be shown is the Lipschitz property. Consider (u(q) − u(q′))T (w(q) − w(q′)) =
(u(q) − u(q′))T (b(q) − b(q′) + A(q)u(q) − A(q′)u(q′)) for all q, q′ ∈ B. After al-
gebraic manipulation, we have that A(q)u(q) − A(q′)u(q′) = A(q)(u(q) − u(q′)) +
(A(q) − A(q′))u(q′). Noting the above complementarity conditions, we have that
(u(q)−u(q′))T (w(q)−w(q′)) ≤ 0, so that (u(q)−u(q′))TA(q)(u(q)−u(q′)) ≤ −(u(q)−
u(q′))T (b(q) − b(q′) + (A(q) − A(q′))u(q′)). There exists some positive constant c

such that c ‖u(q)− u(q′)‖2 ≤ −(u(q) − u(q′))T (b(q) − b(q′) + (A(q) − A(q′))u(q′)),
since A is uniformly positive definite on B. From the Cauchy–Schwarz inequality, we
have c ‖u(q)− u(q′)‖2 ≤ ‖u(q)− u(q′)‖ ‖b(q)− b(q′) + (A(q)−A(q′))u(q′)‖, so that
‖u(q)− u(q′)‖ ≤ ‖b(q)− b(q′) + (A(q)−A(q′))u(q′)‖ /c. Then, from the Lipschitz
properties on A and b and the compatibility of the Euclidean matrix and vector
norms (see [12]), we obtain ‖u(q)− u(q′)‖ ≤ (Lb + LA ‖u(q′)‖) /c · ‖q − q′‖, for pos-
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(f) Long wall: total energy vs. time.

Fig. 9. Energy data for both double pendulum simulations.

itive scalars Lb and LA. Again, from the LCP above involving q′, we have that
u(q′)TA(q′)u(q′) = −bT (q′)u(q′), and since A is uniformly positive definite on B,

there exists a positive scalar c′ such that c′ ‖u(q′)‖2 ≤ −bT (q′)u(q′) for all q′ ∈ B.

Using the Cauchy–Schwarz inequality, c′ ‖u(q′)‖2 ≤ ‖b(q′)‖ ‖u(q′)‖ for all q′ ∈ B, so
that ‖u(q′)‖ ≤ ‖b(q′)‖ /c′ for all q′ ∈ B. Since b is Lipschitz on the bounded set
B, there exists some positive scalar M such that ‖u(q′)‖ ≤ M

c′ for all q′ ∈ B. Set-
ting L = (Lbc

′ + LAM) /(cc′) > 0, we have that ‖u(q)− u(q′)‖ ≤ L ‖q − q′‖ for all
q, q′ ∈ B, and therefore u is Lipschitz on B.
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[22] J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth
Mechanics and Applications, J. J. Moreau and P. D. Panagiotopoulos, eds., CISM Courses
and Lectures 302, Springer-Verlag, Vienna, New York, 1988, pp. 1–82.

[23] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser
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Abstract. We introduce tools called tolerance functions for the study of a new and practical kind
of stability for variational problems on normed vector spaces. Our notion of stability is distinguished
by the fact that it explicitly addresses distinctions of scale. To support the stability analysis, we
study the continuity and differentiability properties of tolerance functions, paying particular attention
to comparisons between tolerance functions and the set-valued mappings that are used to encode
variational problems. We end with a discussion of how tolerance functions can be used to analyze
the convergence of numerical optimization procedures.
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1. Introduction. Previous theories of stability analysis for variational problems
have largely ignored issues of scale. As an illustration, consider the minimization over
x ∈ R of the parameterized function

fw(x) :=




x4/4− wx if |x| < 1,

−3w 4
3 /4 if |x| = 1,

∞ otherwise.

For each parameter value w ∈ R, the optimal value is −3/4w 4
3 , which is achieved

at different points depending on the parameter: If |w| ≤ 1, then the trio of points

{1, w 1
3 ,−1} all are optimal solutions, whereas if |w| > 1, then only the two points

{1,−1} are optimal solutions. We can encode this information compactly by defining
a set-valued “solution” mapping S : R→→ R as follows:

S(w) =

{ {1, w 1
3 ,−1} if − 1 ≤ w ≤ 1,

{1,−1} otherwise,
(1)

which is graphed in Figure 1. If the point w̄ = 0 is the base parameter and x̄ = 0

-1 -0.5 0.5 1
w

-1

-0.5

0.5

1

x

Fig. 1. Solution mapping.
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is the base solution, then this problem would be characterized as unstable via all of
the various current means of classifying stability. This is because the infinite slope
of the graph of w

1
3 signals apparently significant changes in the solutions when the

parameter is perturbed near w̄ = 0. However, if the scale of interest for the problem
is on the order of one unit, then this problem is actually stable, since on that scale
there are no significant changes in the solutions when the parameters are perturbed
near w̄ = 0. In fact, if solutions are only needed within any fixed tolerance level ε > 0,
this problem is stable because changes to the solutions within this tolerance can be
bounded above by a linear function of the parameter. In this paper, we introduce a
new way of classifying stability where distinctions of scale are inherent.

The key to our study of “scaled stability” is a new and relatively simple concept
which we call a tolerance function. In addition to revealing a new and practical concept
of stability, tolerance functions convert variational problems of every kind into ones
that automatically exhibit uniqueness. Tolerance functions are defined in terms of a
specified target set X̄ ⊆ X , as well as a specified focus set X ⊆ X . For any normed
vector spaces X and W, we define the tolerance function tX̄,X : W → R ∪ {±∞}
associated with a set-valued mapping S :W →→ X by

tX̄,X(w) := sup
x∈S(w)∩X

dist(x, X̄),

where dist(x, X̄) is the distance function associated with the target set X̄:

dist(x, X̄) := inf
x̄∈X̄
‖ x− x̄ ‖ .

When either S(w) ∩ X or the target set X̄ is empty, we adopt the convention that
tX̄,X(w) is equal to negative infinity. In the special case in which the target set is
a singleton {x̄}, we call it the target value and write tx̄,X for the tolerance function.
For the example (1) with target set X̄ = [−ε, ε] for ε < 1 and any focus set X
containing the interval [−1, 1], the tolerance function is constant t[−ε,ε],X(w) ≡ 1− ε.
This function is stable by any definition, and so it successfully identifies the scaled
stability of this problem. On the other hand, for any focus set X = [−c, c] for c < 1
and target value x̄ = 0, the corresponding tolerance function is

t0,[−c,c](w) =
{ |w 1

3 | for |w| ≤ c3,
c otherwise.

The graph of this tolerance function (for c = 0.5) is shown in Figure 2, where it
can be seen to have the same kind of stability problem at the origin as the function
w �→ w

1
3 . Another layer of scaling can be explored by considering the same focus set

X = [−c, c] but now with the target set X̄ = [−ε, ε] for 0 < ε < c. The resulting
tolerance function is

t[−ε,ε],[−c,c](w) =




0 for |w| ≤ ε3,
|w 1

3 | − ε for ε3 ≤ |w| ≤ c3,
c− ε otherwise,

which is graphed (for c = 0.5 and ε = 0.25) in Figure 3. There is a flat slope
at the origin for any such tolerance function, which illustrates how the underlying
optimization problem is inherently stable on all but the infinitesimally small scale.
Through this example, we see that different scales of a problem can be studied directly
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Fig. 2. Tolerance function for c = 0.5.
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Fig. 3. Tolerance function for c = 0.5 and ε = 0.25.

with tolerance functions, and that different stability information can naturally reside
on different scales. We also see that tolerance functions do not necessarily retain
the full variety of information about a problem; they simply measure the worst-case
distance to the target set. Since the central issue in stability analysis is whether
the worst-case scenario is acceptable or not, the benefits of a simplification of the
variational problem come here without compromising the stability analysis.

In the next section we expand our introduction of tolerance functions and then
follow that with a section describing their variational properties (continuity and dif-
ferentiability). We focus particular attention on relationships between the variational
properties of tolerance functions and the variational properties of the set-valued map-
pings S that are used to encode variational problems as above. These comparisons are
important because generalized continuity and differentiability properties of set-valued
mappings have until now been essentially the only means of dealing with stability
issues in variational problems that do not exhibit existence and uniqueness. Through
these comparisons, we show that existing stability results for variational problems,
whether exhibiting existence and uniqueness or not, are essentially captured by an
analysis based on tolerance functions. In tandem with this theme, we emphasize that
there are important gains associated with the shift to tolerance functions. These
gains include more practical standards for stability that recognize scale, as well as a
simplified analysis resulting from the mathematical structure of tolerance functions.
This latter issue is particularly important in dynamic optimization, where the math-
ematical complexities of infinite-dimensional spaces can cause difficulties for other
approaches. In the final section, we illustrate how tolerance functions can be used to
analyze the convergence of numerical optimization procedures.
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2. Tolerance functions. In the introduction, we saw an example of a tolerance
function associated with a simple finite-dimensional parametric optimization prob-
lem. One nice feature of tolerance functions is that much of their structure is similar
in finite- or infinite-dimensional settings (e.g., in either case they map into the ex-
tended real numbers). As an infinite-dimensional example, we consider the following
parameterized calculus of variations example, where the parameter w is a real number:

min

∫ 1

0

(
ẋ(t)2−w)2dt over absolutely continuous x with x(0) = 0 and x(1) = 1.

(2)
When w ≤ 1, the unique optimal solution is x(t) = t, but when w > 1, there are
infinitely many optimal solutions satisfying ẋ(t) = ±√w for almost every t. For the
set X := {x : |ẋ(t)| ≤ √2}, the intersection with S(w) would be given by

S(w) ∩X =




x(t) = t if w ≤ 1,
any feasible x with ẋ(t) = ±√w for almost every t if 2 ≥ w > 1,
∅ if w > 2.

If the target value is x̄(t) = t and the norm is defined by

‖ x ‖:= |x(0)|+
∫ 1

0

|ẋ(t)|dt,

then the tolerance function for this example is given by

tx̄,X(w) =




0 if w ≤ 1,√
w − 1

w if 2 ≥ w > 1,
−∞ if w > 2,

which is graphed in Figure 4. Notice that the tolerance function in this case takes
real values to extended real values, which is exactly the same kind of mathematical
object as the tolerance function associated with the finite-dimensional example (1).
This consistency across the finite-dimensional and infinite-dimensional settings is one
distinctive and useful aspect of our approach using tolerance functions. We develop
the theory here in the more general, infinite-dimensional setting from the beginning,
instead of following the usual model of finite-dimensional results first, followed by
infinite-dimensional extensions. Because of the tolerance function’s consistency in
both settings, we somewhat avoid the experience under the usual model where the
stability analysis is much more complicated when extended to infinite dimensions.

0.5 1 1.5 2
w

0.2

0.4

0.6

0.8

Fig. 4. Tolerance function for an infinite-dimensional example.
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Of course for the example (2), the constraints on x encoded in the focus set X
could easily be absorbed into the original problem. However, the role played in the
theory by the focus set X is very different from that played by the set-valued mapping
S, and thus it is useful to include both objects to yield the most flexible analysis.

Notice that uniqueness is never an issue for tolerance functions, since they can
have at most one value even when the underlying variational problem does not exhibit
uniqueness. Moreover, in the case in which the underlying variational problem does
exhibit uniqueness (i.e., when the set S(w)∩X is a singleton), the tolerance function
simply measures the distance from the single element of S(w)∩X to the target set. In
general, though, the tolerance function records the greatest distance from the target
set among candidates in the set S(w) ∩ X and ignores the rest of the structure of
the set. This “worst-case” information about the variational problem is precisely the
information that is most relevant for resolving questions of stability. The terminology
for this new object comes from the fact that it can be used to decide whether a given
tolerance for closeness to the target is achieved.

3. Variational properties of tolerance functions. Stability analyses of vari-
ational problems are most useful when they analyze stability without actually solving
the problems. This is because the point of these analyses is often either to avoid
having to solve the problems (e.g., because they are costly to solve), or to determine
the extent to which computed solutions can be trusted. Tolerance functions automat-
ically reduce the need for solving variational problems by focusing attention directly
on information related to stability issues and by ignoring other aspects of the prob-
lems that might normally be part of the analysis. In this section, we will study the
continuity and differentiability properties of tolerance functions. Moreover, we will
pay particular attention to estimates for derivatives that can be computed from the
original data only, since these allow a stability analysis without solving the underlying
variational problems at all. A general theme of this section is that nothing important
for stability analysis is lost by studying tolerance functions in place of the set-valued
mappings representing the variational problems.

3.1. Continuity. There are many useful notions of continuity for nonsmooth
functions, including lower semicontinuity, upper semicontinuity, calmness, and Lips-
chitz continuity. To support the claim that nothing important for stability analysis is
lost with tolerance functions, in this section we seek relationships between the conti-
nuity properties of tolerance functions and their underlying set-valued mappings. In
particular, we show that typical generalized notions of continuity for the set-valued
mappings imply analogous notions of continuity for tolerance functions.

The most basic of the continuity notions for nonsmooth functions are lower and
upper semicontinuity. Recall that a function t :W → R∪ {±∞} is lower semicontin-
uous at w̄ if

lim inf
wn→w̄

t(wn) ≥ t(w̄),

is upper semicontinuous at w̄ if

lim sup
wn→w̄

t(wn) ≤ t(w̄),

and is continuous at w̄ if it is both lower and upper semicontinuous at w̄. Notice that
for tolerance functions the two different notions of semicontinuity give very different
information about the underlying set-valued mappings. For instance, if S(w̄) ∩X is
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nonempty (so tX̄,X(w̄) does not equal negative infinity), then the lower semicontinuity
of tX̄,X at w̄ implies that S(w) ∩ X is nonempty for all w near w̄. Under the same
assumption that S(w̄)∩X is nonempty, the upper semicontinuity at w̄ of tX̄,X implies
that whenever S(w) ∩ X is nonempty and w is close enough to w̄, the worst-case
distance from X̄ of the points in S(w) ∩ X can be usefully estimated by the worst-
case distance from X̄ of the points in the base set S(w̄) ∩X. In this situation, if the
base set’s worst-case distance is less than the tolerance level, then nearby sets also
have this property.

For this paper, the appropriate generalized notions of semicontinuity for set-
valued mappings are inner and outer semicontinuity. Since the set-valued mappings
can be from one infinite-dimensional space to another, we will need to consider differ-
ent kinds of convergence. Here and throughout the paper, an unadorned arrow “→”
indicates strong convergence. A set-valued mapping S :W →→ X is s-s inner semicon-
tinuous at w̄ if for every element x̃ ∈ S(w̄) and every sequence wn → w̄ there exists
a sequence xn → x̃, with xn ∈ S(wn). On the other hand, a set-valued mapping is
s-w∗ outer semicontinuous at w̄ if for every pair of sequences wn → w̄ and xn →w∗

x̃,
with xn ∈ S(wn), the limit pair satisfies x̃ ∈ S(w̄). Of course there are analogous
notions of semicontinuity for set-valued mappings that use different combinations of
convergence, but the two above are particularly appropriate for the comparison to
continuity of tolerance functions.

Theorem 3.1. For any set-valued mapping S : W →→ X , any target set X̄ ⊆ X ,
and any focus set X ⊆ X ,

(i) if the set-valued mapping w �→ S(w) ∩ X is s-s inner semicontinuous at w̄,
then the associated tolerance function tX̄,X is lower semicontinuous at w̄;

(ii) if X is bounded and the set-valued mapping w �→ S(w) ∩ X is s-w∗ outer
semicontinuous at w̄, then the associated tolerance function tX̄,X is upper
semicontinuous at w̄;

(iii) if X is bounded and the set-valued mapping w �→ S(w) ∩ X is both s-s in-
ner semicontinuous and s-w∗ outer semicontinuous at w̄, then the associated
tolerance function tX̄,X is continuous at w̄.

Proof of (i). If the set S(w̄) ∩ X is empty, then the tolerance function satisfies
tX̄,X(w̄) = −∞ and is trivially lower semicontinuous at w̄. Otherwise, consider any
point x̃ ∈ S(w̄) ∩ X and any sequence wn → w̄ in W. By the assumption of inner
semicontinuity, there is some sequence of points xn ∈ S(wn) ∩X with xn → x̃. Then
by the definition of the tolerance function, we know that tX̄,X(wn) ≥ dist(xn, X̄), and
thus the continuity of the distance function implies the estimate

lim inf tX̄,X(wn) ≥ dist(x̃, X̄).(3)

Since inequality (3) holds for all x̃ ∈ S(w̄) ∩ X, we conclude from the definition of
tX̄,X(w̄) that tX̄,X is lower semicontinuous at w̄.

Proof of (ii). Consider any sequence wn → w̄. If S(wn) ∩ X is empty, then
tX̄,X(wn) = −∞, and thus we consider only the elements of the sequence for which
S(wn)∩X is not empty. For such sets and any positive number ε, since X is bounded
we can find elements xn ∈ S(wn) ∩ X with dist(xn, X̄) + ε > tX̄,X(wn). From this
estimate we know that

lim sup dist(xn, X̄) + ε ≥ lim sup tX̄,X(wn).(4)

Since X is bounded, we know that every subsequence of {xn} has a subsubsequence
that w∗ converges to some element, say x̃. By the assumed s-w∗ outer semicontinuity,
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we know that each limit point x̃ must be in the set S(w̄)∩X, from which we conclude
that tX̄,X(w̄) ≥ dist(x̃, X̄). This estimate combined with the estimate (4) yields the
desired upper semicontinuity of tX̄,X , since the distance function is continuous and
ε > 0 is arbitrary.

Proof of (iii). This follows immediately from (i) and (ii).
The implications in Theorem 3.1 can not be reversed in general, as can be seen

by considering the set-valued mapping S : R→→ R defined by

S(w) =

{ {−1, 1} if w �= 0,
{0, 1} if w = 0.

If the target value is x̄ = 0, then the tolerance function associated with any set X
containing [−1, 1] is constant t0,X(w) ≡ 1 and thus trivially continuous at 0. However,
for any of the same sets X, the mapping w �→ S(w) ∩ X is neither inner nor outer
semicontinuous at 0.

For set-valued mappings, there are several different notions generalizing Lipschitz
continuity. One of these, appropriately called “Lipschitz continuity,” implies the local
Lipschitz continuity of tX̄,X for any target set X̄. A set-valued mapping S is Lipschitz
continuous on W if there exists a constant L ≥ 0 such that

S(w) ⊆ S(w′) + L ‖ w − w′ ‖ B for all w, w′ ∈W,

where B is the unit ball in X .
Theorem 3.2. If the set-valued mapping w �→ S(w) ∩X is Lipschitz continuous

on W ⊆ W with modulus L ≥ 0, then for any target set X̄ ⊆ X the associated
tolerance function is Lipschitz continuous on W :

|tX̄,X(w)− tX̄,X(w′)| ≤ L ‖ w − w′ ‖ for all w, w′ ∈W.

Proof. The supremum over a set contained in a second set is less than the supre-
mum over the second set, so we conclude immediately from the definitions that

tX̄,X(w) ≤ tX̄,X(w′) + L ‖ w − w′ ‖

for all w and w′ in W . Since the roles of w and w′ can be reversed in this inequality,
the local Lipschitz continuity of tX̄,X follows.

The Lipschitz continuity assumption on w �→ S(w) ∩X is closely related to the
well-studied notion of “pseudo-Lipschitz continuity” for set-valued mappings S, which
was first identified in [1]. For the pseudo-Lipschitz continuity property, however, the
set X only appears on the left-hand side of the inclusion.

A final popular notion of continuity for set-valued mappings that we wish to
explore in this paper is called “calmness” (it was originally called upper-Lipschitz
continuity in [6]). Recall that a set-valued mapping S : W →→ X is calm at w̄ if the
set S(w̄) is nonempty and there exists a neighborhood W of w̄ in W and a constant
L ≥ 0 such that

S(w) ⊆ S(w̄) + L ‖ w − w′ ‖ B for all w ∈W.

This notion of continuity for set-valued mappings is the one among all of those men-
tioned so far that most closely reflects the concepts behind tolerance functions. This
is because calmness can be viewed as essentially a “worst-case” continuity property,
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where the only feature of the set S(w) that is significant is its containment in a Lip-
schitz perturbation of the base set. Contrast this, for instance, to the situation with
Lipschitz continuity on W , where for any w ∈ W the set S(w) plays a role on both
sides of the inclusion. The analogue to calmness for single-valued functions is called
“calmness from above” [7]. Recall that t : W → R ∪ {±∞} is calm at w̄ from above
if t(w̄) is finite and there exists a neighborhood W of w̄ in W and a constant L ≥ 0
for which

t(w) ≤ t(w̄) + L ‖ w − w̄ ‖ for all w ∈W.
This notion of continuity is particularly useful for stability analyses via tolerance
functions, since it allows worst-case distances for nearby parameters to be estimated
simply by the worst-case distance for the base parameter.

Theorem 3.3. If the set-valued mapping w �→ S(w)∩X is calm at w̄ ∈ W, then
for any target set X̄ ⊆ X , the associated tolerance function tX̄,X is calm at w̄ from
above (with the same constant L ≥ 0 and neighborhood W ⊆ W of w̄).

Proof. This follows immediately from the definitions, since the supremum over a
set contained in a second set is less than the supremum over the second set.

All of the comparisons in this section are important because generalized continuity
properties of set-valued mappings have until now been essentially the only means of
dealing with stability issues in variational problems that do not necessarily exhibit
existence and uniqueness (see [5]). Of course, these generalized continuity properties
reduce to more traditional notions of continuity when the set-valued mappings are
actually single-valued, so they also cover stability issues in the traditional setting.
It is clear from the implications established above that a tolerance function-based
analysis classifies as stable any problem that is classified as stable under the current
theory based on the variational properties of set-valued mappings. Moreover, as we
discussed in the introduction and at the beginning of this section, our approach to
stability analysis using tolerance functions reveals a new and practical kind of stability
in many problems that are classified as unstable by the current theory. For instance,
notice that for the example (1) the intersected mapping w �→ S(w) ∩ X is neither
Lipschitz continuous on W nor calm at 0 for any neighborhoods W and X of 0.
However, we already saw in the introduction that tolerance functions associated with
this same problem were constant and thus trivially Lipschitz continuous and calm
from above.

3.2. Differentiability. In contrast to the situation in the previous subsection,
where many of the different notions of continuity are useful for analyzing tolerance
functions, we focus on only one of the many popular notions of differentiability for
nonsmooth functions that is particularly well suited for studying tolerance functions.
For a function t : W → R ∪ {±∞} and a point w̄, where t is finite, the upper
subderivative function d+t(w̄) :W → R ∪ {±∞} is defined by

d+t(w̄)(w) := lim sup
τ ↓ 0

w′→w

t(w̄ + τw′)− t(w̄)
τ

.

One property of the upper subderivative that we will use is its positive homogeneity:

d+t(w̄)(aw) = a d+t(w̄)(w) for all positive scalars a > 0,

which follows immediately from the definition. The upper subderivative is particularly
useful for a stability analysis based on tolerance functions because of the following
result.
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Proposition 3.1. For any function t : W → R ∪ {±∞} and a point w̄ where t
is finite, the estimate holds that

t(w) ≤ t(w̄) + d+t(w̄)(w − w̄) + o(‖ w − w̄ ‖).
Proof. By the definition of the upper subderivative, we have

d+t(w̄)

(
w − w̄
‖ w − w̄ ‖

)
= lim sup

τ ↓ 0

w′→ w−w̄
‖w−w̄‖

t(w̄ + τw′)− t(w̄)
τ

.(5)

Since one possible choice of sequence in the above limit superior is w′ ≡ w−w̄
‖w−w̄‖ , we

conclude immediately from (5) that

d+t(w̄)

(
w − w̄
‖ w − w̄ ‖

)
≥ lim sup

τ ↓ 0

t
(
w̄ + τ w−w̄

‖w−w̄‖
)
− t(w̄)

τ
,

and from this (thinking of τ =‖ w − w̄ ‖) we conclude that

d+t(w̄)

(
w − w̄
‖ w − w̄ ‖

)
+O(‖ w − w̄ ‖) ≥ t(w)− t(w̄)

‖ w − w̄ ‖ .

Multiplying both sides by the term ‖ w − w̄ ‖ gives the claimed estimate, since the
upper subderivative is positively homogeneous.

This proposition gives an upper estimate in terms only of data at the base point
for the value of the function at any other parameter. For tolerance functions which
already measure worst-case distances, an upper estimate like this is particularly at-
tractive for stability analyses.

The upper subderivative is connected to the calmness property via the following
result.

Proposition 3.2. If the function t :W → R ∪ {±∞} with t(w̄) finite is calm at
w̄ from above, then for the same constant L ≥ 0 we have the estimate d+t(w̄)(w) ≤
L ‖ w ‖, with equality when w = 0.

Proof. For any sequences τ ↓0 and w′ → w, the calmness assumption ensures the
estimate

t(w̄ + τw′)− t(w̄)
τ

≤ L ‖ w′ ‖ .

From this, our estimate follows immediately, with equality when w = 0, since in that
case the constant sequence w′ ≡ 0 is one alternative for the limit superior in the
definition of the upper subderivative.

When the space W is finite-dimensional, the implication in Proposition 3.2 can
be reversed.

Proposition 3.3 (see [7], Proposition 8.32). The function t : R
n → R ∪ {±∞}

with t(w̄) finite is calm at w̄ from above if and only if d+t(w̄)(0) = 0.
One special case for applications that we will consider is when the target set equals

the base set S(w̄)∩X, in which case the tolerance function satisfies tS(w̄)∩X,X(w̄) = 0.
When this base set is a singleton {x̄}, we can estimate the upper subderivative of the
tolerance function in terms of the outer graphical derivative DS of S :W →→ X . Recall
that the outer graphical derivative of S at w̄ for x̄ is defined by

DS(w̄|x̄)(w) := {x : ∃w′ → w, x′ → x, and τ ↓0 with x̄+ τx′ ∈ S(w̄ + τw′)} .
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Proposition 3.4. If there exists a set X ⊆ X such that S(w̄) ∩X = {x̄}, then
the upper subderivative of the associated tolerance function tx̄,X satisfies

d+tx̄,X(w̄)(w) ≥ sup
x∈DS(w̄|x̄)(w)

‖ x ‖ .(6)

Proof. For any element x ∈ DS(w̄|x̄)(w), there exist sequences w′ → w, x′ → x,
and τ ↓0 satisfying x̄ + τx′ ∈ S(w̄ + τw′). From this inclusion, it is clear that the
tolerance function satisfies

tx̄,X(w̄ + τw′)
τ

≥ ‖ τx
′ ‖

τ
=‖ x′ ‖ .(7)

Now x′ → x and tx̄,X(w̄) = 0, so we can use (7) to obtain the estimate

d+tx̄,X(w̄)(w) ≥‖ x ‖ .
Since x is an arbitrary element of the set DS(w̄|x̄)(w), we conclude the claimed
estimate for this case.

The following corollary shows that for tolerance functions, the characterization
in Proposition 3.3 can hold even when the domain space W is not finite-dimensional.
Notice that the range space X has to be finite-dimensional in this case.

Corollary 3.1. If there exists a set X ⊆ R
n such that S(w̄) ∩X = {x̄}, then

there exists a focus set X̃ ⊆ R
n such that the associated tolerance function tx̄,X̃ is

calm from above at w̄ if and only if d+tx̄,X̃(w̄)(0) = 0.
Proof. The implication (i) ⇒ (ii) is immediate from Proposition 3.2.
To show (ii) ⇒ (i), we notice that the estimate (6) from Proposition 3.4 implies

DS(w̄|x̄)(0) = {0}. We then appeal to [4, Proposition 2.1], which gives the existence
of a neighborhood X̃ ⊆ R

n of x̄ such that the mapping w �→ S(w) ∩ X̃ is calm at w̄.
From Theorem 3.3, we then know that the tolerance function tx̄,X̃ is calm from above
at 0.

Estimate (6) in Proposition 3.3 nicely parallels the formula for the tolerance
function itself, as only the worst-case elements of the outer graphical derivative are
important in the formula for the upper subderivative. For practical purposes, this es-
timate means that the upper subderivative of the tolerance function can be estimated
without necessarily computing the entire outer graphical derivative DS(w̄|x̄), which
is likely to be set-valued. The inequality in (6) is strict in general, as can be seen by
considering, for example, the set-valued mapping

S(w) :=
{
(1, 1 + |w|] ∪ [−|w|, |w|]}

and its associated tolerance function

t0,R(w) =

{
1 + |w| if w �= 0,
0 if w = 0.

In this case, the outer graphical derivative of S satisfies DS(0|0)(w) = [−|w|, |w|], and
thus the supremum on the right-hand side of (6) is |w|, but the upper subderivative on
the left-hand side is always infinite. This difference reflects the fundamentally different
treatment of scales by the objects underlying the two different sides of estimate (6).
Outer graphical derivatives say something only about the set-valued mapping’s behav-
ior on an infinitesimally small scale near the base pair (w̄, x̄), whereas the fixed scale
chosen for the tolerance function can change its properties dramatically. For instance,
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if instead of the “global-scale” tolerance function (where X = R) in the example above
we used the tolerance function associated with any focus set X ⊆ (−∞, 1], we would
have a tolerance function t0,X(w) = |w| whose upper subderivative at 0 agrees with
the right-hand side of (6). It turns out that this agreement is not accidental: When-
ever the upper subderivative on the left-hand side is finite and the range space X is
finite-dimensional, estimate (6) becomes exact.

Proposition 3.5. If there exists a focus set X ⊆ R
n such that S(w̄)∩X = {x̄},

then whenever the upper subderivative of the associated tolerance function is finite,
d+tx̄,X(w̄)(w) <∞, it satisfies

d+tx̄,X(w̄)(w) = sup
x∈DS(w̄|x̄)(w)

‖ x ‖ .(8)

Proof. The inequality

d+tx̄,X(w̄)(w) ≥ sup
x∈DS(w̄|x̄)(w)

‖ x ‖

is provided by Proposition 3.4. To prove the opposite inequality, we consider any
sequences w′ → w and τ ↓0 and define

β := lim sup
tx̄,X(w̄ + τw′)

τ
.

It is immediately evident that tx̄,X(w̄) = 0, and so β ≤ d+tx̄,X(w̄)(w) < ∞. From
the definition of the tolerance function, we know that there exists a sequence x̃′ ∈
S(w̄ + τw′) ∩X such that

‖ x̃′ − x̄ ‖ +τ2 ≥ tx̄,X(w̄ + τw′) ≥‖ x̃′ − x̄ ‖ .(9)

Defining x′ := (x̃′ − x̄)/τ , we conclude from (9) that ‖ x′ ‖→ β. Thus we know that
some subsequence of {x′} converges to a point x with ‖ x ‖= β. It follows also that
x is an element of DS(w̄|x̄)(w), and thus we get the desired inequality.

Proposition 3.2 identifies one important situation when the upper subderivative
is always finite, so we have the following immediate corollary.

Corollary 3.2. If there exists a focus set X ⊆ R
n such that S(w̄) ∩X = {x̄}

and the associated tolerance function tx̄,X is calm from above at w̄, then its upper
subderivative satisfies (8).

The example prior to Proposition 3.5 suggests that a change of scale can also
ensure (8). This is true, at least at the value w = 0, as the following proposition
shows.

Proposition 3.6. If there exists a set X ⊆ R
n such that S(w̄) ∩X = {x̄}, then

there exists a focus set X̃ ⊆ R
n for which the associated tolerance function satisfies

d+tx̄,X̃(w̄)(0) = sup
x∈DS(w̄|x̄)(0)

‖ x ‖ .

Proof. The outer graphical derivative satisfies a x ∈ DS(w̄|x̄)(0) for any a > 0
whenever x ∈ DS(w̄|x̄)(0). It follows that the supremum on the right-hand side
of (6) is either 0 or ∞, depending on whether or not 0 is the only element of the
set DS(w̄|x̄)(0). If it is the latter case, then the result follows immediately from
Proposition 3.4. On the other hand, if DS(w̄|w̄)(0) = {0}, we can appeal to [4,
Proposition 2.1] to deduce that there exists a neighborhood X̃ ⊆ R

n of x̄ such that
the mapping w �→ S(w)∩ X̃ is calm at w̄. From Theorem 3.3, we then know that the
tolerance function tx̄,X̃ is calm from above at 0, and the result follows from Corollary
3.2.
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4. Convergence analysis for numerical optimization. In this section, we
consider the general constrained optimization problem

minimize f(x) over x ∈ X,(10)

where f is some extended real-valued function on a normed vector space X , and X is
a set in X . Numerical procedures for solving the problem are all essentially concerned
with determining a minimizing sequence of approximate solutions xn ∈ X for which
f(xn) approaches the minimum value inf f := infx∈X f(x). With this in mind, we
construct the |w|-optimal solution sets

S(w) := {x : f(x) ≤ inf f + |w|}(11)

and notice that a sequence {xn} is a minimizing sequence if and only if it satisfies
xn ∈ S(wn) ∩X for some sequence wn → 0. One classical notion of good behavior in
this situation is called “Tykhonov well-posedness,” which posits that there is a unique
solution (i.e., S(0) ∩ X = {x̄}) and that every minimizing sequence converges to it
(see, for example, [3]). Tolerance functions can be used to compactly characterize this
property according to the following proposition.

Proposition 4.1. The optimization problem (10) is Tykhonov well-posed if and
only if there exists a target value x̄ for which the tolerance function tx̄,X associated
with the |w|-optimal solution mapping (11) satisfies tx̄,X(0) = 0 and is upper semi-
continuous at 0.

Proof. The condition that tx̄,X(0) = 0 is clearly equivalent in this case to the
there being a unique solution to problem (10).

Thus, assuming Tykhonov well-posedness, we need only show the upper semicon-
tinuity of tx̄,X at 0. To this end, we take any sequence wn → 0 and consider the
sequence of values {tx̄,X(wn)}. If for some fixed constant β > 0 there is a subse-
quence of these values having all of its elements greater than β, then there must be a
corresponding sequence of points xn ∈ S(wn) ∩X satisfying

‖ xn − x̄ ‖> β.(12)

However, since xn ∈ S(wn) ∩ X and wn → 0, the sequence {xn} is a minimizing
sequence, and thus the bound (12) violates the Tykhonov well-posedness assumption.
We conclude that the limit superior of the sequence {tx̄,X(wn)} is less than or equal
to zero, which proves the upper semicontinuity of tx̄,X at 0.

On the other hand, assuming that tx̄,X(0) = 0, we know that the sets S(w)∩X all
contain x̄, so that tx̄,X(w) ≥ 0 for every w ∈ R. This ensures the lower semicontinuity
of tx̄,X at 0. Since tx̄,X is assumed to be upper semicontinuous at 0, it must then be
continuous at 0, which evidently implies the convergence of any minimizing sequence
to x̄.

This result immediately suggests the following generalization of Tykhonov well-
posedness in the case in which the solution to (10) is not necessarily unique; namely,
that tS(0)∩X,X satisfies tS(0)∩X,X(0) = 0 and is upper semicontinuous at 0. This
turns out to be equivalent to problem (10)’s being “metrically well-set” [2]: The
solution set S(0) ∩X is nonempty, and for every minimizing sequence {xn} one has
dist(xn, S(0) ∩X)→ 0.

Proposition 4.2. The optimization problem (10) is metrically well-set if and
only if the tolerance function tS(0)∩X,X associated with (11) satisfies tS(0)∩X,X(0) = 0
and is upper semicontinuous at 0.
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Fig. 5. Graph of f(x).
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Fig. 6. Graph of S(w).

Proof. It is clear from the definitions that tS(0)∩X,X(0) = 0 if and only if S(0) ∩
X �= ∅, and the rest of the proof is similar to the proof of Proposition 4.1, with
dist(xn, S(0) ∩X) replacing ‖ xn − x̄ ‖ in (12).

Tolerance functions also very naturally suggest an entirely new concept of “scaled
well-posedness.” Suppose a solution to (10) were only required to a certain degree
of accuracy, say within some fixed ε > 0 of a true solution. Then we could say that
the problem was ε-well-posed if, for the relaxed target set X̄ =

(
S(0) ∩ X) + εB,

the tolerance function tX̄,X satisfied tX̄,X(0) = 0 and was upper semicontinuous at
0. Clearly this notion of well-posedness is weaker than the other notions of well-
posedness discussed above, and the weakening supports a practical consideration that
practitioners might face. As an illustration of this, consider the optimization problem
(10), where X = R,

f(x) =

{
x− 1 if x > 1,
|x| if x ≤ 1,

(see Figure 5) and its |w|-optimal solution sets

S(w) :=
{
(1, 1 + |w|] ∪ [−|w|, |w|]},

(see Figure 6) so that S(0) ∩X = {0}.
The associated tolerance function as in Proposition 4.1 is thus

t0,R(w) =

{
0 if w = 0,
1 + |w| otherwise,

which is clearly not upper semicontinuous at 0. It follows from Proposition 4.1 that
this problem is not Tykhonov well-posed or metrically well-set (these being equivalent
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Fig. 7. Tolerance function for ε = 0.5.
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Fig. 8. Tolerance function for ε = 1.5.

properties whenever there is a unique optimal solution). Moreover, for ε in (0, 1), the
tolerance function associated with the relaxed target set εB is

tεB,X(w) =

{
0 if w = 0,
1− ε+ |w| otherwise,

whose graph for ε = 0.5 appears in Figure 7.
Clearly then, this problem is not ε-well-posed for small ε. However, for ε ≥ 1, the

tolerance function associated with the relaxed target set is

tεB,X(w) =

{
0 if |w| ≤ ε− 1,
1− ε+ |w| otherwise,

which is graphed for ε = 1.5 in Figure 8. From this tolerance function it is apparent
that this problem is ε-well-posed for big enough ε.
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E. DE KLERK† AND D. V. PASECHNIK†

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 875–892

Abstract. Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] showed how to formu-
late increasingly tight approximations of the stable set polytope of a graph by solving semidefinite
programs (SDPs) of increasing size (lift-and-project method). In this paper we present a similar idea.
We show how the stability number can be computed as the solution of a conic linear program (LP)
over the cone of copositive matrices. Subsequently, we show how to approximate the copositive cone
ever more closely via a hierarchy of linear or semidefinite programs of increasing size (liftings). The
latter idea is based on recent work by Parrilo [Structured Semidefinite Programs and Semi-algebraic
Geometry Methods in Robustness and Optimization, Ph.D. thesis, California Institute of Technology,
Pasadena, CA, 2000]. In this way we can compute the stability number α(G) of any graph G(V,E)
after at most α(G)2 successive liftings for the LP-based approximations. One can compare this to the
n−α(G)− 1 bound for the LP-based lift-and-project scheme of Lovász and Schrijver. Our approach
therefore requires fewer liftings for families of graphs where α(G) < O(

√
n). We show that the first

SDP-based approximation for α(G) in our series of increasingly tight approximations coincides with
the ϑ′-function of Schrijver [IEEE Trans. Inform. Theory, 25 (1979), pp. 425–429]. We further show
that the second approximation is tight for complements of triangle-free graphs and for odd cycles.

Key words. approximation algorithms, stability number, semidefinite programming, copositive
cone, lifting

AMS subject classifications. 90C22, 68R10, 05C69, 90C25
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1. Introduction. Semidefinite programming has proved to be a useful tool in
formulating approximation algorithms for NP-complete problems in combinatorial
optimization. The most celebrated example is the 0.878-approximation algorithm for
MAX-CUT by Goemans and Williamson [8]. Their ideas have also been extended to
obtain improved approximation guarantees for MAX-Bisection, MAX-3-SAT, MAX-
k-CUT, and a host of other problems.
For problems which do not allow a fixed approximation guarantee, like the max-

imum stable set problem, semidefinite programming has also played a role. Lovász
and Schrijver [16] showed how to formulate increasingly strong approximations of the
maximum stable set of a graph by solving semidefinite programs (SDPs) of increasing
size (liftings). They showed that their procedure is finite—the stable set polytope is
obtained via a suitable projection.
In this paper we present a similar idea, but from a completely different perspective.

We first show how one can compute the stability number by solving a convex conic
optimization problem over the cone of copositive matrices.
Nesterov and Nemirovskii [19] showed that conic programming problems can be

solved to ε-optimality in polynomial time if the cone in question has a computable1 self-
concordant barrier. As a consequence, the copositive cone does not allow a computable
barrier unless P = NP .

∗Received by the editors January 5, 2001; accepted for publication (in revised form) September
12, 2001; published electronically March 13, 2002.
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1The gradient and Hessian of the barrier must be computable in polynomial time.
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Parrilo [20] has recently suggested that the copositive cone may be approximated
using linear matrix inequalities (LMIs). The approximation involves matrix variables
of size nr × nr after r steps. We will look more closely at this procedure and will
also investigate the link with a weaker linear program (LP)-based lifting scheme.
Subsequently we will show that α(G)2 liftings are always sufficient to obtain the
stability number α(G) of a graph G(V,E) for the LP-based procedure. One can
compare this to the result for the Lovász and Schrijver LP-based lift-and-project
scheme, which requires n− α(G)− 1 liftings in the worst case. For families of graphs
where α(G) < O(

√
n), our procedure therefore requires fewer liftings in the worst

case.
At the first step of our SDP-based lifting scheme, we obtain the Schrijver ϑ′(G)

approximation [25] to α(G), which is already provably stronger than the Lovász ϑ
approximation [15] for certain classes of graphs. The approximation after the second
lifting is tight for complements of triangle-free graphs and for odd cycles.

1.1. Preliminaries.
The maximum stable set problem. Given a graph G(V,E), a subset V ′ ⊆ V is

called a stable set ofG if the induced subgraph on V ′ contains no edges. The maximum
stable set problem is to find the stable set of maximal cardinality. This problem is
equivalent to finding the largest clique in the complementary graph and cannot be
approximated within a factor |V | 12−ε for any ε > 0 unless P = NP , or within a
factor |V |1−ε for any ε > 0 unless NP = ZPP [10]. The best known approximation

guarantee for this problem is O(|V |/(log |V |)2) [5]. For a survey of the maximum
clique problem, see [3].

Conic programming. We define the following convex cones:
• The n× n symmetric matrices
Sn =

{
X ∈ R

n × R
n, X = XT

}
;

• The n× n symmetric positive semidefinite matrices
S+
n =

{
X ∈ Sn, yTXy ≥ 0 ∀y ∈ R

n
}
;

• The n× n symmetric copositive matrices
Cn =

{
X ∈ Sn, yTXy ≥ 0 ∀y ∈ R

n, y ≥ 0};
• The n× n symmetric completely positive matrices
C∗n = {X =

∑k
i=1 yiy

T
i , yi ∈ R

n, yi ≥ 0 (i = 1, . . . , k)};
• The n× n symmetric nonnegative matrices
Nn = {X ∈ Sn, Xij ≥ 0 (i, j = 1, . . . , n)}.

Recall that the completely positive cone is the dual of the copositive cone, and that
the nonnegative and semidefinite cones are self-dual for the inner product 〈X,Y 〉 :=
Tr(XY ), where “Tr” denotes the trace operator.
For a given cone Kn and its dual cone K∗

n, we define the primal and dual pair of
conic LPs:

(P ) p∗ := inf
X
{Tr(CX) : Tr(AiX) = bi (i = 1, . . . ,m), X ∈ Kn} ,

(D) d∗ := sup
y∈Rm

{
bT y :

m∑
i=1

yiAi + S = C, S ∈ K∗
n

}
.

If Kn = S+
n , then we refer to semidefinite programming; if Kn = Nn, to linear

programming; and if Kn = Cn, to copositive programming.
The well-known conic duality theorem (see, e.g., [24]) gives the duality relations

between (P ) and (D).
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Theorem 1.1 (Conic duality theorem). If there exists an interior feasible so-
lution X0 ∈ int(Kn) of (P ) and a feasible solution of (D), then p∗ = d∗ and the
supremum in (D) is attained. Similarly, if there exist feasible y0, S0 for (D), where
S0 ∈ int(K∗

n), and a feasible solution of (P ), then p∗ = d∗ and the infimum in (P ) is
attained.
Optimization over the cones S+

n and Nn can be done in polynomial time (to
compute an ε-optimal solution), but copositive programming is reducible to some
NP-hard problems as we will see in the next section.

2. The stability number via copositive programming. The celebrated
sandwich theorem of Lovász relates three characterizing numbers of a graph G(V,E):
the chromatic number χ(Ḡ) of the complementary graph Ḡ, the stability number α(G)
of G, and the so-called theta number ϑ(G). The theta number can be defined as the
optimal value of the following semidefinite programming relaxation of the maximum
clique problem (see [15, 9]):

ϑ(G) := maxTr
(
eeTX

)
= eTXe(1)

subject to

Xij = 0, {i, j} ∈ E (i �= j)

Tr(X) = 1

X ∈ S+
n



,(2)

where e denotes the all-one vector.
The sandwich theorem states the following.
Theorem 2.1 (Lovász’s sandwich theorem). For any graph G = (V,E), one has

α(G) ≤ ϑ(G) ≤ χ(Ḡ).

In what follows, xS denotes the incidence vector of a stable set S of size k = |S|
in G, i.e.:

(xS)i =


 1 if i ∈ S,0 otherwise.

It is easy to check that the rank one matrix

X :=
1

k
xSx

T
S

is feasible in (2) with objective value

eTXe =
1

k

(
eTxS

)2
=
k2

k
= k.

We therefore have α(G) ≤ ϑ(G), which proves the relevant part of the sandwich
theorem.
We now show that we can actually obtain the stability number α(G) by replacing

the semidefinite cone in (2) by the completely positive cone.
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Theorem 2.2. Let G(V,E) be given with |E| = n. The stability number of G is
given by

α(G) = maxTr
(
eeTX

)
(3)

subject to

Xij = 0, {i, j} ∈ E (i �= j)

Tr(X) = 1

X ∈ C∗n



.(4)

Proof. Consider the convex cone:

CG := {X ∈ C∗n : Xij = 0, {i, j} ∈ E} .
The extreme rays of this cone are of the form xxT , where x ∈ R

n is nonnegative
and its support corresponds to a stable set of G. This follows from the fact that
all extreme rays of C∗n are of the form xxT for nonnegative x ∈ R

n. Therefore, the
extreme points of the set defined by (4) are given by the intersection of the extreme
rays with the hyperplane defined by Tr(X) = 1.
Since the optimal value of problem (3) is attained at an extreme point, there is

an optimal solution of the form:

X∗ = x∗x∗T , x∗ ∈ R
n, x∗ ≥ 0, ‖x∗‖ = 1,

and where the support of x∗ corresponds to a stable set, say S∗. Denoting the optimal
value of problem (3) by λ, we therefore have

λ = max
‖x‖=1

(eTx)2, x ≥ 0, support(x) = support(x∗).

The optimality conditions of this problem imply

x∗ =
1√|S∗|xS

∗ ,

and therefore

λ = (eTx∗)2 =
|S∗|2
|S∗| = |S

∗|.

This shows that S∗ must be the maximum stable set, and consequently λ = α(G).
Note that—since X ∈ C∗n is always nonnegative—we can simplify (3) and (4) to

α(G) = max
{
Tr
(
eeTX

)
: Tr (AX) = 0, Tr(X) = 1, X ∈ C∗n

}
,(5)

where A is the adjacency matrix of G. The dual problem of (5) is given by

inf
λ,y∈R

{
λ : Q := λI + yA− eeT ∈ Cn

}
.(6)

The primal problem (5) is not strictly feasible (some entries of X must be zero), even
though the dual problem (6) is strictly feasible (set Q = (n + 1)I − eeT ). By the
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conic duality theorem, we can therefore conclude only that the primal optimal set is
nonempty and not that the dual optimal set is nonempty. We will now prove, however,
that Q = α(I + A)− eeT is always a dual optimal solution. This result follows from
the next lemma.

Lemma 2.3. For a given graph G = (V,E), with adjacency matrix A and stability
number α(G), and a given parameter ε ≥ 0, the matrix

Q∗
ε = (1 + ε)α(I +A)− eeT

is copositive.
Proof. Let ε ≥ 0 be given. We will show that Q∗

ε is copositive.
To this end, denote the standard simplex by

∆ :=

{
x ∈ R

n :

n∑
i=1

xi = 1, x ≥ 0
}

and note that

min
x∈∆

xTQ∗
εx = min

x∈∆
(1 + ε)α

(
xTx+ xTAx

)− xT eeTx
= (1 + ε)αmin

x∈∆

(
xTx+ xTAx

)− 1.
We now show that the minimum is attained at x∗ = 1

|S∗|xS∗ , where S∗ denotes
the maximum stable set, as before. In other words, we will show that

min
x∈∆

xTQ∗
εx = ε.(7)

Let x∗ ∈ ∆ be a minimizer of xTQ∗
εx over ∆.

If the support of x∗ corresponds to a stable set, then the proof is an easy conse-
quence of the inequality:

argmax
{‖x‖ : x ∈ ∆, (eTx)2, x ≥ 0, support(x) = S

}
=
1

|S|xS ∀S ⊂ V,

which can readily be verified via the optimality conditions.
Assume therefore that the support of x∗ does not correspond to a stable set, i.e.,

x∗i > 0 and x
∗
j > 0, where {i, j} ∈ E.

Now we fix all the components of x to the corresponding values of x∗, except
for components i and j. Note that, defining c0 :=

∑
k �=i,j x

∗
k, one can find constants

c1, c2, and c3 such that

x∗TQ∗
εx

∗ = min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α
(
x2
i + 2xixj + x

2
j

)
+ xic1 + xjc2 + c3

= min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α (xi + xj)
2
+ xic1 + xjc2 + c3

= min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α (1− c0)2 + xic1 + xjc2 + c3.

The final optimization problem is simply an LP in the two variables xi and xj and
attains it minimal value in an extremal point at which xi = 0 or xj = 0. We can

therefore replace x∗ with a vector x̄ such that x∗TQx∗ = x̄TQx̄ and x̄ix̄j = 0.
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By repeating this process, we obtain a minimizer of xTQ∗
εx over ∆ with support

corresponding to a stable set.
The lemma shows that Q∗

ε is copositive and therefore ε-optimal in (6). For ε = 0
we have the following result.

Corollary 2.4. For any graph G = (V,E) with adjacency matrix A, one has

α(G) = min
λ

{
λ : λ(I +A)− eeT ∈ Cn

}
.

Remark 2.1. The result of Corollary 2.4 is also a consequence of a result by
Motzkin and Straus [17], who proved that

1

α(G)
= min

x∈∆
xT (A+ I)x,

where A is the adjacency matrix of G. To see the relationship between the two results,
we also need the known result (see, e.g., [4]) that minimization of a quadratic function
over the simplex is equivalent to a copositive programming problem:

min
x∈∆

xTQx = min
X∈(Cn)∗

{
Tr(QX) : Tr

(
eeTX

)
= 1

}
= max

λ∈R

{
λ : Q− λeeT ∈ Cn

}
for any Q ∈ Sn, where the second inequality follows from the strong duality theorem.
Corollary 2.4 implies that we can simplify our conic programs even further to

obtain

α(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ C∗n

}
,(8)

with associated dual problem:

α(G) = min
λ∈R

{
λ : Q := λ(I +A)− eeT ∈ Cn

}
.(9)

Note that both these problems are strictly feasible, and the conic duality theorem
now guarantees complementary primal-dual optimal solutions.

3. Approximations of the copositive cone. The reformulation of the stable
set problem as a conic copositive program makes it clear that copositive programming
is not tractable (see also [23, 4]). In fact, even the problem of determining whether a
matrix is not copositive is NP-complete [18].
Although we have obtained a nice convex reformulation of the stable set problem,

there is no obvious way of solving this reformulation. In [4], some ideas from interior
point methods for semidefinite programming are adapted for the copositive case, but
convergence cannot be proved. The absence of a computable self-concordant barrier
for this cone basically precludes the application of interior point methods to copositive
programming.
A solution to this problem was recently proposed by Parrilo [20], who showed

that one can approximate the copositive cone to any given accuracy by a sufficiently
large set of linear matrix inequalities. In other words, each copositive programming
problem can be approximated to any given accuracy by a sufficiently large SDP. Of
course, the size of the SDP can be exponential in the size of the copositive program.
In the next subsection we will review the approach of Parrilo and subsequently

work out the implications for the copositive formulation of the maximum stable set
problem. We will also look at a weaker, LP-based approximation scheme.
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3.1. Representations as sum-of-squares and polynomials with nonneg-
ative coefficients. We can represent the copositivity requirement for an (n × n)
symmetric matrix M as

P (x) := (x ◦ x)TM(x ◦ x) =
n∑

i,j=1

Mijx
2
ix

2
j ≥ 0 ∀x ∈ R

n,(10)

where “◦” indicates the componentwise (Hadamard) product. We therefore wish to
know whether the polynomial P (x) is nonnegative for all x ∈ R

n. Although one cannot
answer this question in polynomial time in general, one can decide in polynomial time
whether P (x) can be written as a sum-of-squares. Before we give a formal exposition
of the methodology, we give an example which illustrates the basic idea.

Example 3.1 (see Parrilo [20]). We show how to obtain a sum-of-squares decom-
position for the polynomial 2x4

1 + 2x
3
1x2 − x2

1x
2
2 + 5x

4
2.

2x4
1 + 2x

3
1x2 − x2

1x
2
2 + 5x

4
2

=




x2
1

x2
2

x1x2



T 

2 0 1

0 5 0

1 0 −1






x2
1

x2
2

x1x2




=




x2
1

x2
2

x1x2



T 

2 −λ 1

−λ 5 0

1 0 −1 + 2λ






x2
1

x2
2

x1x2


 ∀λ ∈ R.

For λ = 3 the coefficient matrix is positive semidefinite, and we obtain a sum-of-
squares decomposition by taking a Choleski decomposition of the coefficient matrix.

Following the idea in the example, we represent P (x) via

P (x) = x̃T M̃x̃,(11)

where x̃ = [x2
1, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn]

T and M̃ is a symmetric matrix of order
n+ 1

2n(n− 1).
Note that—as in the example—M̃ is not uniquely determined. The nonuniqueness

follows from the identities:

(xixj)
2 = (x2

i )(xj)
2,

(xixj)(xixk) = (x
2
i )(xjxk),

(xixj)(xkxl) = (xixk)(xjxl) = (xixl)(xjxk).

It is easy to see that the possible choices for M̃ define an affine space.

Condition (10) will certainly hold if at least one of the following two conditions
holds:

1. A representation of P (x) = x̃T M̃x̃ exists with M̃ symmetric positive semidef-
inite. In this case we obtain the sum-of-squares decomposition P (x) = ‖Lx̃‖2,
where LTL = M̃ denotes the Choleski factorization of M̃ .

2. All the coefficients of P (x) are nonnegative.
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Note that the second condition implies the first.
Parrilo showed that P (x) in (10) allows a sum-of-squares decomposition if and

only if M ∈ S+
n +Nn, which is a well-known sufficient condition for copositivity. Let

us define the cone K0
n := S+

n +Nn. Similarly, P (x) has only nonnegative coefficients
if and only if M ∈ Nn, which is a weaker sufficient condition for copositivity, and we
define C0n = Nn.
Higher-order sufficient conditions can be derived by considering the polynomial

P (r)(x) = P (x)

(
n∑
i=1

x2
i

)r
=


 n∑
i,j=1

Mijx
2
ix

2
j


( n∑

i=1

x2
i

)r
(12)

and asking whether P (r)(x)—which is a homogeneous polynomial of degree 2(r+2)—
has a sum-of-squares decomposition, or whether it has only nonnegative coefficients.
For r = 1, Parrilo showed that a sum-of-squares decomposition exists if and only

if 2 the following system of linear matrix inequalities has a solution:

M −M (i) ∈ S+
n , i = 1, . . . , n,(13)

M
(i)
ii = 0, i = 1, . . . , n,(14)

M
(i)
jj + 2M

(j)
ij = 0, i �= j,(15)

M
(i)
jk +M

(j)
ik +M

(k)
ij ≥ 0, i < j < k,(16)

where M (i) (i = 1, . . . , n) are symmetric matrices.
Similarly, P (1)(x) has only nonnegative coefficients ifM satisfies the above system,

but with S+
n replaced by Nn.

Note that the sets of matrices which satisfy these respective sufficient conditions
for copositivity define two respective convex cones. In fact, this is generally true for
all r.

Definition 3.1. Let any integer r ≥ 0 be given. The convex cone Krn consists of
the matrices M ∈ Sn for which P (r)(x) in (12) has a sum-of-squares decomposition;
similarly, we define the cone Crn as the cone of matrices M ∈ Sn for which P (r)(x) in
(12) has only nonnegative coefficients.
Note that Crn ⊂ Krn for all r = 0, 1, . . . . (If P (x) has only nonnegative coefficients,

then it obviously has a sum-of-squares decomposition. The converse is not true in
general.)

3.2. Upper bounds on the order of approximation. Every strictly copos-
itive M lies in some cone Crn for r sufficiently large; this follows from the celebrated
theorem of Pólya.

Theorem 3.2 (see Pólya [21]). Let f be a homogeneous polynomial which is
positive on the simplex

∆ =

{
z ∈ R

n :

n∑
i=1

zi = 1, z ≥ 0
}
.

For sufficiently large N all the coefficients of the polynomial(
n∑
i=1

zi

)N
f(z)

2In fact, Parrilo [20] only proved the “if”-part; the proof of the converse is straightforward but
tedious and can be done using the proof technique described in section 5.3 of [20].
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are positive.
One can apply this theorem to the copositivity test (10) by letting f(z) = zTMz

and associating x ◦ x with z.
In summary, we have the following theorem.
Theorem 3.3. Let M be strictly copositive. One has

Nn = C0n ⊂ C1n ⊂ · · · ⊂ CNn �M

and consequently

S+
n +Nn = K0

n ⊂ K1
n ⊂ · · · ⊂ KNn �M

for some sufficiently large N .
A tight upper bound on the size of N in Theorem 3.2 has recently been given by

Powers and Reznik [22].
Theorem 3.4 (see [22]). Let

f(z) =
∑
j

βj

n∏
i=1

z
αij

i

be a homogeneous polynomial of degree d (
∑n
i=1 αij = d for all j) which is positive on

the simplex ∆. The polynomial

(
n∑
i=1

zi

)N
f(z)

has positive coefficients if

N >
d(d− 1)L
2κ

− d,

where

L = max
j

α1j !α2j ! . . . αnj !

d!
|βj |

and

κ = min
z∈∆

f(z).

For the problem of checking the copositivity of M we have the following.
Corollary 3.5. If a symmetric (n×n) matrix M is strictly copositive, then the

function

PN (z) =


 n∑
i,j=1

Mijzizj


( n∑

i=1

zi

)N

has only nonnegative coefficients if

N > L/κ− 2,
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where

L = max
i,j
|Mij |(17)

and

κ = min
z∈∆

zTMz.(18)

Proof. The function f in Theorem 3.4 is given by f(z) = zTMz in this case. The
exponents αij can now take only the values 0, 1, or 2; d = 2; and the coefficients βj
correspond to the entries of M .
Note that κ is a “condition number” of M , which can be arbitrarily small, and

cannot be computed in polynomial time in general unless P = NP .
Corollary 3.6. If a strictly copositive matrix M satisfies L/κ ≤ r + 1, where

L and κ are respectively defined in (17) and (18), then M ∈ Crn ⊂ Krn.
Proof. The proof follows immediately from the definition of Crn and Corollary

3.5.

4. Application to the maximum stable set problem. We can now define
successive approximations to the stability number. In particular, we define successive
LP-based approximations via

ζ(r)(G) = min
λ

{
λ : Q = λ(I +A)− eeT ∈ Crn

}
(19)

for r = 0, 1, 2, . . . , where we use the convention that ζ(r)(G) = ∞ if the problem is
infeasible.
Similarly, we define successive SDP-based approximations via

ϑ(r)(G) = min
λ

{
λ : Q = λ(I +A)− eeT ∈ Krn

}
(20)

for r = 0, 1, 2, . . . . Note that we have merely replaced the copositive cone Cn in (9)
by its respective approximations Crn and Krn.
The minimum in (20) is always attained. The proof follows directly from the

conic duality theorem if we note that λ = n + 1 always defines a matrix Q in the
interior of K0

n (and therefore in the interior of Krn ⊃ K0
n for all r = 1, 2, . . . ) via (20)

and that

X0 :=
1

n2 + n+ |E| (nI + ee
T )

is always strictly feasible in the associated primal problem:

ϑ(r)(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ (Krn)∗

}
.

The strict feasibility of X0 follows from the fact that it is in the interior of C∗n: For
any copositive matrix Y ∈ Cn we have

Tr(X0Y ) =
1

n2 + n+ |E|
(
nTr(Y ) + eTY e

)
.

This expression can be zero only if Y is the zero matrix. In other words, Tr(X0Y ) > 0
for all nonzero Y ∈ Cn, which means that X0 is in the interior of C∗n. Consequently,
X0 is also in the interior of (Krn)∗ for all r, since C∗n ⊂ (Krn)∗ (r = 0, 1, . . . ).
Note that

α(G) ≤ ϑ(r)(G) ≤ ζ(r)(G), r = 0, 1, . . . ,

since Crn ⊂ Krn ⊂ Cn.
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4.1. An upper bound for the number of liftings. We can now prove our
main result.

Theorem 4.1. Let a graph G(V,E) be given with stability number α(G), and let
ζ(i) (i = 0, 1, 2, . . . ) be defined as in (19). One has

ζ(0) ≥ ζ(1) ≥ · · · ≥ �ζ(r)� = α(G)

for r ≥ α(G)2. Consequently, also �ϑ(r)� = α(G) for r ≥ α(G)2.

Proof. Denote, as in the proof of Lemma 2.3,

Q∗
ε = (1 + ε)α(G)(I +A)− eeT

for a given ε ≥ 0.
We will now prove that Q∗

ε ∈ Crn for r ≥ α(G)2 − α(G)− 2 if

ε :=
1

α(G) + 1/[α(G)− 1] .(21)

Note that if we choose ε in this way, then Q∗
ε corresponds to a feasible solution of

(19), where λ = (1+ ε)α(G) < 1+α(G), and we can therefore round down this value
of λ to obtain α(G).

We proceed to bound the parameters κ and L in Corollary 3.6 for the matrix Q∗
ε .

• The value L is given by L = (1 + ε)α(G)− 1.
• The condition number κ is given by κ = ε, by (7).

Now we have

L/κ =
(1 + ε)α(G)− 1

ε
= α(G)2 + 1.(22)

From Corollary 3.6 it now follows that Q∗
ε ∈ Crn for r ≥ α(G)2.

Remark 4.1. If we are only interested in computing a ζ(r) ≤ (1 + ε)α(G) for a
given ε > 0, then it is sufficient to choose r = α(G)/ε. To see this, note that by (22)
we have

L/κ =
(1 + ε)α(G)− 1

ε
≤ α(G)/ε+ 1 ≡ r + 1,

so that Q∗
ε = (1 + ε)α(G)(I +A)− eeT ∈ Crn by Corollary 3.6.

Remark 4.2. The bound α(G)2 in Theorem 4.1 on the number of liftings can
be compared to the n− α(G)− 1 bound for the LP-based lift-and-project scheme by
Lovász–Schrijver [16].3 For families of graphs where α(G) < O(

√
n), our LP-based

lifting scheme requires fewer liftings in the worst case. This bound is satisfied, for
example, by random graphs with expected edge density 1

2 , where one almost always
has α(G) ≤ 2 log2 n for n� 0 (see, e.g., p. 148 of [1]).

Example 4.1. Consider the case in which G(V,E) is the 5-cycle (C5). It is well
known that α(G) = 2 and ϑ(G) = ϑ′(G) =

√
5 in this case.

3Lovász and Schrijver called this bound the N-index.
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We will show that ϑ(1)(G) = 2; to this end, note that the matrix

Q =




1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1
−1 1 1 −1 1




(23)

corresponds to a feasible solution of (20) for r = 1, with λ = 2. The feasibility follows
from the known fact that Q in (23) is in K1

n (but not in K0
n = S+

n + Nn); see, e.g.,
[20].

Example 4.2. Let G = (V,E) be the complement of the graph of an icosahedron
(see, e.g., [6]), where α(G) = 3. One can solve the relevant semidefinite programming
problem to obtain ϑ(1)(G) = 1 +

√
5 ≈ 3.236068.

Although �ϑ(1)(G)� = α(G), one has Q := α(G)(A+I)−eeT /∈ K1
n. Thus Q gives

an example of a 12 × 12 copositive matrix which is not in K1
n. This gives a partial

answer to the following question posed by Parrilo [20]: “Do the copositive cone and
K1
n coincide for n × n matrices up to a certain size?” For this size a known lower
bound is n ≥ 4 (for n × n matrices with n ≤ 4, Cn and K0

n still coincide), and an
upper bound is n ≤ 11 (by this example).

4.2. Lower bounds on the number of liftings. The following theorem shows
that the LP-based approximations always require at least α(G)−1 liftings to compute
α(G).

Theorem 4.2. Let a graph G = (V,E) with stability number α(G) be given. If
ζ(r)(G) <∞, then r ≥ α(G)− 1.

Proof. Let (1, . . . , α) be a maximum stable set, where α = α(G). Then for
r = α− 2 the polynomial

zT
(
t(A+ I)− eeT ) z(eT z)r

has a monomial Cz1z2 . . . zα with C < 0 for any value of t. This shows that problem
(19) is infeasible if r < α(G)− 1.

Example 4.3. Here we show that although α(G)−1 liftings are necessary for com-
puting α(G) via the LP-based approximations, this number of liftings is not sufficient
in general. For the 4-node graph with one edge we have

zT (α(G)(I +A)− eeT )z = 3z2
1 + 3z

2
2 + 6z1z2 + 3z

2
3 + 3z

2
4 − (z1 + z2 + z3 + z4)2,

as α(G) = 3 in this case, which clearly has negative coefficients. In order to get only

nonnegative coefficients, we have to multiply this quadratic form by (
∑4
i=1 zi)

6.

5. The strength of low-order relaxations. In this section we investigate the
strength of the approximations ϑ(r) and ζ(r) to α(G) for r = 0 and r = 1.

Theorem 5.1. If G = (V,E) has α(G) = 2, then ζ(1)(G) ≤ 3.
Proof. Let A be the adjacency matrix of a graph G = (V,E) with α(G) = 2, and

let

Q(z) = zT (3A+ 3I − eeT )z(z1 + · · ·+ zn) := Q+(z)−Q−(z),
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where

Q+(z) := (3z
T (A+ I)z)(z1 + · · ·+ zn), Q−(z) = (z1 + · · ·+ zn)3.

We will show that Q(z) has only nonnegative coefficients, which in turn implies the
theorem. The monomials of Q+(z) can be classified as follows:

3z3
i ∀ i,

3ziz
2
j ∀ i �= j,

6(Aij +Aik +Ajk)zizjzk ∀i < j < k.

Note that Aij +Aik +Ajk ≥ 1 if i < j < k, since α(G) = 2.
The monomials of Q−(z) are as follows:

z3
i ∀ i,
3ziz

2
j ∀ i �= j,

6zizjzk ∀ i < j < k.

Hence Q(z) has only nonnegative coefficients, as for every monomial of Q−(z) there is
a monomial with the same variables in Q+(z) with a coefficient at least as large.
Next we show that ϑ(0) coincides with the ϑ′-function of Schrijver [25], which in

turn can be seen as a strengthening of the Lovász ϑ-approximation to α(G).
Lemma 5.2. Let a graph G = (V,E) be given with adjacency matrix A, and let

ϑ′ denote the Schrijver ϑ′-function [25]:

ϑ′(G) = max
{
Tr
(
eeTX

)
: Tr (AX) = 0, Tr(X) = 1, X ∈ (K0

n)
∗} .

Then

ϑ′(G) = ϑ(0)(G).

Proof. Recall that

ϑ(0)(G) = min
λ

{
λ : λ(I +A)− eeT ∈ K0

n

}
,(24)

whereas the dual formulation for ϑ′(G) is

ϑ′(G) = min
λ,y

{
λ : λI + yA− eeT ∈ K0

n

}
.(25)

Further recall that K0
n = S+

n +Nn, and let
λI + yA− eeT = S +N, where S ∈ S+

n and N ∈ Nn.(26)

Without loss of generality we assume Nii = 0 for all i ∈ {1, . . . , n}, as the sum of two
positive semidefinite matrices is positive semidefinite, and thus the diagonal part of
N can be added to S and subtracted from N .
Assume Aij �= 0. Note that our choice of S and N is such that Sii = λ − 1.

Thus, as Sij +Nij = y − 1 and Sii ≥ Sij ,
4 one obtains λ − 1 +Nij ≥ y − 1, and so

4Here we use the fact that S ∈ S+
n and has a constant diagonal.
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Nij ≥ y − λ. Hence N + (λ − y)A ∈ Nn. Therefore λ(I + A) − eeT ∈ K0
n as long as

(26) holds. Hence we can always assume that y = λ.
Remark 5.1. As far as we know, our simplified formulation of the Schrijver ϑ′-

function, namely,

ϑ′(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ (K0

n)
∗} ,

is not mentioned in the literature.
Let us restate the definition of ϑ(1)(G) by using (13)–(16) as follows:

ϑ(1)(G) := minβ subject to(27)

β(I +A)− eeT −M (i) ∈ S+
n , i = 1, . . . , n,(28)

M
(i)
ii = 0, i = 1, . . . , n,(29)

M
(i)
jj + 2M

(j)
ij = 0, i �= j,(30)

M
(i)
jk +M

(j)
ik +M

(k)
ij ≥ 0, i < j < k,(31)

where M (i) (i = 1, . . . , n) are symmetric matrices.
For v ∈ V , denote by v⊥ the the union of the neighborhood5 of v with v itself,

and for D ⊆ V denote by G(D) the subgraph of G induced on D (that is, G(D) =
(D, {(x, y) ∈ E | x, y ∈ D})). Also, A(D) will denote the adjacency matrix of G(D).

Theorem 5.3. The system of LMIs (27)–(31) has a feasible solution with β =

1 +maxk∈V (ϑ′(G(V − k⊥))) and M (i)
ij = 0 for all i, j. Thus

ϑ(1)(G) ≤ 1 + max
k∈V
(ϑ′(G(V − k⊥))).

In particular, if G(V − k⊥) is perfect for all k ∈ V , where k⊥ �= V , then ϑ(1)(G) =
β = α(G).

Proof. Define M = β(I + A) − eeT , and set M (i)
ij = 0 for all i, j. We now apply

the Schur lemma with respect to the ith row and ith column to the matrix M −M (i)

for each i = 1, . . . , n. This transforms (28) into

βIn−1 + βA(V − {i})− en−1e
T
n−1 − Λ(i) − 1

β − 1mim
T
i ∈ S+

n , i = 1, . . . , n,(32)

where Λ(i) is obtained from M (i) by removing the ith row and column, and mi is the
ith row of M with the ith entry removed. In other words, (mi)j = β − 1 if (i, j) ∈ E,
and (mi)j = −1, otherwise.
By (30), the matrix Λ(i) has zero diagonal. Thus the jth diagonal entry of the

matrix on the left-hand side of (32) is zero if (i, j) ∈ E. This means that the corre-
sponding row and column of this matrix must be zero.
Having fixed some variables as indicated, we now work out the implications from

the constraint (31). There are several cases to distinguish for Λ
(i)
jk with j < k and

(i, j) ∈ E, as follows:
1. (i, k) ∈ E; here (mim

T
i )jk = (β − 1)2.

(a) (j, k) ∈ E; here Λ(i)
jk = 0.

(b) (j, k) �∈ E; here Λ(i)
jk = −β.

5By neighborhood of v, we mean the set of vertices adjacent to v in G.
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2. (i, k) �∈ E; here (mim
T
i )jk = 1− β.

(a) (j, k) ∈ E; here Λ(i)
jk = β.

(b) (j, k) �∈ E; here Λ(i)
jk = 0.

Note that in case 1(b), the choice Λ
(i)
jk = −β < 0 does not violate (31), as Λ

(j)
ki

and Λ
(k)
ij fall under case 2(a), and thus Λ

(i)
jk + Λ

(j)
ki + Λ

(k)
ij = β > 0. In case 1(a), all

the Λ’s where the indices i, j, k appear are set to 0.

Finally, in case 2(b), one has that Λ
(i)
jk = 0, and Λ

(j)
ki = 0 together with (31) imply

Λ
(k)
ij ≥ 0.
For each i, denote ni = |V − i⊥|, and define ∆(i) as the ni×ni matrix of variables

that is obtained from Λ(i) after all the variables have been fixed as indicated. In other
words, Λ

(i)
jk corresponds to ∆

(i)
jk if and only if neither j nor k are adjacent to i in G.

We arrive at the following SDP:

β∗ := minβ subject to

β(Ini +A(V − i⊥))−
(
1 +

1

β − 1
)
enie

T
ni
−∆(i) ∈ S+

n ∀i ∈ V,

∆
(i)
jk ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥, (j, k) ∈ E,

∆
(i)
jk +∆

(j)
ki +∆

(k)
ij ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥.

Note that β∗ ≥ ϑ(1)(G). Multiplying both sides of all the constraints by 1− 1/β and
setting (1− 1/β)∆(i) = Ω(i), one obtains

β∗ = minβ subject to(33)

(β − 1)(Ini +A(V − i⊥))− enie
T
ni
− Ω(i) ∈ S+

n ∀i ∈ V,(34)

Ω
(i)
jk ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥, (j, k) ∈ E,(35)

Ω
(i)
jk +Ω

(j)
ki +Ω

(k)
ij ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥.(36)

Replacing (36) by a stronger constraint Ω
(i)
jk ≥ 0 (i ∈ V ), we obtain n problems

β∗
i := minβi subject to

(βi − 1)(Ini +A(V − i⊥))− enie
T
ni
− Ω ∈ S+

n ,

Ωjk ≥ 0 ∀j, k ∈ V,

so that

max
i∈V

β∗
i ≥ β∗ ≥ ϑ(1)(G) ≥ α(G).(37)

By the definition of ϑ(0), one has β∗
i −1 = ϑ(0)(G(V −i⊥)), which equals ϑ′(G(V −i⊥))

by Lemma 5.2. If G(V − i⊥) is perfect for all i ∈ V , then

max
i∈V

β∗
i = max

i∈V
ϑ(0)(G(V − i⊥)) + 1 = max

i∈V
α(G(V − i⊥)) + 1 = α(G).

Thus ϑ(1)(G) = α(G) by (37).
Thus, for instance, the 5-cycle example of the previous section can be generalized

to all cycles.
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Corollary 5.4. Let G(V,E) be a cycle of length n. One has ϑ(1)(G) = α(G).
Similarly, α(G) = ϑ(1)(G) if G is a wheel.

Proof. Let G = (V,E) be a cycle of length n. The required result now immediately
follows from Theorem 5.3 by observing that G(V −v⊥) is an (n−3)-path for all v ∈ V .
The proof for wheels is similar.
Also, complements of triangle-free graphs are recognized.
Corollary 5.5. If G = (V,E) has stability number α(G) = 2, then ϑ(1)(G) = 2.
Proof. The proof immediately follows from Theorem 5.3 by observing that G(V −

v⊥) is a clique (or the empty graph) for all v ∈ V .
As a consequence, the complements of cycles or wheels are also recognized. The

proof proceeds in the same way as before and is therefore omitted.
Corollary 5.6. Let G(V,E) be the complement of a cycle or of a wheel. In

both cases one has ϑ(1)(G) = α(G).
Remark 5.2. It is worth mentioning that neither the upper bound β = 1 +

maxk∈V (ϑ′(G(V − k⊥))) on ϑ(1) given in Theorem 5.3 nor the upper bound β∗ used
in its proof is sharp. This is demonstrated by the example of the 7-vertex graph
G obtained by taking an isolated node and a pentagon and joining these six nodes
with an extra node. (The result can be viewed as a pentagon “umbrella.”) Then
β∗ = 3.068, while ϑ(1)(G) = α(G) = 3, and the bound given by Theorem 5.3 is
β = 1 +maxk∈V (ϑ′(G(V − k⊥))) = 1 +

√
5 ≈ 3.23.

We conjecture that the result of Corollary 5.5 can be extended to include all
values of α.

Conjecture 5.1. If G = (V,E) has stability number α(G), then ϑ(α(G)−1)(G) =
α(G).
Note that we have proven the conjecture for α(G) ≤ 2.
6. Conclusions and future work. We have introduced two successive lifting

procedures for computing the stability number α(G) of a graph. The first procedure
involves generalizations of the Schrijver ϑ′-function, which in turn is a generalization
of the well-known Lovász ϑ-function. These generalized ϑ-functions were denoted by
ϑ(r) (r = 0, 1, . . . ), where ϑ(0)(G) = ϑ′(G) for all G = (V,E), and ϑ(0)(G) ≥ ϑ(1)(G) ≥
· · · ≥ �ϑ(N)� = α(G) for some sufficiently large N . We have also introduced related
LP-based approximations to α(G), namely, the numbers ζ(r) ≥ ϑ(r), which satisfy
�ζ(N)� = α(G) if N ≥ α2(G). This can be compared to the n − α(G) − 1 bound
for the LP-based lift-and-project scheme by Lovász and Schrijver [16]. For classes of
graphs where α(G) < O(

√
n), our procedure therefore requires fewer liftings in the

worst case. At step r of the respective procedures, an SDP (respectively, LP) problem
involving matrix variables of size nr+1 × nr+1 is solved.
The underlying idea for these approximations was to write the maximum stable

set problem as a conic linear program over the cone of copositive matrices, and to
subsequently perform successive approximations of this cone by using linear (matrix)
inequalities. This link between copositive matrices and the maximum stable set has
also allowed us to give a partial answer to a question posed by Parrilo [20] concerning
a class of copositive matrices (see Example 4.2).
There have been several—seemingly different—lift-and-project strategies for ap-

proximating combinatorial optimization problems. Apart from the approach of Lovász
and Schrijver [16] (see also [7, 11]) for the stable set polytope, Anjos and Wolkowicz [2]
have introduced a technique of successive Lagrangian relaxations for the MAX-CUT
problem, which also leads to semidefinite programming relaxations of size (nr × nr)
after r relaxations. Most recently, Laserre [13, 14] has introduced yet another lift-and-
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project approach, based on the properties of moment matrices. Laurent [11, 12] has
recently shown the relationship between these approaches. In the same vein, it would
be very interesting to explore possible links between the approach of Lovász and Schri-
jver and the lifting scheme introduced in this paper. In particular, it seems unlikely
that the bound on the number of liftings (r = α(G)2) is tight: The Lovász–Schrijver
SDP-based procedure only requires α(G) liftings in the worst case. We conjecture
that the proof of Theorem 5.3 can be extended to show that α(G)− 1 liftings always
suffice for our SDP-based lifting scheme.

Another interesting line of research is to further investigate the theoretical prop-
erties of the ϑ(1) number introduced in this paper. Actual computation of this number
involves SDPs with n2 × n2 matrices having an n × n block diagonal structure, and
it can still be done for graphs of small size (say n ≤ 30) with current interior point
technology.
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Abstract. A linear program has a unique least 2-norm solution, provided that the linear program
has a solution. To locate this solution, most of the existing methods were devised to solve certain
equivalent perturbed quadratic programs or unconstrained minimization problems. We provide in
this paper a new theory which is different from these traditional methods and is an effective numerical
method for seeking the least 2-norm solution of a linear program. The essence of this method is a
(interior-point-like) path-following algorithm that traces a newly introduced regularized central path
that is fairly different from the central path used in interior-point methods. One distinguishing
feature of our method is that it imposes no assumption on the problem. The iterates generated
by this algorithm converge to the least 2-norm solution whenever the linear program is solvable;
otherwise, the iterates converge to a point which gives a minimal KKT residual when the linear
program is unsolvable.
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norm solution
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1. Introduction. Consider the linear program

min{cTx : Ax ≥ b, x ≥ 0},(1.1)

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. The dual problem for the above linear
program can be written as

max{bT y : AT y ≤ c, y ≥ 0}.(1.2)

Let S∗
P and S∗

D denote the optimal solution sets (possibly empty) of the problems
(1.1) and (1.2), respectively. If a linear program has an optimal solution, it is said to
be solvable; otherwise, it is unsolvable. According to linear programming theory (see,
for instance, Theorem 1.13 in [34]), the primal (1.1) and the dual (1.2) have optimal
solutions if and only if both problems have feasible solutions. If one of problems (1.1)
or (1.2) has no feasible solution, then the other one is either unbounded or has no
feasible solution, and if one of problems (1.1) or (1.2) is unbounded, then the other one
has no feasible solution. Therefore, we may say that the primal problem is solvable if
and only if the dual is solvable. Equivalently, the primal is unsolvable if and only if
the dual is unsolvable.

Throughout this paper, we denote by ‖ · ‖∞ the∞-norm of a vector, and by ‖ · ‖2
the 2-norm, i.e., Euclidean norm. The purpose of this paper is to give a new method
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for finding the least 2-norm solutions of both primal and dual linear programs, i.e.,
to find x∗ ∈ S∗

P and y∗ ∈ S∗
D such that

‖x∗‖2 ≤ ‖x‖2, ‖y∗‖2 ≤ ‖y‖2 for all x ∈ S∗
P and y ∈ S∗

D.

Given a certain norm, the problem of finding the least-norm solution to some opti-
mization problems or other applied mathematical problems has been studied by many
authors such as Tikhonov and Arsenin [30], Tucker [28, 29], Parsons and Tucker [21],
and Wolfe [32, 33]. In particular, many authors have studied the theoretical property
of the least 2-norm solution of a linear program and have tried to design numerical
methods to compute this solution. See, for instance, Tikhonov and Arsenin [30], Man-
gasarian [13, 14, 15, 16], Mangasarian and Meyer [19], Mangasarian and De Leone
[18], Lucidi [11, 12], Skarin [25], Kiwiel [6, 7], Smith and Wolkowicz [24], and Kanzow,
Qi, and Qi [5]. Note that the least 2-norm solution of a linear program could be a
vertex of the feasible set and also could be a relative interior point of the optimal
faces. Thus, in the general case, both simplex methods and interior-point methods
(see [23, 34]) may not find the least 2-norm solution of a linear program.

The first method for the least-norm solution of a linear program was the canon-
ical Tikhonov regularization method [30]. The basic idea of this method is to solve
successively the following quadratic problem in x:

min{cTx+ µ‖x‖22 : Ax ≥ b, x ≥ 0},(1.3)

where µ is a positive parameter. For each µ > 0, denote by x(µ) the solution to
the above quadratic program. Tikhonov (see [30]) showed that x(µ) converges, as
µ → 0, to the least 2-norm solution of (1.1). Later, Mangasarian and Meyer [19]
showed that there exists a µ̄ > 0 such that for any µ ∈ (0, µ̄] the perturbed quadratic
program (1.3) becomes an exact problem, i.e., for any µ ∈ (0, µ̄] the solution x(µ) = x̄,
where x̄ is the least 2-norm solution of (1.1). Based on this observation, Mangasarian
[14, 16] used successive overrelaxation (SOR) methods to solve the dual problem of
(1.3). As pointed out by Lucidi [11], the main advantage of SOR algorithms is that
they preserve the sparsity structure of the problem and thus can tackle large-scale
problems. However, the main difficulty encountered by this method appears to be
that of knowing such a threshold value of µ̄. Thus, in general, it is not clear whether
a value of µ is small enough such that the solution x(µ) of (1.3) is the least 2-norm
solution of (1.1). Even the condition x(µk+1) = x(µk) with µk+1 < µk does not imply
that x(µk+1) is the least 2-norm solution of (1.1).

There are two classes of ways to circumvent this difficulty. The first class of ap-
proaches, including those used by Lucidi [11, 12] and Kiwiel [6], attempts to establish
an effective computational criterion to check whether the current perturbed quadratic
program is exact. However, Lucidi’s methods [11, 12] require that the linear program
(1.1) be nondegenerate (the gradients of active constraints at the least 2-norm solu-
tion x̄ are linearly independent), whereas Kiwiel’s method [6] solves the perturbed
quadratic program by finite active-set methods (see, for example, Best [1] and Kiwiel
[8]), which may not be effective for large-scale problems. The second class of methods
was developed by Mangasarian and De Leone [18]. In their method, a decreasing
sequence µk → 0 is stipulated, and for each µk an approximate solution x(µk) is
computed by applying SOR algorithms to the dual problem of (1.3). They showed
that if the residual inaccuracy of x(µk) falls below a certain threshold related to µk,
the approximate sequence {x(µk)} converges to the least 2-norm solution as k →∞.
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It is worth mentioning that Kiwiel [7] extended the method in [18] to piecewise linear
programs, which include the linear program as a special case.

In summary, the aforementioned approaches focus on solving problem (1.3) or
its dual problem. We may categorize them as (sequential) quadratic programming
methods for finding the least 2-norm solution of a linear program. Of course, in
addition to SOR methods, problem (1.3) or its dual problem may also be solved by
other algorithms; see Lin and Pang [10] and the references therein.

Besides the methods using an equivalent perturbed quadratic program, the least
2-norm solution of a linear program can also be obtained by solving an equivalent
unconstrained convex minimization problem. The first result in this aspect was due
to Mangasarian [15]. In [15], Mangasarian first proved that the least 2-norm solu-
tion problem of linear programs can be transformed into an equivalent unconstrained
minimization of a parameter-free convex continuously differentiable function. As a
result, some unconstrained optimization methods can be used to find the least 2-
norm solution of a linear program. Recently, Kanzow, Qi, and Qi [5] studied another
equivalent unconstrained reformulation of the least 2-norm solution problem. Their
method is based on the result of Smith and Wolkowicz [24], which is essentially re-
lated to the result of Mangasarian and Meyer (Corollary 2 in [19]). Based on their
reformulation, Kanzow, Qi, and Qi [5] proposed a Newton-type method to solve their
unconstrained minimization problem. However, unlike Mangasarian’s reformulation,
the unconstrained minimization problem in [5] contains a parameter which is required
to be sufficiently large (but that is unknown in advance). Also, their convergence
analysis needs certain relatively restrictive assumptions such as the strict feasibility
of (1.1) and the nondegeneracy of the least 2-norm solution.

It is well known that a linear program can also be formulated as an equivalent
linear complementarity problem (LCP). In fact, writing out the KKT optimality con-
ditions of linear program (1.1), we have


s+AT y − c = 0,
z −Ax+ b = 0,
(x, y, s, z) ≥ 0, xT s = yT z = 0,

(1.4)

which can be written as the following monotone LCP:

[
s
z

]
=

[
O −AT
A O

] [
x
y

]
+

[
c
−b

]
≥ 0,

[
x
y

]
≥ 0,

[
s
z

]T [
x
y

]
= 0.(1.5)

Thus, locating the least 2-norm solutions of primal and dual linear programs is com-
pletely equivalent to finding a least 2-norm solution of the above monotone LCP. For
LCPs, the least 2-norm solution has also been extensively studied by several authors,
for example, Subramanian [26], Mangasarian [17], Sznajder and Gowda [27], and Zhao
and Li [35, 36, 37]. The least 2-norm solution of a complementarity problem is also
related to Tikhonov regularization methods for complementarity problems (see, for
instance, Isac [4], Facchinei [2], and Facchinei and Kanzow [3]). In fact, in [26, 27, 35],
it is shown that the Tikhonov regularization trajectory of a monotone complemen-
tarity problem converges to the least 2-norm solution of the problem. In [35], a new
homotopy continuation trajectory, later called a regularized central path in [37], is
constructed for complementarity problems. It turns out that this new trajectory con-
verges to the least 2-norm solution of a monotone complementarity problem as the
parameter approaches zero.
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Motivated by recent results in [35, 36, 37], the purpose of this paper is to develop
a new theory and an alternative computational method for the least 2-norm solution
of linear programs. The proposed method is different from most of the existing meth-
ods, which either require additional conditions besides the solvability of the problem
or have to solve quadratic programs successively. The proposed algorithm in this
paper does not impose any assumption on the problem. It is convergent regardless of
whether the linear program is solvable or not. If problem (1.1) is solvable, then the
iterates generated by the proposed algorithm converge to the least 2-norm solution. If
the problem has no solution, the iterates still converge to a point which gives a mini-
mal KKT residual of the problem (1.1). This algorithm is a kind of interior-point-like
path-following algorithm (but not an interior-point algorithm), which is based on a
new concept of the regularized central path {x(µ) : µ > 0} of a linear program. Re-
markable features of this path are that its existence and convergence for any (solvable
or unsolvable) linear program can be guaranteed. These features distinguish it from
the conventional central path, whose existence and boundedness require that the pri-
mal and the dual have interior points, which in turn implies that both primal and
dual problems have bounded solution sets (see Theorem 5.10.1 and the corollary of
Theorem 3.4.1 in [23]). When a linear program has an unbounded solution set, in
which case the problem is unstable (see Robinson [22]), the interior point does not
exist, and hence the central path does not exist. However, the regularized central
path proposed in this paper always exists for any linear program and converges, as µ
tends to zero, to the least 2-norm solution of any solvable linear program, despite the
unboundedness of its solution set. This motivates us to design a new path-following
method for linear programs. To our knowledge, the proposed method can be viewed
as the first (interior-point-like) path-following algorithm for the least 2-norm solution
of a linear program.

In the next section, we introduce the concept of a regularized central path for
linear programs. In section 3, we specify a path-following algorithm. In section 4,
we prove the global convergence of the algorithm. The unsolvable case is studied in
section 5. Numerical results are illustrated in section 6. Conclusions are given in the
last section.

Throughout the paper, we use the standard notation found in the interior-point
algorithm literature. For example, all the vectors are column. For vectors u and
v ∈ Rn, we also use (u, v) to denote the column vector (uT , vT )T if there is no
confusion. The vector e denotes the vector of ones, and its dimension, unless otherwise
stated, depends on the context. For a vector x, x+ denotes the vector with components
(x+)i = max{xi, 0}, i = 1, . . . , n, and X denotes the corresponding diagonal matrix,
i.e., X = diag(x). Rn+ denotes the nonnegative orthant of n-dimensional Euclidean
space Rn. If x ∈ Rn+, we also write it as x ≥ 0. In particular, x > 0 means that all
components of x are positive.

2. Regularized central path. We begin by recalling the concept of a central
path of a linear program. The linear program (1.1) can be rewritten as

min{cTx : Ax− z = b, (x, z) ≥ 0}.
The central path is defined by a parameter µ > 0, and for each µ > 0 it is the solution
to the following logarithmic barrier problem:

min cTx− µ

(
n∑
i=1

log xi +

m∑
i=1

log zi

)

subject to (s.t.) Ax− z = b
(x > 0, z > 0).
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The Lagrangian of the above problem is

Lµ(x, y, z) = cTx+ yT (z −Ax+ b)− µ

(
n∑
i=1

log xi +

m∑
i=1

log zi

)
,(2.1)

where y ∈ Rm is the Lagrange multiplier vector corresponding to the constraint
Ax− z = b. Thus, the central path is actually defined by the stationary point of the
above Lagrange function; that is,

0 = ∇Lµ(x, y, z) =

(
∂Lµ
∂x

,
∂Lµ
∂y

,
∂Lµ
∂z

)
=


 c−AT y − µX−1e

z −Ax+ b
y − µZ−1e


 ,

which, by setting s = µX−1e > 0, can be written as

Xs = µe,
Y z = µe,

s+AT y − c = 0,
z −Ax+ b = 0,
(x, y, s, z) > 0.

It is well known that for every µ > 0 the above system has a unique solution denoted
by (x(µ), y(µ), s(µ), z(µ)) if and only if the primal and the dual problems have interior
points. If the primal and the dual have interior points, then x(µ) converges (as µ→ 0)
to the analytic center of the primal optimal face, and y(µ) converges to the dual
optimal face (see Theorems 5.10.1 and 5.10.3 in [23] or Theorems 2.16 and 2.17 in
[34]). Clearly, the analytic center is not necessarily the least 2-norm solution.

It is worth pointing out that the existence of the central path is not guaranteed for
the case when the problem has an unbounded optimal solution set, i.e., when the linear
program has no interior point (see, for instance, Theorem 5.10.1 and the corollary of
Theorem 3.4.1 in [23]). We now construct a new smooth path that is expected to
converge to the least 2-norm solution even when the problem has an unbounded
solution set. We first define a perturbed Lagrange function of (2.1). Notice that in
(2.1), the Lagrange multiplier y is related to the decision variable of the dual problem.
In fact, let ∇Lµ(x(µ), y(µ), z(µ)) = 0. If (x(µ), y(µ), z(µ)) → (x∗, y∗, z∗) as µ → 0,
then (x∗, y∗, z∗) satisfies the KKT system (1.4). By the theory of linear programming,
y∗ is an optimal solution to the dual problem. Thus, in order to obtain the least 2-
norm solution of the primal and the dual linear programs, we consider the following
augmented Lagrange function:

L(µ,θ)(x, y, z) : = cTx+ yT (z −Ax+ b)− µ

(
n∑
i=1

log xi +

m∑
i=1

log zi

)

+
1

2
θ‖(x, y)‖22,(2.2)

where µ and θ are two positive parameters. The penalty term θ‖(x, y)‖22 attached
to the Lagrangian (2.1) is used to force the stationary point of the augmented La-
grange function to approach the least 2-norm solution. It will be seen from our later
discussion that the above augmented form is a judicious choice for locating the least
2-norm solution and for covering the aforementioned case of an unbounded solution
set. Although the parameters µ and θ can be independent, for simplicity we consider
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here only the case of θ = µp, where p ∈ (0, 1) is a fixed constant. Thus, the above
function (2.2) can be written in the following one-parameter form:

Φµ(x, y, z) : = cTx+ yT (z −Ax+ b)− µ

(
n∑
i=1

log xi +

m∑
i=1

log zi

)

+
1

2
µp‖(x, y)‖22.(2.3)

We are now ready to define the concept of a regularized central path. Analogous to the
central path which is the stationary point of Lagrange function (2.1), the so-called
regularized central path can be defined by the stationary point of the augmented
Lagrange function (2.3), that is, ∇Φµ(x, y, z) = 0. Thus, we have the following
definition.

Definition 2.1. The curve {(x(µ), y(µ), s(µ), z(µ)) : µ > 0} is said to be a
regularized central path if for each µ > 0, (x(µ), y(µ), s(µ), z(µ)) is the solution to the
following system: 



Xs = µe,
Y z = µe,
s+AT y − c = µpx,
z −Ax+ b = µpy,
(x, y, s, z) > 0.

(2.4)

The set {(x(µ), z(µ)) : µ > 0} can be called the primal regularized central path,
and {(y(µ), s(µ)) : µ > 0} the dual regularized central path. The following result
states that the existence of the regularized central path can be ensured in all situations.
This path converges to the unique least 2-norm solution as long as the linear program
in question is solvable. Thus, the regularized central path provides us with a novel
and powerful solution scheme for linear programming problems.

Theorem 2.1. For any linear program (1.1), the following hold:

(i) For each µ > 0, system (2.4) has a unique solution (x(µ), z(µ), y(µ), s(µ)) > 0.

(ii) For any finite number 0 < µ̂ <∞, the set {(x(µ), z(µ), y(µ), s(µ)) : µ ∈ (0, µ̂]}
is bounded if and only if the linear problem (1.1) is solvable.

(iii) Linear problem (1.1) is solvable if and only if (x(µ), z(µ), y(µ), s(µ)) con-
verges, as µ→ 0, to (x∗, z∗, y∗, s∗), where x∗ and y∗ are least 2-norm solutions of the
primal and the dual problems, respectively.

Proof. It is evident that system (2.4) can be written as

[
s
z

]
=

[
µpI −AT
A µpI

] [
x
y

]
+

[
c
−b

]
> 0,

[
x
y

]
> 0, U

[
s
z

]
= µe,(2.5)

where e ∈ Rm+n and U =
[
X O
O Y

]
. Denote

M =

[
O −AT
A O

]
, u =

[
x
y

]
, v =

[
s
z

]
, q =

[
c
−b

]
.

Then system (2.5) can be further written as

v = Mu+ q + µpu > 0, u > 0, Uv = µe.
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Under the one-to-one transformation of µ = ε/(1 − ε), where ε ∈ (0, 1), the above
system is equivalent to

(1− ε)v = (1− ε)(Mu+ q + φ(ε)u) > 0, u > 0, (1− ε)Uv = εe,

where φ(ε) = ( ε
1−ε )

p. Define w = (1 − ε)v. The above system can be finally written
as

H̄(u,w, ε) :=

(
Uw − εe

w − (1− ε)(Mu+ q + φ(ε)u)

)
= 0, (u,w) > 0.(2.6)

Noting that p ∈ (0, 1), we have ε/φ(ε) → 0 as ε → 0. Since the matrix M is a
monotone matrix, it must be a P0 matrix or a P∗ matrix. By Theorem 4.2(a) or
Theorem 5.2(a) in [35] (but applied to a monotone LCP), we conclude that the above
system (2.6) has a unique solution (u(ε), w(ε)) for each given ε > 0. The result (i) is
proved.

To see that (ii) holds, we first note that if the path {(x(µ), y(µ), s(µ), z(µ)) : µ ∈
(0, µ̂]} is bounded, taking µ→ 0 in system (2.4), we see that any accumulation point
of the path is a solution to KKT system (1.4), and thus it is a solution to the linear
program. Conversely, assume that the linear program is solvable. This is equivalent
to saying that the LCP (1.5) is solvable. Notice that (2.4) can be written as (2.5). It
follows from Theorem 5.1(b) in [35] that the path {(x(µ), y(µ), s(µ), z(µ)) : µ ∈ (0, µ̂]}
is bounded. Result (ii) holds. Since the solutions of LCP (1.5) are the same as
the solutions of the primal and the dual programs (1.1) and (1.2), result (iii) is an
immediate consequence of Theorem 5.2 in [35].

From the above result, we obtain the following characterization of the least 2-norm
solution of a linear program.

Corollary 2.2. (x∗, y∗) is the least 2-norm solution pair to the primal and the
dual problems if and only if it is the unique limiting point of the regularized central
path as µ → 0. Equivalently, problem (1.1) has no optimal solution, i.e., problem
(1.1) is unsolvable, if and only if the regularized central path is divergent to infinity
as µ→ 0.

3. Algorithm. Our algorithm can tackle both solvable and unsolvable linear
programming problems. For simplicity, however, we consider first the solvable prob-
lems. The general case, including unsolvable problems, is treated in section 5.

For a fixed scalar p ∈ (0, 1), we denote Fµ : R2(n+m) → R2(n+m) by

Fµ(x, y, s, z) =




Xs− µe
Y z − µe

s+AT y − c− µpx
z −Ax+ b− µpy


 .(3.1)

Note that the regularized central path is given by the following system:

Fµ(x, y, s, z) = 0, (x, y, s, z) > 0.

We also note that the vector (x∗, y∗, s∗, z∗) is a solution to the KKT system (1.4) if
and only if it satisfies

F0(x
∗, y∗, s∗, z∗) = 0, (x∗, y∗, s∗, z∗) ≥ 0.
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To give a path-following algorithm, we employ the following set as a neighborhood
of the regularized central path:

Nβ(µ) := {(x, y, s, z) > 0 : ‖Fµ(x, y, s, z)‖∞ ≤ βµ},
where β ∈ (0, 1) is a fixed scalar. From a starting point (x0, y0, s0, z0) > 0, the pur-
pose of our path-following algorithm is to generate a positive sequence (xk, yk, sk, zk)
confined in the above neighborhood. This sequence converges to a solution of the
problem. In each step of the algorithm, only one linear algebraic equation is solved,
and the Armijo-type line search is used to determine the stepsize. While the itera-
tion of this algorithm proceeds in the positive orthant, i.e., all the iterates maintain
positivity, the iterates are not necessarily interior points of the problem. In fact, this
algorithm does not require that the problem possess an interior point, and thus it
does not belong to the class of central path-based interior-point algorithms.

Algorithm 3.1.
Step 1 (Initial step). Let β ∈ (0, 1) be a positive scalar. Assign scalars α1, α2,

and σ in (0,1). Select (x0, y0, s0, z0) > 0 and µ0 ∈ (0,∞) such that (x0, y0, s0, z0) ∈
Nβ(µ0).

Step 2 (Centering step). If Fµk(xk, yk, sk, zk) = 0, set

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk)

and go to Step 3. Otherwise, let (∆xk,∆yk) be the solution to the following equation:[
Sk + (µk)pXk −XkAT

Y kA Zk + (µk)pY k

] [
∆x
∆y

]

=

[
µke−Xksk

µke− Y kzk

]
−

[
Xk(−sk + (µk)pxk −AT yk + c)
Y k(−zk +Axk + (µk)pyk − b)

]
.(3.2)

Then, set[
∆sk

∆zk

]
=

[
(µk)pI −AT

A (µk)pI

][
∆xk

∆yk

]
+

[
−sk + (µk)pxk −AT yk + c

−zk + Axk + (µk)pyk − b

]
.(3.3)

Let

ᾱ = arg max{α > 0 : xk + λ∆xk > 0, yk + λ∆yk > 0, sk + λ∆zk > 0,
zk + λ∆zk > 0 for all λ ∈ (0, α]}.

Let λk be the maximum among the values of ᾱ, α1ᾱ, α
2
1ᾱ, . . . such that

‖Fµk(xk + λk∆xk, yk + λk∆yk, sk + λk∆sk, zk + λk∆zk)‖∞
≤ (1− σλk)‖Fµk(xk, yk, sk, zk)‖∞.(3.4)

Set

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) + λk(∆xk,∆yk,∆sk,∆zk)

and go to Step 3.
Step 3 (Reduction step for µ). Let γk be the maximum among the values of

α2, α
2
2, . . . such that

(xk+1, yk+1, sk+1, zk+1) ∈ Nβ((1− γk)µk),
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i.e.,

‖F(1−γk)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γk)µk.

Set µk+1 := (1− γk)µk and go to Step 2.
Remark 3.1. In numerical implementation, the initial points and some stopping

criterion are needed. For the above algorithm, we may use ‖F0(x
k, yk, sk, zk)‖∞ < ε

or µk < ε as the stopping criterion, where ε is a termination tolerance. The initial
point for the above algorithm can be constructed without any additional cost. For
instance, a practical initial step proceeds as follows.

Initial step: Let (x0, y0) = e (∈ Rn+m). Choose µ0 such that

µ0 > max

{
1,

∥∥∥∥
(

AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
.

Let (s0, z0) = (µ0)pe (∈ Rn+m), and let

η :=
‖Fµ0(x0, y0, s0, z0)‖∞

µ0
.

Then, assign β ∈ [η, 1).
From the above choice, by (3.1) we see that

‖Fµ0(x0, y0, s0, z0)‖∞ = max

{∣∣µ0 − (µ0)p
∣∣ ,∥∥∥∥

(
AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
.

By the choice of µ0, it follows that 0 < η < 1. Thus, η ≤ β < 1 and (x0, y0, s0, z0) ∈
Nβ(µ0).

Remark 3.2. We now point out that, at the current point (xk, yk, sk, zk) > 0, the
vector (∆xk,∆yk,∆sk,∆zk) determined by systems (3.2) and (3.3) is unique. In fact,
it is easy to see that (∆xk,∆yk,∆sk,∆zk) is a solution to systems (3.2) and (3.3) if
and only if it is a solution to the following system:


Sk∆x+Xk∆s = µke−Xksk,
Zk∆y + Y k∆z = µke− Y kzk,

∆s− (µk)p∆x+AT∆y = −sk −AT yk + (µk)pxk + c,
∆z −A∆x+ (µk)p∆y = −zk +Axk + (µk)pyk − b,

(3.5)

which is a 2(m + n)-dimensional linear system. Notice that the Jacobian matrix of
Fµk(x, y, s, z) at (xk, yk, sk, zk) > 0 is given by

∇Fµk(xk, yk, sk, zk) =




Sk O Xk O
O Zk O Y k

−(µk)pI AT I O
−A −(µk)pI O I


 .(3.6)

System (3.5) coincides with the following:

Fµk(xk, yk, sk, zk) +∇Fµk(xk, yk, sk, zk)(∆x,∆y,∆s,∆z) = 0.(3.7)

Hence, the direction (∆x,∆y,∆s,∆z) is actually the Newton direction determined
by (3.7). Since the matrix [

(µk)pI −AT
A (µk)pI

]
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is positive semidefinite for any µk > 0 at the positive point (xk, yk, sk, zk) at which the
Jacobian matrix ∇Fµk(xk, yk, sk, zk) given by (3.6) is nonsingular. This fact follows
from Lemma 5.4 in Kojima, Megiddo, and Noma [9]. Thus system (3.7) has a unique
solution, and hence systems (3.2) and (3.3) have a unique solution. This can also be
explained another way. In fact, at (xk, yk, sk, zk) > 0, it is easy to verify that the
nonsingularity of the matrix ∇Fµk(xk, yk, sk, zk) implies the nonsingularity of the
matrix [

Sk + (µk)pXk −XkAT

Y kA Zk + (µk)pY k

]
.

While system (3.2) together with (3.3) is equivalent to system (3.5) or (3.7), we choose
to solve system (3.2), since it has lower dimension than (3.5).

4. Global convergence. In this section, we show that whenever the solution
set is nonempty, the iterates {(xk, yk)} generated by Algorithm 3.1 converge to the
least 2-norm solutions of the primal and the dual linear programs. We first show that
the algorithm is well defined.

Lemma 4.1. Algorithm 3.1 is well defined. The sequence {µk} is monotonically
decreasing, and (xk, yk, sk, zk) ∈ Nβ(µk) for all k ≥ 0.

Proof. We verify that each step of the algorithm is well defined. By Remark 3.1,
the first step is well defined. The starting point satisfies

(x0, y0, s0, z0) > 0, (x0, y0, s0, z0) ∈ Nβ(µ0).

By induction, we now assume that

(xk, yk, sk, zk) > 0, (xk, yk, sk, zk) ∈ Nβ(µk).
We show that the next iterate (xk+1, yk+1, sk+1, zk+1) generated by the algorithm still
maintains positivity and satisfies the condition (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1).
By the positivity of (xk, yk, sk, zk), from Remark 3.2, the system defined by (3.2) and
(3.3) has a unique solution, and the Newton direction (∆xk,∆yk,∆sk,∆zk) is a de-
scent direction of the function ‖Fµk(x, y, s, z)‖∞ at the current point (xk, yk, sk, zk) >
0. Thus, the line search rule (3.4) is well defined, and hence Step 2 is well defined.
Since

‖Fµk(xk, yk, sk, zk)‖∞ ≤ βµk and 1− σλk < 1,

from (3.4) we have

‖Fµk(xk + λk∆xk, yk + λk∆yk, sk + λk∆sk, zk + λk∆zk)‖∞ ≤ βµk,

that is,

‖Fµk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ βµk,

which implies that

‖Xk+1sk+1 − µke‖∞ ≤ βµk, ‖Y k+1zk+1 − µke‖∞ ≤ βµk.

By the choice of ᾱ and λk, we see that (x
k+1, yk+1, sk+1, zk+1) is nonnegative. Com-

bining this fact and the above inequalities, where 0 < β < 1, we conclude that the
next iterate (xk+1, yk+1, sk+1, zk+1) must be positive.
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We now show that Step 3 is well defined, and hence the next iterate is contained
in the set Nβ(µk+1). There are two possible cases.

Case 1. Fµk(xk, yk, sk, zk) = 0. According to the construction of the algorithm,
(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk). By continuity, there is a γk determined by
Step 3 such that

‖F(1−γk)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γk)µk.

Thus, by setting µk+1 = (1− γk)µk, we have (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1).
Case 2. Fµk(xk, yk, sk, zk) �= 0. In this case, the next point (xk+1, yk+1, sk+1, zk+1)

is determined by (3.4). We now show that (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1) still
holds. For any (x, y, s, z) > 0 and t2 ≥ t1 ≥ 0, it is easy to verify that

‖Ft1(x, y, s, z)−Ft2(x, y, s, z)‖∞ ≤ t2 − t1 + (tp2 − tp1)‖(x, y)‖∞.

Thus, by (3.4) and the above inequality, we have

‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)‖∞
≤ ‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)−Fµk(xk+1, yk+1, sk+1, zk+1)‖∞

+ ‖Fµk(xk+1, yk+1, sk+1, zk+1)‖∞
≤ γµk + (µk)p[1− (1− γ)p]‖(xk+1, yk+1)‖∞ + (1− σλk)‖Fµk(xk, yk, sk, zk)‖∞
≤ γµk + (µk)p[1− (1− γ)p]‖(xk+1, yk+1)‖∞ + (1− σλk)βµ

k

=

[
γ + (µk)p−1[1− (1− γ)p]‖(xk+1, yk+1)‖∞

(1− γ)β
+
(1− σλk)

1− γ

]
β(1− γ)µk.

Since 1−σλk < 1, there is a positive scalar γ̂ > 0 such that for all γ ∈ (0, γ̂] the term
in the above bracket is less than one. Thus, for all sufficiently small γ > 0 we have

‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γ)µk.

Step 3 is well defined. Of course, the sequence {µk} is monotonically decreasing since
µk+1 = (1− γk)µk.

By Lemma 4.1, the sequence (xk, yk, sk, zk) ∈ Nβ(µk) for all k, i.e.,

‖Fµk(xk, yk, sk, zk)‖∞ ≤ βµk and (xk, yk, sk, zk) > 0.(4.1)

We employ auxiliary sequences (uk, vk, wk, qk) ∈ R2(n+m) defined by

(uk, vk, wk, qk) =
1

µk
Fµk(xk, yk, sk, zk).(4.2)

Clearly, the above sequence {(uk, vk, wk, qk)} is uniformly bounded. Indeed, com-
bining (4.1) and (4.2) yields ‖(uk, vk, wk, qk)‖∞ ≤ β. Equation (4.2) can be written
as

Xksk = µk(e+ uk),(4.3)

Y kzk = µk(e+ vk),(4.4)

sk = −AT yk + c+ (µk)pxk + µkwk,(4.5)

zk = Axk − b+ (µk)pyk + µkqk.(4.6)
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These relations play a key role in the remainder of our analysis. We now prove the
main result of this section.

Theorem 4.2. Assume that the solution set of linear program (1.1) is nonempty.
The sequence (xk, yk, sk, zk) generated by Algorithm 3.1 converges to (x̂, ŷ, ŝ, ẑ), where
x̂ is the least 2-norm solution of the primal linear program (1.1) and ŷ is the least
2-norm solution of the dual problem (1.2).

Proof. We prove this result in the following three steps:
(i) If the solution set is nonempty, then the iterative sequence (xk, yk, sk, zk)

generated by the algorithm is bounded.
(ii) µk → 0 and ‖Fµk(xk, yk, sk, zk)‖∞ → 0. Thus, every accumulation point of

the iterative sequence is a solution to the linear program.
(iii) The accumulation point is unique and must be the least 2-norm solution of

the linear program.
We now prove (i). Let x∗ be an arbitrary optimal solution of (1.1) and y∗ be an

arbitrary optimal solution of its dual problem (1.2). Let (s∗, z∗) be given by[
s∗

z∗

]
=

[
O −AT
A O

] [
x∗

y∗

]
+

[
c
−b

]
.(4.7)

Then, it is easy to see that (x∗, y∗, s∗, z∗) ≥ 0, (x∗)T s∗ = 0, and (y∗)T z∗ = 0. That
is, (x∗, y∗, s∗, z∗) satisfies the KKT system (1.4). It follows from (4.3) and (4.4) that

(xk)T sk = µk(n+ eTuk), (yk)T zk = µk(m+ eT vk).(4.8)

Notice that for any (x, y) ∈ Rn+m we have

[
x
y

]T [
(µk)pI −AT

A (µk)pI

] [
x
y

]
= (µk)p

∥∥∥∥
[

x
y

]∥∥∥∥
2

2

.(4.9)

By the positivity of (xk, yk, sk, zk), (4.5), (4.6), (4.9), (4.8), and (4.7), we have

0 ≤
[

x∗

y∗

]T [
sk

zk

]
+

[
s∗

z∗

]T [
xk

yk

]

=

[
x∗ − xk

y∗ − yk

]T [
sk

zk

]
+

[
s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

=

[
x∗ − xk

y∗ − yk

]T ([
(µk)pI −AT

A (µk)pI

] [
xk

yk

]
+

[
c
−b

]
+ µk

[
wk

qk

])

+

[
s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

= −
[

xk − x∗

yk − x∗

]T [
(µk)pI −AT

A (µk)pI

] [
xk − x∗

yk − x∗

]

−
[

xk − x∗

yk − y∗

]T ([
(µk)pI −AT

A (µk)pI

] [
x∗

y∗

]
+

[
c
−b

]
+ µk

[
wk

qk

])

+

[
s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

= −(µk)p
∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

+

[
s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]
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−
[

xk − x∗

yk − y∗

]T (
(µk)p

[
x∗

y∗

]
+

[
s∗

z∗

]
+ µk

[
wk

qk

])

= −(µk)p
∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

− (µk)p
[

xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]

+

[
xk

yk

]T [
sk

zk

]

= −(µk)p
∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

− (µk)p
[

xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]
+ µk(m+ n+ eTuk + eT vk).(4.10)

Dividing both sides of the above by (µk)p, we have∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

≤
∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

∥∥∥∥
[

x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]∥∥∥∥
2

+
(
µk)1−p(m+ n+ eTuk + eT vk

)
.(4.11)

Since µk ≤ µ0 and (uk, vk, wk, qk) is uniformly bounded, the boundedness of the
iterative sequence (xk, yk, sk, zk) follows from the above inequality. Part (i) is now
proven.

We now prove part (ii). Since all iterates are confined in Nβ(µk), it implies that
(4.1) holds for all k. Thus, to show ‖Fµk(xk, yk, sk, zk)‖∞ → 0, it suffices to show
that µk → 0. In fact, µk is monotonically decreasing since µk+1 = (1− γk)µk. Thus,
there exists a scalar µ̂ ≥ 0 such that µk → µ̂. By (i), the sequence (xk, yk, sk, zk) is
bounded. Without loss of generality, we may assume that (xk, yk, sk, zk)→ (x̂, ŷ, ŝ, ẑ).
Taking the limit in (4.1), we have that

‖Fµ̂(x̂, ŷ, ŝ, ẑ)‖∞ ≤ βµ̂, (x̂, ŷ, ŝ, ẑ) ≥ 0.(4.12)

We assume to the contrary that µ̂ �= 0, i.e., µ̂ > 0. We now derive a contradiction.
The fact that µk+1 = (1− γk)µk, combined with µk → µ̂ > 0, implies that γk → 0 as
k →∞.

We deduce from (4.12) that

‖X̂ŝ− µ̂e‖∞ ≤ βµ̂, ‖Ŷ ẑ − µ̂e‖∞ ≤ βµ̂.

Since 0 < β < 1 and (x̂, ŷ, ŝ, ẑ) ≥ 0, the above inequality implies that (x̂, ŷ, ŝ, ẑ) > 0.
Thus, by Remark 3.2, the Jacobian ∇Fµ̂(x̂, ŷ, ŝ, ẑ) is nonsingular, and hence the
matrix [

Ŝ + µ̂pX̂ −X̂AT

Ŷ A Ẑ + µ̂pŶ

]

is nonsingular. Therefore, the following system has a unique solution, denoted by
(∆x̂, ∆ŷ, ∆ŝ, ∆ẑ):[

Ŝ + µ̂pX̂ −X̂AT

Ŷ A Ẑ + µ̂pŶ

] [
∆x
∆y

]
=

[
µ̂e− X̂ŝ

µ̂e− Ŷ ẑ

]
−

[
X̂(−ŝ+ µ̂px̂−AT ŷ + c)

Ŷ (−ẑ +Ax̂+ µ̂pŷ − b)

]
,

[
∆s
∆z

]
=

[
µ̂pI −AT
A µ̂pI

] [
∆x
∆y

]
+

[ −ŝ+ µ̂px̂−AT ŷ + c
−ẑ +Ax̂+ µ̂pŷ − b

]
.
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By Remark 3.2, this is equivalent to

Fµ̂(x̂, ŷ, ŝ, ẑ) +∇Fµ̂(x̂, ŷ, ŝ, ẑ)(∆x̂,∆ŷ,∆ŝ,∆ẑ) = 0,

which implies that (∆x̂,∆ŷ,∆ŝ,∆ẑ) is a Newton descent direction of ‖Fµ̂(x, y, s, z)‖∞
at (x̂, ŷ, ŝ, ẑ). Thus the linear search stepsize λ̂ in (3.4) and γ̂ in Step 3 of Algorithm 3.1
are both bounded below by a positive constant. By continuity, it follows that

(∆xk,∆yk,∆sk,∆zk, µk, λk, γk)→ (∆x̂,∆ŷ,∆ŝ,∆ẑ, µ̂, λ̂, γ̂).

In particular, γk → γ̂ > 0, which contradicts γk → 0. This contradiction shows that
µk must converge to zero, and thus ‖Fµk(xk, yk, sk, zk)‖ → 0 as k →∞. Therefore, for
any accumulation point (x̂, ŷ, ŝ, ẑ), by continuity we have ‖F0(x̂, ŷ, ŝ, ẑ)‖ = 0, which
implies that (x̂, ŷ) is a solution pair to the primal and the dual linear programs.

Finally, we show that the accumulation point of the iterates is the unique least
2-norm solution. From (4.10), we have

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

≤ −
[

xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]
+ (µk)1−p(m+ n+ eTuk + eT vk).

Let (x̂, ŷ, ŝ, ẑ) be an arbitrary accumulation point of the iterates. Notice that p ∈
(0, 1), µk → 0, and (uk, vk, wk, qk) is bounded. Taking the limit in the above inequal-
ity, we have ∥∥∥∥

[
x̂− x∗

ŷ − y∗

]∥∥∥∥
2

2

≤ −
[

x̂− x∗

ŷ − y∗

]T [
x∗

y∗

]
,

which can be written as∥∥∥∥
[

x̂
ŷ

]∥∥∥∥
2

2

≤
[

x̂
ŷ

]T [
x∗

y∗

]
≤

∥∥∥∥
[

x̂
ŷ

]∥∥∥∥
2

∥∥∥∥
[

x∗

y∗

]∥∥∥∥
2

.

Since (x∗, y∗) is an arbitrary solution pair of the primal and the dual, from the above
inequality we deduce that x̂ and ŷ are the least 2-norm solutions of the primal and the
dual, respectively. (In fact, substituting (x∗, y∗) by (x∗, ŷ) and (x̂, y∗), respectively,
we see that the above inequality implies that ‖(x̂, ŷ)‖2 ≤ ‖(x∗, ŷ)‖2 and ‖(x̂, ŷ)‖2 ≤
‖(x̂, y∗)‖2 for all primal and dual solutions x∗ and y∗. The desired result follows.)

5. Possibly unsolvable linear programs. We now consider a general linear
program (1.1) which is possibly unsolvable. Let R : Rn+m

+ → R+ be a measure
function for solvability of the problem (1.1), that is,

R(x, y) = ‖(AT y − c)+‖1 + ‖[−(Ax− b)]+‖1 + (cTx− bT y)+.

Clearly, the value of the above function can also be viewed as a KKT residual cor-
responding to an approximate solution (x, y) of the linear program. Notice that
(x∗, y∗) ≥ 0 is a solution to the primal and the dual (1.1) and (1.2) if and only if
R(x∗, y∗) = 0. Thus a linear program is equivalent to the following global minimiza-
tion problem:

min{R(x, y) : (x, y) ≥ 0}.(5.1)
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We may refer (5.1) to the problem of minimizing the 1-norm solvability of linear
program (1.1). By a basic idea of Mangasarian [16], the above problem can be re-
formulated as a linear programming problem. Indeed, by introducing nonnegative
variables (s, z, t) ∈ Rn+m+1

+ , problem (5.1) can be equivalently transformed into the
following linear program:

min eT (s, z, t)
s.t. AT y − c ≤ s, − (Ax− b) ≤ z, cTx− bT y ≤ t,

(x, y, s, z, t) ≥ 0,
(5.2)

where e ∈ Rn+m+1. This problem is always feasible. In fact, for any fixed (x0, y0) ≥ 0,
the vector (x0, y0, s0, z0, t0) ≥ 0 is feasible, provided that (s0, z0, t0) > 0 is sufficiently
large. Since the objective function is nonnegative, the above linear program is always
solvable, and hence problem (5.1) has a global optimal solution. Let

c′ := (0, 0, e) ∈ Rn ×Rm ×Rn+m+1, b′ := (−c, b, 0) ∈ Rn ×Rm ×R,

A′ :=


 O −AT O I O

A O I O O
−cT bT O O 1




(n+m+1)×2(m+n)+1

,

and u = (x, y, z, s, t). Then, (5.2) can be written as

min{(c′)Tu : A′u ≥ b′, u ≥ 0}.

Replacing (c, A, b) by (c′, A′, b′) and applying Algorithm 3.1 to the above problem, we
can obtain the unique least 2-norm solution (x∗, y∗, s∗, z∗, t∗) of problem (5.2). We
note that for any solution (x̂, ŷ, ŝ, ẑ, t̂) of (5.2), the following holds:

ẑ = [−(Ax̂− b)]+, ŝ = (AT ŷ − c)+, t̂ = (cT x̂− bT ŷ)+.

Thus, for any solution (x̂, ŷ, ŝ, ẑ, t̂) of (5.2) we have

‖(x∗, y∗, [−(Ax∗ − b)]+, (AT y∗ − c)+, (cTx∗ − bT y∗)+)‖2
≤ ‖(x̂, ŷ, [−(Ax̂− b)]+, (AT ŷ − c)+, (cT x̂− bT ŷ)+)‖2.(5.3)

When linear program (1.1) or (1.2) is solvable, it is easy to see that any solution
(x̂, ŷ, ŝ, ẑ, t̂) of (5.2) must satisfy that ŝ = 0, ẑ = 0, and t̂ = 0, and that (x̂, ŷ) is a
solution pair of the primal (1.1) and the dual (1.2). Conversely, if (x, y) is a solution
pair to the primal and the dual, then (x, y, 0, 0, 0) must be an optimal solution of
problem (5.2). Thus, for solvable linear program (1.1), inequality (5.3) reduces to

‖(x∗, y∗, 0, 0, 0)‖2 ≤ ‖(x̂, ŷ, 0, 0, 0)‖2
for all solutions (x̂, ŷ, 0, 0, 0) of (5.2), which implies that x∗ and y∗ are the least 2-norm
solutions of the primal (1.1) and the dual (1.2), respectively.

In summary, when applied to the linear program (5.2), Algorithm 3.1 is convergent
whether (1.1) is solvable or not. For solvable problems, the algorithm will converge to
(x∗, y∗, 0, 0, 0), where x∗ and y∗ are the least 2-norm solutions of the primal and the
dual problems (1.1) and (1.2); otherwise, Algorithm 3.1 converges to a point which
gives a minimal KKT residual.
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6. Numerical results. While the linear system (3.2) is (m + n)-dimensional,
we now point out that this system can be further reduced so that, at each step, only
an m- or n-dimensional linear system needs to be solved. In fact, (3.2) can be written
as

(Sk + (µk)pXk)∆x−XkAT∆y = µke−Xk
(
(µk)pxk −AT yk + c

)
,(6.1)

(Zk + (µk)pY k)∆y + Y kA∆x = µke− Y k
(
Axk + (µk)pyk − b

)
.(6.2)

When m ≥ n, eliminating ∆y leads to

Mk∆x = µke−Xk
(
(µk)pxk −AT yk + c

)
+XkAT (Zk + (µk)pY k)−1

[
µke− Y k

(
Axk + (µk)pyk − b

)]
,

where Mk is an n× n matrix given by

Mk = Sk + (µk)pXk +XkAT (Zk + (µk)pY k)−1Y kA.

Thus, we can obtain ∆x by solving the above system and then set

∆y = (Zk + (µk)pY k)−1
[
µke− Y k

(
Axk + (µk)pyk − b

)− Y kA∆x
]
.

If m ≤ n, in the same way, eliminating ∆x from (6.1) and (6.2) yields

Hk∆y = µke− Y k
(
(µk)pyk +Axk − b

)
− Y kA(Sk + (µk)pXk)−1

[
µke−Xk

(
(µk)pxk −AT yk + c

)]
,

where Hk is an m×m matrix given by

Hk = Zk + (µk)pY k + Y kA(Sk + (µk)pXk)−1XkAT .

Since system (3.2) has a unique solution, it follows that both Mk and Hk are nonsin-
gular. Thus, at each step of Algorithm 3.1, we only need to factorize a matrix of size
min(m,n)×min(m,n).

In numerical experiments, we took common parameters and starting points for
all the test problems. Parameters were set as p = 0.99, σ = 1e − 5, α1 = 0.9, and
α2 = 0.85. The starting point (x0, y0, s0, z0) was set as in Remark 3.1, where µ0 and
β were given by

µ0 = max

{
1,

∥∥∥∥
(

AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
+ 1, β =

η + 1

2
.

Before stating our numerical results on some test problems, let us first see a very
simple example with multiple solutions. Consider the following problem:

min{−x1 − 2x2 : x1 + 2x2 ≤ 8, x2 ≤ 2, x1, x2 ≥ 0}.
It is easy to check that the solution set is {(x∗

1, x
∗
2) = (4 + 4t, 2 − 2t) : 0 ≤ t ≤ 1}.

Under a stopping rule of µk < 10−12, the following primal and dual solutions were
obtained by the proposed algorithm:

x∗ = (4.0000047139881082, 1.9999976430060873),

y∗ = (0.9999999999886861, 1.6971276334429352e− 11),
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Table 6.1

Name Rows Cols Nonz µk ‖F0‖∞ Objective
values

CPU
(secs)

beale 3 4 9 7.5e-11 2.0e-10 -1.25 .001
padberg 4 6 22 7.3e-09 1.8e-08 3.544147e-08 .001
refinery 22 14 63 9.6e-11 1.9e-09 -5.166833e+01 .08
william1 5 12 25 9.2e-11 1.6e-10 1.158471e-09 .002
william2 9 7 18 9.9e-11 3.3e-09 2.599999e+01 .05
william3 11 12 36 9.9e-10 1.3e-07 2.591899e+04 .4
afiro 35 32 117 9.9e-09 6.0e-06 -4.647531e+02 5.916
sc50a 70 48 182 8.9e-09 3.6e-06 -6.457507e+01 8.983
sc50b 70 48 170 9.9e-09 3.9e-06 -6.999999e+01 9.863
blend 117 83 789 9.9e-09 1.0e-06 -3.081215e+01 30.516
share2b 109 79 778 9.9e-09 3.7e-06 -4.157338e+02 37.600
sc105 150 103 402 9.8e-09 8.5e-06 -5.220206e+01 84.432
sc205 296 203 800 9.9e-09 2.8e-06 -5.220206e+01 325.632
scorpion 668 358 2526 9.8e-07 5.4e-05 1.878440e+03 > 500

with ∞-norm residual ‖F0(x
k, yk, sk, zk)‖∞ = 1.1314044977885658e − 11. The cor-

responding objective value of the original problem is −8.0000000000002828. We note
that (4, 2) and (1, 0) are exact least 2-norm solutions of the primal and the dual prob-
lems, respectively, and the exact optimal objective value is −8. This example shows
that the proposed algorithm does locate the least 2-norm solution of the problem.

We now give a set of test examples and corresponding numerical results. We used
µk ≤ 10−10 or 10−8 as the stopping criterion for most of these test problems. All
tests were carried out on a DEC Alpha V 4.0 machine. Results for 14 test problems
are summarized in Table 6.1 and Table 6.2. The first problem was the well-known
Beale’s example and the second was Padberg’s example [20, p. 60]. Both problems
are cycling for simplex methods. The problem “refinery” can be found in [20]. The
problems “william1,” “william2,” and “william3” were taken from [31] (M = 50000
was used in the problem “william3”). All other test problems here were taken from
the collection of LP Data in NETLIB. In our code, all problems were transformed into
the form of (1.1). To this end, all original inequalities “≤” became “≥” by multiplying
both sides of inequalities by −1, and all equations were written equivalently as two
inequalities. This preprocessing makes no change in the number of columns and keeps
the sparsity of coefficient matrix A. However, the number of rows will be increased
when the problem has equation constraints. The numbers of rows and nonzero (Nonz)
entries of A in Table 6.1 are those resulting from this preprocessing. Under our
stopping criterion, the computational optimal objective values, the values of µk, the
∞-norm residual ‖F0(x

k, yk, sk, zk)‖∞, and CPU time are listed in Table 6.1. The
computational primal and dual least 2-norm solutions for these test problems are
given in Table 6.2, where only the first six components are listed due to the space
limitation.

From our results, we note that Algorithm 3.1, using the initial strategy in Re-
mark 3.1, is efficient for small-scale linear programs. However, the convergence rate
of the algorithm becomes slow as the dimension of problems increases. The main
reason might be that the stepsize of Armijo-type linear searches may become smaller
and smaller when iterates approach the least 2-norm solution. We also note that the
matrices Mk and Hk are dense in general cases. Thus, when m and n are large, at
each iteration a large and dense matrix needs to be factorized, which takes a certain
amount of CPU time. Thus, the current version of the algorithm is not so efficient
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for solving large-scale problems. Some modified versions of the algorithm are worth
studying in the future in order to improve the convergence rate. A possible method
is to use a certain approximate Newton step to accelerate the iteration, as we have
done for nonlinear complementarity problems in [37].

Table 6.2

Name Primal and dual least 2-norm solution (x∗, y∗)

beale
x∗ = (1.00000, 0.00000, 1.00000, 0.00000)
y∗ = (0.00000, 1.50000, 1.25000)

padberg
x∗ = (1.29177, 0.00000, 0.64588, 0.00000, 0.64588, 0.00000)
y∗ = (0.91360, 0.91342, 0.91360, 0.91342)

refinery
x∗ = (15.00000, 10.00000, 3.50000, 6.25000, 8.00000, 1.55000, . . .)
y∗ = (0.06333, 1.62166, 0.81166, 4.99246, 4.99246, 2.51578, . . .)

william1
x∗ = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, . . .)
y∗ = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000)

william2
x∗ = (0.00000, 4.16154, 17.00000, 7.00000, 17.00000, 22.00000, . . .)
y∗ = (0.00000, 0.00000, 1.00000, 0.00000, 1.00000, 1.00000, . . .)

william3
x∗ = (0.00000, 0.00000, 39.00000, 87.00000, 56.00000, 0.00000, . . .)
y∗ = (0.00000, 26.00000, 5.00000, 111.00732, 94.00864, 97.00838, . . .)

afiro
x∗ = (80.00000, 25.50000, 54.50000, 84.79999, 36.85030, 0.00000, . . .)
y∗ = (0.65036, 0.91201, 0.34477, 0.22857, 0.91201, 0.91201, . . .)

sc50a
x∗ = (0.00000, 16.56869, 64.57507, 64.57507, 64.57507, 0.00000, . . .)
y∗ = (0.00000, 0.13869, 0.91201, 0.81390, 0.85202, 0.78381, . . .)

sc50b
x∗ = (29.99999, 28.00000, 42.0000, 69.99999, 69.99999, 29.99999, . . .)
y∗ = (0.05836, 0.91201, 0.91201, 0.82870, 0.82871, 0.82871, . . .)

blend
x∗ = (20.94480, 10.17092, 11.24735, 2.98109, 0.65970, 0.47592, . . .)
y∗ = (0.21613, 0.22386, 0.26003, 0.26003, 0.25294, 0.25983, . . .)

share2b
x∗ = (1.95814, 2.02325, 0.00000, 0.00000, 0.00000, 0.00000, . . .)
y∗ = (0.12564, 0.00000, 0.00000, 0.00000, 0.00000, 0.33250, . . .)

sc105
x∗ = (0.00000, 10.84845, 52.20206, 52.20206, 52.20206, 0.00000, . . .)
y∗ = (0.00000, 0.16419, 0.91201, 0.79709, 0.84241, 0.76248, . . .)

sc205
x∗ = (0.00000, 10.84845, 52.20206, 52.20206, 52.20206, 0.00000, . . .)
y∗ = (0.00000, 0.16136, 0.91201, 0.79872, 0.84356, 0.76481, . . .)

scorpion
x∗ = (0.00871, 0.00211, 0.00023, 0.00452, 1.42494, 0.00250, . . .)
y∗ = (0.9293, 113.1449, 115.4149, 115.4149, 0.0000, 421.2979, . . .)

7. Conclusions. In this paper, we have introduced a new concept of a regular-
ized central path for linear programs, which is different from the conventional central
path. The regularized central path always exists for all linear programs, even if the
linear program is unsolvable. If a linear program is solvable, the regularized central
path converges, as the parameter µ tends to zero, to the unique least 2-norm solution
of the linear program. As a result, we propose in this paper a regularized central
path-based path-following algorithm for solving linear programming problems. This
is a new alternative algorithm for locating the least 2-norm solution of a linear pro-
gram. When applied to the equivalent problem (5.2), the iterative sequence generated
by this algorithm is always convergent, whether or not the problem is solvable. If the
primal problem is solvable, the limiting point of the sequence is the least 2-norm
solution; otherwise, the limiting point gives a minimal KKT residual.

It should be pointed out that most of the existing algorithms for the least-norm so-
lution of the linear program are akin to the canonical Tikhonov regularization method.
One significance of the proposed algorithm is that it introduces the framework of
interior-point methods into the canonical Tikhonov regularization method. As a re-
sult, the proposed algorithm can be viewed as a new effective implementation version
of the classical Tikhonov regularization method. In addition, the convergence of the
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algorithm needs no assumption when applied to the reformulated problem (5.2).
From our results, some interesting problems arise: What is the rate of convergence

of Algorithm 3.1? Can certain modified versions of the algorithm be superlinearly (or
quadratically) convergent in the neighborhood of the least 2-norm solution of a linear
program? Can the least 2-norm solution of a linear program be solved in polynomial
time? We believe that these problems are worth studying in the future.
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Abstract. Relying on a general variational method developed by the authors and Lucchetti
[Nonlinear Anal., to appear] (the origin of which goes back to Ioffe [Trans. Amer. Math. Soc., 251

(1979), pp. 61–69]), we give a formula for the best Hoffman constant σ = infx/∈PA,b

‖(Ax−b)+‖∞
d(x,PA,b)

,

where PA,b = {x : Ax ≤ b} is a nonempty polyhedron in R
n. We also sharpen some results of Luo

and Tseng [SIAM J. Matrix Anal. Appl., 15 (1994), pp. 636–659] by characterizing the continuity
set of some Hoffman constants and by pointing out their locally Lipschitzian character. We apply
these results to the study of the behavior of the solution set of a linear program infAx≤b u

Tx with
respect to (A, b, u).
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1. Introduction. It is well known since Hoffman [14] that, assuming that the
polyhedron PA,b = {x ∈ R

n : Ax ≤ b} is nonempty, there exists a positive constant
K such that

K sup
1≤j≤m

(aT

j x− bj)
+ ≥ d(x, PA,b)

for every x ∈ R
n. Recently, some estimates for this kind of constant were given in

[4, 7, 11, 16, 18, 17], and for a more general case in [5]. When dealing with the question
of the dependence of PA,b upon the data (A, b), the crucial point is to guarantee that
the constant K remains bounded under perturbations of A and b, a central question
in the paper of Luo and Tseng [20]; see also [19, 9].

In this paper, we consider this problem from a variational point of view, along
the lines developed in [3]. This approach naturally leads us to use a constant σ which
is just the inverse of K, that is,

sup
1≤j≤m

(aT

j x− bj)
+ ≥ σd(x, PA,b)

for every x ∈ R
n. In turns out that the variational nature of this constant allows

for a new sensitivity analysis. Our method also permits us to give a formula for the
optimal constant σ.

With these preliminaries in hand, it is then easy to study the behavior of PA,b
with respect to the pair (A, b), and that of the solution set of the associated linear
programming problems. Moreover, we provide new information on the classical sta-
bility result (see, e.g., [1, 22]) by giving conditions ensuring the lower semicontinuity
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(in fact, the local Lipschitz character) of the solution set mapping with respect to the
whole data set.

Finally, let us point out that the method developed here can be used to treat the
case of polyhedra involving explicit equalities and to study the stability of semidefinite
convex quadratic problems; see [12].

The paper is organized as follows. In section 2, we basically recall the general
method introduced in [3], and we specialize it to the convex case. This leads to
the computation of the best Hoffman constant for inequality systems, which is done
in section 3. In section 4, we give a necessary and sufficient condition for the local
Lipschitz property of a Hoffman constant with respect to the matrix A. The Lipschitz
behavior of the solution set with respect to all data is then derived in section 5.

2. A general method. In this section, we let X be a metric space endowed
with the metric d, and f : X → R ∪ {+∞} be a lower semicontinuous function. We
respectively denote by Br(x) and B̄r(x) the open and closed ball of radius r > 0
centered at x ∈ X. If x ∈ X and Y ⊂ X, we set

d(x, Y ) := inf{d(x, y) : y ∈ Y } ,

with the convention that d(x, ∅) = +∞ (according to the general convention inf ∅ =
+∞). For c ∈ R, we let

[f≤c] := {x ∈ X : f(x) ≤ c} , [f>c] := {x ∈ X : f(x) > c} ,

respectively, denote the closed sublevel and open upper-level set of f at level c. We
further denote by

domf := {x ∈ X : f(x) < +∞}

the effective domain of f and say, as usual, that f is proper if domf �= ∅. These
notations will be used throughout the paper.

We first recall the notion of strong slope introduced by DeGiorgi, Marino, and
Tosques [8].

Definition 2.1. The (strong) slope of f at x ∈ domf is denoted and defined by

|∇f |(x) :=




lim sup
y→x

f(x)− f(y)

d(x, y)
if x is not a local minimum of f ,

0 if x is a local minimum of f .

If x /∈ domf , we set |∇f |(x) = +∞.
The following notion also plays a central role in what follows.
Definition 2.2. For c ∈ R, we let σc(f) denote the supremum of the σ’s in

[0,+∞[ such that

f(x)− c ≥ σd(x, [f≤c]) for every x ∈ [f>c] ,(2.1)

with the convention that σc(f) = 0 if [f≤c] = ∅. The extended real number σc(f) is
called the condition number of f at level c.

Introducing the notation s+ := max{s, 0}, s ∈ R ∪ {+∞}, it is clear that (2.1)
can equivalently be written in the form:

(f(x)− c)+ ≥ σd(x, [f≤c]) for every x ∈ X .
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Also, it is clear that

σc(f) = inf
f(x)>c

f(x)− c

d(x, [f≤c])(2.2)

(with the convention that the right-hand term is zero if [f≤c] = ∅). Finally, observe
that

σc(f) = +∞ ⇐⇒ domf ⊂ [f≤c] .(2.3)

The following proposition, relying on Ekeland’s variational principle [10], states
in terms of the strong slope a basic fact we need. (See the beginning of [3, section 2]
for more details.)

Proposition 2.3. Let (X, d) be a complete metric space, and f : X → R∪{+∞}
be a (proper) lower semicontinuous function. Let x̄ ∈ X, σ > 0, and r > 0 be such
that

f(x̄) < inf
B̄r(x̄)

f + σr .

Then there exists x ∈ Br(x̄) such that |∇f |(x) < σ.
We readily see from the proposition that for any c ∈ R we have that [f>c] ∩

dom|∇f | is dense in [f>c] ∩ domf , and that

inf
[f>c]

|∇f | > 0 =⇒ [f≤c] �= ∅ .

The following result, which is our main tool in this paper, sharpens [3, Theorem
3.1, Remark 3.2] when dealing with the strong slope. For completeness, we give a
proof below.

Theorem 2.4. Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be a
proper lower semicontinuous function, and a ∈ R. Then

inf
[f>a]

|∇f | = inf
c≥a

σc(f) .

Proof. We first show that σc(f) ≥ inf [f>a] |∇f | for any c ≥ a. We may, of course,
assume that inf [f>a] |∇f | > 0, in which case [f≤a] �= ∅ (as observed above), and we
consider a positive real number σ ≤ inf [f>a] |∇f |. Assume that there are some c ≥ a
and x̄ ∈ [f>c] with

f(x̄)− c < σd(x̄, [f≤c]) .

Set r := d(x̄, [f≤c]) > 0, g := (f − c)+ ≥ 0, i.e., g(x) := sup{f(x)− c, 0}, so that

g(x̄) < inf
B̄r(x̄)

g + σr .

According to Proposition 2.3, we find x ∈ Br(x̄) with |∇g|(x) < σ. By definition of
r, we see that f(x) > c, so that |∇f |(x) = |∇g|(x) < σ, which is not true. Hence,

f(x)− c ≥ σd(x, [f≤c]) for all c ≥ a and all x ∈ [f>c] ,

showing that σc(f) ≥ σ, and the conclusion.
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Conversely, we may assume that infc≥a σc(f) > 0 and that [f>a]∩ domf �= ∅, so
let 0 < σ < σc(f) for every c ≥ a (in particular, [f≤a] �= ∅), let x ∈ [f>a] ∩ domf ,
and set cn := f(x) − 1/n for n ∈ N large enough so that cn ≥ a and σ > 1/n. For
each n ∈ N, let xn ∈ [f≤cn] such that

f(x)− cn ≥ (σ − 1/n)d(x, xn) .

Then we have

0 < d(x, xn) ≤ f(x)− cn
σ − 1/n

→ 0 as n→∞ ,

f(x)− f(xn)

d(x, xn)
≥ f(x)− cn

d(x, xn)
≥ σ − 1/n → σ as n→∞ ,

showing that |∇f |(x) ≥ σ, and the conclusion follows.
We now specialize the previous result to the case of convex functions defined on

Banach spaces. Let X be a Banach space, endowed with a norm ‖·‖. We denote by
X∗ the topological dual of X, and by d∗ the metric associated with the dual norm.
Recall that if f : X → R ∪ {+∞} is a convex lower semicontinuous function, the
(Fenchel) subdifferential of f at x ∈ domf is given by

∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉} .
Proposition 2.5. Let X be a Banach space and f : X → R∪{+∞} be a proper,

convex, and lower semicontinuous function. Then

(a) |∇f |(x) = d∗(0, ∂f(x)) for every x ∈ X;

(b) for any a ∈ R, it holds that

σa(f) = inf
c≥a

σc(f) .

Proof. Part (a) is a well-known fact; we sketch the proof for the reader’s con-
venience. Let x ∈ domf . The inequality |∇f |(x) ≤ d∗(0, ∂f(x)) follows from the
definitions. Indeed, we may assume that |∇f |(x) > 0. Letting 0 < σ < |∇f |(x), we
find y ∈ X, y �= x, such that

f(x)− f(y) ≥ σ‖x− y‖ ,
so that ‖ξ‖∗ ≥ σ whenever ξ ∈ ∂f(x). To prove the reverse inequality, we may assume
that d∗(0, ∂f(x)) > σ > 0, so that x is not a minimum point of f . Using a separation
argument (see, e.g., [6, Lemma]), we find y ∈ X such that

f(y)− f(x) < −σ‖x− y‖ ,
due to the convexity of f , which further implies that for small t > 0

f(x + t(y − x))− f(x)

t‖x− y‖ < −σ ,

from which we get that |∇f |(x) ≥ σ.
For part (b), we need to show that σa(f) ≤ σc(f) if c > a. We may assume (we

are getting used to it now) that σa(f) > σ > 0, so that [f≤a] �= ∅. Let c > a; if
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[f>c]∩ domf = ∅, then σc(f) = +∞. Otherwise, let x ∈ [f>c]∩ domf , and let ε > 0
and y ∈ [f≤a] be such that

‖x− y‖ ≤ (1 + ε)d(x, [f≤a]) ,

so that

f(x)− a

‖x− y‖ ≥
σd(x, [f≤a])
‖x− y‖ ≥ σ

1 + ε
.

As the convex function f is finite on [x, y], it is continuous on [x, y]; thus we find a
point z in the open segment ]x, y[ such that

c = f(z) ≤ ‖z − y‖
‖x− y‖f(x) +

‖z − x‖
‖x− y‖a.

Hence

f(x)− c ≥ f(x)

(
1− ‖z − y‖
‖x− y‖

)
− ‖z − x‖
‖x− y‖a

= (f(x)− a)
‖x− z‖
‖x− y‖ ≥

σ

1 + ε
‖x− z‖ ≥ σ

1 + ε
d(x, [f≤c]) ,

showing that σc(f) ≥ σ/(1 + ε), whence σc(f) ≥ σ from the arbitrariness of ε, and
the conclusion follows.

Combining Theorem 2.4 and Proposition 2.5 (recall (2.2)), we thus obtain the
following theorem.

Theorem 2.6. Let X be a Banach space, f : X → R∪{+∞} be a proper, convex,
and lower semicontinuous function, and a ∈ R. Then

inf
x∈[f>a]

d∗(0, ∂f(x)) = σa(f) = inf
x∈[f>a]

f(x)− a

d(x, [f≤a])

(with the convention that the right-hand member is zero if [f≤a] = ∅).
Remark 2.1. (i) Theorem 2.6 is sharper than some results of a similar type in

Auslender, Cominetti, and Crouzeix [2, section 6], where X = R
n and the additional

assumption that infRn f < a is made.
(ii) Let R

n be endowed with the Euclidean norm, let f : R
n → R ∪ {+∞} be a

proper, convex, lower semicontinuous function, and assume that [f≤0] �= ∅. In this
specific setting, Lewis and Pang showed in [17, Theorem 1] that for any γ > 0 it
holds that γf(x)+ ≥ d(x, [f≤0]) for all x ∈ R

n if and only if f ′(x; d) ≥ γ−1‖d‖ for all
x ∈ f−1(0) and all d ∈ N[f≤0](x), where f ′(x; d) denotes the directional derivative of
f at x in the direction d, and N[f≤0](x) denotes the normal cone to [f≤0] at x. Using
our notation, this can be rephrased as σ0(f) = κ whenever

κ := inf
{x∈f−1(0), d∈N[f≤0](x), ‖d‖=1}

f ′(x; d) > 0 .

Thus, letting

σ := inf
x∈[f>0]

d(0, ∂f(x)) ,
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we must have κ = σ in this situation, according to Theorem 2.6. It is indeed easy
to see, from the definitions and convex analysis, that σ ≥ κ. On the other hand,
we remark that when dealing with finite systems of linear inequalities, it is straight-
forwardly seen that the condition “σ > 0” holds (see Lemma 3.2 below), while the
condition “κ > 0” is not so easy to establish.

(iii) We put in Definition 2.2 that σc(f) = 0 whenever [f≤c] = ∅. But it may well
happen that σc(f) = 0 while [f≤c] �= ∅. For example, let X be a real Hilbert space
endowed with an orthonormal basis (ek)k≥1, and let f(x) := 1

2

∑∞
k=1 k

−2x2
k, where

x =
∑∞
k=1 xkek, so that ∇f(x) =

∑∞
k=1 k

−2xkek (the gradient of f at x). Of course,
[f≤0] �= ∅, while f(nen) = 1

2 and ∇f(nen) = en/n → 0 as n → ∞, showing that
σ0(f) = 0.

3. Sharp Hoffman estimate. In the remainder of the paper, we shall assume
that R

n is endowed with a norm ‖·‖, the dual norm of which is denoted by ‖·‖∗, with
associated metric d∗.

We denote by Mm×n the set of m × n real matrices, and if A ∈ Mm×n, then
we let aT

1 , . . . , a
T
m denote its rows, where a1, . . . , am ∈ R

n. For (a nonempty) J ⊂
[1,m] := {1, . . . ,m}, we set aJ := {aj : j ∈ J}, and we let co(aJ) and pos(aJ),
respectively, denote the convex hull and the closed convex cone generated by the set
aJ .

Given b ∈ R
m, we denote by PA,b the polyhedron defined by

PA,b := {x ∈ R
n : Ax ≤ b} = [f≤0] ,

where

f(x) := sup
1≤j≤m

(aT

j x− bj) .(3.1)

For each x ∈ R
n, we have (see, e.g., [23] or [13])

∂f(x) = co(aJA,b(x)) ,

where

JA,b(x) := {j ∈ [1,m] : aT

j x− bj = f(x)} .
In this section, we give a new formula for the best Hoffman constant for systems
of inequalities, and we discuss its relationship with the Hoffman constant given in
[4, 11, 18]. We also give another formula for our constant that will be useful, in the
next section, for the study of its dependence with respect to (A, b). We start with
two preliminary lemmas.

Lemma 3.1. Let a1, . . . , ap ∈ R
n be such that 0 /∈ co(a[1,p]). Then there exists

J ⊂ [1, p] such that d∗(0, co(aJ)) = d∗(0, co(a[1,p])) and the vectors (aj)j∈J are linearly
independent.

Proof. Let x ∈ co(a[1,p]) with ‖x‖∗ = d∗(0, co(a[1,p])) �= 0. According to
Carathéodory’s theorem (see, e.g., [24, Corollary 7.1j, p. 94]), and since x belongs
to the boundary of co(a[1,p]), there exists J ⊂ [1, p] such that co(aJ) is a simplex of
dimension at most n − 1 containing x—thus ‖x‖∗ = d∗(0, co(aJ)). Since 0 /∈ co(aJ),
the vectors (0, aj)j∈J also are affinely independent, so that the vectors (aj)j∈J are
linearly independent.

In what follows, we shall naturally assume that the matrix A is not the zero
matrix; we shall denote this assumption by A ∈M∗

m×n. This is equivalent to σ0(f) <
+∞ (recall (2.3)).
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Lemma 3.2. Let A ∈M∗
m×n and b ∈ R

m. Then PA,b �= ∅ if and only if
min
f(x)>0

d∗(0, ∂f(x)) = min
x/∈PA,b

d∗(0, co(aJA,b(x))) > 0 .

Proof. As ∂f(x) = co(aJA,b(x)) for every x ∈ R
n, it follows that

σ := inf
f(x)>0

d∗(0, ∂f(x)) = min
f(x)>0

d∗(0, ∂f(x)) ,

so that infRn f > 0 if σ = 0, yielding PA,b = [f≤0] = ∅. Conversely, we already
observed (see the previous section) that if σ > 0, then [f≤0] = PA,b �= ∅.

Theorem 3.3. Let A ∈M∗
m×n and b ∈ R

m. Assume that the polyhedron PA,b is
nonempty and set

σA,b := min{d∗(0, co(aJ)) : J ⊂ JA,b(x), x /∈ PA,b, (aj)j∈J linearly independent} > 0 .
(3.2)
Then

σA,b = inf
x/∈PA,b

f(x)

d(x, PA,b)
= inf
x/∈PA,b

sup1≤j≤m(aT
j x− bj)

d(x, PA,b)
,(3.3)

so that σA,b is the greatest positive constant τ such that

sup
1≤j≤m

(aT

j x− bj)
+ ≥ τd(x, PA,b) for all x ∈ R

n .

Proof. According to Lemma 3.2 and Lemma 3.1, we have that

σA,b = min
x/∈PA,b

d∗(0, co(aJA,b(x))) = min
x/∈PA,b

d∗(0, ∂f(x)) = min
f(x)>0

d∗(0, ∂f(x)) > 0 ,

(3.4)
and the conclusions are given by Theorem 2.6, applied to f with a := 0.

We now establish another useful lemma.
Lemma 3.4. Let c ≥ 0 and x ∈ [f>c]. Then there exist y ∈ R

n, J ⊂ JA,b(y),
and ζ ∈ co (aJ) such that f(y) = c, the vectors (aj)j∈J are linearly independent, and

d∗(0, ∂f(x)) ≥ ‖ζ‖∗ .
Proof. Let ξ ∈ ∂f(x) be such that d∗(0, ∂f(x)) = ‖ξ‖∗, and let y be a projection of

x on [f≤c]. Of course, f(y) = c and x �= y. We can find ζ̂ ∈ N[f≤c](y) = pos (aJA,b(y))

such that ‖ζ̂‖∗ = 1 and ζ̂T (x−y) = ‖x−y‖ (where N[f≤c](y) denotes the normal cone
to [f≤c] at the point y). From Carathéodory’s theorem (see, e.g., [24, Corollary 7.1i,
p. 94]), there exists J ⊂ JA,b(y) such that the vectors (aj)j∈J are linearly independent

and ζ̂ ∈ pos (aJ). It follows that there exists λ > 0 such that ζ := λζ̂ ∈ co (aJ) ⊂
∂f(y) satisfies ζT (x− y) = ‖ζ‖∗‖x− y‖, and thus

‖ζ‖∗‖x− y‖ ≤ f(x)− f(y) ≤ ξT (x− y) ≤ ‖ξ‖∗‖x− y‖ ,
yielding ‖ξ‖∗ ≥ ‖ζ‖∗, from which our assertion follows.

Proposition 3.5. Let A ∈ M∗
m×n and b ∈ R

m such that PA,b �= ∅. Then, for
every ε > 0 we have

σA,b = min
ε≥f(x)>0

d∗(0, co (aJA,b(x))) .
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Proof. According to Lemma 3.4, applied with c := ε > 0, it holds that

inf
f(x)>ε

d∗(0, co (aJA,b(x))) ≥ inf
ε≥f(x)>0

d∗(0, co (aJA,b(x))) ,

and the assertion follows from (3.4).
Bergthaller and Singer proved in [4] that the constant

Cbs := max
{J⊂JA,b(x): x∈PA,b, (aj)j∈J lin. ind.}

max
{w∈R

J
+

: ‖
∑

j∈J
wjaj‖∗=1}

∑
j∈J

wj

satisfies

d(x, PA,b) ≤ Cbsf(x)
+ for all x ∈ R

n.

(We assume that PA,b �= ∅.) It was pointed out in [20] that the computation of this
type of Hoffman constant is quite involved and that it is not suitable for the sensitivity
analysis under perturbations of the matrix A. Consider the constant

σbs := min{d∗(0, co (aJ)) : J ⊂ JA,b(x), x ∈ PA,b, (aj)j∈J lin. ind.}

(to be compared with (3.2)), which has a clear geometric meaning. It turns out
that σbs = C−1

bs , the inverse of Cbs. If x ∈ PA,b and J ⊂ JA,b(x) is such that the
vectors in aJ are linearly independent, let w ∈ R

J
+ with ‖∑j∈J wjaj‖∗ = 1. Setting

uj := (
∑
i∈J wi)

−1wj ∈ R+, we have

∑
j∈J

uj = 1 and

∥∥∥∥∥∥
∑
j∈J

ujaj

∥∥∥∥∥∥
∗

=
1∑

j∈J wj
,

showing that σbs ≤ C−1
bs . Conversely, let u ∈ R

J
+ with

∑
j∈J uj = 1 and let z :=∑

j∈J ujaj . Setting wj := ‖z‖−1
∗ uj , we have

∥∥∥∥∥∥
∑
j∈J

wjaj

∥∥∥∥∥∥
∗

= 1 and
∑
j∈J

wj =
1

‖z‖∗ ,

showing that Cbs ≥ σ−1
bs .

It follows from these considerations and from Theorem 3.3 that σbs ≤ σA,b. How-
ever, this inequality can be seen directly. Indeed, given x̄ with f(x̄) > 0 such
that d∗(0, ∂f(x̄)) = minf(x)>0 d∗(0, ∂f(x)), Lemma 3.4 tells us that there exists
y ∈ [f≤0] = PA,b, J ⊂ JA,b(y) such that the vectors (aj)j∈J are linearly independent,
and ζ ∈ co (aJ) such that

σA,b = d∗(0, ∂f(x̄)) ≥ ‖ζ‖∗ ≥ σbs .

The following example shows that it may occur that σbs < σA,b.

Example 3.1. Let n = 2, m = 3, a1 = ( 1
0 ), a2 = ( 0

1 ), a3 = ( δδ ), with 0 < δ < 1/2,
and let b = 0 ∈ R

3. The admissible J ’s for the constant σA,b are {1}, {2}, and {1, 2},
yielding σA,0 =

√
2

2 , which is sharp. On the other hand, the admissible J ’s for the

constant σbs are {1}, {2}, {3}, {1, 2}, {1, 3}, and {3, 2}, leading to σbs = δ
√

2, which
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is not optimal. It can be observed from this example that the best Hoffman constant
depends on the right member b. Indeed, letting

b =


 0

0
−δ


 ,

the admissible J ’s are {1}, {2}, {3}, {1, 3}, and {2, 3}, so that σA,b = δ
√

2 in that
case.

4. Regularity of two Hoffman constants. In [20], Luo and Tseng gave a
necessary and sufficient condition on the matrix A ensuring that a Hoffman constant
is bounded away from zero near A. In this section we go one step further, by char-
acterizing the continuity of some Hoffman constants at A, and by showing that these
Hoffman constants have a Lipschitzian behavior near A whenever they are continuous
at A. The proof is very simple and geometric.

We consider the setMm×n of m× n real matrices A as endowed with the norm

‖A‖ := max
1≤j≤m

‖aj‖∗,

where, as before, aT
1 , . . . , a

T
m are the rows of A. For (a nonempty) J ⊂ [1,m], we

denote by AJ the matrix with rows (aT
j )j∈J , and by rank(aJ) the rank of aJ , which

is the column rank of the matrix AJ . Also, we respectively write bdry(co(aJ)) and
int(co(aJ)) to denote the boundary and interior of co(aJ).

The first Hoffman constant we shall deal with in this section assigns to the matrix
A ∈M∗

m×n the positive real number

σ(A) := min
{J⊂[1,m]: 0/∈co(aJ )}

d∗(0, co(aJ)) .(4.1)

If b ∈ R
m is such that PA,b �= ∅, we clearly have σ(A) ≤ σA,b (the sharp Hoffman

constant defined in (3.2); recall (3.4)), so that

sup
1≤j≤m

(aT

j x− bj)
+ ≥ σ(A)d(x, PA,b) for all x ∈ R

n ,

according to Theorem 3.3.
Theorem 4.1. Let A ∈M∗

m×n and assume that

0 /∈ bdry(co(aJ)) for all J ⊂ [1,m] .(4.2)

Then the function σ(·) defined in (4.1) is Lipschitz continuous near A.
Conversely, if 0 ∈ bdry(co(aJ)) for some J ⊂ [1,m], then for every b ∈ R

m such
that PA,b �= ∅, for every x ∈ PA,b, and for every ε > 0 there exist Aε ∈ Mm×n and
bε ∈ R

m such that

PAε,bε �= ∅ , lim
ε→0

(Aε, bε) = (A, b̂) , and lim
ε→0

σAε,bε = 0 ,

where b̂j = aT
j x if j ∈ J , and b̂j = bj if j /∈ J .

Proof. For Ã ∈Mm×n, let

J (Ã) := {J ⊂ [1,m] : 0 /∈ co(ãJ)} , J0(Ã) := {J ⊂ [1,m] : 0 ∈ co(ãJ)} .



922 D. AZÉ AND J.-N. CORVELLEC

If J ∈ J0(A), (4.2) tells us that 0 ∈ int(co(aJ)). Thus, there exists a neighborhood
N of A such that J := J (A) = J (Ã) and J0(A) = J0(Ã) whenever Ã ∈ N . Since
for any A1, A2 ∈ N and any J ∈ J , we have (with obvious notations and through a
straightforward computation)

d∗(0, co(a1
J)) ≤ d∗(0, co(a2

J)) + ‖A1 −A2‖ ,
we conclude that σ(A1) ≤ σ(A2) + ‖A1 − A2‖, and thus σ(·) is Lipschitz of rank 1
near A.

Conversely, assume that 0 ∈ bdry(co(aJ)) for some J ⊂ [1,m], so that there exists
y ∈ R

n such that y /∈ pos(aJ). We then find z ∈ R
n such that −yTz > 0 and aT

j z ≥ 0

for j ∈ J . Let b̃ ∈ R
m be such that Az ≤ b̃, b̃j ≥ 0 for all j’s, and b̃j = aT

j z for j ∈ J .
Given ε > 0, let Aε be the m× n matrix with rows (aεj)

T defined by

aεj := aj − εy for j ∈ J , and aεj := aj for j /∈ J .

Clearly, Aε → A as ε → 0. Now, let b ∈ R
m such that PA,b �= ∅, and let x ∈ PA,b.

For ε > 0, set

bεj := (aεj)
Tx + εb̃j for j ∈ J , and bεj := bj + εb̃j for j /∈ J .

Then bε → b̂ as ε→ 0, and it is straightforward to verify that x ∈ PAε,bε . Moreover,
we have

(aεj)
T (x + εz)− bεj = −ε2yTz > 0 for j ∈ J ,

while

(aεj)
T (x + εz)− bεj = aT

j x + εaT

j z − bεj ≤ 0 for j /∈ J ,

so that x+ εz /∈ PAε,bε and JAε,bε(x+ εz) = J . Keeping in mind that 0 ∈ co (aJ), we
conclude (recall (3.4)) that σAε,bε ≤ d∗(0, co(aεJ)) ≤ ε‖y‖∗ → 0 as ε→ 0.

Remark 4.1. Of course, assumption (4.2) can be written as

for all J ⊂ [1,m] , either 0 /∈ co(aJ) or 0 ∈ int(co(aJ)) ,(4.3)

which is equivalent to

0 /∈ co(aJ) for all J ⊂ [1,m] such that rank(aJ) < n .(4.4)

Indeed, it is clear that (4.3) implies (4.4); conversely, assume that (4.4) holds, and let
0 ∈ co(aJ) for some J ⊂ [1,m] with rank(aJ) = n. We can assume that

∑
j∈J tjaj = 0

with tj > 0, j ∈ J , and
∑
j∈J tj = 1. As vect (aJ) = R

n, it follows that pos (aJ) = R
n,

thus 0 ∈ int(co(aJ)), so that (4.3) holds true. Now, as 0 /∈ co(aJ) if and only if there
exists x ∈ R

n with AJx < 0, we observe that (4.2) is equivalent to assumption (a) of
[20, Theorem 2.2]:

for all J ⊂ [1,m] , either AJx < 0 is solvable or AJ has full column rank .(4.5)

Theorem 4.1 contains the quoted result of Luo and Tseng, with a simpler proof,
and an additional conclusion on the Lipschitz behavior of the Hoffman constant.
We also observe that Luo and Tseng mention in their paper that condition (4.5) is
difficult to verify in practice. On the contrary, our geometric assumption (4.2) has a
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clear geometric interpretation and seems easier to check, at least for rather “small”
matrices.

Remark 4.2. It is worth noticing that 0 ∈ int(co(aJ)) if and only if pos(aJ) =
R
n, which in turn is equivalent to the boundedness of every (nonempty) polyhedron

PAJ ,bJ .
It is also possible to get a result of local type, as in [20, Theorem 2.4], involving

a Hoffman constant τ(·) defined in a neighborhood of A (and a different assumption
than (4.2)), as we now show.

It is established in the first step of the proof of [20, Theorem 2.4] that, given

PA,b �= ∅, there exists a neighborhood N of (A, b) such that for every (Â, b̂) ∈ N and

every J ⊂ [1,m] such that PÂ,b̂ ∩ Â−1
J (b̂J) �= ∅, we have J ∈ IA,b, where

Â−1
J (b̂J) := {x ∈ R

n : âT

j x = b̂j for j ∈ J}
and

IA,b := {J ⊂ [1,m] : PA,b∩A−1
J (bJ) �= ∅}∪{J ⊂ [1,m] : PA,0∩A−1

J (0) �= {0}}.(4.6)

Choose N open and set, for Â ∈M∗
m×n,

τ(Â) := min
{J∈IA,b: 0/∈co âJ}

d∗(0, co(âJ)) .(4.7)

Given (Â, b̂) ∈ N such that PÂ,b̂ �= ∅, we can find ε > 0 such that {Â}×B̄ε(b̂) ⊂ N , so

that JÂ,b̂(x) ∈ IA,b for any x such that 0 < f̂(x) ≤ ε (where f̂(x) := sup1≤j≤m(âT
j x−

b̂j)). Since

σÂ,b̂ = min
ε≥f̂(x)>0

d∗
(
0, co

(
aJÂ,b̂(x)

))
,

according to Proposition 3.5, it follows that τ(Â) is a Hoffman constant for all (Â, b̂) ∈
N̂ such that PÂ,b̂ �= ∅.

Theorem 4.2. Let (A, b) ∈M∗
m×n × R

m with PA,b �= ∅ be such that
0 /∈ bdry(co(aJ)) for all J ∈ IA,b ,(4.8)

where IA,b is defined in (4.6). Then the function τ(·) defined in (4.7) is Lipschitz
continuous near A.

Conversely, if 0 ∈ bdry(co(aJ)) for some J ∈ IA,b, then for any ε > 0 there exist
Aε ∈Mm×n and bε ∈ R

m such that

PAε,bε �= ∅ , lim
ε→0

(Aε, bε) = (A, b) , and lim
ε→0

σAε,bε = 0 .

Proof. The first part of the proof goes exactly as that of the first part of
Theorem 4.1. Conversely, assume that 0 ∈ bdry(co(aJ)) for some J ∈ IA,b. If
PA,b∩A−1

J (bJ) �= ∅, then the conclusion follows from the converse part of Theorem 4.1

by taking x ∈ PA,b ∩ A−1
J (bJ), so that b̂ = b. Assuming that PA,0 ∩ A−1

J (0) �= {0},
we find y, z ∈ R

n such that Az ≤ 0, AJz = 0, and yTz > 0. Let x ∈ PA,b and t > 0.
Setting rj := bj − aT

j x + t for j ∈ J , let Aε be the m × n matrix with rows (aεj)
T

defined by

aεj := aj + εrjy for j ∈ J, and aεj := aj for j /∈ J .
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Given λ ∈ R, we have for j ∈ J

(aεj)
T (x + λz) = aT

j x + εrjy
Tx + λεrjy

Tz = bj + t− rj(1− εyTx− λεyTz) ,

while for j /∈ J

(aεj)
T (x + λz) = aT

j x + λaT

j z ≤ bj + λaT

j z .

In particular, we have

(aεj)
Tx = aT

j x + εrjy
Tx ≤ bj + ε‖r‖∞|yTx| =: bεj for j ∈ J

and

(aεj)
Tx ≤ bj =: bεj for j /∈ J ,

so that bε → b as ε → 0, and x ∈ PAε,bε . On the other hand, choosing λ = 1−εyT x
εyT z

and ε small enough in order that λ > 0 and ε‖r‖∞|yTx| < t, we get

(aεj)
T (x + λz)− bεj = t− ε‖r‖∞|yTx| > 0 for j ∈ J

and

(aεj)
T (x + λz)− bεj = λaT

j z ≤ 0 for j ∈ J ,

showing that x + λz /∈ PAε,bε and JAε,bε(x + λz) = J . Relying on the fact that
0 ∈ co(aJ), we conclude (recall (3.4)) that σAε,bε ≤ d∗(0, co(aεJ)) ≤ ε‖r‖∞‖y‖∗ → 0
as ε→ 0.

Remark 4.3. Theorem 4.2 extends [20, Theorem 2.4] since, arguing in a similar
way as in Remark 4.1, one can see that condition (4.8) is equivalent to condition (a)
in the mentioned result. Our proof of the necessary part is similar to, but still shorter
and simpler than, that in [20, Theorem 2.4].

5. Lower stability in linear programming. Let us fix some notations. If Y
and Z are subsets of R

n, we let

eH(Y,Z) := sup
y∈Y

d(y, Z)

denote the Hausdorff excess of Y with respect to Z, with the convention that

eH(∅, Z) = 0,

and

dH(Y,Z) := max{eH(Y,Z), eH(Z, Y )}
denote the Hausdorff distance between Y and Z. All other notations used in this
section have already been introduced.

We consider the linear programming problem

min
x∈PA,b

uTx ,

where u ∈ R
n, and its dual problem

min
y≥0 , AT y=−u

yT b .
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We set

µA,b,u := inf
x∈PA,b

uTx ,

and we denote by SA,b,u (resp., S∗
A,b,u) the solution set of the primal (resp., dual)

problem. It is known (see [1, 22]) that a necessary and sufficient condition ensuring

that SÂ,b̂,û �= ∅ and S∗
Â,b̂,û

�= ∅ for all (Â, b̂, û) near (A, b, u) is

0 ∈ int (co (a[1,m] ∪ {u}))(5.1)

and

there exists x ∈ R
n such that Ax < b .(5.2)

Condition (5.1) is equivalent to

rank (A) = n , and [ATy = u , y < 0] is solvable .

Moreover, if these two conditions are in force, we have that SA,b,u∪S∗
A,b,u is bounded,

that

lim
(Â,b̂,û)→(A,b,u)

µÂ,b̂,û = µA,b,u ,

and that the multifunctions (Â, b̂, û) �→ SÂ,b̂,û and (Â, b̂, û) �→ S∗
Â,b̂,û

are Hausdorff

upper semicontinuous at (A, b, u); that is,

lim
(Â,b̂,û)→(A,b,u)

eH(SÂ,b̂,û, SA,b,u) = 0 and lim
(Â,b̂,û)→(A,b,u)

eH(S∗
Â,b̂,û

, S∗
A,b,u) = 0 ,

(see, e.g., [22, Theorem 1]), and, in particular, SÂ,b̂,û is uniformly bounded for (Â, b̂, û)

close to (A, b, u).
It is of interest to know conditions ensuring that these multifunctions are also

lower semicontinuous at (A, b, u); that is, ensuring that every solution of the unper-

turbed problem can be approached by a solution of the perturbed problem as (Â, b̂, û)
goes to (A, b, u). This is what we do in the following result.

Theorem 5.1. Assume that conditions (5.1) and (5.2) hold and that

0 /∈ bdry(co(aJ ∪ {εu})) for all J ⊂ [1,m] and for ε = 0, 1 .(5.3)

Then there exist constants α, β > 0 and neighborhoods N of A, B of b, and U of u
such that for all Ai ∈ N , bi ∈ B, and ui ∈ U , i = 1, 2, we have

|µA1,b1,u1 − µA2,b2,u2 | ≤ α(‖A2 −A1‖+ ‖u2 − u1‖∗ + ‖b2 − b1‖∞)(5.4)

and

dH(SA1,b1,u1 , SA2,b2,u2) ≤ β(‖A2 −A1‖+ ‖u2 − u1‖∗ + ‖b2 − b1‖∞) .(5.5)

Proof. Let r > 0 and V be a neighborhood of (A, b, u) such that ∅ �= SÂ,b̂,û ⊂ B̄r(0)

for all (Â, b̂, û) ∈ V. Using condition (5.3) with ε = 0, and applying Theorem 4.1, we

can assume that for some constant γ > 0 we have σ(Â) ≥ γ whenever (Â, b̂, û) ∈ V.
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Let (A1, b1, u1), (A2, b2, u2) ∈ V and x1 ∈ SA1,b1,u1 . Then let x2 ∈ PA2,b2 be such
that

γ‖x1 − x2‖ = γd(x1, PA2,b2) ≤ sup
1≤j≤m

((a2
j )

Tx1 − b2j )
+ ≤ r‖A1 −A2‖+ ‖b1 − b2‖∞ .

Since

µA2,b2,u2 ≤ (u2)Tx2 = µA1,b1,u1 + (u2 − u1)Tx1 + (u2)T (x2 − x1) ,

we derive

µA2,b2,u2 − µA1,b1,u1 ≤ r‖u2 − u1‖∗ + γ−1‖u2‖∗(r‖A1 −A2‖+ ‖b1 − b2‖∞) ,

yielding (5.4) after interchanging (A2, b2, u2) with (A1, b1, u1).

Let us now set, for (Â, b̂, û) ∈ V,

Ã :=

(
Â
ûT

)
and b̃ :=

(
b̂

µÂ,b̂,û

)
,

so that SÂ,b̂,û = PÃ,b̃ ⊂ B̄r(0). Using condition (5.3) with ε ∈ {0, 1} and applying

Theorem 4.1 again, we find a neighborhood Ñ of (A, uT )T and a constant δ > 0 such
that σ(Ã) ≥ δ for all Ã ∈ Ñ . We may choose Ñ and a neighborhood B̃ of b in such
a way that Ñ × B̃ ⊂ V. Let (A1, u1, b1), (A2, u2, b2) ∈ Ñ × B̃, and x1 ∈ SA1,b1,u1 . We
have

δ d(x1, SA2,b2,u2) ≤ sup
1≤j≤m

((a2
j )

Tx1 − b2j )
+ + ((u2)Tx1 − µA2,b2,u2)+

≤ r‖A2 −A1‖+ ‖b2 − b1‖∞ + r‖u2 − u1‖∗ + |µA1,b1,u1 − µA2,b2,u2 | ,
from which (5.5) can be deduced from (5.4), after interchanging (A2, b2, u2) with
(A1, b1, u1).

We finish with a simple example exhibiting a bad behavior of the multifunction
u �→ SA,b,u in a case in which assumption (5.3) is not satisfied.

Example 5.1. In [21], Mangasarian and Shiau gave the following simple example.
Consider in R

2 the vectors

a1 =

( −1
0

)
, a2 =

(
0
−1

)
, a3 =

(
1
1

)
, uδ =

( −1− δ
−1

)
,

and the right member

b =


 0

0
1


 .

We have SA,b,u0 = co(−a1,−a2), while

SA,b,uδ
=

{−a1 if δ > 0 ,

−a2 if δ < 0 .

Observe that assumption (5.3) is not satisfied in this case, since 0 ∈ bdry(co(a3 ∪
{u0})).
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A COMPLEMENTARY PIVOTING APPROACH TO THE
MAXIMUM WEIGHT CLIQUE PROBLEM∗
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Abstract. Given an undirected graph with positive weights on the vertices, the maximum
weight clique problem (MWCP) is to find a subset of mutually adjacent vertices (i.e., a clique) hav-
ing largest total weight. The problem is known to be NP -hard, even to approximate. Motivated
by a recent quadratic programming formulation, which generalizes an earlier remarkable result of
Motzkin and Straus, in this paper we propose a new framework for the MWCP based on the corre-
sponding linear complementarity problem (LCP). We show that, generically, all stationary points of
the MWCP quadratic program exhibit strict complementarity. Despite this regularity result, how-
ever, the LCP turns out to be inherently degenerate, and we find that Lemke’s well-known pivoting
method, equipped with standard degeneracy resolution strategies, yields unsatisfactory experimental
results. We exploit the degeneracy inherent in the problem to develop a variant of Lemke’s algorithm
which incorporates a new and effective “look-ahead” pivot rule. The resulting algorithm is tested
extensively on various instances of random as well as DIMACS benchmark graphs, and the results
obtained show the effectiveness of our method.

Key words. maximum weight clique, linear complementarity, pivoting methods, quadratic
programming, combinatorial optimization, heuristics

AMS subject classifications. 90C27, 90C20, 90C33, 90C49, 90C59, 05C69

PII. S1052623400381413

1. Introduction. Given an undirected graph, the maximum clique problem
(MCP) consists of finding a subset of pairwise adjacent vertices (i.e., a clique) hav-
ing largest cardinality. The problem is known to be NP -hard for arbitrary graphs
and, according to recent theoretical results, so is the problem of approximating it
within a constant factor. An important generalization of the MCP arises when pos-
itive weights are associated to the vertices of the graph. In this case the problem
is known as the maximum weight clique problem (MWCP) and consists of finding a
clique in the graph which has largest total weight. (Note that the maximum weight
clique does not necessarily have largest cardinality.) It is clear that the classical un-
weighted version is a special case in which the weights assigned to the vertices are
all equal. As an obvious corollary, the MWCP has at least the same computational
complexity as its unweighted counterpart. The MWCP has important applications
in such fields as computer vision, pattern recognition, and robotics, where weighted
graphs are employed as a convenient means of representing high-level pictorial infor-
mation (see, e.g., [17, 28]). We refer to [4] for a recent review concerning algorithms,
applications, and complexity issues of this important problem.

Inspired by a classical result in graph theory contributed by Motzkin and Straus
[24], Gibbons et al. [13] have recently formulated the MWCP in terms of a standard
quadratic optimization problem (StQP), which consists of minimizing a quadratic form
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over the standard simplex [3]. As shown in [7], however, their original formulation
suffers from the presence of “spurious” solutions, namely, solutions of the continu-
ous problem that are not in one-to-one correspondence with solutions in the original
combinatorial problem. To avoid this drawback, in [3, 7] a new regularized quadratic
programming formulation is proposed in which local and global solutions are char-
acterized in terms of cliques of maximal and maximum weight, respectively, and no
spurious solutions exist. A further benefit of this modified formulation, as we will
show in this paper, is that generically all of its Karush–Kuhn–Tucker (KKT) points
exhibit strict complementarity. This is a regularity property which not only favors
numerical stability but also plays an important role in simplifying (second-order)
optimality conditions.

It is well known that KKT points of quadratic optimization problems with linear
constraints, like StQPs, can be characterized as the solutions of a linear complemen-
tarity problem (LCP), a class of inequality systems for which a rich theory and a large
number of algorithms have been developed [11]. Hence, once the MWCP is formu-
lated in terms of an StQP, the use of LCP algorithms naturally suggests itself, and
this is precisely the main idea proposed in the present paper. Among the many LCP
methods presented in the literature, pivoting procedures are widely used, and within
this class Lemke’s method is certainly the best known. Unfortunately, like other piv-
oting schemes, its finite convergence is guaranteed only for nondegenerate problems,
and ours is indeed degenerate. To avoid this drawback, we incorporated standard de-
generacy resolution strategies into Lemke’s “Scheme I” procedure and tested it over a
number of DIMACS benchmark graphs, but the computational results obtained were
rather discouraging. The inherent degeneracy of the problem, however, is beneficial
as it leaves freedom in choosing the blocking variable, and we exploit this property to
develop a variant of Lemke’s algorithm which uses a new and effective “look-ahead”
pivot rule. The procedure depends critically on the choice of a vertex in the graph
which identifies the second blocking variable in the pivoting process. Since there is
no obvious way to determine such a vertex in an optimal manner, we resort to iterat-
ing this procedure over most, if not all, vertices in the graph. Also, upon analyzing
the overall behavior of our heuristic, we obtain a number of invariants which are ex-
ploited to reduce the amount of data and the complexity of certain operations needed
to process the problem.

The paper is organized as follows. In section 2 we review and investigate the
reformulation of the MWCP as an StQP such that maximal cliques correspond to
local solutions, and vice versa. Further, we establish that, for an open and dense
set of weights, for a given graph all KKT points are strictly complementary. The
relevance of this property becomes even more obvious in light of the discussion of
second-order optimality conditions for StQPs, which we include for background in-
formation in an appendix. In the present context it is important to discriminate
between strict complementarity (as a sort of “geometric” regularity condition) and
the LCP degeneracy (which can be viewed as “algebraic”). The latter is shown to be
inherent in the LCPs emerging from our MWCP in section 3, where we also describe
our pivoting-based heuristic. Section 4 contains experimental findings. We test our
approach on unweighted DIMACS benchmark graphs and various types of randomly
generated weighted graphs. The results obtained show the effectiveness of our method
and its clear superiority compared to other continuous-based heuristics. It also com-
pares well with other state-of-the-art (non–continuous-based) heuristics presented in
the literature.
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2. Continuous formulation of the MWCP.

2.1. Basic theory. Let G = (V,E,w) be an arbitrary undirected and weighted
graph, where V = {1, . . . , n} is the vertex set and E ⊆ (

V
2

)
is the edge set,

(
V
2

)
denoting the system of all two-element subsets of V . Further, w ∈ R

n is the weight
vector, the ith component of which corresponds to the weight assigned to vertex i.
It is assumed that wi > 0 for all i ∈ V . Two distinct vertices i, j ∈ V are said to
be adjacent if they are connected by an edge, i.e., if {i, j} ∈ E. The neighborhood of
a vertex i will be indicated with N (i) = {j ∈ V : {i, j} ∈ E}, and its degree will be
deg (i) = |N (i)|, the cardinality of N (i). Given a subset of vertices S, the weight
assigned to S will be denoted by

W (S) =
∑
i∈S
wi.

As usual, the sum over the empty index set is defined to be zero.
A clique is a subset of V in which all vertices are pairwise adjacent. A clique S

is called maximal if no strict superset of S is a clique. A maximal weight clique S is
a clique which is not contained in any other clique having weight larger than W (S).
Since we are assuming that all weights are positive, it is clear that the concepts of
maximal and maximal weight clique coincide; hence we shall not make any distinction
between these throughout the paper. A maximum cardinality clique (or, simply, a
maximum clique) is a clique whose cardinality is the largest possible. The maximum
size of a clique in G is called the clique number (of G) and is denoted by ω (G). A
maximum weight clique is a clique having largest total weight, and the maximum
weight clique problem (MWCP) is the problem of finding such a clique. The weighted
clique number of G, denoted by ω (G,w), is the maximum weight of a clique in G.

Let G = (V,E) be an undirected (unweighted) graph, and let ∆ denote the
standard simplex in the n-dimensional Euclidean space R

n:

∆ =
{
x ∈ R

n : xi ≥ 0 for all i ∈ V, eTx = 1
}
,

where e is a vector of appropriate length, consisting of unit entries. (Hence eTx =∑
i∈V xi.) We will also denote by ei the ith column of the n× n identity matrix In.

Now consider the following quadratic function, which is sometimes called the
Lagrangian of G:

g(x) = xTAGx =
∑

{i,j}∈E
xixj ,

where AG = (aij)i,j∈V is the adjacency matrix of G—i.e., aij = 1 if {i, j} ∈ E, and

aij = 0 if {i, j} /∈ E—and let x∗ be a global maximizer of g in ∆. Motzkin and
Straus [24] showed that the clique number ω (G) of G is related to g(x∗) according to
the following formula:

ω (G) =
1

1− g(x∗)
.

Additionally, they proved that a subset of vertices S is a maximum clique of G if and
only if its characteristic vector xS , which is the vector in ∆ defined by xSi = 1/ |S| if
i ∈ S and xSi = 0 otherwise, is a global maximizer of g in ∆.1

1Actually, in their original paper, Motzkin and Straus proved just the “only if” part of this
theorem. The converse direction is, however, a straightforward consequence of their result [27].
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Gibbons et al. [13] have generalized the Motzkin–Straus theorem to the weighted
case. Given a weighted graph G = (V,E,w), they introduced the concept of the
weighted characteristic vector xS,w ∈ ∆ for a given vertex-set S ⊆ V , whose coordi-
nates are

xS,wi =

{ wi

W (S) if i ∈ S ,
0 otherwise.

Using a proof technique suggested by Lovász, they reformulated the Motzkin–Straus
problem as a minimization problem and extended the correspondence between global
minimizers that have the form of weighted characteristic vectors and the maximum
weight cliques of G. Their results were proved over a whole class of matrices, rather
than just a single matrix as in the original Motzkin–Straus formulation. Of course,
both the latter and the matrix class considered in [13] depend on G.

However, the formulation of Gibbons et al. has a major drawback which, as in
the unweighted case [27], relates to the presence of “spurious” solutions, i.e., local
or global solutions that are not in the form of weighted characteristic vectors xS,w

for some subset S of vertices. (See [7] for an in-depth study on this topic.) Even
though in certain specific circumstances such solutions may provide useful information
concerning the structure of the underlying graph, computationally they represent a
nuisance, for we cannot extract the vertices comprising the clique directly from them;
they just provide information about the weighted clique number.

This problem is solved in [3] by considering the matrix QG = [qij ]i,j∈V×V defined
as

qij =




1
2wi

if i = j,

0 if {i, j} ∈ E,
1

2wi
+ 1

2wj
otherwise

(1)

and investigating the StQP

minimize f(x)
subject to x ∈ ∆

(2)

with

f(x) = xTQGx.(3)

Indeed, a whole class of matrices serves the same purpose again; this class, of course,
differs from that used in [13].

The following theorem proved in [3] summarizes the result around which our work
is centered.

Theorem 2.1. Let G = (V,E,w) be an arbitrary graph with positive weight
vector w ∈ R

n, and consider problem (2). Then the following assertions hold.

• A vector x ∈ ∆ is a local solution of (2) if and only if x = xS,w, where S is
a maximal clique of G.
• A vector x ∈ ∆ is a global solution of (2) if and only if x = xS,w, where S is
a maximum weight clique of G.

Moreover, all solutions of (2) are strict.
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2.2. From KKT points to maximal cliques. It is a simple exercise to show
that the KKT first-order optimality conditions for a point x ∈ ∆ in program (2), with
a general symmetric n× n matrix Q in place of QG, can be written as

(Qx)i

{
= λ if xi > 0,
≥ λ if xi = 0,

(4)

for some real-valued constant λ.
Of course, a KKT point is not necessarily a local solution of (2), and hence a

maximal clique of G, but in light of (4) it is possible to derive some useful properties
that virtually eliminate the need to guarantee local optimality and give direct methods
to attain it once a KKT point is available. For x ∈ ∆, let us denote by

S(x) = {i ∈ V : xi > 0}
the support of x.

Theorem 2.2. Let G = (V,E,w) be a weighted graph and x a KKT point of (2).
If C = S(x) is a clique of G, then C is a maximal clique.

Proof. If C = S(x) is a nonmaximal clique, then there exists a k /∈ C such that
(i, k) ∈ E for all i ∈ C. For such a k we have

(QGx)k =
∑
j∈C
qkjxj = 0.

On the other hand, for any i ∈ C, we have

(QGx)i =
∑
j∈C
qijxj = qiixi > 0,

which contradicts the hypothesis that x is a KKT point for (2).
The practical significance of Theorem 2.2 reveals itself in large graphs: Even if

these are quite dense, cliques are usually much smaller than the graph itself. Now
suppose we are returned a KKT point x by some method. Then we set C = S(x) and
check whether or not C is a clique. This requires O(s2) steps if C contains s vertices,
while checking whether this clique is maximal would require O(sn) steps and, as
stressed above, usually s � n. But Theorem 2.2 now guarantees that the obtained
clique C (if it is one) must automatically be maximal, and thus we are spared from
trying to add external vertices. But how should one behave in the case of a nonclique
KKT point? The answer is to be found in part of the proof of Theorem 5 in [13] and
is summarized in the following result.

Theorem 2.3. Let G = (V,E,w) be a weighted graph and x a KKT point of
(2) with support C = S(x). If i, j ∈ V are two nonadjacent vertices of C, then
xδ = x + δ (ei − ej) improves the objective function f of (2); i.e., f(xδ) < f(x) for
any 0 < δ ≤ xj.

Proof. From the symmetry of QG, we have

f(xδ) = (x+ δ (ei − ej))T QG (x+ δ (ei − ej))
= xTQGx+ 2δ (ei − ej)T QGx+ δ2 (ei − ej)T QG (ei − ej) .

Since x is a KKT point, the second term is null, and hence

f(xδ) = f(x) + δ2 (qii + qjj − 2qij) .
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But {i, j} /∈ E implies that qii + qjj − 2qij < 0, and this concludes the proof.
Once a KKT point has been obtained by some method, the most effective way to

use Theorem 2.3 is to check for pairs {i, j} /∈ E with {i, j} ⊆ C. If there are none,
C is a clique and hence a maximal clique. Otherwise, choose any pair of nonadjacent
vertices in C and construct a new “better” point as described in Theorem 2.3. The
proof of the theorem also provides us with a criterion to determine the best such
points, namely, the one which minimizes x2

j (qii + qjj − 2qij). This can be done very

quickly in O ((m2 )) time, where m = |C|.
Clearly, the new improved point does not necessarily correspond to a (maximal)

clique, but by iterating this procedure, as suggested in [20] for the unweighted case,
we can readily obtain one. Alternatively, and more interestingly, one can give the
new improved point as input to any gradient-based technique. These are typically
very efficient in terms of computation time and can be quite effective if kick-started
from within a close range to a good suboptimal solution. An example of such tech-
niques is given by the so-called replicator dynamics, a class of dynamical systems
developed and studied in evolutionary game theory [15]. We refer to [26] for a recent
review concerning the application of these dynamics to combinatorial optimization,
and to [22, 23] for independent connections between this kind of dynamical equations
and LCPs.

2.3. Strict complementarity is generic. We close this section by establishing
easy-to-check regularity conditions for the StQP (2) based on the matrix QG, which
ensure the strict complementarity of all KKT points of this StQP. It turns out that,
when we fix the discrete structure (V,E) of the graph in an arbitrary way, strict
complementarity holds for a set of weights w that is an open and dense subset of the
positive orthant R

n
+. Recall that a KKT point x satisfies the strict complementarity

condition for the StQP (2), with a general symmetric n× n matrix Q in place of QG,
if and only if all Lagrange multipliers are strictly positive: λi > 0 for all i ∈ V \S(x),
where λi = (Qx)i − λ from (4).

We now characterize strict complementarity and establish easy-to-check sufficient
conditions.

Theorem 2.4. Let x ∈ ∆ be a KKT point for (2), and again set S(x) = {i ∈ V :
xi > 0} as well as T (x) = {i ∈ V : (Qx)i = xTQx}. Then S(x) ⊆ T (x). Further, the
following assertions are equivalent:

(a) S(x) = T (x) (which in particular holds true if S(x) = V );
(b) x satisfies the strict complementarity condition.

Both conditions are met if for all i ∈ V \ S(x) the matrices

QS(x)(i) = [qkj − qij ](k,j)∈S(x)×S(x)

are nonsingular.
Proof. The inclusion S(x) ⊆ T (x) is nothing other than (4); indeed, it easily

follows that λ = xTQx. Further, we also get 0 ≤ λi = (Qx)i−λ = (Qx)i−xTQx, from
which the equivalence of (a) and (b) is immediate. Finally, suppose that there is an
index i ∈ T (x)\S(x) ⊆ V \S(x). Then we get QS(x)(i)xS(x) = [(Qx)k−(Qx)i]k∈S(x) =
o while xS(x) = [xk]k∈S(x) �= o, contradicting the assumption.

Now we are ready to establish the main result for matrix Q = QG used in the
MWCP treatment; for almost all weights w in a given graph G, every KKT point has
this property. We also specify simple explicit sufficient conditions which guarantee
this.
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Theorem 2.5. Let G = (V,E,w) be a weighted graph and suppose that w = µz,
where µ > 0 and zi > 0 are odd integers for all i ∈ V . Then, regardless of the
structure of G, all the matrices QS(x)(i) originating from the matrix Q = QG are
nonsingular, and hence all KKT points x for (2) satisfy strict complementarity.

Further, the set of all weights such that the nonsingularity condition (and thus
strict complementarity) holds is open and dense in R

n
+.

Proof. As is easily seen, the entries of QS(x)(i) all are sums of two terms belonging

to the set {0,± 1
2wj

: j ∈ V }. Hence multiplication of the weights wj by a common

factor µ does not alter any aspect of the assertion. Thus the result holds for all µ,
given that we establish it for a special value of it, e.g., for µ = [2

∏
i∈V zi]

−1. But then
QS(x)(i) has odd integer diagonal entries while all other entries are even integers. Thus
the determinant is an odd number, whence it follows that QS(x)(i) is nonsingular.
Turning to the genericness assertion, openness is clear from the continuity of the
determinant, while denseness follows from an approximation argument; indeed, every
positive w can be arbitrarily well approximated by a vector with positive rational
entries ni/d, where ni and d are positive integers. Next choose an integer K large
enough such that these ratios ni/d in turn are close to w̃i = µ(2Kni + 1) with
µ = [2Kd]−1. Now w̃ satisfies the first condition of the theorem, and the result
follows.

Note that the result applies particularly to the nonweighted case; in fact, w = e
satisfies the first condition in the above theorem.

In spite of these results, namely, that this “geometric” form of degeneracy is
highly unlikely, we will see in the next section that a sort of “algebraic” degeneracy is
inherent to the problem class considered here. To promote the flow of the argument,
we defer to an appendix a discussion of further aspects of strict complementarity in
relation to the optimality condition.

3. Complementary pivoting.

3.1. Lemke’s method. The KKT points of (2) can be computed by solving the
LCP (qG,MG), which is the problem of finding a vector x satisfying the system

y = qG +MGx ≥ 0, x ≥ 0, xT y = 0,(5)

where

qG =




0
...
0
−1
1


 , MG =


 QG −e e
eT 0 0
−eT 0 0


 ,(6)

and QG is as in (1). With the above definitions, it is well known that if z is a
complementary solution of (qG,MG) with zT = [xT , yT ] and x ∈ R

n, then x is a
KKT point of (2). Note that QG is strictly R

n
+-copositive; hence so is MG, and this

is sufficient to ensure that (qG,MG) always has a solution—see the fundamental book
[11], where a large number of LCP algorithms can also be found. The most popular
among them is probably Lemke’s method, largely for its ability to provide a solution
for several matrix classes. Lemke’s “Scheme I” belongs to the family of pivoting
algorithms. Given the generic LCP (q,M), it deals with the augmented problem
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(q, d,M) defined by

y = q + [M,d]

[
x
θ

]
≥ 0, θ ≥ 0, x ≥ 0, xT y = 0.(7)

Vector d is called the covering vector and must satisfy di > 0 whenever qi < 0. A
solution of (q, d,M) with θ = 0 promptly yields a solution for (q,M), and Lemke’s
method intends to compute precisely such a solution. We refer to [11] for a detailed
description of Lemke’s algorithm. In our implementation we chose d = e, as our
problem does not expose peculiarities that would justify a deviation from this common
practice.

Assuming the nondegeneracy of the LCP is a strategy commonly taken to prove
the finiteness of pivoting schemes. In particular, Lemke’s method is guaranteed to
process any nondegenerate problem (q,M), where M is strictly R

n
+-copositive, and to

do so without terminating on a secondary ray [11].

Unfortunately (qG,MG) is degenerate, but it is possible to give an equivalent
formulation of (2) in order to obtain a nondegenerate LCP. To this end, it is easy to
see that program (2) is equivalent to the following program:

minimize xT Q̂Gx+ cTx
subject to x ∈ ∆,

where c ∈ R
n and Q̂G = QG −

(
ceT + ecT

)
. If c ≤ 0, then copositivity is maintained,

and if all its entries are different, then the corresponding LCP is nondegenerate.
Furthermore, if ci ≤ −1 for some i, it is straightforward to check that even the first
pivot step of Lemke’s method changes.

The above method for degeneracy removal has a characteristic in common with the
lexicographic degeneracy resolution method (LDR) [11]. Namely, they both require
the introduction of extra data: vector c in the previous case, and a nonsingular square
matrix as big asM with lexicographically positive rows in the case of LDR. Of course,
these objects have to be assigned values and there are myriads of sensible methods for
doing so, each one having a different theoretical ground and/or performance impact
on the final result.

We report in Tables 1 and 2 (column LDR) the results obtained on the DIMACS
benchmark graphs (see subsection 4.1) by running Lemke’s “Scheme I” with LDR,
using the identity matrix as extra data. Their order, density, and clique number are
shown in columns Order, Density, and ω, respectively. A complete description of
the table can be found in subsection 4.1. It is clear to see that in all but the most
trivial cases LDR performs poorly, although it is extremely fast. The tendency of
the previously discussed degeneracy treatment methods is that they lead to inefficient
local minimizers, i.e., to maximal cliques of small size.

3.2. A pivoting-based heuristic. Rather than continuing to investigate the
enormous variety of assignment techniques for removing degeneracy mentioned in the
previous subsection, we focused on examining the original degenerate form of the LCP
(qG,MG). Such degeneracy even turns out to be beneficial for performance, since
it permits freedom in choosing the blocking variable within a successful variant of
Lemke’s method. This is opposed to the nondegenerate version of the latter method,
in which those variables are uniquely determined. This is the topic of the present
subsection.
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As is customary, we will use an exponent for the problem data and, to make
notations simpler, we will omit subscripts indicating the dependence on graph G.
Hence, qν and Mν will identify the situation after ν pivots, and Qν will indicate the
n × n leading principal submatrix of Mν . Consistently, yν and xν will indicate the
vectors of basic and nonbasic variables, respectively, each made up of a combination of
the original xi and yi variables. The notation

〈
xνi , y

ν
j

〉
will be used to indicate pivoting

transformations. The index set of the basic variables that satisfy the min-ratio test
at iteration ν will be denoted with Ων , i.e.,

Ων = arg min
i

{−qνi
mνis

: mνis < 0

}
,

where s is the index of the driving column. Also, in what follows, the auxiliary
column that contains the covering vector d in (7) will be referred to as the column
n+3 of matrixM =MG. The nondegeneracy assumption basically amounts to having
|Ων | = 1 for all ν, thereby excluding any cycling behavior.

Here we employ the least-index rule, which amounts to blocking the driving vari-
able with a basic one that has minimum index within a certain subset of Ων , i.e.,
r = min Φν for some Φν ⊆ Ων . The set Φν is chosen in order to make the number of
degenerate variables decrease as slowly as possible, i.e., among the index-set

Φν = arg min
i

{|Ων | − ∣∣Ων+1
i

∣∣ > 0 : i ∈ Ων
} ⊆ Ων ,

where Ων+1
i is the index-set of those variables that would satisfy the min-ratio test at

iteration ν + 1 if the driving variable at iteration ν were blocked with yνi as i ∈ Ων .
The previous conditional implies that a pivot step is taken and then reset in a sort of
“look-ahead” fashion; hence we will refer to this rule as the look-ahead (pivot) rule.

Before actually proceeding to illustrate a variant of Lemke’s algorithm applied to
the MWCP, let us take a look at the tableaus that it generates. This will help us
to identify regularities that are reflected in the behavior of the algorithm itself. The
initial tableau follows:

q x1 · · · xn xn+1 xn+2 θ
y1 0 −1 1 1
...

... QG
...

...
...

yn 0 −1 1 1
yn+1 −1 1 · · · 1 0 0 1
yn+2 1 −1 · · · −1 0 0 1

.(8)

As qn+1 is the only negative entry for the column of q, the first pivot to occur during
initialization is 〈yn+1, θ〉, thereby producing the following transformation:

q x1 · · · xn xn+1 xn+2 yn+1

y1 1 −1 1 1
...

... QG − eeT
...

...
...

yn 1 −1 1 1
θ 1 −1 · · · −1 0 0 1
yn+2 2 −2 · · · −2 0 0 1

.(9)

The driving variable for the second pivot is xn+1. Since m1
i,n+1 = −1 for all i =

1, . . . , n, it is clear to see that the relative blocking variable can be any one of



COMPLEMENTARY PIVOTING AND MAXIMUM WEIGHT CLIQUES 937

Algorithm 3.1. Lemke’s “Scheme I” with the “look-ahead” rule applied
to the MWCP.

Input: A graph G = (V,E,w) and p ∈ V .
Let (qG, e,MG) be the augmented LCP, where qG and MG are defined in (6).
ν ← 0, perform 〈yn+1, θ〉 and 〈yp, xn+1〉.
The driving variable is xp.
Infinite loop

ν ← ν + 1.
Let xνs denote the driving variable.
Ων = arg mini{−qνi /mνis : mνis < 0}.
If |Ων | = 1, then r = min Ων ;
else Φν = arg mini{|Ων | − |Ων+1

i | > 0 : i ∈ Ων}, r = min Φν .
Perform 〈yνr , xνs 〉.
If yνr ≡ θ, then:

Let x denote the complementary solution of (qG,MG) found.
The result is supp (x) ∩ V .

The new driving variable is the variable complementary to yνr .

y1, . . . , yn. In this case we apply no degeneracy resolution criterion but rather allow
for user intervention by catering for the possibility of deciding the second blocking
variable a priori. Thus let yp be the (arbitrary) variable that shall block xn+1. After
performing 〈yp, xn+1〉, we have the following tableau:

q x1 · · · xn yp xn+2 yn+1

y1 0 1 0 0
...

...
...

...
...

yp−1 0 1 0 0
xn+1 1 Qp −1 1 1
yp+1 0 1 0 0

...
...

...
...

...
yn 0 1 0 0
θ 1 −1 · · · −1 0 0 1
yn+2 2 −2 · · · −2 0 0 1

,(10)

where Qp denotes the matrix whose rows are defined as

(Qp)i =

{
(QG)p − eT if i = p,

(QG)i − (QG)p , otherwise.

Algorithm 3.1 formalizes the above statements. We now introduce a number of
invariants aimed at reducing the size of the data required by the process and the
complexity of certain operations.

Proposition 3.1. Within Algorithm 3.1, after the first pivot and as long as none
occurs within the last 2 rows of Mν , the ratios mνn+1,j/m

ν
n+2,j = qνn+1/q

ν
n+2 = 1

2 for
j = 1, . . . , n do not change.

Proof. The proof is elementary by the definition of pivot operation and the
structure of tableau (9).

Corollary 3.2. In Algorithm 3.1, in the event that after ν pivot operations the
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whole driving column of Qν be nonnegative, the schema will pivot on the row of θ and
terminate.

Proof. The proof follows immediately from the fact that termination on the
secondary ray cannot occur, and from Proposition 3.1.

Proposition 3.3. After 2 pivot operations within Algorithm 3.1, the columns of
q, xn+2, yn+1 do not change as long as no pivot is performed on the rows of xn+1, θ,
or yn+2.

Proof. The proof follows from tableau (10), observing that the hypothesis implies
that either mνis, m

ν
rj , or qνr is null when calculating the successive transforms of these

columns.

Corollary 3.4. After 2 pivot operations within Algorithm 3.1, if a pivot on
the row of xn+1 ≡ yνr occurs with xνs as the driving variable, then mνi,s ≥ 0 for all
i = 1, . . . , r − 1, r + 1, . . . , n. Moreover, if mνn+1,s < 0, then mνn+1,s ≥ mνr,s.

Proof. If there were other negative entries for i = 1, . . . , r − 1, r + 1, . . . , n for
Proposition 3.3, they would have a null ratio. On the other hand, the ratio for the
row of xn+1 is certainly positive. A similar argument proves the remaining part of
the corollary.

Proposition 3.5. After 2 pivot operations within Algorithm 3.1, pivoting on
the row of xn+1 ends the schema with the pivot sequence 〈xn+1, x

ν
s 〉, 〈yn+2, yn+1〉,

〈θ, xn+2〉.
Proof. After 〈xn+1, x

ν
s 〉, for Proposition 3.1 and Corollary 3.4 we have mνi,n+2 =

mνi,n+3 ≥ 0 for all i = 1, . . . , n. Corollary 3.4 yields mνn+1,n+3 = 1 −mνn+1,s/m
ν
r,s ≥

0, and this, together with the fact that no secondary ray termination can occur,
implies mνn+2,n+3 < 0, thereby indicating 〈yn+2, yn+1〉 as the following pivot. Similar
arguments prove the remaining part of the proposition.

The above statements show that the x1, . . . , xn variables remain within the Qν

block for the whole duration of Algorithm 3.1. Furthermore, we do not need to
perform the terminal pivot sequence of Proposition 3.5 for, as soon as xn+1 blocks the
driving variable, we know which of the xi with i ∈ V will be basic, and that is enough
to compute the final clique. This is sufficient to derive that the rows and columns
associated with the simplex constraints and the covering vector are not needed to
process (qG,MG). On top of that, for Proposition 3.3 we can also discard the vector
q and reduce the min-ratio test to a mere negativity test. All these concepts are
formalized in Algorithm 3.2.

Empirical evidence indicated p as a key parameter for the quality of the final result
of Algorithm 3.2. Unfortunately we could not identify any effective means to restrict
the choice of values in V that can guarantee a good suboptimal solution. We thus had
to consider iterating for most, if not all, vertices of V as outlined in Algorithm 3.3.
Here we employ a very simple criterion to avoid considering those nodes that cannot
drive to larger cliques than the one we already have, because their weights and those
of their neighborhoods are too small. It is easy to comment that such a criterion is
effective only for very sparse graphs.

We also observed that the schema is sensitive to the ordering of nodes and found
that the best figures were obtained by reordering G by the decreasing weight of each
node and its neighborhood. This feature too is formalized in Algorithm 3.3. We will
refer to this scheme by the name pivoting-based heuristic (PBH).

Before concluding this section, it is worth mentioning the fact that we were not
able to prove that Algorithms 3.1 and 3.2 cannot terminate prematurely with an
empty Φν set, or to loop indefinitely with Ων being a singleton. However, neither
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Algorithm 3.2. A reduced version of Algorithm 3.1.

Input: A graph G = (V,E,w) and p ∈ V .
Let Qp = (qij). ν ← 2. K ← ∅.
The driving variable is xp.
Infinite loop

Let xνs denote the driving variable.
Ων = {i : qνis < 0}.
If Ων ⊆ {p}, stop: the result is K.
Φν = arg mini

{|Ων | − ∣∣Ων+1
i

∣∣ > 0 : i ∈ Ων
}

.
r = min Φν .
If yνr ≡ xi for some i, then K ← K \ {i} .
Perform 〈yνr , xνs 〉.
The new driving variable is the variable complementary to yνr .
ν ← ν + 1.
If yνr ≡ xi for some i, then K ← K ∪ {i}.

Algorithm 3.3. The pivoting-based heuristic (PBH) for the MWCP.

Input: A graph G = (V,E,w).
Let G′ = (V ′, E′, w′) be a permutation of G
with W (u′ ∪N (u′)) ≥W (v′ ∪N (v′)) for all u′, v′ ∈ V ′ with u′ < v′.
K� ← ∅.
For v′ = 1, . . . , n :W (v′ ∪N (v′)) > W (K�) do:

Run Algorithm 3.2 with G′ and v′ as input.
Let K be the obtained result.
If W (K) > W (K�), then K� ← K.

The result is the mapping of K� in G.

of these circumstances ever actually occurred in practice. Instead, for all the several
thousand graphs we tested them on, we observed that once an xi variable with i ∈ V
had entered the basis, it never exited it. In fact, if Algorithm 3.1 found a clique with
s nodes, it always performed exactly s + 3 pivot steps. This fact led us to consider
a simplified implementation of Algorithm 3.2 which was in fact used to produce the
results presented in the following section. This simplified version simply lacks the tests
to remove an x variable from the basis. A thorough empirical analysis has confirmed
that both the original and simplified versions of the algorithm behave identically.

Computing |Ων+1
i | can be done with O(n) time complexity, as only the driving

column is needed for this purpose, and a pivotal transformation takes O(n2) computa-
tions. This, together with our previous observation, gives us strong empirical evidence
that PBH is O(sn3), where s is the size of the clique found. Note, however, that it is
quite straightforward to parallelize the algorithm over n processors, thereby reducing
its time complexity to O(sn2). With respect to space complexity, our implementation
was O(n2), as we could not find better techniques than implementing tableau-style
pivoting.

4. Experimental results. To practically assess the effectiveness of the pro-
posed approach, we conducted a large number of experiments. First, we focused
on unweighted DIMACS graphs, which constitute a standard benchmark for clique-
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finding heuristics [19].2 Next, we considered various types of randomly generated
weighted graphs.

4.1. Unweighted DIMACS graphs. Tables 1 and 2 show the performance
figures obtained by running PBH (column PBH ) over a selection of DIMACS bench-
mark graphs. Their order, density, and clique number are reported in columns Order,
Density, and ω, respectively. The column marked with LDR lists the results per-
taining to Lemke’s method with the lexicographic degeneracy resolution criterion; see
subsection 3.1. Computing time (column Time) for LDR as well as PBH is in seconds
and refers to a C++ implementation for a Linux machine with a 655MHz Celeron
CPU (77MHz FSB × 8.5). Some figures are missing because the Unix clock system
call could not time periods longer than approximately 30 minutes on our test machine.

We compare our methods with three other heuristics based, as ours is, on the
Motzkin–Straus formulation. The first method considered is the continuous-based
heuristic (CBH) of Gibbons, Hearn, and Pardalos [12], which employs a parameter-
ized version of the original Motzkin–Straus program. The problem is divided into a
series of subproblems with the simplex constraints relaxed into spherical ones. Their
schema uses a combinatorial postprocessing phase to round the solutions produced
by a relaxation procedure that solves the subproblems.

The second algorithm is annealed replication (AR) [5]. It uses a different param-
eterized and unweighted maximization form of problem (2) that has xT (AG + αI)x
as objective function. The heuristic uses the replicator dynamics as a local search
technique and is based on a proper variation of α after a model similar to simulated
annealing, but it is motivated by more principled arguments.

The third method is the RD-algorithm (RD), a recent heuristic of Kuznetsova
and Strekalovsky [20]. They approach the approximate solution of the regularized
Motzkin–Straus (unweighted) program by splitting its objective function into two
convex terms, for which they obtain a set of global optimality conditions. At each
iteration their method improves upon a KKT point which is sought by some conven-
tional procedure.

Before commenting on the results presented in Tables 1 and 2, we note that LDR
performed very poorly in all but the most trivial instances, although it converged very
quickly. In fact, it is even worse than plain replicator dynamics, which are essentially
gradient-based procedures (see [6]).

The c-fat, Hamming, and Johnson graph categories are certainly those that have
proven most vulnerable to the different approaches. All methods, in fact, managed to
systematically attain a maximum clique, except for one Hamming graph. Hamming
and Johnson graphs are borrowed from coding theory, whereas the c-fat ones are used
in fault diagnosis. The notation “-” in columns AR, CBH, and RD indicates data not
presented in the original papers, from which the values here were taken.

The p hat graphs are generalized random graphs with a wider node degree spread.
The generation procedure is described in [30]. In 10 out of 15 cases PBH produced
the best results, and 6 of them were maximum cliques. The largest known clique was
actually reached in 9 cases.

Graphs prefixed with MANN are a reduction to the MCP of the minimum set
covering problem. For the two smallest problems, RD and our method performed
equally well, obtaining a maximum clique and a largest maximal one. For the third,
bigger problem, a clique very close to the maximum one (342 vs. 345) was obtained

2Data can be found at http://dimacs.rutgers.edu.
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Table 1
Performance of LDR, PBH, and other competing heuristics on unweighted DIMACS graphs

(part I). Entries that correspond to the best result for a given graph are boldfaced.

Graph Ord. Dens. ω AR CBH RD LDR Time PBH Time
c-fat200-1 200 7.7% 12 - 12 12 12 0.07 12 5.0
c-fat200-2 200 16.3% 24 - 24 24 24 0.12 24 9.0
c-fat200-5 200 42.6% 58 - 58 58 58 0.28 58 22.5
c-fat500-1 500 3.6% 14 - 14 14 14 0.48 14 100.3
c-fat500-2 500 7.3% 26 - 26 26 26 0.79 26 185.2
c-fat500-5 500 18.6% 64 - 64 64 64 1.83 64 464.5
c-fat500-10 500 37.4% 126 - 126 126 126 3.59 126 1024.2
hamming6-2 64 90.5% 32 - 32 32 32 0.01 32 0.4
hamming6-4 64 34.9% 4 - 4 4 4 0.00 4 0.1
hamming8-2 256 96.9% 128 - 128 128 128 0.98 128 252.6
hamming8-4 256 63.9% 16 - 16 16 16 0.14 16 22.8
hamming10-2 1024 99.0% 512 - 512 - 512 61.01 512 -
hamming10-4 1024 82.9% ≥ 40 - 35 - 32 4.1 32 -
johnson8-2-4 28 55.6% 4 - 4 4 4 0.00 4 0.0
johnson8-4-4 70 76.8% 14 - 14 14 14 0.01 14 0.3
johnson16-2-4 120 76.5% 8 - 8 8 8 0.01 8 1.1
johnson32-2-4 496 87.9% ≥ 16 - 16 16 16 0.54 16 184.8
p hat300-1 300 24.4% 8 8 8 8 6 0.10 8 14.0
p hat300-2 300 48.9% 25 25 25 25 16 0.20 25 34.9
p hat300-3 300 74.5% 36 35 36 34 21 0.25 35 61.0
p hat500-1 500 25.3% 9 9 9 9 6 0.27 9 83.5
p hat500-2 500 50.5% 36 36 35 35 26 0.82 36 282.5
p hat500-3 500 75.2% ≥ 50 47 49 49 30 0.94 48 485.7
p hat700-1 700 24.9% 11 9 11 11 5 0.47 10 249.4
p hat700-2 700 49.8% 44 41 44 44 20 1.26 44 1022.3
p hat700-3 700 74.8% ≥ 62 59 60 62 29 1.76 62 1804.0
p hat1000-1 1000 24.5% ≥ 10 10 10 - 7 1.17 10 798.0
p hat1000-2 1000 49.0% ≥ 46 44 46 - 18 2.37 46 -
p hat1000-3 1000 74.4% ≥ 66 62 65 - 31 3.82 64 -
p hat1500-1 1500 25.3% 12 10 11 - 9 3.12 12 -
p hat1500-2 1500 50.6% ≥ 65 64 63 - 28 7.69 64 -
p hat1500-3 1500 75.4% ≥ 94 91 94 - 43 11.43 91 -

by PBH. Note that here LDR performs remarkably well.

The test graphs prefixed with keller arise in conjunction with Keller’s conjecture
on tilings using hypercubes [10]. Here we could run PBH on only the two smallest
instances due to memory restrictions. RD and PBH computed a maximum clique,
and the latter also obtained the largest clique for the second instance.

Brockington and Culberson [9] developed their method that produced the graphs
prefixed with brock. Their method uses a form of degree equalization to hide a large
clique in a multitude of smaller ones. Also for this category PBH reached the largest
cliques, except for one instance in which CBH found the maximum one. All other
computed cliques are not maximum and the size gap between them and the maximum
ones grows with the order of the graphs. The latter fact shows the effectiveness of
Brockington and Culberson’s approach for producing hard problems for algorithms
based on the Motzkin–Straus continuous formulation.

The generation procedure for the Sanchis graphs (san) is described in [18, 29]. In
12 out of 15 cases, PBH produced the best results, and 11 of them were maximum
cliques. In only one case did we obtain a clique smaller than that of AR, and in
two cases RD performed slightly better. It is interesting to notice that AR and CBH
obtained cliques that are, on average, half the size of those returned by PBH and RD.
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Table 2
Performance of LDR, PBH, and other competing heuristics on unweighted DIMACS graphs

(part II). Entries that correspond to the best result for a given graph are boldfaced.

Graph Ord. Dens. ω AR CBH RD LDR Time PBH Time
MANN a9 45 92.7% 16 16 16 16 16 0.00 16 0.1
MANN a27 378 99.0% 126 117 121 125 125 2.18 125 699.7
MANN a45 1035 99.6% 345 - 336 - 340 43.72 342 -
keller4 171 64.9% 11 8 10 11 7 0.03 11 3.6
keller5 776 75.2% 27 16 21 25 15 1.27 26 1093.5
keller6 3361 81.8% ≥ 59 - - - 31 45.54 - -
brock200 1 200 74.5% 21 19 20 20 13 0.07 20 9.7
brock200 2 200 49.6% 12 10 12 11 7 0.04 11 5.1
brock200 3 200 60.5% 15 13 14 14 10 0.6 14 6.4
brock200 4 200 65.8% 17 14 16 15 11 0.06 16 7.3
brock400 1 400 74.8% 27 20 23 24 17 0.37 24 111.6
brock400 2 400 74.9% 29 23 24 24 17 0.37 24 113.3
brock400 3 400 74.8% 31 23 23 24 17 0.37 24 111.2
brock400 4 400 74.9% 33 23 24 24 16 0.35 24 112.7
brock800 1 800 64.9% 23 18 20 21 13 1.18 21 858.6
brock800 2 800 65.1% 24 18 19 20 13 1.19 20 866.4
brock800 3 800 64.9% 25 19 20 20 15 1.34 20 864.5
brock800 4 800 65.0% 26 19 19 20 16 1.40 20 862.4
san200 0.7 1 200 70.0% 30 15 15 30 16 0.09 30 9.9
san200 0.7 2 200 70.0% 18 12 12 18 12 0.08 17 8.2
san200 0.9 1 200 90.0% 70 45 46 70 38 0.19 70 28.8
san200 0.9 2 200 90.0% 60 39 36 60 30 0.16 60 22.8
san200 0.9 3 200 90.0% 44 31 30 44 25 0.13 44 19.0
san400 0.5 1 400 50.0% 13 7 8 13 7 0.20 13 52.3
san400 0.7 1 400 70.0% 40 20 20 40 20 0.43 40 142.0
san400 0.7 2 400 70.0% 30 15 15 30 15 0.35 30 110.7
san400 0.7 3 400 70.0% 22 12 14 19 14 0.31 17 93.8
san400 0.9 1 400 90.0% 100 50 50 100 45 0.88 100 397.8
sanr200 0.7 200 69.7% 18 16 18 18 12 0.07 18 8.2
sanr200 0.9 200 89.8% 42 41 41 41 32 0.16 41 21.4
sanr400 0.5 400 50.1% 13 13 12 12 10 0.25 13 059.5
sanr400 0.7 400 70.0% ≥ 21 21 20 20 16 0.36 20 101.9
san1000 1000 50.2% 15 8 8 - 8 1.34 15 1185.0

Overall, these results show the clear superiority of PBH over both AR and CBH.
It also turns out that PBH and RD perform equally well. However, the authors report
in [20] that for graphs of order up to 500, the computational time of RD on a PC
Pentium 166 MMX varied from 30 to 40 minutes on average, with a maximum of
1 h. 43 min. On larger graphs (i.e., up 800 vertices), the algorithm took from 17
min. to 8 h. 22 min. to converge. These high computational times prevented them
from applying RD on graphs with more than 800 nodes.

Comparing complexity and computational times, however, is very difficult for
this kind of heuristics. In fact we completely lack a clear complexity assessment of
CBH, AR, and RD, and the computing times provided with each method refer to
architectures and implementation solutions too different to be worth analyzing.

A remarkable empirical finding was that Algorithms 3.1 and 3.2 never failed to
return a clique; hence, by Theorem 2.2, they always returned a maximal clique. Thus,
we never needed to invoke any local search procedure in order to reach a nearby local
minimizer. We tried to find exceptions by running them on random unweighted graphs
with nonclique regular subgraphs, which do correspond to nonoptimal KKT points
of (2). Hundreds of experiments were conducted on random instances with different
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degrees of noise, but they never failed to return a maximal clique. At the moment we
cannot give a formal proof of this fact.

Before we present the results obtained by PBH on weighted graphs, it is worth
discussing how it compares with other maximum clique heuristics that are not based
on the Motzkin–Straus or related continuous formulations. Many such heuristics were
presented at the second DIMACS implementation challenge on cliques, coloring, and
satisfiability [19], and those based on tabu search, simulated annealing, and neural
networks are among the most powerful. In the following discussion we shall neglect
the easiest graph families, i.e., c-fat, Hamming, Johnson, and MANN, where straight-
forward greedy heuristics (and indeed Lemke’s algorithm) already provide satisfactory
results (see [30]).

In [30], Soriano and Gendreau presented three variants of tabu search for maxi-
mum cliques. The first two versions are deterministic algorithms. One uses a single
tabu list of the last solutions visited, while the other uses an additional list (with
an associated aspiration mechanism) containing the last vertices deleted. The third
algorithm is probabilistic in nature and uses the same two tabu lists and aspiration
mechanism as the second one. As it turns out, overall their results are comparable
with those obtained with PBH. On the p-hat graphs, PBH obtained the same clique
size as the three tabu search algorithms 8 times, it got smaller cliques in 6 cases (the
difference being typically of one or two nodes), and in one case it yielded a larger
clique. On the keller and the brock graphs, tabu search worked slightly better. In a
few cases it obtained a larger clique, but when this happened the difference consisted
of just a single vertex. Finally, on the san family the three tabu search heuristics did
not perform equally well, the probabilistic one being the poorest. Here PBH obtained
the same clique sizes as the double list variant in 11 cases, it returned a larger clique
in 2 cases, and a smaller one twice. Compared to the single list heuristic, a similar
picture emerges. Here PBH obtained a larger clique in three cases and a smaller one
twice. It should be noticed that when PBH outperforms tabu search, the difference
in clique size is significant (e.g., 30 vs. 19, 15 vs. 10, etc.), while the opposite is not
true.

Homer and Peinado [16] compare three heuristics for maximum clique, namely, a
straightforward greedy heuristic, a randomized version of Boppana and Halldórsson’s
subgraph-exclusion algorithm [8], and a version of simulated annealing with a simple
cooling schedule. The algorithms were tested over very large graphs, and the overall
conclusion was that simulated annealing outperforms the other competing algorithms.
As far as comparison with PBH is concerned, it turns out that the average clique sizes
obtained by simulated annealing in 1000 trials per graph on a selection of graphs from
the p-hat, keller, and brock families (no results are presented on the Sanchis graphs)
are always rather smaller than those obtained by PBH, which, by contrast, is run
only once. There is only one exception: the p hat1500-3 graph, where PBH found
a clique of 91 vertices and the average clique size found by simulated annealing was
92.2. Looking at the best results obtained over the 1000 runs, it turns out that
simulated annealing equaled PBH 8 times, found a slightly larger clique in another
8 cases (usually one vertex larger, except for p hat1500-3), and in a single case PBH
got a better result.

In [18], Jagota, Sanchis, and Ganesan developed several neural-network heuristics
based on the so-called Hopfield model to approximate maximum clique. Overall, the
best results were obtained using a greedy steep descent (GSD) dynamics, although it
was slower than the others. The best results on the Sanchis graphs, in contrast, were
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obtained using a stochastic steep descent heuristic endowed with a “reinforcement
learning” strategy that automatically adjusts the internal parameters as the process
evolves (SSDRL). PBH significantly outperforms these models. Specifically, on the
brock, keller, and p-hat graphs, PBH always found cliques of size larger than or equal
to those found by GSD. On the san family the contrast is even more evident. Here
PBH found a clique larger than SSDRL 11 times and obtained the same clique size in
the remaining 4 cases. In a few cases, the cliques found by PBH were substantially
larger than those found by SSDRL (44 vs. 33, 30 vs. 18, etc.).

Grossman [14] also proposed a neural-network heuristic based on the Hopfield
model, originally designed for an all-optical implementation. The model has a thresh-
old parameter which determines the character of the stable states of the network. The
author suggests an annealing strategy on this parameter, and an adaptive procedure
to choose the network’s initial state and threshold. Experiments over random as well
as selected DIMACS graphs are reported. (Being a randomized procedure, for each
graph hundreds of trials were performed.) Compared to PBH, a picture similar to
simulated annealing emerges. The average clique sizes found by Grossman’s heuristic
are substantially smaller than those returned by PBH on all graph families. (No re-
sults on the Sanchis family are presented in [14].) Taking the best results found, out
of 17 instances PBH found a larger clique in 5 cases, a smaller one in 4 cases, and the
same clique size in the remaining 8 instances. Again, we stress the fact that PBH is
run only once on each graph instance and no randomization takes place.

4.2. Weighted graphs. For the weighted case there are no widely accepted
benchmark graphs, and therefore we adopted weighted random graphs as a testbed
for Algorithm 3.3. To obtain the weighted clique number for each test graph, we
used Babel’s method [1], which is one of the most efficient algorithms available in the
MWCP literature. Babel uses a branch and bound approach as follows: Upper and
lower bounds for the maximum weight clique are found by coloring the weighted graph,
where the number of colors represents the total sum of all weights. The branching
part of Babel’s algorithm divides the bounded search-tree into smaller subproblems,
the branching decisions depending on a specific order of all possible remaining nodes.
By applying these steps recursively, the maximum weight clique will be found in finite
time, and for not too big and too dense graphs in very short time. Unfortunately, the
coloring heuristic employed by this method severely restricts node weights to discrete
values. For example, if we consider graphs with floating point weights between 1 and
10, and with 3 significant digits, this would lead to as many as 9,000 possible discrete
weights. This means that Babel’s method could use up to 900,000 colors in a graph of
order 100. To accommodate this deficiency we generated random graphs with random
integer weights ranging between 1 and 10.

In this series of experiments we did not run the LDR algorithm, because of the
poor performance obtained on unweighted graphs. Given the clique C found by Algo-
rithm 3.3, as a success measure we took the ratio R =W (C) /ω (G,w). Table 3 lists
average results (Avg. R columns) and their standard deviations (St. Dev. columns)
for families of 20 random graphs with 100 vertices and various density values p.

Usual random graphs (Normal in Table 3) tend to be very regular (i.e., the degree
of all nodes is nearly the same). This feature is typically not shared by real-world
instances; hence we used Algorithm 4.1, borrowed from [7], to generate more irregu-
lar instances (Irregular). The same intent drove the choice of performing tests over
families of DIMACS p-hat graphs (p-hat columns).

On all types of graphs we obtained very positive figures. In particular, for normal
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Algorithm 4.1. An edge generation procedure for random irregular
graphs.

µ = p
(
n
2

)
.

while (µ > 0)
choose randomly v ∈ {1, . . . , n} and d ∈ {1, . . . , n− 1};
add d edges to randomly chosen neighbors of v;
if this is not possible

add the maximum of free edges to neighbors of v;
µ = µ− number of actually added edges.

endwhile;

Table 3
Performance of Algorithm 3.3 on weighted random graphs with 100 vertices (see text for expla-

nation).

p Normal Irregular p-hat
Avg. R St. Dev. Avg. R St. Dev. Avg. R St. Dev.

0.10 97.95% ±0.15 98.44% ±0.13 99.33% ±0.09
0.20 97.73% ±0.16 98.63% ±0.12 97.17% ±0.17
0.30 97.25% ±0.17 98.84% ±0.11 96.38% ±0.20
0.40 95.04% ±0.23 98.53% ±0.12 97.54% ±0.16
0.50 94.61% ±0.24 98.74% ±0.12 94.56% ±0.24
0.60 94.71% ±0.23 99.64% ±0.06 96.20% ±0.20
0.70 96.10% ±0.20 98.94% ±0.11 94.44% ±0.24
0.80 93.13% ±0.26 98.56% ±0.12 94.64% ±0.23
0.90 94.29% ±0.24 99.56% ±0.07 95.26% ±0.22
0.95 96.49% ±0.19 99.75% ±0.05 94.49% ±0.24

random graphs one can see how efficiency slowly decreases with increasing density but
always remains above 93%. For irregular graphs these figures improve considerably,
never falling below 98.4% efficiency. The same can be said for the p-hat graphs. But
in this last case it must be taken into account that for p close to 0.5, the node degree
variance is largest. The table reflects this fact in that performance is optimal for
sparse graphs, is worst for p close to 0.5, and then slowly improves while moving
toward p = 1. At this end-point the increased density becomes the dominant reason
for not reaching the heaviest clique.

The above experiments were conducted on a machine equipped with a 400MHz
Alpha CPU. On this machine, computing times for PBH ranged (approximately)
between 0.6 and 9 seconds.

5. Conclusions. We have presented an effective heuristic for the MWCP which
employs a pivoting algorithm on an LCP problem formulation derived from a develop-
ment of the Motzkin–Straus theorem. The remarkable effectiveness of our approach
and the empirical immunity of Lemke’s method to saddle points seems to indicate that
pivoting-based methods offer a promising new way to tackle this and related combi-
natorial problems. The algorithm has already been applied with success to graph
matching problems arising in computer vision and pattern recognition [21]. Note also
that our algorithm is completely devoid of working parameters, a valuable feature
which distinguishes it from other heuristics proposed in the literature (see, e.g., [4]).
In future investigations we will try to give a formal proof of convergence to local min-
imizers, and we will tackle the problem of reducing the time and space complexity of
our method.
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Appendix. Optimality and strict complementarity. Here we provide a
discussion of second-order optimality conditions for (2), where f(x) = xTQx with
a general symmetric n × n matrix rather than QG, in relation to the strict com-
plementarity condition. First we rephrase optimality in terms of copositivity with
respect to a polyhedral cone Γ. Recall that, given a cone Γ ⊆ R

n, a symmetric ma-
trix Q is said to be Γ-copositive if xTQx ≥ 0 for all x ∈ Γ. If the inequality holds
strictly for all x ∈ Γ \ {o}, then Q is said to be strictly Γ-copositive. As usual, define
e⊥ = {v ∈ R

n : eT v = 0}.
Theorem A.1. Let x ∈ ∆ and γ = xTQx. If x is a KKT point of (2), then set

Γ�(x) = {v ∈ e⊥ : vi ≥ 0 if i ∈ V \ S(x) and vTQx = 0} .(11)

Then
(a) x is a local solution to (2) if and only if Q is Γ�(x)-copositive;
(b) x is a strict local solution to (2) if and only if Q is strictly Γ�(x)-copositive.
Proof. If Γ(x) = {v ∈ R

n : vi ≥ 0 if i ∈ V \ S(x)} denotes the tangent cone of ∆
at x, then Γ�(x) as defined in (11) satisfies Γ�(x) = {v ∈ Γ(x) : vT∇f(x) = 0}, i.e.,
coincides with the reduced tangent cone. Hence (a) is established by Theorem 2 of
[2], while (b) can be proved by a simpler variant of the argument therein.

Observe that, in light of the above conditions, the last statement of Theorem 2.1
can be rephrased as follows: If QG is Γ�(x)-copositive, then QG is even strictly so.
(This holds also for every other matrix Q ∈ C (G,w), the entire class introduced in
[3].)

For quadratic problems over polyhedra more general than ∆, there are similar
second-order optimality conditions, also for global optimality; see, e.g., [2]. All con-
ditions involve checking copositivity, which from a practical point of view should be
avoided, as checking copositivity is NP -hard [25] whereas checking definiteness (see
below) can be done in polynomial time. In contrast with several other problems (e.g.,
the simplex method in linear optimization), this difference in worst-case complexity
is also reflected in the actual average case behavior. Thus an additional aspect of the
significance of strict complementarity becomes evident.

Theorem A.2. If x ∈ ∆ is a KKT point of (2) which satisfies the strict comple-
mentarity condition, then the reduced tangent cone

Γ�(x) = {v ∈ e⊥ : vi = 0 if i ∈ V \ S(x)}(12)

becomes a linear subspace.
Further, if x is a vertex of ∆, then x is a strict local solution to (2).
Otherwise, assume that x has r + 1 ≥ 2 strictly positive coordinates, pick a fixed

i ∈ S(x), and form the symmetric r × r matrix

Q̄ = [qii + qjk − qij − qik](j,k)∈S(x)\{i}×S(x)\{i} .(13)

Then
(a) x is a strict local solution to (2) if and only if Q̄ is positive-definite;
(b) x is a local solution to (2) if and only if Q̄ is positive-semidefinite.
Proof. To show (12), we employ the KKT conditions (4). Then λi > 0 for all

i ∈ V \ S(x) implies via (11) and

0 = vT∇f(x) =
∑

i∈V \S(x)

λivi − λeT v =
∑

i∈V \S(x)

λivi
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that vi = 0 for all i ∈ V \ S(x) if v ∈ Γ�(x). The converse is also obvious. Next, if
x is a vertex of the feasible set, then Γ�(x) = {o}, so that the copositivity condition
in Theorem A.1(a) is void. (Note that local optimality of vertices which are strictly
complementary KKT points holds in a much more general context.) Now assume that
x is no vertex. Denoting again by ei the ith column of the n× n identity matrix In,
we obtain a basis for Γ�(x) by {ei − ej : j ∈ S(x) \ {i}} and collect these vectors as
columns of an n × r matrix U so that Γ�(x) = U(Rr). But U can be written, after
suitable reordering, as U = [e,−Ir, O]T . Now partition Q into appropriate blocks to
arrive at Q̄ = UTQU as in (13). As a consequence, Q is Γ�(x)-copositive if and only
if Q̄ is positive-semidefinite, and similarly for the strict versions.

A consequence of the last statement in Theorem 2.1 is that, under strict comple-
mentarity, the (positive-semidefinite) matrices Q̄ are nonsingular if Q = QG. (Again,
this holds for every Q ∈ C (G,w), the entire class introduced in [3].) Thus Theo-
rem A.2 can be viewed as a sort of converse of Theorem 2.4, where nonsingularity of
certain matrices in turn guarantees strict complementarity.
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Abstract. We present an algorithm that achieves superlinear convergence for nonlinear pro-
grams satisfying the Mangasarian–Fromovitz constraint qualification and the quadratic growth con-
dition. This convergence result is obtained despite the potential lack of a locally convex augmented
Lagrangian. The algorithm solves a succession of subproblems that have quadratic objectives and
quadratic constraints, both possibly nonconvex. By the use of a trust-region constraint we guar-
antee that any stationary point of the subproblem induces superlinear convergence, which avoids
the problem of computing a global minimum. We compare this algorithm with sequential quadratic
programming algorithms on several degenerate nonlinear programs.

Key words. sequential quadratic programming, degenerate constraints, quadratic constraints,
superlinear convergence
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1. Introduction. Recently, there has been renewed interest in analyzing and
modifying algorithms for constrained nonlinear optimization for cases where the tra-
ditional regularity conditions do not hold [5, 17, 16, 26, 30, 29]. This research has been
motivated by the fact that large-scale nonlinear programming problems tend to be
almost degenerate (have large condition numbers for the Jacobian of the active con-
straints). It is therefore important to define algorithms that are as little dependent as
possible on the ill-conditioning of the constraints. In this work, we term as degenerate
those nonlinear programs (NLPs) for which the gradients of the active constraints are
linearly dependent. In this case there may be several feasible Lagrange multipliers.

Many of the previous analyses and rate-of-convergence results for degenerate
NLPs [5, 17, 16, 26, 30, 29] are based on the validity of some second-order condi-
tions. These are essentially equivalent to the condition in unconstrained optimization
that, for a critical point of a function f(x) to be a local minimum, fxx � 0 is a neces-
sary condition and fxx � 0 is a sufficient condition. Here � is the positive semidefinite
ordering. For these conditions the place of fxx in constrained optimization is taken
by Lxx, the Hessian of the Lagrangian, which is now required to be positive definite
on the critical cone for one or all of the Lagrange multipliers [10, 27].

This work differs from previous approaches in that we assume only that

1. at a local solution x∗ of the constrained NLP, the first-order Mangasarian–
Fromovitz [23, 22] constraint qualification holds;
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2. the quadratic growth condition (QG) (see [6, 20])

f(x) ≥ f(x∗) + σ ||x− x∗||2(1.1)

is satisfied for some σ > 0 and all x feasible in a neighborhood of x∗;
3. the data of the problem are twice continuously differentiable.

These assumptions are equivalent to a weaker form of the second-order sufficient
conditions [19, 6], which do not require the positive semidefiniteness of the Hessian
of the Lagrangian on the entire critical cone. In a recent paper [2] it was shown
that these conditions guarantee that x∗ is an isolated stationary point and that a
steepest-descent-like algorithm induces linear convergence to x∗. The framework used
here accommodates even problems for which no locally convex augmented Lagrangian
exists [2], and which do not satisfy the assumptions of most other convergence results
[5, 17, 16, 26, 30].

In this paper we define an algorithm that is superlinearly convergent even in the
very general conditions outlined above. The trade-off is that the subproblems to be
solved are more complex than a quadratic program. The algorithm can be justified
by a particular perspective on Newton’s method for unconstrained optimization. If
f(x) is the function to be minimized without constraints, then, sufficiently close to a
solution x∗, Newton’s direction d is a solution of the quadratic minimization problem

mind∈Rn f(x) +∇xf(x)
T d+ 1

2d
T∇2

xxf(x)d.

If we have an inequality constrained NLP,

minx f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

its second-order approximation at x is the following problem:

mind∈Rn f(x) +∇xf(x)
T d+ 1

2d
T∇2

xxf(x)d

subject to gi(x) +∇xgi(x)
T d+ 1

2d
T∇2

xxgi(x)d ≤ 0, i = 1, 2, . . . ,m.

We call such a problem a quadratically constrained quadratic program (QCQP). To
ensure that the problem is bounded even for x far from the solution x∗, we add to
the problem a trust-region constraint, which is also quadratic:

dT d ≤ γ2.

The problem is generally not convex, and thus finding the global optimum may be
a difficult problem. Also, the trust-region constraint may interfere with the order of
convergence. However, we show that for x close to x∗ and for γ sufficiently small but
fixed,

1. the trust-region constraint is inactive at any stationary point of the QCQP;
2. any stationary point d of the QCQP used as a progress direction induces

superlinear convergence.
Therefore, finding a local solution to the QCQP is sufficient to induce superlinear
convergence of the iterates, which considerably reduces the conceptual complexity of
a sequential QCQP (SQCQP) algorithm. Note that the QCQP subproblem is identical
to the one used in [21], although the analysis conditions in this work are more general.
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The paper is structured as follows. In subsection 1.1 we discuss the different
conditions defining a stationary point of an NLP and the QG. Section 2 character-
izes stationary points of the second-order approximation (QCQP) of the NLP at x∗.
We show that if the trust-region constraint defines a sufficiently small region, then
the Mangasarian–Fromovitz constraint qualification is satisfied at any feasible point,
and d = 0 is the unique stationary point of the QCQP. As a result, in section 3
we prove that, for x sufficiently close to x∗, the trust-region constraint is inactive
at any stationary point of QCQP, and we prove the superlinear convergence of the
SQCQP algorithm. In subsection 3.1 we show that the subproblems, which include
a trust-region constraint, solved by sequential quadratic programming (SQP) algo-
rithms applied to degenerate NLPs do not necessarily have an inactive trust region at
a solution. In section 4 we compare the SQCQP algorithm and two SQP algorithms
on three degenerate NLPs.

1.1. Previous work, framework, and notations. We deal with the NLP
problem

minx f(x) subject to g(x) ≤ 0,(1.2)

where f : R
n → R and g : R

n → R
m are twice continuously differentiable.

We call x a stationary point if the Fritz John conditions hold: There exist λ ∈ R
m,

λ0 ∈ R with (λ, λ0) 
= 0 such that

∇xL(x, λ0, λ) = 0, λ0 ≥ 0, λ ≥ 0, g(x) ≤ 0, λT g(x) = 0.(1.3)

Here L is the Lagrangian function

L(x, λ0, λ) = λ0f(x) + λT g(x).(1.4)

A local solution x∗ of (1.2) is a stationary point [25]. If certain regularity con-
ditions hold at x∗ (discussed below), then there exists λ ≥ 0 such that x∗ with λ
and λ0 = 1 satisfy (1.3). In that case (1.3) are referred to as the KKT (Karush–
Kuhn–Tucker) conditions [3, 4, 11], and λ are referred to as the Lagrange multipliers.
For that case, which is the one that most often appears in this work, we define the
Lagrangian as

L(x, λ) = f(x) + λT g(x),(1.5)

and the KKT conditions become

∇xL(x, λ) = 0, λ ≥ 0, g(x) ≤ 0, λT g(x) = 0.(1.6)

Since our analysis is limited to a neighborhood of a point x∗ that is a strict local
minimum, we assume that all constraints are active at x∗, or g(x∗) = 0. Such a
situation can be obtained by choosing a sufficiently small trust region and simply
dropping the constraints i for which gi(x

∗) < 0, since this relationship holds in an
entire neighborhood of x∗. This does not reduce the generality of our results, but it
simplifies the notation because now we do not have to refer separately to the active
set.

The regularity condition, or constraint qualification, ensures that a linear ap-
proximation of the feasible set in the neighborhood of x∗ captures the geometry of
the feasible set. Often in local convergence analysis of constrained optimization al-
gorithms, it is assumed that the constraint gradients ∇xgi(x

∗), i = 1, 2, . . . ,m, are
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linearly independent, so that the Lagrange multiplier in (1.6) is unique. We assume
instead the Mangasarian–Fromovitz constraint qualification (MFCQ) [23, 22]:

∇xgi(x
∗)T p ≤ −ζ0, i = 1, 2, . . . ,m, for some ζ0 > 0, p ∈ R

n, ||p|| = 1.(1.7)

It is well known [13] that MFCQ is equivalent to the boundedness and nonemptiness
of the setM(x∗) of Lagrange multipliers that satisfy (1.6), that is,

M(x∗) = {λ ≥ 0 | (x∗, λ) satisfy (1.6)} .(1.8)

Note that M(x∗) is certainly polyhedral in any case. Another condition equivalent
to MFCQ (1.7) is (see [14])

0 
=
m∑

i=1

λi∇xgi(x
∗) ∀λi ≥ 0, i = 1, 2, . . . ,m, such that

m∑
i=1

λi > 0.(1.9)

The critical cone at x∗ is (see [10, 28])

C = {u ∈ R
n | ∇xgi(x

∗)Tu ≤ 0, i = 1, 2, . . . ,m; ∇xf(x
∗)Tu = 0

}
.(1.10)

We briefly review some of the second-order conditions in the literature. In the
framework of [10], the second-order sufficient conditions for x∗ to be an isolated local
solution of (1.2) are (see [10, 11])

∃λ∗ ∈M(x∗), ∃σ > 0 such that vTLxx(x
∗, λ∗)v ≥ σ‖v‖22 ∀v ∈ C.(1.11)

If these conditions hold at x∗ for some λ∗, then the QG is satisfied, irrespective of the
validity of the first-order constraint qualification [10, 11]. An important consequence
of condition (1.11) is that x∗ is a local minimum of the augmented Lagrangian

Lc(x, λ
∗) = L(x, λ∗) + c ||g(x)||2

for a sufficiently large constant c.
A refinement of the second-order conditions was introduced in [19]. In the pres-

ence of MFCQ, those conditions require that

∀u ∈ C, ∃λ∗ ∈M(x∗) such that uT∇2
xxL(x∗, λ∗)u > 0.(1.12)

Further analysis shows that, in the presence of MFCQ, these conditions are necessary
and sufficient for the QG to hold [6, 19, 20, 28].

If condition (1.12) holds but (1.11) does not, then there may be no augmented
Lagrangian with a positive semidefinite Hessian, as is shown with an example in [2].
This is an interesting feature since it invalidates the usual working assumption of
Lagrange multiplier methods [4]. It also shows that the analysis in this paper is
done without assuming the existence of an augmented Lagrangian that has x∗ as an
unconstrained minimum.

In our analysis we use the L∞ nondifferentiable exact penalty function:

P (x) = max {0, g1(x), . . . , gm(x)} .(1.13)

If the MFCQ (1.7) conditions hold at x∗, then the QG (1.1) and the second-order
conditions (1.12) are each equivalent to the following condition (see [6]):

max {f(x)− f(x∗), P (x)} ≥ σ ||x− x∗||2(1.14)
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for some σ > 0 and all x in a neighborhood of x∗.
For some function h : R

n → R
k we denote by c1h, c2h bounds depending on the

first and second derivatives of h. The positive and negative parts of h(x) are h+(x) =
max {h(x), 0} and, respectively, h−(x) = max {−h(x), 0}, both taken componentwise.
With this notation, h(x) = h+(x) − h−(x). Also, in our notation, ∇xgi(x), λ, and
∇xg(x)λ are column vectors.

In this work we need to estimate distances to sets described by linear constraints:

P = {d ∈ R
n | Meqd+ qeq = 0, Mind+ qin ≤ 0} ,(1.15)

where Meq and Min are neq×n and, respectively, nin×n matrices, and qeq and qin are
neq- and, respectively, nin-dimensional vectors. By Hoffman’s lemma [18], if P 
= ∅,
there exists cP > 0 such that

∀d̃ ∈ R
n, D(d̃,P) ≤ cP max

{‖Meqd̃+ q‖eq‖∞, ‖(Mind̃+ qin)
+‖∞

}
,(1.16)

where by D(d̃,P) we denote the distance from d̃ to the set P. This result allows us
to relate the distance from a point d̃ to a polyhedral set in terms of the infeasibility
of d̃ in the representation (1.15).

2. Stationary points of QCQPs. In this section we investigate the stationary
points of the QCQP

mind∈Rn aT d+ 1
2d

TAd

TRQCQP(γ) subject to bTi d+
1
2d

TBid ≤ 0, i = 1, 2, . . . ,m,
dT d ≤ γ2,

where γ > 0 defines a trust-region constraint; A, Bi, i = 1, 2, . . . ,m, are n × n
symmetric matrices; and a ∈ R

n, bi ∈ R
n, i = 1, 2, . . . ,m. We denote this program

by TRQCQP(γ). Our assumptions concerning TRQCQP(γ) are the following:
1. At d = 0, MFCQ (1.7) holds:

bTi p ≤ −ζ0 ∀i ∈ 1, 2, . . . ,m and for some ζ0 > 0, p ∈ R
n, ||p|| = 1.(2.1)

2. QG (1.1) is satisfied near d = 0: There exist γ′
1 > 0 and σ1 > 0 such that

aT d+ 1
2d

TAd ≥ σ1 ||d||2
whenever bTi d+

1
2d

TBid ≤ 0, i = 1, 2, . . . ,m,

dT d ≤ γ′2
1 .

(2.2)

A local solution of TRQCQP(γ) is clearly d = 0.
The aim of this section is to show that under assumptions (2.2) and (2.1) there

exists γ5 > 0 such that d = 0 is the only stationary point of TRQCQP(γ), for any
0 ≤ γ ≤ γ5. As a consequence, any algorithm that reaches a stationary point of
TRQCQP(γ) finds its global optimum. The results from [2] ensure that d = 0 is an
isolated stationary point of TRQCQP(γ). However, the developments of this section
are necessary to ensure that additional stationary points are not introduced by the
trust-region constraint.

The proof has the following steps, each stated for sufficiently small γ.
• Lemma 2.4 proves that MFCQ (1.7) is satisfied for all stationary points d̃
of TRQCQP(γ). Therefore, at any stationary point there exist Lagrange
multipliers that satisfy (1.6) applied to TRQCQP(γ).
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• Lemma 2.3 ultimately implies that for any Lagrange multiplier λ at a station-
ary point d̃ of TRQCQP(γ) there exists a sufficiently close Lagrange multiplier
λ∗ at d = 0 whose active subset is included in the active subset of λ. This
leads to the identity (λi + λ∗

i )(b
T
i d̃ + 1

2 d̃
TBid̃) = 0, which helps bound from

above the variations in the objective function of TRQCQP(γ) in the proof of
Theorem 2.7.
• Lemma 2.5 proves that the multiplier of the trust-region constraint is bounded
above. This in turn implies Lemma 2.6; the Lagrange multipliers of all po-
tential stationary points are uniformly bounded.
• Theorem 2.7, the main result of this section, proves that d̃ = 0 is the unique
stationary point of TRQCQP(γ).

Subsection 2.1 contains additional results implied by Hoffman’s lemma (1.16),
which are used in section 3.

2.1. Sensitivity results for Lagrange multipliers. An immediate conse-
quence of MFCQ (2.1) is that the set of Lagrange multipliers of TRQCQP(γ) at
d = 0,

M∗ =

{
λ∗ ∈ R

m | a+
m∑

i=1

λ∗
i bi = 0, λ∗ ≥ 0

}
,(2.3)

is nonempty and bounded.
Lemma 2.1. There exists cM∗ > 0 such that, for any w ∈ R

n and for any λ ∈ R
m

satisfying

a+
m∑

i=1

λibi = w, λ ≥ 0,

there exists a λ∗ ∈M∗ such that ||λ− λ∗|| ≤ cM∗ ||w||.
Proof. The proof follows by direct application of Hoffman’s lemma (1.16), after

using the fact that ||w||∞ ≤ ||w||.
Lemma 2.2. There exists η > 0 such that for all w ∈ R

n with ||w|| ≤ η and any
λ satisfying

a+
m∑

i=1

λibi = w, λ ≥ 0,

there exists λ∗ ∈M∗ such that λi = 0⇒ λ∗
i = 0.

Proof. Assume the contrary: For any k ∈ N there exists wk ∈ R
n such that

‖wk‖ ≤ 1
k and there exists λk satisfying

a+
m∑

i=1

λk
i bi = wk, λk ≥ 0,

and an index set Ik ⊂ {1, 2, . . . ,m} such that λk
Ik = 0 but λ∗

Ik 
= 0 for all λ∗ ∈ M∗.
From Lemma 2.1, D(λk,M∗) ≤ cM∗‖wk‖ ≤ cM∗ 1

k → 0 as k → ∞. Since M∗ is a
compact set and the set of subsets of {1, 2, . . . ,m} is finite, there exist a subsequence
kq, an I∗ ⊂ {1, 2, . . . ,m}, and a λ∗ ∈ M∗ such that Ikq = I∗ for all q ∈ N and
λkq → λ∗. From our assumptions, λ∗

I∗ 
= 0 for all λ∗ ∈M∗. On the other hand, since

λ
kq

I∗ = λ
kq

Ikq
= 0 and λkq → λ∗, we must have λ∗

I∗ = 0, which is a contradiction. The
proof is complete.
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Lemma 2.3. There exist cM > 0 and η > 0 such that for any w ∈ R
n with

||w|| ≤ η and any λ satisfying

a+

m∑
i=1

λibi = w, λ ≥ 0,(2.4)

there exists λ∗ ∈M∗ with ||λ− λ∗|| ≤ cM ||w|| and such that λi = 0⇒ λ∗
i = 0 for all

i ∈ {1, 2, . . . ,m}.
Proof. Let η be the quantity defined by Lemma 2.2. Let I ⊂ {1, 2, . . . ,m} such

that there exists a λ satisfying (2.4) and λI = 0. Lemma 2.2 implies that there exists
λ∗ ∈M∗ such that λ∗

I = 0. LetM∗I be the set of all such λ∗; that is,

M∗I =

{
ν ∈ R

m | a+
m∑

i=1

νibi = 0, ν ≥ 0, νI = 0

}
.(2.5)

From Lemma 2.2, M∗I is not empty. From Hoffman’s lemma (1.16), there exists
cM∗

I > 0 such that, for all µ ∈ R
m, we have

D(µ,M∗I) ≤ cM∗
I max

{∣∣∣∣∣
∣∣∣∣∣a+

m∑
i=1

µibi

∣∣∣∣∣
∣∣∣∣∣
∞
, ||µI ||∞ ,

∣∣∣∣µ−∣∣∣∣
∞

}
.(2.6)

From Lemma 2.1 choose λ̄∗ ∈M∗ such that∣∣∣∣λ− λ̄∗∣∣∣∣ ≤ cM∗ ||w|| .(2.7)

From the definition ofM∗ in (2.3) we have that∣∣∣∣∣
∣∣∣∣∣a+

m∑
i=1

λ̄∗
i bi

∣∣∣∣∣
∣∣∣∣∣
∞

= 0,
∣∣∣∣(λ̄∗)−

∣∣∣∣
∞ = 0.

Thus, from (2.6) we must have

D(λ̄∗,M∗
I) ≤ cM∗

I

∣∣∣∣λ̄∗
I
∣∣∣∣
∞ .(2.8)

We also have from our choice of λ̄∗ in (2.7) that∣∣∣∣λI − λ̄∗
I
∣∣∣∣
∞ ≤

∣∣∣∣λ− λ̄∗∣∣∣∣ ≤ cM∗ ||w|| .

Since λI = 0, we thus have ‖λ̄∗
I‖∞ = ‖λI − λ̄∗

I‖∞, which, in conjunction with the
preceding inequality and (2.8), implies that

D(λ̄∗,M∗I) ≤ cM∗
IcM∗ ||w|| .

Hence, from (2.7) and the preceding inequality, we have that

D(λ,M∗I) ≤
∣∣∣∣λ− λ̄∗∣∣∣∣+D(λ̄∗,M∗I)

≤ cM∗ ||w||+ cM∗cM∗
I ||w|| = cM∗(1 + cM∗

I ) ||w|| .
The conclusion now follows, after taking

cM = max
I⊂{1,2,...,m}, ∃λ∗∈M∗, λ∗

I=0
c∗M(1 + cM∗

I ).
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2.2. Stationary points of QCQPs. In this section we analyze the stationary
points of TRQCQP(γ) for sufficiently small values of the parameter γ. We choose γ′′

1

such that

||d|| ≤ γ′′
1 ⇒ (bi +Bid)

T p ≤ −ζ0
2
∀i ∈ 1, 2, . . . ,m,(2.9)

where ζ0, p are the quantities appearing in MFCQ (2.1) with ||p|| = 1. We choose

γ1 = min {γ′
1, γ

′′
1 } > 0,(2.10)

which guarantees that whenever ||d|| ≤ γ1, both (2.9) and the QG (2.2) hold.
Lemma 2.4. There exists γ2 > 0 such that TRQCQP(γ) satisfies MFCQ (1.7) at

all its stationary points d, with γ such that 0 < γ ≤ γ2.
The important consequence of this lemma is that Lagrange multipliers exist at

any stationary point of TRQCQP(γ). Note that the result of this lemma does not
immediately follow from the fact that MFCQ (2.1) holds at d = 0 for TRQCQP(γ) and
that MFCQ is stable under perturbations. In this lemma we also consider stationary
points d at which the trust region may be active and at which we have no initial
guarantee of the satisfaction of a constraint qualification.

Proof. Take the QCQP

mind∈Rn dT d
subject to bTi d+

1
2d

TBid ≤ 0, i = 1, 2, . . . ,m,
(2.11)

with global solution d = 0. At d = 0, (2.11) satisfies MFCQ (2.1) as well as the QG
(1.1). From [2], d = 0 is an isolated stationary point of (2.11). Therefore there exists
a γ′

2 > 0 such that the only stationary point d of (2.11) that satisfies dT d ≤ (γ′
2)

2 is
d = 0.

Now take γ2 = min {γ1, γ
′
2}. Assume that there exists γ, 0 < γ ≤ γ2, such that

MFCQ (1.7) is not satisfied at some stationary point d̄ of TRQCQP(γ). From (1.9)
and (1.3) it follows that there exist λ̄ ≥ 0 and λ̄0 ≥ 0, not both equal to 0, such that

λ̄0d̄+
∑m

i=1 λ̄i(bi +Bid̄) = 0,

bTi d̄+
1
2 d̄

TBid̄ ≤ 0, i = 1, 2, . . . ,m,

λ̄i(b
T
i d̄+

1
2 d̄

TBid̄) = 0, i = 1, 2, . . . ,m,

λ̄0(d̄
T d̄− γ2) = 0.

(2.12)

If λ̄0 = 0, this would imply

m∑
i=1

λ̄i(bi +Bid̄) = 0,

or, after multiplying with p from (2.9), we get

−
m∑

i=1

λ̄i
ζ0
2
≥

m∑
i=1

λ̄i(bi +Bid̄)
T p = 0,

which implies λ̄ = 0, a contradiction with the assumption that not both λ̄0 and λ̄
are 0. Therefore λ̄0 > 0, and from (2.12) we get d̄T d̄ = γ2 > 0 and, after dividing
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with λ̄0,

d̄+
∑m

i=1
λ̄i

λ̄0
(bi +Bid̄) = 0,

bTi d̄+
1
2 d̄

TBid̄ ≤ 0, i = 1, 2, . . . ,m,
λ̄i

λ̄0
(bTi d̄+

1
2 d̄

TBid̄) = 0, i = 1, 2, . . . ,m.

(2.13)

But this means that d̄ 
= 0 is a stationary point of (2.11) with a Lagrange mul-
tiplier λ̄/λ̄0, which contradicts the properties of our choice of γ2. The proof is
complete.

Lemma 2.5. Consider the following QCQP:

mind∈Rn Ψ(d) = aT d+ 1
2d

TAd+ 1
2c1d

T d

subject to Γi(d) = bTi d+
1
2d

TBid ≤ 0, i = 1, 2, . . . ,m.
(2.14)

Then there exist γ3 > 0 and cδ ≥ 0 such that, whenever c1 ≥ cδ, the only stationary
point of (2.14) that satisfies ||d|| ≤ γ3 is d = 0.

Note that the constraints of (2.14) are the same as those of TRQCQP(γ), with
the exception of the trust-region constraint. If d is a stationary point of (2.14) such
that ||d|| < γ, then d must be feasible for TRQCQP(γ) with an inactive trust-region
constraint.

Proof. Choose γ′
3 = γ1. From (2.10) this implies that for all d with ||d|| ≤ γ′

3

(2.9) and the QG (2.2) hold. Since (2.9) implies MFCQ (1.7) at any feasible point of
(2.14), this implies in turn that any stationary point of (2.14) that satisfies ||d|| ≤ γ′

3

will have a nonempty and bounded Lagrange multiplier set.
Choose now

c̃B =
2

ζ0

(
max

i=1,2,...,m
||Bi||+ 1

)
,(2.15)

γ3 = min

{
1

2c̃B
,

1

||A|| c̃B , γ′
3

}
,(2.16)

cδ = ||A||+ 2c̃B ||a||+ 2.(2.17)

Take d̃ 
= 0 a feasible point of (2.14) such that ‖d̃‖ ≤ γ3. Assume also that
c1 ≥ cδ, as specified in the statement of the lemma. We now estimate the variation of
the constraints and objective function in a specific direction from d̃, in order to decide
under what conditions d̃ 
= 0 can be a stationary point of (2.14). Let the active set
at d̃ be

Bd̃ =
{
i = 1, 2, . . . ,m | Γi(d̃) = 0

}
.(2.18)

We estimate the first-order behavior of Γi(d) in the direction −d̃+ βp, where p is the
vector from (2.9) and β ≥ 0. For i ∈ Bd̃ we get

(∇dΓi(d̃))
T (−d̃+ βp) = (bi +Bid̃)

T (−d̃+ βp)

= −bTi d̃− d̃TBid̃+ β(bi +Bid̃)
T p

= −bTi d̃− 1
2 d̃

TBid̃− 1
2 d̃

TBid̃+ β(bi +Bid̃)
T p

≤ −β ζ0

2 − 1
2 d̃

TBid̃,

(2.19)

where we have used (2.9), and that, from (2.18), if i ∈ Bd̃, then −bTi d̃− 1
2 d̃

TBid̃ = 0.
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For the objective function we have that

(∇dΨ(d̃))T (−d̃+ βp) = (a+Ad̃+ c1d̃)
T (−d̃+ βp)

= −aT d̃− d̃TAd̃− c1d̃
T d̃+ βaT p+ βd̃TAp+ βc1d̃

T p

≤ −σ1d̃
T d̃− c1d̃

T d̃− 1
2 d̃

TAd̃+ βaT p+ βd̃TAp+ βc1d̃
T p,

(2.20)
where we used QG (2.2).

Choose now

β = c̃B‖d̃‖2.(2.21)

Using that ||p|| = 1, we obtain∣∣∣− 1
2 d̃

TAd̃+ βaT p+ βd̃TAp+ βc1d̃
T p
∣∣∣

≤ ‖d̃‖2( 1
2 ||A||+ c̃B ||a||+ c̃B‖d̃‖ ||A||

)
+ c1c̃B‖d̃|‖d̃‖2

≤ ‖d̃‖2 ( 1
2 ||A||+ c̃B ||a||+ 1

)
+ 1

2c1‖d̃‖2

≤ 1
2c1‖d̃‖2 + 1

2c1‖d̃‖2 = c1‖d̃‖2,

(2.22)

where we used that from our choice of γ3 (2.16) and since ‖d̃‖ ≤ γ3 we have c̃B‖d̃‖ ≤ 1
2

and c̃B‖d̃‖ ||A|| ≤ 1. We also used the definition of cδ in (2.17) and that c1 ≥ cδ.
Using (2.22) in (2.20), we get

∇dΨ(d̃)T (−d̃+ βp) ≤ −σ1‖d̃‖2 − c1‖d̃‖2 + c1‖d̃‖2 < 0.(2.23)

Using (2.15) and (2.21) in (2.19), we get for all i ∈ Bd̃

∇dΓi(d̃)
T (−d̃+ βp) ≤ − 2

ζ0
(maxi=1,2,...,m ||Bi||+ 1) ‖d̃‖2 ζ0

2 + 1
2‖d̃‖2 ||Bi||

≤ − 1
2 ||Bi|| ‖d̃‖2 − ‖d̃‖2 < 0.

(2.24)

From (2.24) and (2.23) we get that if d̃ 
= 0 is feasible for (2.14), if c1 ≥ cδ (see
(2.17)) and ‖d̃‖ ≤ γ3 (see (2.16)), then there exists a direction

∆̃ = −d̃+ βp

that produces strict decreases in the objective function and the active constraints.
Therefore d̃ cannot be a stationary point of (2.14). Otherwise (1.3) implies that there
exist the multipliers λ0 ≥ 0, λ ≥ 0, λ ∈ R

m, not all of them of 0, such that

λ0∇dΨ(d̃) +
∑
i∈Bd̃

λi∇dΓi(d̃) = 0.

From (2.24) and (2.23) we get, after multiplying with ∆̃, that

0 > λ0∇dΨ(d̃)T ∆̃ +
∑
i∈Bd̃

λi∇dΓi(d̃)
T ∆̃ = 0,

which is a contradiction that proves the lemma, with cδ defined in (2.17) and γ3

defined in (2.16).
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Lemma 2.6. There exist Λ∞ > 0 and γ4 > 0 such that, if d̃ with ‖d̃‖ ≤ γ4 is a
stationary point of TRQCQP(γ) with Lagrange multipliers λ ∈ R

m and c1 ∈ R, where
0 < γ ≤ γ4, then ||λ||∞ ≤ Λ∞.

Proof. We take

γ4 = min {γ1, γ2, γ3} ,(2.25)

where γ1 is defined in (2.10), γ2 is the quantity from Lemma 2.4, and γ3 is the
quantity from Lemma 2.5. Lemma 2.4 ensures that the Lagrange multipliers exist at
any stationary point of TRQCQP(γ).

Assume the contrary of the conclusion of the lemma: For any k ∈ N, there exists
d̃k a stationary point of TRQCQP(γk) with 0 < γk ≤ γ4 and with Lagrange multipli-
ers λk ≥ 0, ck1 ≥ 0 satisfying

∣∣∣∣λk
∣∣∣∣
∞ ≥ k and the KKT conditions for TRQCQP(γk),

or

a+Ad̃k +
∑m

i=1 λ
k
i (bi +Bid̃

k) + c1d̃
k = 0,

bTi (d̃
k) + 1

2 d̃
kT

Bid̃
k ≤ 0, i = 1, 2, . . . ,m,

d̃kT

d̃k ≤ (γk)2,

λk
i (b

T
i d̃

k + 1
2 d̃

kT

Bid̃
k) = 0, i = 1, 2, . . . ,m,

ck1(d̃
kT

d̃k − (γk)2) = 0.

(2.26)

By Lemma 2.5, since ‖d̃k‖ ≤ γ3, we must have ck1 < cδ. Since
∥∥ λk

||λk||∞
∥∥
∞ = 1, we

can choose λ∗ such that for a subsequence kq, q →∞, we have limq→∞ λkq/‖λkq‖∞ =

λ∗, with ‖λ∗‖∞ = 1 and limq→∞ d̃kq = d̃∗, where ‖d̃∗‖ ≤ γ4. We can now divide
through the first equation of (2.26) with ‖λkq‖∞ and take the limit as q → ∞ and
‖λkq‖∞ →∞. We obtain

m∑
i=1

λ∗
i (bi +Bid̃

∗) = 0.

Since d̃ ≤ γ4 ≤ γ1, we can multiply with p and use (2.9) and the fact that ||λ∗||∞ = 1
to get

−ζ0
2
≥

m∑
i=1

λ∗
i p

T (bi +Bid̃
∗) = 0,

which is a contradiction. This proves the lemma.
Theorem 2.7. There exists γ5 > 0 such that, for any γ such that 0 < γ ≤ γ5,

TRQCQP(γ) has the unique stationary point d = 0.
Proof. Choose

cλ =

(
mΛ∞ max

i=1,2,...,m
||Bi||+ ||A||+ cδ

)
,(2.27)

γ′
5 = min

{
γ1, γ2, γ3, γ4,

η

cλ

}
,(2.28)

where η is the quantity from Lemma 2.3, cδ is the quantity from Lemma 2.5, Λ∞
is the quantity from Lemma 2.6, and γj , j = 1, 2, 3, 4, are the bounds on the trust
regions that ensure that all preceding results hold.
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Let d̃ 
= 0 be a stationary point of TRQCQP(γ) with 0 < γ ≤ γ5. By Lemma
2.4, TRQCQP(γ) satisfies MFCQ (1.7) at d̃. Therefore there exist the Lagrange
multipliers λ ≥ 0, c1 ≥ 0, which, together with d̃, satisfy (1.6), or

a+Ad̃+
∑m

i=1 λi(bi +Bid̃) + c1d̃ = 0,

bTi (d̃) +
1
2 d̃

TBid̃ ≤ 0, i = 1, 2, . . . ,m,

d̃T d̃ ≤ (γ)2,

λi(b
T
i d̃+

1
2 d̃

TBid̃) = 0, i = 1, 2, . . . ,m,

c1(d̃
T d̃− (γ)2) = 0.

(2.29)

Since ‖d̃‖ ≤ γ′
5 ≤ γ3, Lemma 2.5 applies to give that c1 < cδ. Since ‖d̃‖ ≤ γ′

5 ≤ γ4,
we have that ||λ||∞ ≤ Λ∞ from Lemma 2.6. We define

−w = Ad̃+

m∑
i=1

λiBid̃+ c1d̃.(2.30)

After applying the triangle inequality and using (2.27), we have that

||w|| ≤ ‖Ad̃‖+
m∑

i=1

‖λiBid̃‖+ ‖c1d̃‖

≤ ‖d̃‖
(
||A||+mΛ∞

(
max

i=1,2,...,m
||Bi||

)
+ cδ

)
= cλ‖d̃‖ ≤ cλ

η

cλ
= η,(2.31)

where in the last inequality we have used (2.28), since γ ≤ γ′
5 ≤ η

cλ
and ‖d̃‖ ≤ γ.

From (2.29) and (2.30) we have that

a+

m∑
i=1

λibi = w.

This implies, from Lemma 2.3, that there exists λ∗ ∈ M∗ (a Lagrange multiplier for
TRQCQP(γ) at d = 0) such that

||λ− λ∗|| ≤ cM ||w|| and λi = 0⇒ λ∗
i = 0 ∀i ∈ {1, 2, . . . ,m} .(2.32)

Since λ∗ ∈M∗, it satisfies

a+

m∑
i=1

λ∗
i bi = 0.

Adding the last equality to the first equation in (2.29), dividing by 2, and multiplying
with d̃T , we obtain

aT d̃+
1

2
d̃Ad̃+

1

2

m∑
i=1

[
λ∗

i b
T
i d̃+ λi(b

T
i d̃+ d̃TBid̃)

]
+

1

2
c1‖d̃‖2 = 0.

We now use the identity u1v1 + u2v2 = 1
2 (u1 + u2)(v1 + v2) +

1
2 (u1 − u2)(v1 − v2) as

well as the fact that (λ∗
i + λi)(b

T
i d̃ + 1

2 d̃
TBid̃) = 0, for i = 1, 2, . . . ,m, which follows

from (2.32) and (2.29), to obtain

0 = aT d̃+
1

2
d̃Ad̃+

1

2

m∑
i=1

[
1

2
(λ∗

i + λi)(2b
T
i d̃+ d̃TBid̃)− 1

2
(λ∗

i − λi)(d̃
TBid̃)

]
+

1

2
c1‖d̃‖2

= aT d̃+
1

2
d̃Ad̃− 1

4

m∑
i=1

(λ∗
i − λi)(d̃

TBid̃) +
1

2
c1‖d̃‖2,
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which results in

aT d̃+
1

2
d̃Ad̃+

1

2
c1‖d̃‖2 =

1

4

m∑
i=1

(λ∗
i − λi)(d̃

TBid̃).(2.33)

Since d̃ is feasible for TRQCQP(γ) and since ‖d̃‖ ≤ γ′
5 ≤ γ1 ≤ γ′

1, the last inequality
following from (2.10), QG (2.2) holds to give that aT d̃+ 1

2 d̃Ad̃ ≥ σ1‖d̃‖2. Define

cB = max
i=1,2,...,m

||Bi|| .

From (2.32), (2.30), and (2.31) we have ||λ∗ − λ|| ≤ cMcλ‖d̃‖. Using all these bounds
in (2.33), together with the arithmetic-quadratic mean inequality, we get

σ1‖d̃‖2 ≤ aT d̃+
1

2
d̃Ad̃+

1

2
c1‖d̃‖2 =

1

4

m∑
i=1

(λ∗
i − λi)(d̃

TBid̃)

≤ 1

4

√
mcB‖d̃‖2 ||λ∗ − λ|| ≤ 1

4

√
mcB‖d̃‖2cMcλ‖d̃‖.

Since ‖d̃‖ 
= 0, from our assumption, we obtain, after dividing through the previous
inequality by ‖d̃‖2, that

‖d̃‖ ≥ 4σ1√
mcBcMcλ

.(2.34)

Choose now

γ5 = min

{
γ′
5,

2σ1√
mcBcMcλ

}
.

From (2.34) it follows that the unique stationary point of TRQCQP(γ) with 0 < γ ≤
γ5 is d̃ = 0. The proof is complete.

3. SQCQP. In this section, we introduce the SQCQP algorithm. We prove that
under the conditions set forth in the introduction, the algorithm induces superlinear
convergence. Since our main interest is the rate of convergence of the algorithm, we
do not address global convergence issues.

We consider the following form of the algorithm:
1. Choose a starting point xk, k = 0.
2. Let x = xk, and determine dk, a stationary point of

mind∈Rn ∇xf(x)
T d+ 1

2d
T∇2

xxf(x)d

subject to gi(x) +∇xgi(x)
T d+ 1

2d
T∇2

xxgi(x)d = Γi(x, d) ≤ 0,
i = 1, 2, . . . ,m,

dT d ≤ γ2.
(3.1)

3. Take xk+1 = xk + dk and k = k + 1 and restart.
At every step, the algorithm solves a problem with quadratic constraints and a
quadratic objective, none of which are assumed to be convex. We name the above
algorithm sequential quadratically constrained quadratic programming or SQCQP.

As outlined in subsection 1.1, we assume without loss of generality that gi(x
∗) = 0,

for all i = 1, 2, . . . ,m, after eventually considering a sufficiently small trust region,
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and that the QG (1.1) and MFCQ (1.7) hold at a local solution x∗ of the NLP (1.2).
From [19, 6] these conditions are equivalent to MFCQ (1.7) and (1.12), which are
expressed only in terms of the derivatives of the data up to the second order. We
show that (3.1) is feasible for γ fixed and x in some neighborhood of x∗. Since it is
also bounded, a stationary point must exist.

Due to the fact that it captures all information up to second order for (1.2) at
x∗, the QCQP

mind∈Rn ∇xf(x
∗)T d+ 1

2d
T∇2

xxf(x
∗)d

subject to ∇xgi(x
∗)T d+ 1

2d
T∇2

xxgi(x
∗)d ≤ 0, i = 1, 2, . . . ,m,

dT d ≤ γ2

(3.2)

satisfies MFCQ (1.7) and (1.12) at d = 0. As a result of [19, 6] it follows that (3.2)
satisfies MFCQ (2.1) and QG (2.2). Therefore, all the results from section 2 apply
for (3.2). We follow a line of proof similar to the one in section 2.

• Theorem 3.1 proves that MFCQ (1.7) is satisfied by (3.1) in a neighborhood
of x∗ and that the trust-region constraint is inactive at any stationary point
d of (3.1). Corollary 3.2 further insures that, in a neighborhood of x∗, the
Lagrange multipliers of (3.1) are uniformly bounded.
• Lemma 3.3 ultimately implies that for any Lagrange multiplier λ at a sta-
tionary point d of (3.1) at x = x∗ there exists a sufficiently close Lagrange
multiplier λ∗ at x = x∗ whose active subset is included in the active subset of
λ. This in turn leads to the conclusions of Lemma 3.4 that (λi+λ∗

i )gi(x+d) =

o(||d||2) and that P (x+ d) = o(||d||2), where d is a stationary point of (3.1).
This helps bound above the variations in the objective function of (3.1) in
the proof of Theorem 3.5.
• Theorems 3.5 and 3.6 prove the superlinear convergence of a sequence xk+1 =
xk + dk, initiated sufficiently close to x∗, where dk is any stationary point of
(3.1).

Theorem 3.1. There exists γ6 > 0 and a neighborhood Nγ6(x
∗) such that, for any

γ with 0 < γ ≤ γ6, there exists a neighborhood Nγ(x
∗) of x∗ such that the following

hold:
(i) The QCQP (3.1) is feasible for any x ∈ Nγ(x

∗).
(ii) For any x ∈ Nγ6

(x∗) and any d with ||d|| ≤ γ6 we have

(∇xgi(x) +∇2
xxgi(x)d)

T p ≤ −ζ0
2

,

where ζ0 and p are the quantities entering the definition of MFCQ (1.7).

(iii) For any sequence xk ∈ Nγ(x
∗) that satisfies xk → x∗ as k →∞, and with d̃k

a stationary point of (3.1) at x = xk, we must have d̃k → 0 as k →∞.
(iv) The constraint dT d ≤ γ2 is inactive for any x ∈ Nγ(x

∗) and d a stationary
point of (3.1).

Note that the size of the neighborhood Nγ(x
∗) for which the conclusions of parts

(i), (iii), and (iv) hold must be a function of γ. For example, if x is close to x∗ but
infeasible for (1.2) and if γ is too small, then the trust-region constraint will prevent
the satisfaction of the other constraints in (3.1), and (i) will not hold in this case. This
implies that for any x infeasible there exists γ sufficiently small such that x /∈ Nγ(x

∗).
Generally, as γ decreases, Nγ(x

∗) will decrease as well.
Proof. Since (3.2) satisfies MFCQ (2.1) and the QG (2.2) at d = 0, from Theorem

2.7 there exists γ′
6 such that, for any 0 < γ ≤ γ′

6, d̃ = 0 is the only stationary point



A SUPERLINEARLY CONVERGENT SQCQP ALGORITHM 963

of (3.2). Choose now γ such that 0 < γ ≤ γ′
6. Since (3.2) satisfies MFCQ (2.1), then,

from [27], for any sufficiently small perturbation of (3.2) we still obtain a feasible
NLP. We regard (3.1) as a perturbation of (3.2), and we therefore have, from the
fact that f, g are twice continuously differentiable, that there exists a neighborhood
N 2

γ (x
∗) of x∗ such that (3.1) is feasible for any x ∈ N 2

γ (x
∗), which proves part (i) as

long as Nγ(x
∗) ⊂ N 2

γ (x
∗), as we will later choose Nγ(x

∗). We also have that, for all
i = 1, 2, . . . ,m,

(∇xgi(x) +∇2
xxgi(x)d

)T
p = ∇xgi(x

∗)T p+
(∇xgi(x)−∇xgi(x

∗) +∇2
xxgi(x)d

)T
p

≤ ∇xgi(x
∗)T p+ c2g ||x− x∗||+ c2g ||d|| ≤ −ζ0 + c2g ||x− x∗||+ c2g ||d|| ,

where c2g is a bound on the second derivatives of gi(x), i = 1, 2, . . . ,m, since, from

MFCQ (1.7), ||p|| = 1. If we choose γ′′
6 = ζ0

4c2g
, d with ||d|| ≤ γ′′

6 , and Nγ6(x
∗) =

B(x∗, ζ0

4c2g
), we get from the previous bound that, since now c2g ||x− x∗|| ≤ ζ0

4 and

c2g ||d|| ≤ ζ0

4 ,

(∇xgi(x) +∇2
xxgi(x)d)p ≤ −ζ0

2
,

which shows part (ii), after defining γ6 = min {γ′
6, γ

′′
6 }. We now choose

N 3
γ (x

∗) = Nγ6(x
∗) ∩N 2

γ (x
∗).

For 0 < γ ≤ γ6, both the conclusions of (i) and (ii) hold. In particular, for any
γ ∈ (0, γ6], x ∈ N 3

γ (x
∗), the QCQP (3.1) must have a stationary point since it is

feasible and bounded.

Take a sequence xk that satisfies xk → x∗ as k → ∞. For k sufficiently large
we must have xk ∈ N 3

γ (x
∗), and thus (3.1) will have a finite stationary point dk.

Assume now that conclusion (iii) does not hold: There exists γ > 0, with γ ≤ γ6

and a sequence xk → x∗, such that the corresponding stationary points dk of (3.1)
are bounded below ‖dk‖ ≥ cf > 0 for all k sufficiently large. Since dk is a stationary
point of (3.1) at x = xk, it must satisfy the first-order necessary conditions (1.3) for

some multipliers λk
i ≥ 0, i = 0, 1, . . . ,m+ 1, with

∑m+1
i=0 λk

i = 1:

λk
0(∇xf(x

k) +∇2
xxf(x

k)dk) +
∑m

i=1 λ
k
i (∇xgi(x

k) +∇2
xxgi(x

k)dk) + λk
m+1d

k = 0
for i = 1, 2, . . . ,m : Γi(x

k, dk) ≤ 0, Γi(x
k, dk)λk

i = 0,
(dk)T dk ≤ γ2, ((dk)T dk − γ2)λk

m+1 = 0.
(3.3)
Since the multipliers λk = (λk

0 , λ
k
1 , . . . , λ

k
m+1) satisfy ‖λk‖1 = 1 and the direction

dk satisfies cf ≤ ‖dk‖ ≤ γ, we can extract a subsequence kq such that xkq → x∗,
λkq → λ∗, dkq → d∗ 
= 0 as q → ∞. Taking the limit as q → ∞ in (3.3), we obtain
from the continuity of all data involved in terms of (x, d) that d∗ is a stationary point
of (3.2). Since d∗ 
= 0 this contradicts the outcome of Theorem 2.7 that is valid due
to our choice of γ6. This proves (iii).

Assume now that (iv) does not hold. It then follows that there exists a sequence
xk → x∗ with dk a stationary point and such that ‖dk‖ = γ. But this contradicts the
conclusion of (iii), and thus there exists a neighborhood Nγ(x

∗) ⊂ N 3
γ (x

∗) ⊂ N 2
γ (x

∗)
such that for x ∈ Nγ(x

∗) any stationary point of (3.1) satisfies dT d < γ2, and for
which the conclusions of parts (i), (ii), and (iii) hold. The proof is complete.
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Corollary 3.2. Any stationary point of (3.1) satisfies the KKT conditions with
an inactive trust-region constraint,

∇xf(x) +∇2
xxf(x)d+

∑m
i=1 λi(∇xgi(x) +∇2

xxgi(x)d) = 0
for i = 1, 2, . . . ,m : Γi(x, d) ≤ 0, Γi(x, d)λi = 0,

dT d < γ2,
(3.4)

for any 0 ≤ γ ≤ γ6, x ∈ Nγ(x
∗) and for some λ ∈ Rm, λ ≥ 0. Here γ6 is the

constant defined in Theorem 3.1. There exists Λ∞ such that, for any x ∈ Nγ(x
∗),

any stationary point d of (3.1), and any Lagrange multipliers λ satisfying the KKT
conditions, we have ||λ||∞ ≤ Λ∞.

Proof. Since 0 < γ ≤ γ6, then, by Theorem 3.1(iv), we have that for any x ∈
Nγ(x

∗) and any stationary point d, we must have ||d|| < γ. Therefore only the
constraints Γi(x, d), i = 1, 2, . . . ,m, can be active at a stationary point d. Then by
Theorem 3.1(ii), MFCQ (1.7) is satisfied at d and thus there exist multipliers λ ≥ 0
satisfying the KKT conditions and, in particular,

∇xf(x) +∇2
xxf(x)d+

m∑
i=1

λi(∇xgi(x) +∇2
xxgi(x)d) = 0.

Multiplying both sides by p, we get

0 = (∇xf(x) +∇2
xxf(x)d)

T p+

m∑
i=1

λi(∇xgi(x) +∇2
xxgi(x)d)

T p

≤ (∇xf(x) +∇2
xxf(x)d)

T p− ||λ||∞
ζ0
2
.

Since ||p|| = 1, ||d|| < γ, and after using the usual norm inequalities, we get

||λ||∞ ≤
2

ζ0

(||∇xf(x)||+ γ
∣∣∣∣∇2

xxf(x)
∣∣∣∣) .

Since on Nγ(x
∗) the expression from the right-hand side is bounded above, there

exists Λ∞ for which the conclusion of this corollary holds.
Lemma 3.3. There exist γ7 > 0 and a constant c∗ > 0 such that for any γ

with 0 < γ ≤ γ7 there exists a neighborhood N 1
γ (x

∗) such that, whenever x ∈ N 1
γ (x

∗)
and for any d a stationary point of (3.1) with Lagrange multipliers λ, there exists
λ∗ ∈ M(x∗) such that ||λ− λ∗|| ≤ c∗(||x− x∗|| + ||d||) and λi = 0 ⇒ λ∗

i = 0 for all
i = 1, 2, . . . ,m.

Proof. Take γ such that 0 < γ ≤ γ6 and x ∈ Nγ(x
∗). Let d be a stationary point

of (3.1) with Lagrange multipliers λ ≥ 0 (which exist from Corollary 3.2). From the
KKT conditions we obtain

∇xf(x) +∇2
xxf(x)d+

m∑
i=1

λi(∇xgi(x) +∇2
xxgi(x)d) = 0,(3.5)

and thus

∇xf(x
∗) +

m∑
i=1

λi∇xgi(x
∗)

= ∇xf(x
∗)−∇xf(x) +

m∑
i=1

λi (∇xg(x
∗)−∇xg(x))−∇2

xxf(x)d−
m∑

i=1

λi∇2
xxgi(x)d.

(3.6)
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Using that ||∇xf(x)−∇xf(x
∗)|| ≤ c2f ||x− x∗||, and that ||∇xgi(x)−∇xgi(x

∗)|| ≤
c2g ||x− x∗||, where c2f and c2g are bounds on the second derivatives of f and g, we
get from (3.6) and Corollary 3.2 that

||∇xf(x
∗) +

∑m
i=1 λi∇xgi(x

∗)|| ≤ c2f ||x− x∗||+mc2gΛ∞ ||x− x∗||
+ c2f ||d||+mc2gΛ∞ ||d|| = (c2f +mc2gΛ∞)(||x− x∗||+ ||d||).(3.7)

We choose β = η
2(c2f+mΛ∞c2g) , where η is the quantity from Lemma 2.2. From (3.7)

it follows that, for any γ ≤ min {β, γ6} and x ∈ N 1
γ (x

∗) = Nγ(x
∗)∩B(x∗, β), we have

that, since ||d|| ≤ γ ≤ β and ||x− x∗|| ≤ β,∣∣∣∣∣
∣∣∣∣∣∇xf(x

∗) +
m∑

i=1

λi∇xgi(x
∗)

∣∣∣∣∣
∣∣∣∣∣ ≤ η

2
+

η

2
= η.

We can therefore apply Lemma 2.2 and (3.7) to get that there exists λ∗ ∈M(x∗)
with the properties required, after taking γ7 = min {β, γ6} and c∗ = cM(c2f +
mc2gΛ∞), where cM is the constant from Lemma 2.3.

Lemma 3.4. Let x ∈ N 1
γ (x

∗) and 0 < γ ≤ γ7, where γ7 and N 1
γ (x

∗) are defined
in Lemma 3.3. Let λ be a Lagrange multiplier associated with a stationary point d at
x of (3.1). Let λ∗ ∈ M(x∗) such that λi = 0 ⇒ λ∗

i = 0 and such that ||λ∗||∞ ≤ Λ∞.
Then

(i) P (x+ d) ≤ ΘP (d) ||d||2,
(ii) |(λi + λ∗

i )gi(x+ d)| ≤ 2Λ∞ΘP (d) ||d||2 for all i = 1, 2, . . . ,m,
where ΘP (d) is a continuous function that satisfies ΘP (0) = 0. If, in addition, g ∈
C3(N 1

γ (x
∗)), then there exists a constant CΘ such that, whenever ||d|| ≤ γ7, we have

ΘP (d) ≤ CΘ ||d||.
Proof. Using the first-order Taylor remainder formula [1] for gi(y) around y = x for

y = x+w and the fact that gi(x) is twice continuously differentiable for i = 1, 2, . . . ,m,
we obtain that

gi(x+ w) = gi(x) +∇xgi(x)
Tw +

1

2
wT∇2

xxgi(x)w

+

∫ 1

0

wT [∇2
xxgi(x+ tw)−∇2

xxgi(x)]w(1− t)dt(3.8)

≤ gi(x) +∇xgi(x)
Tw +

1

2
wT∇2

xxgi(x)w

+ ||w||2 max
t∈[0,1]

‖∇2
xxgi(x+ tw)−∇2

xxgi(x)‖.

Since ∇2
xxgi(x) is a continuous function, it follows that

Θi(w) = max
x∈N 1

γ (x∗)
max
t∈[0,1]

∣∣∣∣∇2
xxgi(x+ tw)−∇2

xxgi(x)
∣∣∣∣

is a continuous function on ||w|| ≤ γ7 with the property that Θi(0) = 0. If, in addition,
g ∈ C3(N 1

γ (x
∗)), then there exists a constant Ci

Θ such that, whenever ||w|| ≤ γ7, we

have Θi(w) ≤ Ci
Θ ||w||.

We have that d is a stationary point of (3.1) and, as a result, satisfies gi(x) +
∇xgi(x)

T d+ 1
2d

T∇2
xxgi(x)d ≤ 0. Replacing w with d in (3.8), we obtain

gi(x+ d) ≤ Θi(d) ||d||2 , i = 1, 2, . . . ,m.
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We now define

ΘP (d) = max
i=1,2,...,m

Θi(d).(3.9)

From the definition of Θi(d) we have that ΘP is continuous and that ΘP (0) = 0. If,
in addition, g ∈ C3(N 1

γ (x
∗)), then we can choose

CΘ = max
i=1,2,...,m

Ci
Θ

to obtain that, whenever ||d|| ≤ γ7, we have ΘP (d) ≤ CΘ ||d||.
From the definition of P (x) in (1.13), we get that, for all i = 1, 2, . . . ,m,

P (x+ d) ≤ max
i=1,2,...,m

Θi(d) ||d||2 = ΘP (d) ||d||2 .

This proves point (i). Since λ∗ is such that λi = 0⇒ λ∗
i = 0, from our hypothesis, and

since d is a stationary point of (3.1) and thus satisfies the complementarity condition

λi

(
g(x) +∇xg(x)

T d+
1

2
dT∇2

xxg(x)d

)
= 0,

this implies that, for i = 1, 2, . . . ,m,

(λi + λ∗
i )

(
g(x) +∇xg(x)

T d+
1

2
dT∇2

xxg(x)d

)
= 0,

or, by using (3.8),

(λi + λ∗
i )

(
g(x+ d)−

∫ 1

0

(
dT [∇2

xxgi(x+ td)−∇2
xxgi(x)]d

)
(1− t)dt

)
= 0,

and thus

|(λi + λ∗
i )g(x+ d)| =

∣∣∣∣(λi + λ∗
i )

∫ 1

0

(
dT [∇2

xxgi(x+ td)−∇2
xxgi(x)]d

)
(1− t)dt

∣∣∣∣
≤ 2Λ∞Θi(d) ||d||2 ≤ 2Λ∞ΘP (d) ||d||2 ,

which completes the proof of (ii) and of Lemma 3.4.
From here on we use extensively that, for h twice continuously differentiable, we

have ∥∥∥∥h(x)− h(x̄)− (∇xh(x) +∇xh(x̄))
T

2
(x− x̄)

∥∥∥∥ ≤ ψ3h(||x− x̄||) ||x− x̄||2 ,
(3.10)
where x and x̄ are points in a neighborhood of x∗ and where ψ3h(z) : R → R is a
continuous function with ψ3h(0) = 0. Indeed by Taylor’s theorem we have that there

exist continuous functions ψ1
3h, ψ̃3h, ψ

2
3h : R → R which satisfy ψ1

3h(0) = ψ̃3h(0) =
ψ2

3h(0) = 0 such that∥∥h(x)− h(x̄)−∇xh(x̄)
T (x− x̄)− 1

2 (x− x̄)T∇2
xxh(x̄)(x− x̄)

∥∥
≤ ψ1

3h(||x− x̄||) ||x− x̄||2(3.11)
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and ∥∥∇xh(x)−∇xh(x̄)−∇2
xxh(x̄)(x− x̄)

∥∥ ≤ ψ̃3h(||x− x̄||) ||x− x̄|| .(3.12)

Indeed, by using integration by parts for h(x) we obtain

h(x̄) = h(x) +∇xh(x)
T (x̄− x) + 1

2 (x̄− x)T∇2
xxh(x)(x̄− x)

+

∫ 1

0

(x− x̄)T [∇2
xxh(x+ t(x̄− x))−∇2

xxh(x)](x̄− x)(1− t)dt.
(3.13)

We define B(x∗, ε) to be the neighborhood of x∗, where x and x̄ are chosen. It is
immediate that (3.11) holds if we choose

ψ1
3h(α) = max

x∈B(x∗,ε)
max
t∈[0,1]

max
||w||≤α

∣∣∣∣∇2
xxh(x+ tw)−∇2

xxh(x)
∣∣∣∣ ∀ 0 ≤ α ≤ 2ε.

If, in addition, h is three times continuously differentiable, then there will exist a
constant C̃h such that ψ1

3h(α) ≤ C̃hα, since now the term in the above inequality is
bounded above by L3h ||w|| for an appropriate constant L3h.

Inequalities (3.12) and (3.11) in turn imply, after choosing ψ2
3h = 1

2 ψ̃3h and using
the Cauchy–Schwarz inequality, that∥∥∥ (∇xh(x)+∇xh(x̄))T

2 (x− x̄)− (∇xh(x̄)+∇xh(x̄))T

2 (x− x̄)− 1
2 (x− x̄)T∇2

xxh(x̄)(x− x̄)
∥∥∥

≤ ψ2
3h(||x− x̄||) ||x− x̄||2 .

(3.14)
Relation (3.10) now follows by comparing (3.10), (3.11), and (3.14) and taking ψ3h(z) =
ψ1

3h(z) +ψ2
3h(z). If h were three times continuously differentiable, then ψ3h would be

related to the third derivative of h, from the error formula of trapezoidal integration
[1], which is the origin of our subscript notation.

By a preceding argument, if, in addition, h ∈ C3(Nh(x
∗)), where Nh(x

∗) is a
sufficiently small neighborhood of x∗, then ψ3h, ψ

1
3h, ψ

2
3h(z), ψ̃3h(z) can be chosen

together with a constant Ch such that, whenever x, x̄ ∈ Nh(x
∗), we have

max{ψ3h(||x− x̄||), ψ1
3h(||x− x̄||), ψ2

3h(||x− x̄||), ψ̃3h(||x− x̄||)} ≤ Ch ||x− x∗|| .
(3.15)

Theorem 3.5. Let (xk)k∈N be a sequence such that xk → x∗, xk 
= x∗. Let dk be
a stationary point of (3.1) for x = xk for 0 < γ ≤ γ7, where γ7 is the quantity from
Lemma 3.3. Then

lim
k→∞

∣∣∣∣xk + dk − x∗∣∣∣∣
||xk − x∗|| = 0.

If, in addition, the data f(x), g(x) of the NLP (1.2) are three times continuously
differentiable, then there exists a constant Cψ such that, for all k sufficiently large,
we will have that ∣∣∣∣xk + dk − x∗∣∣∣∣ ≤ Cψ

∣∣∣∣xk − x∗∣∣∣∣ 32 .
Proof. Since xk → x∗, the sequence xk eventually reaches N 1

γ (x
∗). Since 0 < γ ≤

γ7, this means that Lemmas 3.4 and 3.3, as well as all preceding results, apply for
sufficiently large k. Using (3.10), we get that

f(xk + dk)− f(x∗) ≤ 1
2

(∇xf(x
k + dk) +∇xf(x

∗)
)T

(xk + dk − x∗)
+ ψ3f (‖xk + dk − x∗‖)‖xk + dk − x∗‖2

≤ 1
2

(∇xf(x
k) +∇2

xxf(x
k)dk +∇xf(x

∗)
)T

(xk + dk − x∗)
+ ψ̃3f (‖dk‖)‖dk‖‖xk + dk − x∗‖+ ψ3f (‖xk + dk − x∗‖)‖xk + dk − x∗‖2,

(3.16)
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where ψ̃3f (‖dk)‖‖dk‖ is a bound obtained by using (3.12) for f(x) between xk + dk

and xk. Here ψ̃3f is a continuous function satisfying ψ̃3f (0) = 0.
From Corollary 3.2, there exists the Lagrange multiplier λk, which, together with

dk, satisfies the KKT conditions for (3.1) at x = xk with an inactive trust-region
constraint,

∇xf(x
k) +∇2

xxf(x
k)dk +

∑m
i=1 λ

k
i (∇xgi(x

k) +∇2
xxgi(x

k)dk) = 0
for i = 1, 2, . . . ,m : Γi(x

k, dk) ≤ 0, Γi(x
k, dk)λk

i = 0,
(dk)T dk < γ2.

(3.17)

From Lemma 3.3, there exists a λ∗k ∈M(x∗) such that

‖λk − λ∗k‖ ≤ c∗(‖xk − x∗k‖+ ‖dk‖) and λk
i = 0⇒ λ∗k

i = 0.(3.18)

Using (3.17) and the KKT conditions (1.6) to replace ∇xf(x
k) + ∇2

xxf(x
k)dk and

∇xf(x
∗) in terms of g and the Lagrange multipliers, and using the bounds ‖λk‖∞ ≤

Λ∞, ||λ∗||∞ ≤ Λ∞, that follow from Corollary 3.2, we get from (3.16) that

f(xk + dk)− f(x∗)
≤ 1

2

(−∑m
i=1 λ

k
i

(∇xgi(x
k) +∇2

xxgi(x
k)dk

) − ∑m
i=1 λ

∗k
i ∇xgi(x

∗)
)T

(xk + dk − x∗)
+ ψ̃3f (‖dk‖)‖dk‖‖xk + dk − x∗‖+ ψ3f (‖xk + dk − x∗‖)‖xk + dk − x∗‖2

≤ 1
2

(−∑m
i=1 λ

k
i∇xgi(x

k + dk)−∑m
i=1 λ

∗k
i ∇xgi(x

∗)
)T

(xk + dk − x∗)
+ mΛ∞ψ̃3g(‖dk‖)‖dk‖‖xk + dk − x∗‖+ ψ̃3f (‖dk‖)‖dk‖xk + dk − x∗

+ ψ3f (‖xk + dk − x∗‖)‖xk + dk − x∗‖2,
(3.19)

where ψ̃3g(‖dk‖)‖dk‖ is a bound obtained from applying (3.12) to gi(x), i = 1, 2, . . . ,m,
between the points xk + dk and xk and taking the maximum among the result-
ing bounds. Here ψ̃3g is a continuous function satisfying ψ̃3g(0) = 0. We now
make use of the identity ab + cd = 1

2 [(a + c)(b + d) + (a − c)(b − d)] for the terms
(λk

i∇xgi(x
k + dk)T + λ∗k

i ∇xgi(x
∗)T )(xk + dk − x∗), i = 1, 2, . . . ,m. Continuing the

bounding in (3.19), we get

f(xk + dk)− f(x∗) ≤ −1

4

(
m∑

i=1

(
λk

i + λ∗k
i

) (∇xgi(x
k + dk) +∇xgi(x

∗)
)

+

m∑
i=1

(
λk

i − λ∗k
i

) (∇xgi(x
k + dk)−∇xgi(x

∗)
))T

(xk + dk − x∗)(3.20)

+
(
mΛ∞ψ̃3g(‖dk‖) + ψ̃3f (‖dk‖)

)
‖dk‖‖xk + dk − x∗‖

+ ψ3f (‖xk + dk − x∗‖)‖xk + dk − x∗‖2.
We now bound all terms involving λ and λ∗. Using that ‖λ− λ∗‖ ≤ c∗(‖xk − x∗‖ +
‖dk‖) from (3.18) and that g is twice continuously differentiable and thus∣∣∣∣∇xgi(x

k + dk)−∇xgi(x
∗)
∣∣∣∣ ≤ c2g

∣∣∣∣xk + dk − x∗∣∣∣∣ , i = 1, 2, . . . ,m,

we get

− 1
4

∑m
i=1(λ

k
i − λ∗k

i )
(∇xgi(x

k + dk)−∇xgi(x
∗)
)T

(xk + dk − x∗)
≤ mc∗c2g(‖xk − x∗‖+ ‖dk‖)‖xk + dk − x∗‖2.(3.21)
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Using that ||λ||∞ ≤ Λ∞ from Corollary 3.2, (3.10) for gi(x), and that gi(x
∗) = 0,

i = 1, 2, . . . ,m, as well as Lemma 3.4 (ii), we obtain that

− 1
4

∑m
i=1(λ

k
i + λ∗k

i )(∇xgi(x
k + dk) +∇xgi(x

∗))T (xk + dk − x∗)
≤ −1

2

∑m
i=1(λ

k
i + λ∗k

i )gi(x
k + dk)

+ mΛ∞ψ3g(‖xk + dk − x∗‖)‖xk + dk − x∗‖2
≤ mΛ∞ΘP (d

k)‖dk‖2 +mΛ∞ψ3g(‖xk + dk − x∗‖)‖xk + dk − x∗‖2.
(3.22)

Putting together the bounds from (3.20), (3.21), and (3.22), we obtain

f(xk + dk)− f(x∗) ≤ (mc∗c2g(‖xk − x∗‖+ ‖dk‖) +mΛ∞ψ3g(‖xk + dk − x∗‖)
+ ψ3f (‖xk + dk − x∗‖)) ‖xk + dk − x∗‖2(3.23)

+
(
mΛ∞ψ̃3g(‖dk‖) + ψ̃3f (‖dk‖))‖d‖‖xk + dk − x∗‖+mΛ∞ΘP (d

k)‖dk‖2.
Since the bound on the right-hand side is nonnegative, we can use Lemma 3.4(i)

and the QG (1.14) to get that

σ
∣∣∣∣xk + dk − x∗∣∣∣∣2 ≤ max

{
f(xk + dk)− f(x∗), P (xk + dk)

}
≤ Φ1(x

k − x∗, dk)
∣∣∣∣xk + dk − x∗∣∣∣∣2

+ Φ2(d
k)
∣∣∣∣dk

∣∣∣∣ ∣∣∣∣xk + dk − x∗∣∣∣∣
+ mΛ∞ΘP (d

k)
∣∣∣∣dk

∣∣∣∣2 +ΘP (d
k)
∣∣∣∣dk

∣∣∣∣2 ,
(3.24)

where

Φ1(x
k − x∗, dk) = mc∗c2g(‖xk − x∗‖+ ‖dk‖)

+ mΛ∞ψ3g(‖xk + dk − x∗‖) + ψ3f (‖xk + dk − x∗‖),
Φ2(d

k) = mΛ∞ψ̃3g(‖dk‖) + ψ̃3f (‖dk‖).
Here Φ1 and Φ2 are continuous functions of their arguments that satisfy Φ1(0, 0) = 0
and Φ2(0) = 0. If, in addition, we have that f(x), g(x), the data of NLP (1.2), are three
times continuously differentiable, then, by taking x̄k = xk + dk in (3.15) and using
that ‖dk‖ ≤ γ7, we find that there exist N 1

ψ(x
∗), a suitably small neighborhood of x∗,

and a constant C1
ψ such that, whenever xk ∈ N 1

ψ(x
∗), we have that Φ2(d

k) ≤ C1
ψ‖dk‖.

We now use that ab ≤ 1
2 (a

2 + b2) to get from (3.24) that

σ
∣∣∣∣xk + dk − x∗∣∣∣∣2 ≤ (Φ1(x

k − x∗, dk) + 1
2Φ2(d

k)
) ∣∣∣∣xk + dk − x∗∣∣∣∣2

+
(

1
2Φ2(d

k) + (mΛ∞ + 1)ΘP (d
k)
) ∣∣∣∣dk

∣∣∣∣2 .(3.25)

From Theorem 3.1(iii), and since Φ1 and Φ2 are continuous mappings, we obtain that
there exists a neighborhood N 2

ψ(x
∗) such that whenever xk ∈ N 2

ψ(x
∗) we have

Φ1(x
k − x∗, dk) +

1

2
Φ2(d

k) ≤ σ

2
.(3.26)

Indeed, if such a neighborhood N 2
ψ(x

∗) would not exist, then there would exist a

subsequence xkq , xkq → x∗ as q →∞, such that

Φ1(x
kq − x∗, dkq ) +

1

2
Φ2(d

kq ) >
σ

2
.
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However, by Theorem 3.1(iii) we must have dkq → 0. By taking q → ∞ in the
preceding inequality we obtain a contradiction with the continuity of Φ1 and Φ2 and
the fact that Φ1(0, 0) = Φ2(0) = 0.

Taking the term from (3.26) to the right-hand side of (3.25), we obtain that
whenever xk ∈ N 2

ψ(x
∗) we have that

σ

2

∣∣∣∣xk + dk − x∗∣∣∣∣2 ≤ (1

2
Φ2(d

k) + (mΛ∞ + 1)ΘP (d
k)

) ∣∣∣∣dk
∣∣∣∣2 .(3.27)

Now, using the continuity of Φ2 and ΘP and that, from Theorem 3.1(iii), dk → 0, we
get that

lim
k→∞

∣∣∣∣xk + dk − x∗∣∣∣∣2
||dk||2

≤ 2

σ
lim

k→∞

(
1

2
Φ2(d

k) + (mΛ∞ + 1)ΘP (d
k)

)
= 0

or that

lim
k→∞

∣∣∣∣xk + dk − x∗∣∣∣∣
||dk|| = 0.(3.28)

Using now the consequence of the triangle inequality∣∣∣∣∣∣xk − x∗∣∣∣∣− ∣∣∣∣dk
∣∣∣∣∣∣ ≤ ∣∣∣∣xk − x∗ + dk

∣∣∣∣
and dividing the relation with

∣∣∣∣dk
∣∣∣∣ and taking the limit, this implies that

lim
k→∞

∣∣∣∣∣
∣∣∣∣xk − x∗∣∣∣∣
||dk|| − 1

∣∣∣∣∣ ≤ lim
k→∞

∣∣∣∣xk − x∗ + dk
∣∣∣∣

||dk|| = 0,

and thus

lim
k→∞

∣∣∣∣xk − x∗∣∣∣∣
||dk|| = 1.(3.29)

Dividing (3.28) by the last limit, we get that

lim
k→∞

∣∣∣∣xk + dk − x∗∣∣∣∣
||xk − x∗|| = 0,

which proves the first part of the claim of the theorem. If, in addition, we assume
that the data of the problem is three times continuously differentiable, then, since
‖dk‖ ≤ γ7 and by using Lemma 3.4 and our previous results for Φ2, we obtain that

xk ∈ N 1
γ (x

∗) ∩N 1
ψ(x

∗)⇒ Φ2(d
k) ≤ C1

ψ

∣∣∣∣dk
∣∣∣∣ and ΘP (d

k) ≤ CΘ

∣∣∣∣dk
∣∣∣∣ .

Using these relationships in (3.27) and choosing

C2
ψ =

1

2
C1

ψ + (mΛ∞ + 1)CΘ,

we obtain that, whenever xk ∈ N 1
γ (x

∗) ∩N 1
ψ(x

∗) ∩N 2
ψ(x

∗), we must have that

∣∣∣∣xk + dk − x∗∣∣∣∣2 ≤ 2

σ
C2

ψ

∣∣∣∣dk
∣∣∣∣3
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or

∣∣∣∣xk + dk − x∗∣∣∣∣ ≤
√

2

σ
C2

ψ

∣∣∣∣dk
∣∣∣∣ 32 .

From (3.29) it follows that, for k sufficiently large, we must have that ‖dk‖ ≤
2‖xk − x∗‖. Therefore, for k sufficiently large we must have that

∣∣∣∣xk + dk − x∗∣∣∣∣ ≤ 2
3
2

√
2

σ
C2

ψ

∣∣∣∣xk − x∗∣∣∣∣ 32 .
The claim follows after choosing

Cψ = 2
3
2

√
2

σ
C2

ψ.

Theorem 3.6. Let γ be such that 0 < γ ≤ γ7, where γ7 is the quantity from
Lemma 3.3. There exists a radius r∗ such that for any x ∈ B(x∗, r∗), x 
= x∗; if d is
a stationary point of (3.1), then

||x+ d− x∗||
||x− x∗|| ≤ 1

2
.

Whenever started inside B(x∗, r∗), the SQCQP algorithm produces a sequence xk →
x∗ that is superlinearly convergent,

lim
k→∞

∣∣∣∣xk+1 − x∗∣∣∣∣
||xk − x∗|| = 0.

If, in addition, the data of the NLP is three times continuously differentiable, then for
k sufficiently large we will have

∣∣∣∣xk+1 − x∗∣∣∣∣ ≤ Cψ

∣∣∣∣xk − x∗∣∣∣∣ 32 ,
where Cψ is the constant from Theorem 3.5.

Proof. Assume the contrary: For any q ∈ N, there exists xq 
= x∗ such that
||xq − x∗|| ≤ 1

q and dq a stationary point of (3.1) such that

||xq + dq − x∗||
||xq − x∗|| ≥ 1

2
.(3.30)

Therefore xq → x∗, and by Theorem 3.5

lim
q→∞

||xq + dq − x∗||
||xq − x∗|| = 0,

which contradicts (3.30). As a result there exists r∗ with the properties required by
the theorem. When started with x0 ∈ B(x∗, r∗), the SQCQP algorithm produces a
sequence xk+1 = xk + dk such that∣∣∣∣x1 − x∗∣∣∣∣

||x0 − x∗|| ≤
1

2
,
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which implies x1 ∈ B(x∗, r∗) and thus, by induction, xk ∈ B(x∗, r∗) for all k ∈ N and
xk → x∗ as k →∞. We can now use Theorem 3.5 to claim that

lim
k→∞

∣∣∣∣xk+1 − x∗∣∣∣∣
||xk − x∗|| = lim

k→∞

∣∣∣∣xk + dk − x∗∣∣∣∣
||xk − x∗|| = 0,

which proves the superlinear convergence of xk to x∗. The proof for the case in which
the data of the problem is three times continuously differentiable follows immediately
from Theorem 3.5. The proof is complete.

Under the assumptions considered here, it is possible that, for xk in a neighbor-
hood of x∗, (3.1) will have multiple stationary points. This comes from the fact that
the QG (1.1), which holds at x = x∗ for (3.1), is generally not maintained under
perturbations, as opposed to other, stronger, second-order conditions [7]. In this case
x can be considered a perturbation parameter whose nominal value is x = x∗. Note,
however, that in our results we do not assume uniqueness of the stationary points of
(3.1). Any stationary point dk of (3.1) at x = xk will induce superlinear convergence
of the sequence xk to x∗.

3.1. Comparison with SQP. An appealing class of methods for approaching
NLP (1.2) is the one of SQP algorithms, solving at each point xk a quadratic program
(QP) using the Hessian of the Lagrangian L(x, λ) (see (1.5)) as the matrix of the QP

mind∈Rn ∇xf(x)
T d+ 1

2d
T∇2

xxL(x, λ)d
subject to gi(x) +∇xgi(x)

T d ≤ 0, i = 1, 2, . . . ,m,
dT d ≤ γ2,

(3.31)

where λ is some estimate of the Lagrange multipliers. This is the approach used, for
example, by FilterSQP [12], with an infinity norm trust region instead of a two norm
trust region. Take the following example, used in [2]:

min(x,y,z) z
subject to g0(x, y, z) = x2 − 2y2 − z ≤ 0,

g1(x, y, z) = − 1
2 (x

2 + y2) + 3xy − z ≤ 0,
g2(x, y, z) = −2x2 + y2 − z ≤ 0,
g3(x, y, z) = − 1

2 (x
2 + y2)− 3xy − z ≤ 0.

(3.32)

The global solution of this problem is x∗ = (0, 0, 0)T , at which all inequalities are
active. At x∗, both MFCQ (1.7) and the QG (1.1) hold. The Lagrange multiplier set
is

M(x∗) =

{
λ = (λ1, λ2, λ3, λ4) ∈ R

∣∣∣∣∣ such that λi ≥ 0, i = 1, 2, 3, 4,

4∑
i=1

λi = 1

}
.

Choose now λ∗ =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)T
. We immediately have that

∇2
xxL(x∗, λ∗) =


 −1 0 0

0 −1 0
0 0 0


 .

By denoting d = (dx, dy, dz), we obtain that the QP (3.31) at (x∗, λ∗) is

mindx,dy,dz − 1
2

(
d2

x + d2
y

)
+ dz

subject to −dz ≤ 0,
d2

x + d2
y + d2

z ≤ γ2,
(3.33)
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since the gradients of all constraints, except the trust-region constraints, are equal
to (0, 0,−1)T . One of the multiple global solutions of this subproblem is (γ, 0, 0).
Therefore, although we are at a solution and we use the exact Hessian and Lagrange
multipliers, d = 0 is not a solution of the above QP but only a stationary point. For
this problem we have that any choice of Lagrange multiplier λ∗ results in a Hessian
of the Lagrangian that has negative curvature along some direction of C(x∗) (see [2]).
Therefore any choice of λ∗ will encounter the same phenomenon: d = 0 is not a
solution of (3.31) but merely a stationary point.

Therefore, if (3.31) were used as a subproblem in an SQP algorithm under the
assumptions considered here, then it could have stationary points at which the trust
region is active, no matter how close x is to the solution x∗. This sits in contrast with
the QCQP subproblem, which Theorem 3.1 ensures will have an inactive trust-region
constraint near the solution. It thus seems that subproblem (3.31) is not a good local
representation of (1.2).

It is thus possible that, close to the solution x∗, an algorithm that uses a global
solution of subproblem (3.31) will actually tend to move away from the solution. This
situation can be countered by the use of a good globalization strategy. For example,
FilterSQP will likely reject such an iterate, but will have to shrink the trust region,
which is an unwanted effect close to the solution.

When we have applied FilterSQP, for example (4.3), which is closely related to
(3.32), we have not observed this behavior, probably because FilterSQP has locked
onto one of the stationary points of the QP subproblem for which the trust region
is inactive. However, it seems difficult to guarantee a priori that an algorithm will
ignore a global solution of (3.31) and instead return one of the stationary points closer
to 0.

4. Numerical examples. We present numerical runs on three examples with
the algorithm presented in this work. We extend the scope of our method to include
equality constraints.

To that end, we assume that the NLP to solve is

minx f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.
(4.1)

The extension of MFCQ (1.7), the QG (1.1), and second-order sufficient conditions
(1.12) to the case where equality constraints also hold is immediate [7, 22, 23, 10], as
long as the equality constraints have linearly independent gradients at the solution
x∗. For clarity, we have analyzed here only the inequality constraints case, though
all results from the preceding sections extend fairly straightforwardly to the equality
constrained case. The trust-region SQCQP algorithm for (4.1) is modified as follows.

• Choose a starting point xk, k = 0.
• Let x = xk and determine dk, a stationary point of

mind∈Rn ∇xf(x)
T d+ 1

2d
T∇2

xxf(x)d

subject to gi(x) +∇xgi(x)
T d+ 1

2d
T∇2

xxgi(x)d ≤ 0, i = 1, 2, . . . ,m,

hj(x) +∇xhj(x)
T d+ 1

2d
T∇2

xxhj(x)d = 0, j = 1, 2, . . . , p,

dT d ≤ γ2.
(4.2)
• Take xk+1 = xk + dk and k = k + 1 and restart.
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We call one iteration of this algorithm an outer iteration. We determine a station-
ary point of QCQP subproblem (4.2) by using Powell’s variable metric approach [3,
pp. 287–289]. Powell’s algorithm solves at every step l a convex QP whose constraints
are a linearization of the constraints of (4.2) and whose objective matrix is obtained
by a quasi-Newton update. If the sequence of matrices H l produced in this fashion
is uniformly positive definite and bounded, then Powell’s algorithm will stop only at
stationary points of (4.2), which is sufficient for our purposes, from Theorem 3.6. To
enforce that, if the estimate of the condition number or the norm of H l exceeds a
certain value, then the matrix H l is reset to the identity. Currently, there is no the-
ory to guarantee that Powell’s algorithm will converge superlinearly to a stationary
point of (4.2) for degenerate problems like this one. Nevertheless, we use the vari-
able metric approach instead of just choosing H l = I to provide a reasonable scaling.
The resulting QP was solved with the subroutine quadprog, available from the Matlab
Optimization Toolbox. The tolerance parameters for quadprog were set to 10−10.

Therefore dk is determined by solving a sequence of QPs, none of which requires
any additional function or derivative evaluation of the original problem.

As a merit function we use the L∞ exact penalty function [4]. We have not
implemented a second-order correction, needed to avoid the Maratos effect [3, 4],
since our interest lies primarily in the behavior of the outer iteration which produces
the sequence xk. Also, the second-order correction is theoretically founded in the
limit only for the case in which the gradients of the active constraints are linearly
dependent, which we do not expect to hold for our examples.

Since we want to demonstrate the local behavior of the SQCQP algorithm, we
have not implemented a trust-region update, and the trust-region parameter was
chosen to be the fixed value γ = 10. Also, no line-search or merit criteria was used for
globalization of the outer iteration. The algorithm was implemented in Matlab using
the ADMIT-1 toolbox [9] for computing the derivatives of the problem data.

It is clear that, for nondegenerate NLPs, classical nonlinear programming algo-
rithms will be more efficient than the SQCQP algorithm since fast local convergence
can be achieved at a cost of one QP per iteration [12, 15]. By contrast, SQCQP needs
several QPs per iteration. Therefore we will present the behavior of the algorithm on
three degenerate (or nearly degenerate) examples and compare it with FilterSQP [12]
and SNOPT [15], two SQP algorithms. Both FilterSQP and SNOPT were run with
the relevant tolerances set to 10−10.

4.1. Degenerate examples. We consider three examples. In the first example,
the problem has no locally convex augmented Lagrangian at the solution:

min(x,y,z) z

subject to g0(x, y, z) = x2 + 3x4 − 2y2 − z ≤ 0,

g1(x, y, z) = − 1
2 (x

2 + y2) + y4 + 3xy − z ≤ 0,

g2(x, y, z) = −2x2 + y2 − z ≤ 0,

g3(x, y, z) = − 1
2 (x

2 + y2) + x2y2 − 3xy − z ≤ 0.

(4.3)

This example is closely related to example (3.32). The global solution of the problem
is x∗ = [0, 0, 0]T . At x∗, all constraints are active and their gradients are equal
to [0, 0,−1]T , which makes the problem degenerate. However, at x∗ both MFCQ
(1.7) and QG (1.1) are satisfied, and thus the results from this work apply. All
algorithms are started from the point x0 = [1, 1, 1]T . The second example has a
locally convex augmented Lagrangian for some of the Lagrange multipliers, but not
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for others:

min z
subject to g1(x, y, z) = x2 − 2y2 + y4 − z ≤ 0,

g2(x, y, z) = −cx2 + y2 + x2y2 − z ≤ 0,
g3(x, y, z) = −x2 − y2 − z ≤ 0.

(4.4)

If c < 0.5, then the example has as an unique global solution of x∗ = [0, 0, 0]T . Again,
at x∗ all constraints are active, and their gradients are equal to [0, 0,−1]T , which
makes the problem degenerate. Also, both MFCQ (1.7) and the QG (1.1) hold at
the solution, which guarantees that the theoretical results presented in this work will
hold.

The size of the set of Lagrange multipliers for which the corresponding augmented
Lagrangian may be locally convex is controlled by the parameter c, a smaller c re-
sulting in a larger such set. If such multipliers can be detected, then stabilization
techniques can be used in a neighborhood of such multipliers to induce superlinear
convergence to the primal-dual solution set [16, 29]. The type of degeneracy is thus
less severe when compared to (4.3). In this work no attempt is made to detect such
multipliers, and the SQCQP algorithm is directly applied for c = 0.49. All algorithms
are started from the point x0 = [1, 1, 1]T .

The last example is allinitc, a member of the CUTE collection [8] which is a
standard benchmark for nonlinear programming. The NLP has four variables and four
convex constraints. All algorithms are started from x0 = [0, 0, 0, 0]T . Our conclusion
that the problem is nearly degenerate originates in the fact that SNOPT enters the
elastic mode when applied to this problem, which is a sign that the Lagrange multiplier
set is large and thus that the constraints are nearly degenerate. If the Lagrange
multiplier set were unbounded, then MFCQ (1.7) would not hold at the solution.
Although the assumptions under which we proved our results will hold only marginally
for this example, or not at all, we still apply the SQCQP algorithm in order to compare
its performance with SQP algorithms.

4.2. Results of the numerical runs. On the examples above, we have run our
SQCQP implementation, as presented above, as well as FilterSQP and SNOPT, two
SQP algorithms. FilterSQP uses second-order derivatives and solves nonconvex QPs
as the main subproblem [12]. SNOPT uses only first-order information and solves
convex QPs whose objective matrices are obtained by a quasi-Newton update [15].
FilterSQP and SNOPT examples were run using the AMPL interface on the NEOS
server [24]. Because the examples were run on different platforms, the running times
will not be relevant for a comparison. We therefore report performance metrics that
are platform-independent, such as the number of function evaluations and QPs solved.

The results are presented in Table 4.1. “PB” represents the index of the problem,
“DS” represents the distance to solution (when available), “FE” represents the number
of function evaluations, while “QP” represents the number of quadratic programs.
“Obj” and “Infeas” are the values of the objective function and of the maximum
infeasibility of the constraints at the final iterate. For the third example, the exact
solution is not available, and so the distance to the solution cannot be computed.
In Table 4.2 we present the convergence behavior of the final iterations of SQCQP
for the first two examples, for which exact solutions are available. A similar table
cannot be constructed for SNOPT or FilterSQP, since we do not have access to the
intermediate iterates xk. In Table 4.2, “nrQP” represents the number of QPs solved
at a particular iteration.



976 MIHAI ANITESCU

Table 4.1
Results of the numerical runs.

PB Solver Obj Infeas DS FE QP
Ex. 1 SQCQP 7.875039e− 19 1.12e− 16 1.06e− 8 9 112

SNOPT −2.857327e− 14 3.60e− 11 5.97e− 6 20 18
FilterSQP −2.135276e− 21 6.55e− 11 7.85e− 6 19 18

Ex. 2 SQCQP 1.176702e− 17 6.06e− 19 5.24e− 8 10 92
SNOPT −2.049969e− 13 0.00e− 00 1.60e− 5 22 20
FilterSQP −1.625107e− 20 6.59e− 12 8.34e− 6 18 19

Ex. 3 SQCQP 3.049655e+ 01 2.22e− 16 * 5 288
SNOPT 3.049433e+ 01 6.30e− 09 * 95 47
FilterSQP 3.049652e+ 01 8.73e− 12 * 24 28

Table 4.2
Convergence behavior of SQCQP.

PB Iteration
∣∣∣∣xk − x∗

∣∣∣∣ nrQP
Ex1 6 1.65e− 03 12

7 1.15e− 04 15
8 8.54e− 08 4
9 1.06e− 08 1

Ex2 7 9.00e− 03 20
8 7.02e− 05 12
9 6.78e− 08 8
10 5.24e− 08 1

We can see from Table 4.1 that, on the three examples presented here, SQCQP
needs between 2 and 19 times fewer function evaluations and between 6 and 10 times
more QPs to produce results of a quality that is comparable to or better than Fil-
terSQP or SNOPT. Both results are to be expected, since the subproblem used by
SQCQP is a more accurate, though harder to solve, representation of (4.1) than those
used by either FilterSQP or SNOPT.

It can also be seen from Table 4.2 that for the first example we get a superlin-
early convergent behavior before encountering rounding error effects. For the second
example the sequence does not exhibit the classical superlinear convergence behavior,
but rather a very fast linear convergence behavior, very likely because it appears by
the time the rounding errors are encountered. Both SNOPT and FilterSQP exhibit a
linear convergence behavior with a reasonable rate, though much larger than SQCQP.

The SQCQP algorithm seems promising, in that it needs fewer function evalua-
tions to reach a near-optimal point, which is perhaps the most used metric for eval-
uating the performance of an algorithm. If the trend observed here were to replicate
for the general class of nonlinear programming, then the question of overall efficiency
would depend on the computational effort needed for evaluating the data and its
derivatives, as opposed to the computational effort spent in solving the QPs. For
problems for which the evaluation of data and its derivatives is very expensive, it may
be worth using SQCQP in spite of the larger number of QPs required. For the cases
presented here, which have quite simple problem data, the SQCQP algorithm would
have very likely been outperformed by either of FilterSQP and SNOPT in terms of
run time, since the largest portion of the cost comes from solving the QPs (though,
in the case of FilterSQP, the QPs to be solved are nonconvex).

The key element in making SQCQP an efficient algorithm is to devise an effi-
cient way of solving the QCQP subproblem. It should be pointed out that, for the
experiments used in this work, we were limited by the techniques that were available
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under Matlab or were reasonably easy to implement, and by the fact that there is
no obvious way to take advantage of the solution of an instance of (4.2) for solving
succeeding instances. Currently, we do not even take advantage of the knowledge of
the active set between iterations. Looking at Table 4.1, it is conceivable that if we
used an algorithm like FilterSQP directly on subproblem (4.2) when solving the third
example, then we would need less than 5 × 28 = 140 quadratic programming solves.
We observed for our examples that the final iterations of SQCQP take substantial
steps towards the solution while using a moderate number of QPs, as can be seen
from Table 4.1. A promising avenue would thus be to start with a classical algorithm
and switch to SQCQP close to the solution, a strategy that needs further analysis and
numerical evaluation.

5. Conclusions. We present an algorithm that achieves superlinear convergence
of the iterates to a local minimum of NLP (1.2) at which MFCQ (1.7) and QG (1.1)
are satisfied. The conditions we impose allow even situations for which no locally
convex augmented Lagrangian exists, a case not accommodated by most previous
results in the literature.

At each step we solve a subproblem generated by approximating the function and
the constraints by the second-order Taylor series at the current iterate. We also add
a trust-region constraint, which ensures that the problem is bounded. The algorithm
therefore solves at each step a quadratically constrained quadratic program (QCQP)
and we thus call it sequential quadratically constrained quadratic program (SQCQP).

The subproblem to be solved is not necessarily convex. However we prove that
for a suitable, fixed size of the trust region the associated constraint is inactive at
any stationary point of the QCQP. As a result, any stationary point of the QCQP
induces superlinear convergence of the iterates, which obviates the need for finding
the global optimum of the subproblem. In subsection 3.1 we showed that, in contrast
to our SQCQP algorithm, SQP algorithms that solve QPs at each iteration with the
exact Hessian in the objective function and a trust-region constraint may find their
solution on the boundary of the trust region.

A subproblem that has quadratic constraints is more difficult to solve than a
subproblem with linear constraints, the latter being the case of subproblems solved by
SQP algorithms [25]. However, since SQCQP incorporates a more accurate model of
the constraints than does SQP, it would be expected that a smaller number of exterior
iterations and thus of function evaluations would be needed before completion. We
demonstrate this point by solving three examples and showing that SQCQP needs
fewer function evaluations to converge to a solution than do two widely used SQP
algorithms. In the current implementation this comes with the cost of solving more
QPs.

Devising methods to solve the QCQP subproblems efficiently, perhaps as a re-
placement for their QP counterparts in the latest stages of a classical SQP algorithm,
will be the subject of future research.
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Abstract. Sequential quadratic programming (SQP) methods have proved highly effective for
solving constrained optimization problems with smooth nonlinear functions in the objective and
constraints. Here we consider problems with general inequality constraints (linear and nonlinear).
We assume that first derivatives are available and that the constraint gradients are sparse.

We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and
makes explicit provision for infeasibility in the original problem and the QP subproblems. SNOPT is a
particular implementation that makes use of a semidefinite QP solver. It is based on a limited-memory
quasi-Newton approximation to the Hessian of the Lagrangian and uses a reduced-Hessian algorithm
(SQOPT) for solving the QP subproblems. It is designed for problems with many thousands of
constraints and variables but a moderate number of degrees of freedom (say, up to 2000). An
important application is to trajectory optimization in the aerospace industry. Numerical results are
given for most problems in the CUTE and COPS test collections (about 900 examples).
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1. Introduction. We present a sequential quadratic programming (SQP) meth-
od for large-scale optimization problems involving general linear and nonlinear con-
straints. SQP methods have proved reliable and efficient for many such problems.
For example, under mild conditions the general-purpose solvers NLPQL [70], NPSOL

[44, 47], and DONLP [73] typically find a (local) optimum from an arbitrary start-
ing point, and they require relatively few evaluations of the problem functions and
gradients compared to traditional solvers such as MINOS [58, 59, 60] and CONOPT

[26].

1.1. The optimization problem. The algorithm we describe applies to con-
strained optimization problems of the form

(NP) minimize
x∈Rn

f(x)

subject to l ≤


 x

c(x)

Ax


 ≤ u,

where f(x) is a linear or nonlinear objective function, c(x) is a vector of nonlinear
constraint functions ci(x) with sparse derivatives, A is a sparse matrix, and l and u
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are vectors of lower and upper bounds.
We assume that the nonlinear functions are smooth and that their first derivatives

are available (and possibly expensive to evaluate). For the present implementation
we further assume that the number of active constraints at a solution is reasonably
close to n. In other words, the number of degrees of freedom is not too large (say, less
than 2000).

Important examples are control problems such as those arising in optimal trajec-
tory calculations. For many years, the optimal trajectory system OTIS (Hargraves
and Paris [51]) has been applied successfully within the aerospace industry, using
NPSOL to solve the associated optimization problems. NPSOL is a transformed Hes-
sian method that treats the Jacobian of the general constraints as a dense matrix and
updates an explicit quasi-Newton approximation to QT

kHkQk, the transformed Hes-
sian of the Lagrangian, where Qk is orthogonal. The QP (quadratic programming)
subproblem is solved using a linearly constrained linear least-squares method that
exploits the properties of the transformed Hessian.

Although NPSOL has solved OTIS examples with two thousand constraints and
over a thousand variables, the need to handle increasingly large models has provided
strong motivation for the development of new sparse SQP algorithms. Our aim is to
describe a new SQP method that has the favorable theoretical properties of the NPSOL

algorithm but is suitable for a broad class of large problems, including those arising
in trajectory optimization. The implementation is called SNOPT (sparse nonlinear
optimizer) [41]. Extensive numerical results are given in section 6.

The method of SNOPT exploits sparsity in the constraint Jacobian and maintains
a limited-memory quasi-Newton approximation to Hk (not a full transformed Hessian
QT
kHkQk). A new method is used to update Hk in the presence of negative curvature.

The QP subproblems are solved using an inertia-controlling reduced-Hessian active-
set method that allows for variables to appear linearly in the objective and constraint
functions. (The limited-memory Hessian is then semidefinite.) Other features include
the treatment of infeasible nonlinear constraints using elastic programming, use of a
well-conditioned nonorthogonal basis for the null-space of the QP working set, and
early termination of the QP subproblems.

1.2. Infeasible constraints. SNOPT deals with infeasibility using �1 penalty
functions. First, infeasible linear constraints are detected by solving a problem of the
form

(FLP) minimize
x,v,w

eT (v + w)

subject to l ≤
(

x

Ax− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones and v and w are handled implicitly. This is equivalent
to minimizing the one-norm of the general linear constraint violations subject to the
simple bounds (often called elastic programming in the linear programming literature
[11]). Elastic programming has long been a feature of the XS system of Brown and
Graves [12]. Other algorithms based on minimizing one-norms of infeasibilities are
given by Conn [21] and Bartels [1].

If the linear constraints are infeasible (v �= 0 or w �= 0), SNOPT terminates
without computing the nonlinear functions. Otherwise, all subsequent iterates satisfy
the linear constraints. (Sometimes this feature helps ensure that the functions and
gradients are well defined; see section 5.2.)
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SNOPT then proceeds to solve (NP) as given, using QP subproblems based on
linearizations of the nonlinear constraints. If a QP subproblem proves to be infeasible
or unbounded (or if the Lagrange multiplier estimates for the nonlinear constraints
become large), SNOPT enters “nonlinear elastic” mode and solves the problem

(NP(γ)) minimize
x,v,w

f(x) + γeT (v + w)

subject to l ≤


 x

c(x)− v + w

Ax


 ≤ u, v ≥ 0, w ≥ 0,

where f(x)+ γeT (v+w) is called a composite objective, and the penalty parameter γ
(γ ≥ 0) may take a finite sequence of increasing values. If (NP) has a feasible solution
and γ is sufficiently large, the solutions to (NP) and (NP(γ)) are identical. If (NP)
has no feasible solution, (NP(γ)) will tend to determine a “good” infeasible point if
γ is again sufficiently large. (If γ were infinite, the nonlinear constraint violations
would be minimized subject to the linear constraints and bounds.)

A similar �1 formulation of (NP) is used in the SQP method of Tone [76] and
is fundamental to the S�1QP algorithm of Fletcher [30]. See also Conn [20] and
Spellucci [72]. An attractive feature is that only linear terms are added to (NP),
giving no increase in the expected degrees of freedom at each QP solution.

1.3. Other work on large-scale SQP. There has been considerable interest
in extending SQP methods to the large-scale case (sometimes using exact second
derivatives). Some of this work has focused on problems with nonlinear equality
constraints. The method of Lalee, Nocedal, and Plantenga [53], related to the trust-
region method of Byrd [15] and Omojokun [61], uses either the exact Lagrangian
Hessian or a limited-memory quasi-Newton approximation defined by the method
of Zhu et al. [79]. The method of Biegler, Nocedal, and Schmid [3] is in the class
of reduced-Hessian methods, which maintain a dense approximation to the reduced
Hessian, using quasi-Newton updates.

For large problems with general inequality constraints as in problem (NP), SQP
methods have been proposed by Eldersveld [28], Tjoa and Biegler [75], Fletcher and
Leyffer [32], and Betts and Frank [2]. The first three approaches are also reduced-
Hessian methods. Eldersveld forms a full Hessian approximation from the reduced
Hessian, and his implementation LSSQP solves the same class of problems as SNOPT.
In Tjoa and Biegler’s method, the QP subproblems are solved by eliminating variables
using the (linearized) equality constraints, and the remaining variables are optimized
using a dense QP solver. As bounds on the eliminated variables become dense con-
straints in the reduced QP, the method is best suited to problems with many nonlin-
ear equality constraints but few bounds on the variables. The filter-SQP method of
Fletcher and Leyffer uses a reduced Hessian QP-solver in conjunction with an exact
Lagrangian Hessian. This method is also best suited for problems with few degrees
of freedom. In contrast, the method of Betts and Frank employs an exact or finite-
difference Lagrangian Hessian and a QP solver based on sparse KKT factorizations
(see section 7). It is therefore applicable to problems with many degrees of freedom.

Several large-scale methods solve the QP subproblems by an interior method.
They typically require an exact or finite-difference Lagrangian Hessian and can ac-
commodate many degrees of freedom. Examples are Boggs, Kearsley, and Tolle [4, 5]
and Sargent and Ding [69].
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1.4. Other large-scale methods. MINOS and CONOPT are both reduced-
Hessian methods. Like SNOPT, they use first derivatives and are designed for large
problems with few degrees of freedom (again up to 2000, say, although MINOS can
allow for any number; see section 7.1). For nonlinear constraints, MINOS uses a
linearly constrained Lagrangian method, whose subproblems require frequent evalua-
tion of the problem functions. CONOPT uses a generalized reduced gradient method,
which maintains near-feasibility with respect to the nonlinear constraints, again at
the expense of many function evaluations. SNOPT is likely to outperform MINOS

and CONOPT when the functions (and their derivatives) are expensive to evaluate.
Relative to MINOS, an added advantage is the existence of a merit function to en-
sure global convergence. This is especially important when the constraints are highly
nonlinear.

LANCELOT Release A [22] is another widely used package in the area of large-
scale constrained optimization. It uses a bound constrained augmented Lagrangian
method. In general, LANCELOT is recommended for large problems with many de-
grees of freedom. It complements SNOPT and the other methods discussed above. A
comparison between LANCELOT and MINOS has been made in [8, 9].

LOQO [78] and KNITRO [17, 16] are examples of large-scale optimization packages
that treat inequality constraints by a primal-dual interior method. Both packages
require second derivatives but can accommodate many degrees of freedom.

1.5. Notation. Some important quantities follow:

(x, π, s) primal, dual and slack variables for problem (GNP) (see section 2.1),

(x∗, π∗, s∗) optimal variables for problem (GNP),

(xk, πk, sk) the kth estimate of (x∗, π∗, s∗),
fk, gk, ck, Jk functions and gradients evaluated at xk,

(x̂k, π̂k, ŝk) optimal variables for QP subproblem (GQPk) (see section 2.4).

2. The SQP iteration. Here we discuss the main features of an SQP method
for solving a generic nonlinear program. All features are readily specialized to the
more general constraints in problem (NP).

2.1. The generic problem. In this section we take the problem to be

(GNP) minimize
x

f(x)

subject to c(x) ≥ 0,

where x ∈ R
n, c ∈ R

m, and the functions f(x) and ci(x) have continuous second
derivatives. The gradient of f is denoted by the vector g(x), and the gradients of each
element of c form the rows of the Jacobian matrix J(x).

We assume that a KKT point (x∗, π∗) exists for (GNP), satisfying the first-order
optimality conditions:

c(x∗) ≥ 0, π∗ ≥ 0, c(x∗)Tπ∗ = 0, J(x∗)Tπ∗ = g(x∗).(2.1)

2.2. Structure of the SQP method. An SQP method obtains search direc-
tions from a sequence of QP subproblems. Each QP subproblem minimizes a quadratic
model of a certain Lagrangian function subject to linearized constraints. Some merit
function is reduced along each search direction to ensure convergence from any start-
ing point.
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The basic structure of an SQP method involves major and minor iterations. The
major iterations generate a sequence of iterates (xk, πk) that converge to (x

∗, π∗). At
each iterate a QP subproblem is used to generate a search direction towards the next
iterate (xk+1, πk+1). Solving such a subproblem is itself an iterative procedure, with
the minor iterations of an SQP method being the iterations of the QP method.

For an overview of SQP methods, see, for example, Boggs and Tolle [6], Fletcher
[31], Gill, Murray, and Wright [48], Murray [56], and Powell [66].

2.3. The modified Lagrangian. Let xk and πk be estimates of x
∗ and π∗. For

several reasons, our SQP algorithm is based on the modified Lagrangian associated
with (GNP), namely,

L(x, xk, πk) = f(x)− πTk dL(x, xk),(2.2)

which is defined in terms of the constraint linearization and the departure from lin-
earity :

cL(x, xk) = ck + Jk(x− xk),

dL(x, xk) = c(x)− cL(x, xk);

see Robinson [68] and Van der Hoek [77]. The first and second derivatives of the
modified Lagrangian with respect to x are

∇L(x, xk, πk) = g(x)− (J(x)− Jk)
Tπk,

∇2L(x, xk, πk) = ∇2f(x)−
∑
i

(πk)i∇2ci(x).

Observe that ∇2L is independent of xk (and is the same as the Hessian of the con-
ventional Lagrangian). At x = xk, the modified Lagrangian has the same function
and gradient values as the objective: L(xk, xk, πk) = fk, ∇L(xk, xk, πk) = gk.

2.4. The QP subproblem. Let the quadratic approximation to L at xk be

LQ(x, xk, πk) = fk + gTk(x− xk) +
1
2 (x− xk)

T∇2L(xk, xk, πk)(x− xk).

If (xk, πk) = (x∗, π∗), optimality conditions for the QP
(GQP∗) minimize

x
LQ(x, xk, πk)

subject to linearized constraints cL(x, xk) ≥ 0
are identical to those for the original problem (GNP). This suggests that if Hk is
an approximation to ∇2L at the point (xk, πk), an improved estimate of the solution
may be found from (x̂k, π̂k), the solution of the following QP subproblem:

(GQPk) minimize
x

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk)

subject to ck + Jk(x− xk) ≥ 0.
Optimality conditions for (GQPk) may be written as

ck + Jk(x̂k − xk) = ŝk, π̂k ≥ 0, ŝk ≥ 0,
gk +Hk(x̂k − xk) = JTk π̂k, π̂Tk ŝk = 0,

where ŝk is a vector of slack variables for the linearized constraints. In this form,
(x̂k, π̂k, ŝk) may be regarded as estimates of (x

∗, π∗, s∗), where the slack variables s∗
satisfy c(x∗) − s∗ = 0, s∗ ≥ 0. The vector ŝk is needed explicitly for the line search
(section 2.7).
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2.5. The working-set matrix Wk. The working set is an important quantity
for both the major and the minor iterations. It is the current estimate of the set of
constraints that are binding at a solution. More precisely, suppose that (GQPk) has
just been solved. Although we try to regard the QP solver as a “black box,” we expect
it to return an independent set of constraints that are active at the QP solution (even
if the QP constraints are degenerate). This is an optimal working set for subproblem
(GQPk).

The same constraint indices define a working set for (GNP) (and for subproblem
(GQPk+1)). The corresponding gradients form the rows of the working-set matrix
Wk, an nY × n full-rank submatrix of the Jacobian Jk.

2.6. The null-space matrix Zk. Let Zk be an n × nZ full-rank matrix that
spans the null space of Wk. (Thus, nZ = n − nY , and WkZk = 0.) The QP solver
will often return Zk as part of some matrix factorization. For example, in NPSOL it
is part of an orthogonal factorization of Wk, while in LSSQP [28] (and in the current
SNOPT) it is defined implicitly from a sparse LU factorization of part of Wk. In any
event, Zk is useful for theoretical discussions, and its column dimension has strong
practical implications. Important quantities are the reduced Hessian ZTkHkZk and the
reduced gradient ZTkg.

2.7. The merit function. Once the QP solution (x̂k, π̂k, ŝk) has been deter-
mined, new estimates of the (GNP) solution are computed using a line search on the
augmented Lagrangian merit function

M(x, π, s) = f(x)− πT
(
c(x)− s

)
+ 1

2

(
c(x)− s

)T
D
(
c(x)− s

)
,(2.3)

where D is a diagonal matrix of penalty parameters. If (xk, πk, sk) are the current
estimates of (x∗, π∗, s∗), the line search determines a step length αk (0 < αk ≤ 1)
such that the new point

 xk+1

πk+1

sk+1


 =


 xk

πk

sk


+ αk


 x̂k − xk

π̂k − πk

ŝk − sk


(2.4)

gives a sufficient decrease in the merit function (2.3). Let ϕk(α) denote the merit
function computed at the point (xk + α(x̂k − xk), πk + α(π̂k − πk), sk + α(ŝk − sk));
i.e., ϕk(α) defines M as a univariate function of the step length. Initially D is zero
(for k = 0). When necessary, the penalties in D are increased by the minimum-norm
perturbation that ensures sufficient descent for ϕk(α) [47]. (Note: As in NPSOL, sk+1

in (2.4) is redefined to minimize the merit function as a function of s, prior to the
solution of (GQPk+1). For more details, see [44, 28].)

In the line search, for some vector b > 0 the following condition is enforced:

c(xk + αkpk) ≥ −b (pk ≡ x̂k − xk).(2.5)

We use bi = τV max{1,−ci(x0)}, where τV is a specified constant, e.g., τV = 10.
This defines a region in which the objective is expected to be defined and bounded
below. (A similar condition is used in [71].) Murray and Prieto [57] show that under
certain conditions, convergence can be assured if the line search enforces (2.5). If the
objective is bounded below in R

n, then b may be any large positive vector.
If αk is essentially zero (because ‖pk‖ is very large), the objective is considered

“unbounded” in the expanded region. Elastic mode is entered (or continued) as
described in section 4.7.
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2.8. The approximate Hessian. As suggested by Powell [64], we maintain a
positive-definite approximate Hessian Hk. On completion of the line search, let the
change in x and the gradient of the modified Lagrangian be

δk = xk+1 − xk and yk = ∇L(xk+1, xk, π)−∇L(xk, xk, π),

for some vector π. An estimate of the curvature of the modified Lagrangian along δk
is incorporated using the BFGS quasi-Newton update,

Hk+1 = Hk + θkyky
T
k − φkqkq

T
k,

where qk = Hkδk, θk = 1/yTkδk, and φk = 1/qTkδk. When Hk is positive-definite, Hk+1

is positive-definite if and only if the approximate curvature yTkδk is positive. The
consequences of a negative or small value of yTkδk are discussed in the next section.

There are several choices for π, including the QP multipliers π̂k and least-squares
multipliers λk (see, e.g., [40]). Here we use the updated multipliers πk+1 from the line
search, because they are responsive to short steps in the search and are available at
no cost. The definition of L from (2.2) yields

yk = ∇L(xk+1, xk, πk+1)−∇L(xk, xk, πk+1)

= gk+1 − gk − (Jk+1 − Jk)
Tπk+1.

2.9. Maintaining positive-definiteness. Since the Hessian of the modified
Lagrangian need not be positive-definite at a local minimizer, the approximate cur-
vature yTkδk can be negative or very small at points arbitrarily close to (x

∗, π∗). The
curvature is considered not sufficiently positive if

yTkδk < σk, σk = αk(1− η)pTkHkpk,(2.6)

where η is a preassigned constant (0 < η < 1) and pk is the search direction x̂k − xk
defined by the QP subproblem. In such cases, if there are nonlinear constraints, two
attempts are made to modify the update: the first modifying δk and yk, the second
modifying only yk. If neither modification provides sufficiently positive approximate
curvature, no update is made.

First modification. The purpose of this modification is to exploit the properties
of the reduced Hessian at a local minimizer of (GNP). We define a new point zk and
evaluate the nonlinear functions there to obtain new values for δk and yk:

δk = xk+1 − zk, yk = ∇L(xk+1, xk, πk+1)−∇L(zk, xk, πk+1).

We choose zk by recording x̄k, the first feasible iterate found for problem (GQPk)
(see section 4). The search direction may be regarded as

pk = (x̄k − xk) + (x̂k − x̄k) ≡ pR + pN .

We set zk = xk + αkpR, giving δk = αkpN and

yTkδk = αky
T
kpN ≈ α2

kp
T
N∇2L(xk, xk, πk)pN ,

so that yTkδk approximates the curvature along pN . If Wk, the final working set of
problem (GQPk), is also the working set at x̄k, then WkpN = 0, and it follows that
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yTkδk approximates the curvature for the reduced Hessian, which must be positive
semidefinite at a minimizer of (GNP).

The assumption that the QP working set does not change once zk is known is
always justified for problems with equality constraints. (See Byrd and Nocedal [18]
for a similar scheme in this context.) With inequality constraints, we observe that
WkpN ≈ 0, particularly during later major iterations, when the working set has settled
down.

This modification exploits the fact that SNOPT maintains feasibility with respect
to any linear constraints in (GNP). Although an additional function evaluation is
required at zk, we have observed that even when the Hessian of the Lagrangian has
negative eigenvalues at a solution, the modification is rarely needed more than a few
times if used in conjunction with the augmented Lagrangian modification discussed
next.

Second modification. If (xk, πk) is not close to (x
∗, π∗), the modified approxi-

mate curvature yTkδk may not be sufficiently positive, and a second modification may
be necessary. We choose ∆yk so that (yk+∆yk)

Tδk = σk (if possible) and redefine yk
as yk + ∆yk. This approach was suggested by Powell [65], who proposed redefining
yk as a linear combination of yk and Hkδk.

To obtain ∆yk, we consider the augmented modified Lagrangian [59]:

LA(x, xk, πk) = f(x)− πTk dL(x, xk) +
1
2dL(x, xk)

TΩdL(x, xk),(2.7)

where Ω is a matrix of parameters to be determined: Ω = diag(ωi), ωi ≥ 0, i = 1:m.
The perturbation

∆yk = (Jk+1 − Jk)
TΩdL(xk+1, xk)

is equivalent to redefining the gradient difference as

yk = ∇LA(xk+1, xk, πk+1)−∇LA(xk, xk, πk+1).(2.8)

We choose the smallest (minimum two-norm) ωi’s that increase yTkδk to σk (see (2.6)).
They are determined by the linearly constrained least-squares problem

(LSP) minimize
ω

‖ω‖2
subject to aTω = β, ω ≥ 0,

where β = σk − yTkδk and ai = viwi (i = 1:m), with v = (Jk+1 − Jk)δk and w =
dL(xk+1, xk). The optimal ω can be computed analytically [44, 28]. If no solution
exists, or if ‖ω‖ is very large, no update is made.

The approach just described is related to the idea of updating an approximation
of the Hessian of the augmented Lagrangian, as suggested by Han [50] and Tapia
[74]. However, we emphasize that the second modification is not required in the
neighborhood of a solution, because as x→ x∗, ∇2LA converges to ∇2L, and the first
modification will already have been successful.

2.10. Convergence tests. A point (x, π) is regarded as a satisfactory solution
if it satisfies the first-order optimality conditions (2.1) to within certain tolerances.
Let τP and τD be specified small positive constants, and define τx = τP (1 + ‖x‖),
τπ = τD(1 + ‖π‖). The SQP algorithm terminates if

ci(x) ≥ −τx, πi ≥ −τπ, ci(x)πi ≤ τπ, |dj | ≤ τπ,(2.9)
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where d = g(x)− J(x)Tπ. These conditions cannot be satisfied if (GNP) is infeasible,
but in that case the SQP algorithm will eventually enter elastic mode and satisfy
analogous tests for a series of problems

(GNP(γ)) minimize
x,v

f(x) + γeTv

subject to c(x) + v ≥ 0, v ≥ 0,

with γ taking an increasing set of values {γ} up to some maximum. The optimality
conditions for (GNP(γ)) include

0 ≤ πi ≤ γ, (ci(x) + vi)πi = 0, vi(γ − πi) = 0.

The fact that ‖π∗‖∞ ≤ γ at a solution of (GNP(γ)) leads us to initiate elastic mode
if ‖πk‖ exceeds some value γ1 (or if (GQPk) is infeasible). We use

γ1 ≡ γ0‖g(xk1)‖, γ = 10(−1)/2γ1 (� = 2, 3, . . . ),(2.10)

where γ0 is a parameter (10
4 in our numerical results) and xk1 is the iterate at which

γ is first needed.

3. Large-scale Hessians. In the large-scale case, we cannot treat Hk as an
n × n dense matrix. Nor can we maintain dense triangular factors of a transformed
Hessian QTHkQ = RTR as in NPSOL. We discuss the alternatives implemented in
SNOPT.

3.1. Linear variables. If only some of the variables occur nonlinearly in the
objective and constraint functions, the Hessian of the Lagrangian has structure that
can be exploited during the optimization. We assume that the nonlinear variables are
the first n̄ components of x. By induction, if H0 is zero in its last n − n̄ rows and
columns, the last n− n̄ components of the BFGS update vectors yk and Hkδk are zero
for all k, and every Hk has the form

Hk =

(
H̄k 0

0 0

)
,(3.1)

where H̄k is n̄ × n̄. Simple modifications of the methods of section 2.9 can be used
to keep H̄k positive-definite. A QP subproblem with a Hessian of this form is either
unbounded or has at least n− n̄ constraints in the final working set. This implies that
the reduced Hessian need never have dimension greater than n̄.

Under the assumption that the objective function is bounded below in some ex-
panded feasible region c(x) ≥ −b (see (2.5)), a sequence of positive-definite matrices
H̄k with uniformly bounded condition numbers is sufficient for the SQP convergence
theory to hold. (This case is analogous to converting inequality constraints to equal-
ities by adding slack variables—the Hessian is singular only in the space of the slack
variables.) However, in order to treat semidefinite Hessians such as (3.1), the QP
solver must include an inertia controlling working-set strategy, which ensures that
the reduced Hessian has at most one zero eigenvalue. See sections 4.6–4.7.

3.2. Dense Hessians. The Hessian approximations H̄k are matrices of order n̄,
the number of nonlinear variables. If n̄ is not too large, it is efficient to treat each H̄k

as a dense matrix and apply the BFGS updates explicitly. The storage requirement
is fixed, and the number of major iterations should prove to be moderate. (We can
expect one-step Q-superlinear convergence.)
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3.3. Limited-memory Hessians. To treat problems where the number of non-
linear variables n̄ is very large, we use a limited-memory procedure to update an initial
Hessian approximation Hr a limited number of times. The present implementation
is quite simple and has an advantage in the SQP context when the constraints are
linear: the reduced Hessian for the QP subproblem can be updated between major
iterations (see section 5.4).

Initially, suppose n̄ = n. Let � be preassigned (say � = 20), and let r and k denote
two major iterations such that r ≤ k ≤ r + �. Up to � updates to a positive-definite
Hr are accumulated to represent the Hessian as

Hk = Hr +

k−1∑
j=r

(
θjyjy

T
j − φjqjq

T
j

)
,(3.2)

where qj = Hjδj , θj = 1/yTj δj , and φj = 1/qTj δj . The quantities (yj , qj , θj , φj) are
stored for each j. During major iteration k, the QP solver accesses Hk by requesting
products of the form Hkv. These are computed with work proportional to k − r:

Hkv = Hrv +

k−1∑
j=r

(
θj(y

T
j v)yj − φj(q

T
j v)qj

)
.

On completion of iteration k = r+�, the diagonals of Hk are computed from (3.2) and
saved to form the next positive-definite Hr (with r = k + 1). Storage is then “reset”
by discarding the previous updates. (Similar schemes are described by Buckley and
LeNir [13, 14] and Gilbert and Lemaréchal [37]. More elaborate schemes are given
by Liu and Nocedal [54], Byrd, Nocedal, and Schnabel [19], and Gill and Leonard
[39], and some have been evaluated by Morales [55]. However, as already indicated,
these schemes would require refactorization of the reduced Hessian in the linearly
constrained case.)

If n̄ < n, Hk has the form (3.1), and the same procedure is applied to H̄k. Note
that the vectors yj and qj have length n̄—a benefit when n̄ � n. The modified
Lagrangian LA from (2.7) retains this property for the modified yk in (2.8).

4. The QP solver SQOPT. Since SNOPT solves nonlinear programs of the
form (NP), it requires solution of QP subproblems of the same form, with f(x) re-
placed by a convex quadratic function, and c(x) replaced by its current linearization:

(QPk) minimize
x

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk)

subject to l ≤


 x

ck + Jk(x− xk)

Ax


 ≤ u.

At present, (QPk) is solved by the package SQOPT [42], which employs a two-phase
active-set algorithm and implements elastic programming implicitly when necessary.
The Hessian Hk may be positive-semidefinite and is defined by a routine for forming
products Hkv.

4.1. Elastic bounds. SQOPT can treat any of the bounds in (QPk) as elastic.
Let xj refer to the jth variable or slack. For each j, an input array specifies which
of the bounds lj , uj is elastic (either, neither, or both). A parallel array maintains
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the current state of each xj . If the variable or slack is currently outside its bounds
by more than the Minor feasibility tolerance, it is given a linear penalty term
γ × infeasibility in the objective function. This is a much-simplified but useful form
of piecewise linear programming (Fourer [33, 34, 35]).

SNOPT uses elastic bounds in three different ways:
• to solve problem (FLP) (section 1.2) if the linear constraints are infeasible,
• to solve problem (PP1) (section 5.1),
• to solve the QP subproblems associated with problem (NP(γ)) after nonlinear
elastic mode is initiated.

4.2. The null-space method. SQOPT maintains a dense Cholesky factoriza-
tion of the QP reduced Hessian:

ZTHkZ = RTR,(4.1)

where Z is the null-space matrix for the working sets W in the QP minor iterations.
Normally, R is computed from (4.1) when the nonelastic constraints are first satisfied.
It is then updated as the QP working set changes. For efficiency the dimension of
R should not be excessive (say, nZ ≤ 2000). This is guaranteed if the number of
nonlinear variables is moderate (because nZ ≤ n̄ at a solution), but it is often true
even if n̄ = n.

To review notation, Z is maintained in “reduced-gradient” form as in MINOS,
using the package LUSOL [45] to maintain sparse LU factors of a square matrix B
whose columns change as the working set W changes:

W =

(
B S N

I

)
P, Z = PT


 −B

−1S

I

0


 ,(4.2)

where P is a permutation such that B is nonsingular. Variables associated with B
and S are called basic and superbasic; the remainder are called nonbasic. The number
of degrees of freedom is the number of superbasic variables (the column dimension of
S). Products of the form Zv and ZTg are obtained by solving with B or BT.

4.3. Threshold pivoting (TPP and TCP). Stability in LU factorization is
achieved by bounding the off-diagonal elements of L or U . There are many ways
to do this, especially in the sparse case. In LUSOL, L has unit diagonals, and each
elimination step produces the next column of L and the next row of U . Let

τL = the LU factor tolerance such that |Lij | ≤ τL

(where 1 < τL ≤ 100, say),
Al = the remaining submatrix to be factored after l steps

(updated by the first l columns of L).

For most factorizations, LUSOL uses a threshold partial pivoting strategy (TPP)
similar to that in LA05 [67] and MA28 [27]. To become the next diagonal of U , a
nonzero in Al must be sufficiently large compared to other nonzeros in the same
column of Al.

With τL ∈ [4, 25], TPP usually performs well in terms of balancing stability and
sparsity, but is not especially good at rank-detection (revealing near-singularity and
its cause). For example, a triangular matrix A gives L = I and U = A for all values
of τL (a perfect L and maximum sparsity, but little hint of possible ill-conditioning).
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For greater reliability, a threshold complete pivoting strategy (TCP) has been im-
plemented recently in LUSOL [63], in which the next diagonal of U must be reasonably
large compared to all nonzeros in Al. The original aim was to improve rank-detection
for the sparse matrices arising during the optimization of Markov decision chains [62].
Although reduced sparsity and speed are expected, TCP has proved valuable within
SNOPT, as described below.

In general we use TPP where possible, with τL decreasing through a short sequence
of values (currently 4, 2,

√
2, . . . , 1.1) if various tests continue to indicate instability

(e.g., large ‖b − Bx‖ or ‖x‖ when basic variables are recomputed from Bx = b).
When necessary, a switch is made to TCP with another sequence of values (currently
τL = 20, 10, 5, 2.5,

√
2.5, . . . , 1.1).

4.4. Basis repair (square or singular case). Whenever a basis is factored,
LUSOL signals “singularity” if any diagonals of U are judged small, and indicates
which unit vectors (corresponding to slack variables) should replace the associated
columns of B. The modified B is then factored.

The process may need to be repeated if the factors of B are not sufficiently “rank-
revealing.” Extreme behavior of this kind was exhibited by one of the CUTE problems
(section 6.2) when the first basis was factored with the normal partial pivoting options.
Problem drcavty2 is a large square system of nonlinear equations (10000 constraints
and variables, 140000 Jacobian nonzeros). The first TPP factorization with τL = 4.0
indicated 243 singularities. After slacks were inserted, the next factorization indicated
47 additional singularities, the next a further 25, then 18, 14, 10, and so on. Nearly
30 TPP factorizations and 460 new slacks were required before the basis was regarded
as suitably nonsingular. Since L and U each had about a million nonzeros in all
factorizations, the repeated failures were rather expensive.

In contrast, a single TCP factorization with τL = 2.5 indicated 100 singularities,
after which the modified B proved to be very well-conditioned. Although L and U
were more dense (1.35 million nonzeros each) and much more expensive to compute,
the subsequent optimization required significantly fewer major and minor iterations.

For such reasons, SQOPT includes a special “BR factorization” for estimating the
rank of a given B, using the LUSOL options shown in Figure 1. P and Q are the
row and column permutations that make L unit triangular and U upper triangular,
with small elements in the bottom right if B is close to singular. To save storage, the
factors are discarded as they are computed. A normal “B factorization” then follows.

B = = LU , PLPT =

(
L1

L2 L3

)
, PUQ =


 U1 U2

. . .




LUSOL options: TCP, τL = 2.5, discard factors

Fig. 1. BR factorization (rank detection for square B).

BR factorization is the primary recourse when unexpected growth occurs in ‖x‖
following solution of Bx = b. It has proved valuable for some other CUTE problems
arising from partial differential equations (namely, porous1 , porous2 , bratu2d , and
bratu3d). A regular “marching pattern” is sometimes present in B, particularly in
the first triangular basis following a cold start. With partial pivoting, the factors
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display no small diagonals in U , yet the BR factors reveal a large number of dependent
columns. Thus, although condition estimators are known that could tell us “this B is
ill-conditioned” (e.g., [52]), we are using LUSOL’s complete pivoting option to decide
which columns are causing the poor condition.

4.5. Basis repair (rectangular case). When superbasic variables are present,
the permutation P in (4.2) clearly affects the condition of B and Z. SQOPT therefore
applies an occasional rectangular “BS factorization” to choose a new P , using the
options shown in Figure 2.

WT = = LU , PLPT =

(
L1

L2 I

)
, PUQ =

(
U1

0

)

LUSOL options: TPP or TCP, τL ≤ 3.99, discard factors

Fig. 2. BS factorization (basis detection for rectangular W ).

For simplicity we assume that there are no nonbasic columns in W . A basis
partition is given by

PWT ≡
(

BT

ST

)
=

(
L1

L2

)
U1Q

T ,

and the required null-space matrix satisfying WZ = 0 is

Z ≡ PT

(
−B−1S

I

)
= PT

(
−L−T

1 LT2
I

)
.(4.3)

With τL ≤ 3.99, L and L1 are likely to be well-conditioned, and ζ ≡ ‖L−T
1 LT2 ‖

is unlikely to be large. (It can be bounded by a polynomial function of τL.) The
extreme singular values of Z are σmin ≥ 1 and σmax ≈ 1+ ζ. It follows that Z should
be well-conditioned regardless of the condition of W .

SQOPT applies this basis repair at the beginning of a warm start (when a potential
B-S ordering is known). To prevent basis repair at every warm start—i.e., every
major iteration of SNOPT—a normal B = LU factorization is computed first with
the current (usually larger) tolerance τL. If U appears to be more ill-conditioned than
after the last repair, a new repair is invoked. The relevant test on the diagonals of U
is tightened gradually to ensure that basis repair occurs periodically (even during a
single major iteration if a QP subproblem requires many iterations).

Although the rectangular factors are discarded, we see from (4.3) that a nor-
mal factorization of B allows iterations to proceed with an equivalent Z. (A BR
factorization may be needed to repair B first if W happens to be singular.)

4.6. Inertia control. If (NP) contains linear variables, Hk in (3.1) is positive
semidefinite. In SQOPT, only the last diagonal of R (see (4.1)) is allowed to be
zero. (See [46] for discussion of a similar strategy for indefinite QP.) If the initial
R is singular, enough temporary constraints are added to the working set to give a
nonsingular R. Thereafter, R can become singular only when a constraint is deleted
from the working set (in which case no further constraints are deleted until R becomes
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nonsingular). When R is singular at a nonoptimal point, it is used to define a direction
dZ such that

ZTHkZdZ = 0 and gTZdZ < 0,(4.4)

where g = g(xk) +Hk(x− xk) is the gradient of the quadratic objective. The vector
d = ZdZ is a direction of unbounded descent for the QP in the sense that the QP
objective is linear and decreases without bound along d. Normally, a step along d
reaches a new constraint, which is then added to the working set for the next iteration.

4.7. Unbounded QP subproblems. If the QP objective is unbounded along
d, subproblem (QPk) terminates. The final QP search direction d = ZdZ is also a
direction of unbounded descent for the objective of (NP). To show this, we observe
from (4.4) that if we choose p = d, then

Hkp = 0 and gTkp < 0.

The imposed nonsingularity of H̄k (see (3.1)) implies that the nonlinear components
of p are zero, and so the nonlinear terms of the objective and constraint functions
are unaltered by steps of the form xk + αp. Since gTkp < 0, the objective of (NP)
is unbounded along p, because it must include a term in the linear variables that
decreases without bound along p.

In short, (NP) behaves like an unbounded linear program (LP) along p, with the
nonlinear variables (and functions) frozen at their current values. Thus if xk is feasible
for (NP), unboundedness in (QPk) implies that the objective f(x) is unbounded for
feasible points, and the problem is declared unbounded.

If xk is infeasible, unboundedness in (QPk) implies that f(x) is unbounded for
some expanded feasible region c(x) ≥ −b (see (2.5)). We enter or continue elastic mode
(with an increased value of γ if it has not already reached its maximum permitted
value). Eventually the QP subproblem will be bounded, or xk will become feasible,
or the iterations will converge to a point that approximately minimizes the one-norm
of the constraint violations.

5. Algorithmic details. A practical SQP algorithm requires many features to
achieve reliability and efficiency. We discuss some more of them here before summa-
rizing the main algorithmic steps.

5.1. The initial point. To take advantage of a good starting point x0, we apply
SQOPT to one of the “proximal-point” problems

(PP1) minimize
x

‖x̄− x̄0‖1
subject to the linear constraints and bounds

or

(PP2) minimize
x

‖x̄− x̄0‖22
subject to the linear constraints and bounds,

where x̄ and x̄0 correspond to the nonlinear variables in x and x0. The solution defines
a new starting point x0 for the SQP iteration. The nonlinear functions are evaluated
at this point, and a “crash” procedure is executed to find a working set W0 for the
linearized constraints.
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In practice we prefer problem (PP1), as it is linear and can use SQOPT’s implicit
elastic bounds. (We temporarily set the bounds on the nonlinear variables to be
x̄0 ≤ x̄ ≤ x̄0.) Note that problem (PP2) may be “more nonlinear” than the original
problem (NP), in the sense that its exact solution may lie on fewer constraints (even
though it is nonlinear in the same subset of variables, x̄). To prevent the reduced
Hessian from becoming excessively large with this option, we terminate SQOPT early
by specifying a loose optimality tolerance.

5.2. Undefined functions. If the constraints in (PP1) or (PP2) prove to be
infeasible, SNOPT solves problem (FLP) (see section 1.2) and terminates without
computing the nonlinear functions. The problem was probably formulated incorrectly.

Otherwise, the linear constraints and bounds define a certain “linear feasible
region” RL, and all iterates satisfy xk ∈ RL to within a feasibility tolerance (as with
NPSOL). Although SQP algorithms might converge more rapidly sometimes if all
constraints were treated equally, the aim is to help prevent function evaluations at
obvious singularities.

In practice, the functions may not be defined everywhere within RL, and it may
be an unbounded region. Hence, the function routines are permitted to return an
“undefined function” signal. If the signal is received from the first function call
(before any line search takes place), SNOPT terminates. Otherwise, the line search
backtracks and tries again.

5.3. Early termination of QP subproblems. SQP theory usually assumes
that the QP subproblems are solved to optimality. For large problems with a poor
starting point and H0 = I, many thousands of iterations may be needed for the first
QP, building up many degrees of freedom (superbasic variables) that are promptly
eliminated by more thousands of iterations in the second QP.

In general, it seems wasteful to expend much effort on any QP before updating
Hk and the constraint linearization. Murray and Prieto [57] suggest one approach to
terminating the QP solutions early, requiring that at least one QP stationary point
be reached. The associated theory implies that any subsequent point x̂k generated
by a QP solver is suitable, provided that ‖x̂k − xk‖ is nonzero. In SNOPT we have
implemented a method within this framework that has proved effective on many
problems. Conceptually we could perform the following steps:

• Fix many variables at their current value.
• Perform one SQP major iteration on the reduced problem (solving a smaller
QP to get a search direction for the nonfixed variables).
• Free the fixed variables, and complete the major iteration with a “full” search
direction that happens to leave many variables unaltered.
• Repeat.

Normal merit-function theory should guarantee progress at each stage on the associ-
ated reduced nonlinear problem. We are simply suboptimizing.

In practice, we are not sure which variables to fix at each stage, the reduced QP
could be infeasible, and degeneracy could produce a zero search direction. Instead,
the choice of which variables to fix is made within the QP solver. The following steps
are performed:

• Perform QP iterations on the full problem until a feasible point is found or
elastic mode is entered.
• Continue iterating until certain limits are reached and not all steps have been
degenerate.
• Freeze nonbasic variables that have not yet moved.
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• Solve the reduced QP to optimality.
Rather arbitrary limits may be employed and perhaps combined. We have imple-
mented the following as user options:

• Minor iterations limit (default 500) suggests termination if a reasonable
number of QP iterations have been performed (beyond the first feasible point).
• New superbasics limit (default 99) suggests termination if the number of
free variables has increased significantly (since the first feasible point).
• Minor optimality tolerance (default 10−6) specifies an optimality toler-
ance for the final QPs.

Internally, SNOPT sets a loose but decreasing optimality tolerance for the early QPs
(somewhat smaller than a measure of the current primal-dual infeasibility for (NP)).
This “loose tolerance” strategy provides a dynamic balance between major and minor
iterations in the manner of inexact Newton methods (Dembo, Eisenstat, and Steihaug
[23]).

5.4. Linearly constrained problems. For problems with linear constraints
only, the maximum step length is not necessarily one. Instead, it is the maximum
feasible step along the search direction. If the line search is not restricted by the
maximum step, the line search ensures that the approximate curvature is sufficiently
positive and the BFGS update can always be applied. Otherwise, the update is
skipped if the approximate curvature is not sufficiently positive.

For linear constraints, the working-set matrix Wk does not change at the new
major iterate xk+1, and the basis B need not be refactorized. If B is constant, then
so is Z, and the only change to the reduced Hessian between major iterations comes
from the rank-two BFGS update. This implies that the reduced Hessian need not be
refactorized if the BFGS update is applied explicitly to the reduced Hessian. This
obviates factorizing the reduced Hessian at the start of each QP, saving considerable
computation.

Given any nonsingular matrix Q, the BFGS update to Hk implies the following
update to QTHkQ:

H̄Q = HQ + θkyQy
T
Q − φkqQq

T
Q ,(5.1)

where H̄Q = QTHk+1Q, HQ = QTHkQ, yQ = QTyk, δQ = Q−1δk, qQ = HQδQ,
θk = 1/yTQδQ, and φk = 1/qTQδQ. If Q is of the form ( Z Y ) for some matrix Y , the
reduced Hessian is the leading principal submatrix of HQ.

The Cholesky factor R of the reduced Hessian is simply the upper-left corner of
the n̄× n upper-trapezoidal matrix RQ such that HQ = RTQRQ. The update for R is
derived from the rank-one update to RQ implied by (5.1). Given δk and yk, if we had
all of the Cholesky factor RQ, it could be updated directly as

RQ + uvT, w = RQδQ, u = w/‖w‖, v =
√

θkyQ −RTQu

(see Goldfarb [49], Dennis and Schnabel [24]). This rank-one modification of RQ could
be restored to upper-triangular form by applying two sequences of plane rotations from
the left [38].

The same sequences of rotations can be generated even though not all of RQ is
present. Let vZ be the first nZ elements of v. The following algorithm determines the
Cholesky factor R̄ of the first nZ rows and columns of H̄Q from (5.1):

1. Compute q = Hkδk and t = ZTq.
2. Define φ = ‖w‖2 = (δTkHkδk)

1/2 = (qTδk)
1/2.
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3. Solve RTwZ = t.
4. Define uZ = wZ/φ and σ = (1− ‖uZ‖22)1/2.
5. Apply a backward sweep of nZ rotations P1 in the planes (nZ+1, i), i = nZ :1,

to give an upper triangular R̂ and a “row spike” rT :

P1

(
R uZ

σ

)
=

(
R̂ 0

rT 1

)
.

6. Apply a forward sweep of nZ rotations P2 in the planes (i, nZ+1), i = 1:nZ+1,
to restore the upper triangular form:

P2

(
R̂

rT + vTZ

)
=

(
R̄

0

)
.

5.5. Summary of the SQP algorithm. The main steps of the SNOPT algo-
rithm follow. We assume that a starting point (x0, π0) is available, and that the
reduced-Hessian QP solver SQOPT is being used. We describe elastic mode qualita-
tively. Specific values for γ are given in section 2.10.

0. Apply the QP solver to problem (PP1) or (PP2) to find a point close to
x0 satisfying the linear constraints. If the PP problem is infeasible, declare
problem (NP) infeasible. Otherwise, a working-set matrix W0 is returned.
Set k = 0, and evaluate functions and gradients at x0.

1. Factorize Wk.
2. Find x̄k, a feasible point for the QP subproblem. (This is an intermediate
point for the QP solver, which also provides a working-set matrix W̄ k and its
null-space matrix Z̄k.) If no feasible point exists, initiate elastic mode and
restart the QP.

3. Form the reduced Hessian Z̄TkHkZ̄k, and compute its Cholesky factorization.
4. Continue solving the QP subproblem to find (x̂k, π̂k), an optimal QP solution.

(This provides a working-set matrix Ŵk and its null-space matrix Ẑk.)
If elastic mode has not been initiated but ‖π̂k‖∞ is “large,” enter elastic mode
and restart the QP.
If the QP is unbounded and xk satisfies the nonlinear constraints, declare the
problem unbounded (f is unbounded below in the feasible region). Otherwise
(if the QP is unbounded), go to Step 6 (f is unbounded below in the feasible
region if a feasible point exists).

5. If (xk, πk) satisfies the convergence tests for (NP) analogous to (2.9), declare
the solution optimal. If similar convergence tests are satisfied for (NP(γ)),
go to Step 6. Otherwise, go to Step 7.

6. If elastic mode has not been initiated, enter elastic mode and repeat Step 4.
Otherwise, if γ has not reached its maximum value, increase γ and repeat
Step 4. Otherwise, declare the problem infeasible.

7. Find a step length αk that gives a sufficient reduction in the merit function.
Set xk+1 = xk + αk(x̂k − xk) and πk+1 = πk + αk(π̂k − πk). In the process,
evaluate functions and gradients at xk+1.

8. Define δk = xk+1 − xk and yk = ∇L(xk+1, xk, πk+1) − ∇L(xk, xk, πk+1).
If yTkδk < σk (see (2.6)), recompute δk and yk, with xk redefined as xk +
αk(x̄k − xk). (This requires an extra evaluation of the problem derivatives.)
If necessary, increase yTkδk (if possible) by adding an augmented Lagrangian
term to yk.
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9. If yTkδk ≥ σk, apply the BFGS update to Hk, using the pair (Hkδk, yk).

10. Define Wk+1 from Ŵk, set k ← k + 1, and repeat from Step 1.

Apart from the function and gradient evaluations, most of the computational effort
lies in Steps 1 and 3. Steps 2 and 4 may also involve significant work if the QP
subproblem requires many minor iterations. Typically this will happen only during
the early major iterations.

6. Numerical results. SNOPT and SQOPT implement all of the techniques
described in sections 2–4. The Fortran 77 coding is compatible with Fortran 90
and 95 compilers and permits recursive calls, or re-entrant calls in a multithreaded
environment, as well as translation into C via f 2c [29] (though these features are not
used here).

We give the results of applying SNOPT 6.1 of May, 2001, to problems in the
CUTE and COPS 2.0 test collections [10, 7, 25]. Function and gradient values were
used throughout (but not second derivatives).

All runs were made on an SGI Octane workstation with 512MB of RAM and two
250MHz R10000 processors (only one being used for each problem solution). The f90
compiler was used with -n32 -O options specifying 32-bit addressing and full code
optimization. The floating-point precision was 2.22 × 10−16. Table 1 defines the
notation used in the tables of results.

Table 1
Notation in tables of results.

nZ The number of degrees of freedom at a solution (columns in Z).
Mnr The number of QP minor iterations.
Mjr The number of major iterations required by the optimizer.
Fcn The number of function and gradient evaluations.
cpu The number of cpu seconds.
Obj The final objective value (to help classify local solutions).
Con The final constraint violation norm (to identify infeasible problems).
a Almost optimal (within 10−2 of satisfying the convergence test).
c Final nonoptimal point could not be improved.
s User-defined superbasics limit exceeded.

6.1. Parameters for SNOPT. Figure 3 gives the SNOPT optional parameters
used, most of which are default values. Linear constraints and variables are scaled
(Scale option 1), and the first basis is essentially triangular (Crash option 3).

Elastic weight sets γ0 = 104 in (2.10).
The Major feasibility and optimality tolerances set τP and τD in section 2.10

for problem (NP). The Minor tolerances are analogous parameters for SQOPT as it
solves (QPk). The Minor feasibility tolerance incidentally applies to the bound
and linear constraints in (NP) as well as (QPk).

Violation limit sets τV in section 2.7 to define an expanded feasible region in
which the objective is expected to be bounded below.

For the Hessian approximations Hk, if the number of nonlinear variables is small
enough (n̄ ≤ 75), a full dense BFGS Hessian is used. Otherwise, a limited-memory
BFGS Hessian is used, with Hk reset to the current Hessian diagonal every 20 major
iterations.

6.2. Results on the CUTE test set. The CUTE distribution of 01/May/2001
contains 945 problems in standard interface format (SIF). A list of the CUTE problem
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types and their frequency is given in Table 2. Although many problems allow for the
number of variables and constraints to be adjusted in the SIF file, our tests used the
dimensions set in the CUTE distribution. This gave problems ranging in size from
hs1 , with two variables and no constraints, to cont5-qp, with 40601 variables and
40201 constraints.

BEGIN SNOPT Problem

Minimize

Crash option 3

Derivative level 3

Elastic weight 1.0E+4

Hessian updates 20

Superbasics limit 2000

Iterations 90000

Major iterations 2000

Minor iterations 500

LU partial pivoting

Major feasibility tolerance 1.0E-6

Major optimality tolerance 2.0E-6

Minor feasibility tolerance 1.0E-6

Minor optimality tolerance 1.0E-6

New superbasics 99

Line search tolerance 0.9

Proximal point method 1

Scale option 1

Step limit 2.0

Unbounded objective 1.0E+15

Verify level -1

Violation limit 1.0E+6

END SNOPT Problem

Fig. 3. The SNOPT optional parameter file.

Table 2
The 945 CUTE problems listed by type and frequency.

Frequency Type Characteristics

24 LP Linear obj, linear constraints
116 QP Quadratic obj, linear constraints
160 UC Nonlinear obj, no constraints
125 BC Nonlinear obj, bound constraints
70 LC Nonlinear obj, linear constraints
375 NC Nonlinear obj, nonlinear constraints
75 FP No objective

From the complete set of 945 problems, 74 were omitted as follows:
• 6 nonsmooth problems (bigbank , gridgena, hs87 , net1 , net2 and net3 ),
• 57 problems with more than 2000 degrees of freedom at the solution (aug3d ,
aug3dc, aug3dcqp, dixmaanb, dtoc5 , dtoc6 , jannson3 , jannson4 , jimack ,
jnlbrng1 , jnlbrng2 , jnlbrnga, minsurfo, obstclae, obstclbm, odnamur , orth-
rdm2, orthrgdm, stcqp1 , stnqp1 , torsion6 , and the 36 lukvli and lukvle1 prob-
lems),
• 9 problems with undefined variables or floating-point exceptions in the SIF
file (himmelbj , lhaifam, lin, pfit1 , pfit3 , recipe, robotarm, s365mod , and
scon1dls),
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• 2 problems too large to decode (qpband and qpnband),
• 1 problem with excessively low accuracy in the objective gradients (bleachng).
Requesting greater accuracy leads to excessive evaluation time.

SNOPT was applied to the remaining 870 problems, using the options listed in
Figure 3. No special information was used in the case of LP, QP, and FP problems—
i.e., each problem was assumed to have a general nonlinear objective. The results are
summarized in Table 3.

Table 3
Summary: SNOPT on the smooth CUTE problems.

Problems attempted 870

Optimal 794
Unbounded 3
Infeasible 10

Optimal, low accuracy 11
Cannot be improved 7
False infeasibility 17
Terminated 28

Major iterations 108980
Minor iterations 678524
Function evaluations 153867
Cpu time (secs) 70864.7

Discussion. Problems flosp2hh, flosp2hl , flosp2hm, ktmodel , and model have
infeasible linear constraints, but were included anyway. The objectives for indef ,
mesh, and static3 are unbounded below in the feasible region. SNOPT correctly
diagnosed the special features of these problems.

A total of 11 problems (allinitc, eigmaxc, eigminc, hs268 , mancino, marine,
orthrds2 , orthregd , penalty3 , pinene, and s268 ) were terminated at a point that
satisfied either the feasibility or the optimality test and was within 10−2 of satisfying
the other test. AMPL implementations of marine and pinene were solved successfully
as part of the COPS 2.0 collection (see section 6.3).

SNOPT reported 22 problems (argauss, bratu2dt , cont6-qq , drcavty2 , eigenb,
eigmaxb, fletcher , flosp2th, growth, hadamard , heart6 , himmelbd , hs90 , junkturn,
lewispol , lootsma, lubrif , lubrifc, nystrom5 , optcdeg3 , powellsq , vanderm3 ) with in-
feasible nonlinear constraints. Since SNOPT is not assured of finding a global mini-
mizer of the sum of infeasibilities, failure to find a feasible point does not imply that
none exists. Of these 22 problems, all but five cases must be counted as failures be-
cause they are known to have feasible points. The five exceptions, flosp2th, junkturn,
lewispol , lubrif , and nystrom5 , have no known feasible points. To gain further as-
surance that these problems are indeed infeasible, they were re-solved using SNOPT’s
Feasible Point option, in which the true objective is ignored but “elastic mode” is
invoked (as usual) if the constraint linearizations prove to be infeasible (i.e., f(x) = 0
and γ = 1 in problem (NP(γ)) of section 1.1). In all five cases, the final sum of
constraint violations was comparable to that obtained with the composite objective.
We conjecture that these problems are infeasible.

Problems fletcher and lootsma have feasible solutions, but their initial points are
infeasible and stationary for the sum of infeasibilities, and thus SNOPT terminated
immediately. These problems are also listed as failures. Problem drcavty2 is also
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listed as a failure, although it is probably infeasible for the size of problem tested (196
variables, 101 general constraints). SNOPT ran successfully on the larger versions of
the problem (the largest having 10816 variables and 10001 general constraints).

SNOPT was unable to solve 28 cases within the allotted 2000 major iterations
(biggsb1 , bqpgauss, catena, chainwoo, chenhark , curly10 , curly20 , curly30 , drcav1lq ,
drcav2lq , drcav3lq , eigenbls, eigencls, hydc20ls, noncvxu2 , noncvxun, palmer5b, palm-
er5e, palmer7a, palmer7e, qr3dls, sbrybnd , scosine, scurly10 , scurly20 , scurly30 ,
sparsine, and vibrbeam). Another 7 problems could not be improved at a nonoptimal
point: brownbs, catena, glider , meyer3 , nuffield , vanderm1 , and vanderm2 . SNOPT

essentially found the solution of the badly scaled problems brownbs and meyer3 but
was unable to declare optimality. An AMPL implementation of glider was solved
successfully (see section 6.3)

If the infeasible LC problems, the unbounded problems, and the 5 (conjectured)
infeasible problems are counted as successes, SNOPT solved a grand total of 807 of
the 870 problems attempted. In another 11 cases, SNOPT found a point that was
within a factor 10−2 of satisfying the convergence test. These results provide strong
evidence of the robustness of first-derivative SQP methods when implemented with
an augmented Lagrangian merit function and an elastic variable strategy for treating
infeasibility.

6.3. Results on the COPS 2.0 test set. Tests on the 17 problems in the
COPS 2.0 collection were made using the AMPL modeling system [36]. When neces-
sary, the AMPL model and data files were modified to increase the problem size to be
the largest considered in [7] (see Table 4).

Table 4
Dimensions of the AMPL versions of the COPS problems.

No. Problem Type Variables Constraints

Linear Nonlinear Total

1 bearing BC 5000 0 0 0
2 camshape NC 800 800 801 1601
3 catmix NC 2401 1 1600 1601
4 chain NC 800 401 1 402
5 channel FP 3198 1598 1600 3198
6 elec NC 600 1 200 201
7 gasoil NC 4001 799 3200 3999
8 glider NC 1999 1 1600 1601
9 marine NC 4815 1593 3200 4793
10 methanol NC 4802 1198 3600 4798
11 minsurf BC 5000 0 0 0
12 pinene NC 4000 996 3000 3996
13 polygon NC 198 99 4950 5048
14 robot NC 3599 2 2400 2402
15 rocket NC 1601 0 1200 1201
16 steering NC 2000 2 1600 1602
17 torsion BC 5000 0 0 0

The bound constrained problems bearing, minsurf, and torsion have more than
2000 degrees of freedom at the solution, but were tested anyway. (SNOPT is not
appropriate for problems with only bound constraints unless many of the bounds are
active.) Table 5 gives results obtained by applying SNOPT with the options listed in
Figure 3. The default AMPL options (including problem preprocessing) were used in
each case.
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Table 5
SNOPT on the COPS 2.0 problems.

No. Problem Mnr Mjr Fcn Obj Con nZ cpu

1 bearings 2279 19 23 1.147002E+01 0.0E+00 2000 175.0
2 camshape 3019 9 18 4.222963E+00 9.4E-08 6 5.5
3 catmix 594 11 14 -4.796022E-02 2.8E-07 395 14.0
4 chain 839 40 44 5.068630E+00 4.2E-06 399 24.6
5 channel 2192 5 7 1.000000E+00 3.2E-05 0 18.8
6 elec 731 326 354 1.843890E+04 4.6E-10 400 194.9
7 gasoil 2607 21 25 5.236596E-03 7.2E-08 3 32.5
8 glider 33959 516 785 1.247974E+03 5.3E-09 359 891.7
9 marine 5437 71 132 1.974653E+07 1.1E-11 22 144.7
10 methanol 6250 1381 8280 9.022290E-03 9.0E-10 4 1170.2
11 minsurf s 3029 19 26 2.516317E+00 0.0E+00 2000 1251.5
12 pinene 3090 41 63 1.987216E+01 4.0E-13 5 51.0
13 polygon 3490 64 66 7.850233E-01 1.1E-08 98 51.0
14 robot 5855 28 51 9.141018E+00 2.1E-06 0 279.3
15 rocket 2663 8 16 1.005422E+00 1.3E-07 66 16.7
16 steering 764 29 35 5.545734E-01 7.6E-07 398 30.2
17 torsions 3112 16 20 -4.004933E-01 0.0E+00 2000 171.4

Discussion. SNOPT solved every COPS problem that has fewer than 2000 de-
grees of freedom at the solution. The default New superbasics limit (99) often
improves efficiency, but for bearing, minsurf, and torsion, a larger value would reduce
the time and major iterations needed to terminate with excess superbasics.

It is not clear why the AMPL formulations of glider and robot (problem robotarm
in the CUTE set) can be solved relatively easily, but not the CUTE versions. Repeating
the runs with AMPL option presolve 0 did not significantly increase the cpu time,
which implies that preprocessing is not the reason for the difference in performance.

The COPS problems were also used to investigate the effect of the number � of
limited-memory updates on the performance of SNOPT. Table 6 gives times for the 14
nonlinearly constrained problems when solved with different choices for �. In the case
of the BC problems bearing, minsurf, and torsion, the principal effect of increasing �
is to increase the cost of the Hessian/vector products in the minor iterations needed
to expand the reduced Hessian to its maximum size.

The results are typical of the performance of SNOPT in practical situations.
• Small values of � can give low computation times but may adversely affect
robustness on more challenging problems. For example, � = 5 gave the one
run in which the AMPL formulation of glider could not be solved.

• As � is increased, the number of major iterations tends to decrease. However,
numerical performance remains relatively stable. (For example, the same
local solution was always found for the highly nonlinear problem polygon.)
• As � is increased, the solution time often decreases initially, but then increases
as the cost of the products Hkv increases. This would be reflected in the total
computation time for Table 6 if it were not for methanol, whose time improves
dramatically because of a better Hessian approximation.

The choice of default value � = 20 is intended to provide robustness without a
significant computational penalty.

7. Extensions. Where possible, we have defined the SQP algorithm to be inde-
pendent of the QP solver. Of course, implicit elastic bounds and certain “warm start”
features are highly desirable. For example, SQOPT can use a given starting point and
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Table 6
Number of LM updates vs. cpu time.

Problem Limited-memory updates

5 10 15 20 25 30

camshape 5.6 5.4 5.6 5.5 5.4 5.4
catmix 7.7 14.3 14.5 14.0 15.2 15.0
chain 14.2 13.2 18.8 24.6 17.6 22.5
channel 19.1 18.8 19.0 18.8 19.0 18.7
elec 221.3 216.3 127.3 194.9 217.6 241.0
gasoil 34.1 32.8 32.0 32.5 32.2 31.8
glider 254.0c 845.5 429.2 891.7 369.6 595.0
marine 155.2 139.3 157.3a 144.7 163.4a 166.6
methanol 398.2 390.5 1218.2 1170.2 1253.0 501.1
pinene 42.4a 48.7 50.2 51.0 43.8 45.6
polygon 120.3 74.8 87.3 51.0 56.5 63.0
robot 215.7 248.4 275.9 279.3 277.2 274.9
rocket 16.4 16.2 16.5 16.7 15.8 16.0
steering 43.8 26.0 27.6 30.2 31.4 30.7

1548.2 2090.2 2479.4 2924.7 2517.7 2027.4

Table 7
Number of LM updates vs. major iterations.

Problem Limited-memory updates

5 10 15 20 25 30

camshape 9 9 9 9 9 9
catmix 7 11 11 11 11 11
chain 29 25 33 40 27 32
channel 5 5 5 5 5 5
elec 459 399 227 326 340 361
gasoil 26 23 20 21 21 21
glider 50c 513 224 516 173 275
marine 83 71 90a 71 84a 88
methanol 479 245 1224 1381 1469 604
pinene 30a 37 39 41 29 30
polygon 243 123 158 64 81 94
robot 22 23 28 28 28 28
rocket 8 8 8 8 8 8
steering 38 28 28 29 26 26

1488 1520 2104 2550 2311 1592

working set, and for linearly constrained problems (section 5.4) it can accept a known
Cholesky factor R for the reduced Hessian.

Here we discuss other “black-box” QP solvers that could be used in future im-
plementations of SNOPT. Recall that active-set methods solve KKT systems of the
form (

Hk WT

W

)(
p

q

)
=

(
g

h

)
(7.1)

at each minor iteration, where W is the current working-set matrix. Reduced-Hessian
methods such as SQOPT are efficient if W is nearly square and products Hkx can be
formed efficiently, but our aim is to accommodate many degrees of freedom.
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7.1. Approximate reduced Hessians. As the major iterations converge, the
QP subproblems require fewer changes to their working set, and with warm starts
they eventually solve in one minor iteration. Hence, the work required by SQOPT

becomes dominated by the computation of the reduced Hessian ZTHkZ and its factor
R from (4.1), especially if there are many degrees of freedom.

For such cases, MINOS could be useful as the QP solver because it has two ways
of approximating the reduced Hessian in the form ZTHkZ ≈ RTR:

• R may be input from the previous major iteration and maintained using
quasi-Newton updates during the QP minor iterations.
• If R is very large, it is maintained in the form

R =

(
Rr 0

D

)
,

where Rr is a dense triangle of specified size and D is diagonal. This struc-
ture partitions the superbasic variables into two sets. After a few minor
iterations involving all superbasics (with quasi-Newton updates to Rr and
D), the variables associated with D are temporarily frozen. Iterations pro-
ceed with updates to Rr only, and superlinear convergence can be expected
within that subspace. A frozen superbasic variable is then interchanged with
one from Rr, and the process is repeated.

Both of these features could be implemented in a future version of SQOPT. Thus,
SNOPT with MINOS or an enhanced SQOPT as the QP solver would provide a viable
SQP algorithm for optimization problems of arbitrary dimension. The cost per minor
iteration is controllable, and the only unpredictable quantity is the total number of
minor iterations.

Note that the SQP updates to Hk could be applied to R between major iterations
as for the linear-constraint case (section 5.4). However, the quasi-Newton updates
during the first few minor iterations of each QP should achieve a similar effect.

7.2. Range-space methods. If all variables appear nonlinearly, Hk is positive-
definite. A “range-space” approach could then be used to solve systems (7.1) as
W changes. This amounts to maintaining factors of Hk’s Schur complement, S =
WH−1

k WT. It would be efficient if W did not have many rows, so that S could be
treated as a dense matrix.

7.3. Schur-complement methods. For limited-memory Hessians of the form
Hk = H0 + V DV T, where H0 is some convenient Hessian approximation, D =
diag(I,−I) = D−1, and V contains the BFGS update vectors, equation (7.1) is equiv-
alent to 

 H0 WT V

W

V T −D




 p

q

r


 =


 g

h

0


 .

Following [43, section 3.6.2], if we define

K0 =

(
H0 WT

W

)
,

it would be efficient to work with a sparse factorization of K0 and dense factors of its
Schur complement S. (For a given QP subproblem, V is constant, but changes to W
would be handled by appropriate updates to S.)
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This approach has been explored by Betts and Frank [2, section 5] with H0 = I
(or possibly a sparse finite-difference Hessian approximation). As part of an SQP
algorithm, its practical success depends greatly on the definition of H0 and on the
BFGS updates that define V . Our experience with SNOPT emphasizes the importance
of updating Hk even in the presence of negative curvature; hence the precautions of
section 2.9.

If H0 were defined as in section 3, the major iterates would be identical to those
currently obtained with SQOPT.

8. Summary and conclusions. We have presented theoretical and practical
details about an SQP algorithm for solving nonlinear programs with large numbers of
constraints and variables, where the nonlinear functions are smooth and first deriva-
tives are available.

As with interior-point methods, the most promising way to achieve efficiency with
the linear algebra is to work with sparse second derivatives (i.e., an exact Hessian of
the Lagrangian, or a sparse finite-difference approximation). However, indefinite QP
subproblems raise many practical questions, and alternatives are needed when second
derivatives are not available.

The present implementation, SNOPT, uses a positive-definite quasi-Newton Hes-
sian approximation Hk. If the number of nonlinear variables is moderate, Hk is
stored as a dense matrix. Otherwise, limited-memory BFGS updates are employed,
with resets to the current diagonal at a specified frequency (typically every 20 major
iterations). An augmented Lagrangian merit function (the same as in NPSOL) ensures
convergence from arbitrary starting points.

The present QP solver, SQOPT, maintains a dense reduced-Hessian factorization
ZTHkZ = RTR, where Z is obtained from a sparse LU factorization of part of the
Jacobian. Efficiency improves with the number of constraints active at a solution; i.e.,
the number of degrees of freedom nZ should not be excessive. For the numerical tests
we set a limit of 2000. This is adequate for many problem classes, such as control
problems when the number of control variables is not excessive.

The numerical results of section 6 show that SNOPT is effective on most of the
problems in the CUTE and COPS 2.0 test sets. Separate comparisons withMINOS have
shown greater reliability as a result of the merit function and the “elastic variables”
treatment of infeasibility, and much greater efficiency when function evaluations are
expensive. Reliability has also improved relative to NPSOL, and the sparse-matrix
techniques have permitted production runs on increasingly large trajectory problems.

Future work will include the use of second derivatives (when available) and alter-
native QP solvers to allow for indefiniteness of the QP Hessian and many degrees of
freedom.
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1. Introduction. Consider the following equality standard form semidefinite
program (SDP) and its dual:{

Primal SDP: maximize C •X
subject to Ap •X = ap (p = 1, 2, . . . ,m), X ∈ S

n
+,

(1.1) 


Dual SDP: minimize

m∑
p=1

apyp

subject to

m∑
p=1

Apyp − S = C, S ∈ S
n
+,

(1.2)

where S
n
+ denotes the cone of positive semidefinite matrices in the space S

n of n× n
real symmetric matrices; C,Ap ∈ S

n (p = 1, 2, . . . ,m) are given matrices; ap ∈ R

(p = 1, 2, . . . ,m) are given real numbers; and A •X is the inner product of A ∈ S
n

and X ∈ S
n (i.e., A •X = Trace ATX =

∑n
i=1

∑n
j=1 AijXij). We will also use the

notation R++ ⊆ R and S
n
++ ⊆ S

n
+ for the set of positive numbers and the cone of

positive definite symmetric matrices, respectively.
Primal-dual interior-point methods (see, e.g., [1, 14, 17, 19, 26]) for SDPs have

been getting popular, and now several software packages (see, e.g., [3, 9, 25, 28]) based
on them are available through the Internet. However, these software packages are not
powerful enough to solve large scale general SDPs, e.g., SDPs with m and/or n larger
than several thousand. Serious difficulties arise when we solve the key linear equation
Mdy = r with a fully dense m × m matrix M , which is often called the Schur
complement equation, to obtain a search direction (dX,dy,dS) ∈ S

n × R
m × S

n.
As m gets larger, solving the equation Mdy = r by direct methods such as the
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Cholesky factorization also becomes more expensive and more difficult. When m is
larger than ten thousand, it is impossible even to store the entire coefficient matrix
M in standard workstations; hence we are forced to use iterative methods such as the
CG (conjugate gradient) method and the CR (conjugate residual) method to solve
the equation Mdy = r. However, the condition number of the coefficient matrix
M gets worse rapidly as the iterate (X,y,S) gets closer to an optimal solution in
the primal-dual space. Under such circumstances, we need to improve the condition
number by applying an appropriate preconditioning to M because, otherwise, even a
low accuracy solution of Mdy = r would require more and more CG or CR iterations.
One of the current important issues is how to obtain an effective preconditioning for
the coefficient matrix M without the need to store M . See [6, 18, 22, 27, 33, 34]
for more details on applications of iterative methods, preconditioning, and numerical
experiments on some large scale SDPs.

Another inefficiency of using primal-dual interior-point methods is that the n×n
primal matrix variable X is fully dense in general, even when all the data matri-
ces C,Ap ∈ S

n (p = 1, 2, . . . ,m) are sparse. This is a disadvantage of primal-dual
interior-point methods compared to the dual scaling method [2], which generates it-
erates only in the dual space; note that the dual matrix variable S =

∑m
p=1 Apyp−C

inherits the sparsity of the data matrices C,Ap ∈ S
n (p = 1, 2, . . . ,m). To overcome

this disadvantage, Fukuda et al. [10] and Nakata et al. [21] recently proposed methods
based on the positive definite matrix completion for exploiting the aggregate sparsity
pattern over the data matrices. Besides interior-point methods, some other computa-
tional methods have also been proposed and intensively studied for solving large scale
SDPs: the spectral bundle method [13] and nonlinear programming reformulations of
SDPs [4, 5, 29].

Numerical results on large scale SDPs have been reported. These include (i)
SDP relaxations of the max-cut problem and the graph bisection problem solved by
the spectral bundle method [12, 13], the dual-scaling method [2], and a nonlinear
programming reformulation [4] and (ii) an SDP relaxation of the max clique problem
solved by the primal-dual interior-point method with the use of the CG method [22]
and the CR method [27]. However, thus far successful numerical results on large scale
SDPs have been restricted to a few types of such SDPs (arising from SDP relaxation of
combinatorial optimization problems on graphs) that do not require highly accurate
solutions.

Aiming to resolve many of the difficulties mentioned so far, this paper proposes
a new computational method, a Lagrangian dual predictor-corrector path-following
interior-point method (abbreviated as LDIPM) for solving a class of SDPs. We may
regard the LDIPM as a variant of the simple dual predictor-corrector path-following
interior-point method (abbreviated as DIPM) with the use of the standard dual log-
arithmic barrier function g̃(·;µ) : Y++ → R (µ ∈ R++) defined by

g̃(y;µ) =

m∑
p=1

apyp − µ log det

(
m∑
p=1

Apyp −C

)

for every (y, µ) ∈ Y++ × R++,

(1.3)

where Y++ ≡ {y ∈ R
m :

∑m
p=1 Apyp −C ∈ S

n
++}. In the DIPM, we replace the dual

SDP (1.2) by a family of strictly convex minimization problems

minimize g̃(y;µ) subject to y ∈ Y++ (µ ∈ R++).(1.4)
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The DIPM is a predictor-corrector method that numerically traces the central tra-
jectory {(y(µ), µ) : µ ∈ R++} in the dual space, where y(µ) corresponds to the
unique minimizer of problem (1.4). Although the idea of the DIPM is rather classi-
cal and stemmed from the SUMT (sequential unconstrained minimization technique)
of Fiacco–McCormick [8], it provides us with some significant features to overcome
the difficulties involved in the primal-dual interior-point method for SDPs. We will
outline below the DIPM together with its major advantages and disadvantages.

Let µ̄ ∈ R++ be fixed. The role of the corrector procedure is to approximate
the minimizer y(µ̄) of the function g̃(·; µ̄) over Y++, starting from a ŷ ∈ Y++. Here
we assume that the point (ŷ, µ̄) ∈ Y++ × R++ has been generated by the predictor
procedure of the previous iteration or given initially in the first iteration. When we
generate a sequence ŷ = y0,y1, . . . ,yk, . . . ∈ Y++ in the corrector procedure,

(a) we can fully utilize various unconstrained optimization methods such as quasi-
Newton methods with the use of first derivatives.

In connection with our predictor procedure, it is convenient for us to use the BFGS
quasi-Newton method, which updates an approximation Hk of the inverse of the
Hessian matrix ∇2g̃(yk; µ̄) of the function g̃(·; µ̄) at y = yk.

Throughout the iterations of the DIPM,

(b) the variables (X,y,S) ∈ S
n
++×R

m×S
n
++ of the primal-dual pair of SDPs (1.1)

and (1.2) are evaluated only where (y,S) is an interior feasible solution of
(1.2), and the relation XS = µI holds for some µ ∈ R++.

This implies that the dual matrix variable S inherits the sparsity of the data matrices
C,Ap (p = 1, 2, . . . ,m) as in the existing primal-dual interior-point methods, and
also that the inverse X−1 = S/µ of the primal matrix variable X shares exactly the
same sparsity with S. Furthermore, we can explicitly avoid computing and maintain-
ing the primal matrix variable X if we compute and maintain a (sparse) Cholesky
factorization of S. It is noteworthy that even the positive definite matrix completion
[10, 21] is unnecessary for retrieving the primal matrix variable.

Now, suppose that the rth iterate yr of the corrector procedure attains an ap-
proximation of the minimizer y(µ̄) of g̃(·; µ̄) over Y++. Then the point (yr, µ̄) lies
approximately on the trajectory {(y(µ), µ) : µ ∈ R++} or yr ≈ y(µ̄). We then
perform the predictor procedure based on the first-order approximation y(µ+) ≈
y(µ̄) + (µ+ − µ̄)ẏ(µ̄) of a point (y(µ+), µ+), for some positive µ+ less than the cur-
rent µ̄, on the trajectory {(y(µ), µ) : µ ∈ R++}. Here ẏ(µ̄) denotes the first derivative
of y(µ) evaluated at µ = µ̄. In order to compute the derivative ẏ(µ̄), we apply the CG
method to a system of linear equations with coefficient matrix equal to the Hessian
matrix ∇2g̃(y(µ̄); µ̄) of g̃(·; µ̄) at y = y(µ̄). It should be emphasized here that

(c) the BFGS quasi-Newton matrix Hr used in the previous corrector procedure
serves as a powerful preconditioning matrix.

This preconditioning technique is essential to making our predictor procedure more
effective.

In spite of the nice features (a), (b), and (c) mentioned above,

(d) there is a major worry that as y(µ) approaches to the boundary of Y++ we may
encounter numerical difficulties in approximating the minimizer y(µ) since
the condition number of the Hessian matrix ∇2g̃(·;µ) gets worse rapidly.

To offset this disadvantage, we will use a “logarithmic barrier function” defined
on the entire m-dimensional space R

m without any boundary in our LDIPM. We are
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concerned with the following SDP and its dual:


Primal SDP: maximize C •X
subject to Ap •X = ap (p = 1, 2, . . . ,m),

I •X = b, X ∈ S
n
+,

(1.5)




Dual SDP: minimize

m∑
p=1

apyp + bw

subject to

m∑
p=1

Apyp + Iw − S = C, S ∈ S
n
+.

(1.6)

Here I denotes the n× n identity matrix, and b a positive number. Throughout the
paper we assume the following.
Condition 1.1.
(i) There is an interior feasible solution X0 of (1.5), i.e., an X0 ∈ S

n
++ which

satisfies the constraints of (1.5).
(ii) The data matrices Ap (p = 1, 2, . . . ,m) and I, which appear in the equality

constraints of (1.5), are linearly independent.
Note that the primal SDP (1.5) involves a “simplex constraint” X ∈ Ω+ ≡

{X ∈ S
n
+ : I •X = b}. Although this constraint is restrictive, the primal SDP (1.5)

covers various important SDPs such as SDP relaxations of combinatorial optimization
problems. We also note that if the feasible region of a given SDP (1.1) without
the simplex constraint is bounded and a bound is known in advance, then we can
transform it into the primal SDP (1.5) above. For any given Lagrangian multiplier
(dual variable) vector y ∈ R

m, we can easily find a (w,S) ∈ R × S
n
++ such that

(y, w,S) ∈ R
m+1 × S

n
++ becomes an interior feasible solution of the dual SDP (1.6).

This is another important feature of the above primal-dual pair of SDPs (1.5) and
(1.6). Helmberg and Rendl [13] dealt with this type of SDP, for which they presented
their spectral bundle method.

Based on the Lagrangian duality theory, we will construct a family of strictly
convex smooth functions g(·;µ) : R

m → R (µ ∈ R++), whose minimizers over the
entire space R

m form the central trajectory in the space R
m of the Lagrange multiplier

vector y. For this purpose, we first introduce the dual logarithmic barrier function
f(y, w,S;µ) =

∑m
p=1 apyp+bw−µ log detS for every (y, w,S, µ) ∈ R

m+1×S
n
++×R++

and then replace the objective function of (1.6) by f(y, w,S;µ):


minimize f(y, w,S;µ)

subject to Iw − S = C −
m∑
p=1

Apyp, S ∈ S
n
++.

(1.7)

The variable vector y ∈ R
m of the dual SDP (1.6) is now a parameter vector given from

outside. For every (y, µ) ∈ R
m × R++, problem (1.7) has a unique optimal solution,

which we will denote by (w(y;µ),S(y;µ)). More precisely, (w,S) ∈ R × S
n
++ is an

optimal solution of problem (1.7) if and only if (1.8) holds for some X ∈ S
n
++.

I •X = b, Iw − S = C −
m∑
p=1

Apyp, XS = µI, X ∈ S
n
++, S ∈ S

n
++.(1.8)

Now we define the function g(·;µ) : R
m → R as the optimal value of problem
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(1.7); for every (y, µ) ∈ R
m × R++,

g(y;µ) = min

{
f(y, w,S;µ) : Iw − S = C −

m∑
p=1

Apyp, S ∈ S
n
++

}

=
m∑
p=1

apyp + bw(y;µ)− µ log detS(y;µ).(1.9)

For every µ ∈ R++, g(·;µ) : R
m → R turns out to be a smooth strictly convex function

having a unique minimizer y = y(µ) over R
m, and the set {(y(µ), µ) : µ ∈ R++} forms

a trajectory in the space R
m of the Lagrange multiplier vector y.

Utilizing the function g(·;µ) defined above on the entire m-dimensional Euclidean
space R

m instead of the function g̃(·;µ) restricted on Y++, our LDIPM numerically
traces the trajectory {(y(µ), µ) : µ ∈ R++} in a similar way as in the DIPM. In
particular, the LDIPM shares the distinguishing features (a), (b), and (c) with the
DIPM and is expected to offset the disadvantage (d) of the DIPM to a certain extent.

One crucial feature of using the function g(·;µ) in the LDIPM is that

(e) for each (y, µ) ∈ R
m × R++, the evaluations of the function value g(y;µ),

the gradient vector ∇g(y;µ), and the Hessian matrix ∇2g(y;µ) are done by
solving the system of nonlinear equations (1.8) in (X, w,S) ∈ S

n
++×R×S

n
++,

which generally requires more than one Cholesky factorization in the set
{S =

∑m
p=1 Apyp + Iw − C ∈ S

n
++ : yp ∈ R (p = 1, 2, . . . ,m), w ∈ R}

of dual matrix variable matrices, while the function g̃(·;µ) is defined in terms
of an explicit formula (1.3), and its evaluation requires only one Cholesky
factorization.

The cost of the Cholesky factorization of S =
∑m
p=1 Apyp + Iw −C ∈ S

n
++ strongly

depends on the data matrices C,Ap (p = 1, 2, . . . ,m) [10, 21]. In the development of
our method, we implicitly assume that either the size of S is not large compared to
the number of equality constraints m in the primal SDP (1.1), or the data matrices
C,Ap (p = 1, 2, . . . ,m) enjoy a nice aggregated sparsity pattern that allows a cheap
Cholesky factorization of S. For detailed discussions on sparsity, see section 4.4.

We present more technical details on the LDIPM in section 2, a prototype al-
gorithm of the LDIPM and its variants in section 3, and some additional techniques
which enhance the effectiveness and efficiency of the LDIPM in section 4. In partic-
ular, we explain how we offset the disadvantage (e) of the LDIPM in section 4.1 and
how we exploit the sparsity in the DIPM and the LDIPM in section 4.4. We report
some preliminary numerical results on the DIPM and the LDIPM in section 5. We
will also confirm there that the LDIPM works more efficiently than the DIPM.

Remark 1.2. The basic idea of using Lagrangian duals in interior-point methods
was originally proposed for LPs in the working papers [15, 16]. However, neither of
the papers was published because the method would be unlikely to compete with
the primal-dual interior-point method for LPs, which had already become a powerful
computational method for solving large scale LPs at that time, and also because
some proofs of the main theorem of [16] were incomplete. This was pointed out by
Gongyun Zhao. He later proposed an implementable version [30] of interior-point
methods based on Lagrangian duals of linear programs and proved its polynomial-
time computational complexity. See also [31, 32]. Finally, Shida [24] extended the
Lagrangian dual interior-point method to linear optimization problems over pointed
closed convex cones.
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2. Basic analysis.

2.1. Characterization in the primal and the dual spaces. For every y ∈
R
m, let us consider a Lagrangian relaxation of SDP (1.5):


maximize

(
C −

m∑
p=1

Apyp

)
•X +

m∑
p=1

apyp

subject to X ∈ Ω+ = {X ∈ S
n
+ : I •X = b}

(2.1)

and its dual 


minimize
m∑
p=1

apyp + bw

subject to Iw − S = C −
m∑
p=1

Apyp, S ∈ S
n
+.

(2.2)

It should be noted that, for any y ∈ R
m, both SDPs (2.1) and (2.2) have interior

feasible solutions; hence they both have optimal solutions, and their optimal values
coincide with each other. This nice feature is due to the simplex constraint, which
has not been incorporated into the Lagrangian relaxation and is maintained in (2.1).

The function f(·, ·, ·;µ) : R
m+1 × S

n
++ → R (µ ∈ R++) given in the introduction

corresponds to the logarithmic barrier function of the dual SDP (2.2), where we
replaced the objective function

∑m
p=1 apyp + bw of (2.2) by f(y, w,S;µ) to obtain

problem (1.7). We now consider the primal barrier function fp(·, ·;µ) : R
m×S

n
++ → R

(µ ∈ R++):

fp(y,X;µ) =

(
C −

m∑
p=1

Apyp

)
•X +

m∑
p=1

apyp + µ log detX

for every (y,X, µ) ∈ R
m × S

n
++ × R++. Replacing the objective function (C −∑m

p=1 Apyp) •X +
∑m
p=1 apyp by fp(y,X;µ) in (2.1), we obtain the problem{

maximize fp(y,X;µ)
subject to X ∈ Ω++ = {X ∈ S

n
++ : I •X = b}.(2.3)

For every (y, µ) ∈ R
m ×R++, problem (2.3) has a unique optimal solution, which we

will denote by X(y;µ). Hence we can write the optimal value function gp(·;µ) : R
m →

R (µ ∈ R++) of (2.3) as gp(y;µ) ≡ max{fp(y,X;µ) : X ∈ Ω++} = fp(y,X(y;µ);µ)
for every (y;µ) ∈ R

m × R++.
For each (y, µ) ∈ R

m × R++, problems (2.3) and (1.7) form a primal-dual pair.
Among others, they share the common optimality condition (1.8); X is an optimal
solution of the primal problem (2.3), and (w,S) is an optimal solution of the dual
problem (1.7) if and only if (1.8) holds. We will denote the unique solution of (1.8)
by (X, w,S) = (X(y;µ), w(y;µ),S(y;µ)). We further observe from (1.8) that the
optimal value functions gp(·;µ) and g(·;µ) satisfy

g(y;µ) =

m∑
p=1

apyp + bw(y;µ)− µ log detS(y;µ)

=

m∑
p=1

apyp +

(
C −

m∑
p=1

Apyp + S

)
•X − µ log det

(
µX−1(y;µ)

)
= gp(y;µ) + nµ− nµ logµ
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for every (y, µ) ∈ R
m × R++; hence the difference in the function values between

g(y;µ) and gp(y;µ) is constant independent of y ∈ R
m as long as µ ∈ R++ is fixed.

Therefore, for each fixed µ ∈ R++, the minimization of g(·;µ) over R
m and the

minimization of gp(·;µ) over R
m are equivalent.

Suppose that X ∈ S
n
++ and S ∈ S

n
++. Then we can describe the coefficient matrix

M̂ (or M) of the so-called Schur complement equation for the HRVW/KSH/M search
direction [14, 17, 19] applied to the primal-dual pair of SDPs (1.5) and (1.6) (or applied
to the primal-dual pair of SDPs (1.1) and (1.2)) as follows:

M ≡




M11 M12 · · · M1m

M21 M22 · · · M2m

· · · · · · . . . · · ·
Mm1 Mm2 · · · Mmm


 ∈ S

m,

M̂ ≡

 M h

hT hm+1


 ∈ S

m+1,

where

Mqr ≡Aq •XArS
−1 (q = 1, 2, . . . ,m, r = 1, 2, . . . ,m),

h ≡ (A1 •XIS−1,A2 •XIS−1, . . . ,Am •XIS−1)T ,

hm+1≡ I •XIS−1.

The matrix M̂ (or M) is known to be symmetric and positive definite. When the
primal-dual pair of matrix variables X ∈ S

n
++ and S ∈ S

n
++ satisfies XS = µI for

some µ ∈ R++ as in the succeeding discussions, we have

Mqr = µAq • S−1ArS
−1 (q = 1, 2, . . . ,m, r = 1, 2, . . . ,m),

h = (µA1 • S−2, µA2 • S−2, . . . , µAm • S−2)T ,

hm+1 = µI • S−2.

(2.4)

In this case, the matrix M̂ (or M) is also identical to the coefficient matrix of the
Schur complement equation for other well-known search directions, including the AHO
direction [1] and the NT direction [26].

2.2. Computation of the function value, the gradient vector, and the
Hessian matrix of g(·;µ). Let (y, µ) ∈ R

m×R++. In order to compute the function
value, the gradient vector, and the Hessian matrix of g(y;µ), it suffices to solve
the system of equations (1.8). In fact, if (X, w,S) = (X(y;µ), w(y;µ),S(y;µ)) ∈
S
n
++ × R× S

n
++ is a solution of (1.8), then the function value is computed as

g(y;µ) = f(y, w(y;µ),S(y;µ);µ)

=

m∑
p=1

apyp + bw(y;µ)− µ log detS(y;µ),

and the gradient vector and the Hessian matrix are given by the following lemma.
Lemma 2.1.
(i) ∇g(y;µ) = (a1 −A1 •X(y;µ), a2 −A2 •X(y;µ), . . . , am −Am •X(y;µ))

T
.

(ii) ∇2g(y;µ) = (M − hhT /hm+1). Here M ∈ S
m, h ∈ R

m, and hm+1 ∈ R are
given by (2.4) with S = S(y;µ).
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(iii) Moreover, the Hessian matrix ∇2g(y;µ) is positive definite.
Proof. This is a special case for the cone of positive semidefinite matrices

[24].
We can reduce the system of equations (1.8) to a single equation

µI •
(

m∑
p=1

Apyp + Iw −C

)−1

= b

in the single variable w with an additional positive definite condition(
m∑
p=1

Apyp + Iw −C

)
∈ S

n
++.(2.5)

Then the other parts X = X(y;µ) and S = S(y;µ) of the solution of (1.8) are
computed by

S =

(
m∑
p=1

Apyp + Iw −C

)
and X = µS−1.(2.6)

Let µ ∈ R++ and y ∈ R
m be fixed arbitrary. Define

φ(w;y, µ) = µI •
(

m∑
p=1

Apyp + Iw −C

)−1

for every w satisfying (2.5). We want to solve φ(w;y, µ) = b. Let λ1, λ2, . . . , λn be
the eigenvalues of the matrix C −∑m

p=1 Apyp involved in the definition of φ(·;y, µ).
Let λmax denote the maximum eigenvalue among λ1, λ2, . . . , λn. Then the positive
definite condition (2.5) turns out to be w > λmax, and

φ(w;y, µ) = µ
n∑
i=1

1

w − λi
,

dφ(w;y, µ)

dw
= −µ

n∑
i=1

1

(w − λi)2
= −µI •

(
m∑
p=1

Apyp + Iw −C

)−2

.

(2.7)

We also see that φ(·;y, µ) is a strictly convex and strictly decreasing function on
(λmax,+∞) and that it satisfies φ(w;y, µ) → +∞ as w → λ+

max, and φ(w;y, µ) → 0
as w → +∞. Therefore the equation φ(w;y, µ) = b has the unique solution w∗ in the
interval [λmax + µ/b, λmax + nµ/b].

To solve φ(w;y, µ) = b, we will utilize a method similar to the one often employed
in trust region methods for nonlinear unconstrained optimization [7]. Let w̄ ∈ [λmax+
µ/b, λmax + nµ/b] be a current iterate. We approximate the function φ(·;y, µ) by a
function of the form ψ(w) = β/(w − α). Here, the two real parameters α and β are
determined by

0 < w̄ − α, ψ(w̄) = φ(w̄;y, µ), and
dψ(w̄)

dw
=

dφ(w̄;y, µ)

dw
.

We choose the next iterate w+ = β/b+ α by solving the equation ψ(w) = b.
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At each iteration of this algorithm, we need to evaluate

φ(w;y, µ) = µI • S−1 and
dφ(w;y, µ)

dw
= −µS−1 • S−1,

where S =
∑m
p=1 Apyp + Iw − C. In general, this requires O(mn2 + n3) arithmetic

operations. Or, if we compute all the eigenvalues λ1, λ2, . . . , λn of the matrix C −∑m
p=1 Apyp in advance, we can easily compute the value and the first derivative of the

function φ(·;y, µ) using the relations (2.7). When all the data matrices C,Ap (p =
1, 2, . . . ,m) are sparse, the former method is cheaper than the latter unless the number
of iterations gets larger. This will be discussed again in section 4.4.

2.3. Approximation of the central trajectory in the y-space. This section
will provide theoretical foundations of the predictor procedure of the LDIPM.

Let µ ∈ R++. Assume that y = y(µ) ∈ R
m is the unique minimizer of the

function g(·;µ) over R
m. In view of Lemma 2.1, y = y(µ) satisfies Ap •X(y;µ) =

ap (p = 1, 2, . . . ,m). Recall also that X(y;µ) is characterized by the condition (1.8).
Therefore y = y(µ) satisfies

Ap •X = ap (p = 1, 2, . . . ,m), I •X = b,
m∑
p=1

Apyp + Iw − S = C, XS = µI, X ∈ S
n
++, S ∈ S

n
++,

(2.8)

for some (X, w,S) = (X(y;µ), w(y;µ),S(y;µ)) ∈ S
n
++ × R × S

n
++. This is exactly

the condition that characterizes the central trajectory of the primal-dual SDPs (1.5)
and (1.6). Thus, we may regard {(y(µ), µ) : µ ∈ R++} as the projection of the central
trajectory on the space R

m of the Lagrange multiplier vector y. In the remainder of
this section, we derive systems of linear equations that determine the first derivative
ẏ(µ) and the second derivative ÿ(µ). With these derivatives, we can approximate the
trajectory {(y(µ), µ) : µ ∈ R++} by either

{(y(µ̄) + (µ− µ̄)ẏ(µ̄), µ) : µ ∈ R++}
(the first-order approximation) or{(

y(µ̄) + (µ− µ̄)ẏ(µ̄) +
(µ− µ̄)2

2
ÿ(µ̄), µ

)
: µ ∈ R++

}

(the second-order approximation) in a neighborhood of each µ̄ ∈ R++.
For simplicity of notation, we write (X, w,S) = (X(y(µ);µ), w(y(µ);µ),S(y(µ);µ)).

Then (X,y, w,S) satisfies all the identities in (2.8). Differentiating those identities
once and twice in µ, we obtain

Ap • Ẋ = 0 (p = 1, 2, . . . ,m), I • Ẋ = 0,
m∑
p=1

Apẏp + Iẇ − Ṡ = O, ẊS +XṠ = I

and

Ap • Ẍ = 0 (p = 1, 2, . . . ,m), I • Ẍ = 0,
m∑
p=1

Apÿp + Iẅ − S̈ = O, ẌS +XS̈ = −2ẊṠ,
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respectively. Here (Ẋ, ẏ, ẇ, Ṡ) and (Ẍ, ÿ, ẅ, S̈) denote the first and second derivatives
of (X,y, w,S) in relation to µ, respectively. From these equations and Lemma 2.1(ii),
we obtain

∇2g(y;µ)ẏ = ā ≡ a− bh/hm+1

µ
, ẇ=

b/µ− hT ẏ

hm+1
,

Ṡ =

m∑
p=1

Apẏp + Iẇ,

∇2g(y;µ)ÿ = r̄ ≡ r − rm+1h/hm+1

µ
, ẅ=

rm+1/µ− hT ÿ

hm+1
,

(2.9)

where hm+1 and h are given by (2.4), and rq (q = 1, 2, . . . ,m), rm+1 are given by

rq = −2µAq • (S−1 − µS−1ṠS−1)ṠS−1 ∈ R (q = 1, 2, . . . ,m),
r =(r1, r2, . . . , rm)T ∈ R

m, a = (a1, a2, . . . , am)T ∈ R
m,

rm+1 = −2µI • (S−1 − µS−1ṠS−1)ṠS−1 ∈ R.

(2.10)

In view of Lemma 2.1(iii), we know that the common coefficient matrix ∇2g(y;µ) =
M − hhT /hm+1 of the equations in (2.9) is positive definite, so that we can utilize
its Cholesky factorization or iterative methods such as the CG method and the CR
method to solve them.

3. Predictor-corrector path-following algorithms in the space R
m of the

Lagrange multiplier vector y.

3.1. A prototype algorithm using the Newton method. Among various
candidates for neighborhoods of the trajectory {(y(µ), µ) ∈ R

m × R++ : µ ∈ R++},
we employ the one based on the self-concordant theory [23]. In the LP case, Kojima
et al. [15] showed that {g(·;µ) : µ ∈ R++} forms a self-concordant family. Shida
[24] extended this fact to a general class of linear optimization problems over pointed
closed convex cones, which includes our SDP case. For every ε ∈ R++, define

N(ε) =
{
(y, µ) ∈ R

m × R++ : ∇g(y;µ)T∇2g(y;µ)−1∇g(y;µ) ≤ µε
}
.

Algorithm 3.1.
Step 0: Let 0 < εc < εp, 0 < γ < 1. Choose a µ0 ∈ R++ and a ȳ0 ∈ R

m. Let k = 0.
Step 1-N (Corrector procedure using the Newton method): Let z = ȳk. To approx-

imately solve the problem of minimizing the strictly convex smooth function
g(·;µk) over R

m, repeat the damped Newton iteration
• solve ∇2g(z;µk)d = −∇g(z;µk) in the search direction d,
• choose a step length α ∈ (0, 1] such that z+ = z+αd ∈ R

m; for example,
use Armijo’s line search rule, Wolfe’s line search rule, or a quadratic
approximation of g(z + αd;µ) (see section 4.2 for more details),
• replace z+ by z

until (z, µk) ∈ N(εc). Let y
k = z. For the computation of the function value

g(z;µk), the gradient vector ∇g(z;µk), and the Hessian matrix ∇2g(z;µk),
see section 2.2.

Step 2-N (Predictor procedure using the Newton method): Let (Xk, wk,Sk) ∈ S
n
++×

R× S
n
++ be an approximate solution of (2.8) with (X,y, w,S, µ) = (Xk,yk,

wk,Sk, µk)(Ap •Xk ≈ ap(p = 1, 2, . . . ,m), I •Xk ≈ b). Compute an ap-

proximation ẏ = ẏk ∈ R
m of the first derivative ẏ(µk) and an approximation
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ÿ = ÿk ∈ R
m of the second derivative ÿ(µk) by solving the systems of linear

equations (2.9) with (X,y, w,S, µ) = (Xk,yk, wk,Sk, µk). Let δ = 1 and
γ ∈ (0, 1). Repeat
• δ = γδ, µ̄ = (1− δ)µk and

• ȳ = yk +(µ̄−µk)ẏk + (µ̄−µk)2

2 ÿk (the second-order predictor procedure)
until (ȳ, µ̄) ∈ N(εp). Let µ

k+1 = µ̄ and ȳk+1 = ȳ.
Step 3: Replace k + 1 by k and return to Step 1-N.

In Step 2-N, we may replace the second-order predictor procedure by the first-
order predictor procedure ȳ = yk + (µ̄ − µk)ẏk. An approximation ÿ = ÿk ∈ R

m of
the second derivative ÿ(µk) is unnecessary in this case.

To design efficient algorithms for large scale SDPs based on the prototype al-
gorithm described above, we need to incorporate various practical techniques which
have been developed in the field of unconstrained optimization. In particular, we can
employ the BFGS quasi-Newton method for the minimization of the function g(·;µk)
over the entire Euclidean space R

m. This will be discussed in section 3.2. Another
important technique is an application of iterative methods such as the CG method
and the CR method for solving the systems of linear equations (2.9). This will be
discussed in section 3.3.

3.2. Corrector procedure using the quasi-Newton BFGS method. In
Step 0-BFGS, we initialize H = I ∈ S

n
++, which we will update to approximate the

inverse of the Hessian matrix ∇2g(z;µk) in Step 1-BFGS below.
Step 1-BFGS (Corrector procedure using the BFGS quasi-Newton method): Let z =

ȳk. To approximately solve the problem of minimizing the strictly convex
smooth function g(·;µk) over R

m, repeat the BFGS quasi-Newton iteration
• d = −H∇g(z;µk) (note that H corresponds to an approximation of

(∇2g(z;µk))−1),
• choose a step length α ∈ (0, 1] such that z+ = z+αd ∈ R

m; for example,
use Armijo’s line search rule, Wolfe’s line search rule, or a quadratic
approximation of g(z + αd;µ) (see section 4.2 for more details),

• let H+
= H − HησT+σ(Hη)T

σTη +
(
1 +

ηTHη
σTη

)
σσT

σTη , where σ = z+ − z and

η = ∇g(z+;µk)−∇g(z;µk) (a BFGS quasi-Newton update),
• replace z+ by z, and H+ by H

until

∇g(z;µk)TH∇g(z;µk) ≤ µεc.(3.1)

Let yk = z.
It should be noted that the stopping criterion (z, µk) ∈ N(εc), which also requires

us to solve ∇2g(z;µk)d = −∇g(z;µk) in d, for the Newton iteration in Step 1-N of
Algorithm 3.1 has been now replaced by (3.1).

3.3. Predictor procedure using preconditioned iterative methods. In
the predictor procedure, Step 2-N of Algorithm 3.1, we need to compute an ap-
proximation ẏ = ẏk ∈ R

m of the first derivative ẏ(µk), and an approximation
ÿ = ÿk ∈ R

m of the second derivative ÿ(µk) by solving the systems of linear equations
(2.9) with (X,y, w,S, µ) = (Xk,yk, wk,Sk, µk). Since the common coefficient matrix
∇2g(y;µ) of the equations on ẏ and ÿ in (2.9) is positive definite by Lemma 2.1(iii),
we can utilize its Cholesky factorization to solve the first and the second equations
exactly. But the coefficient matrix is fully dense in general, and solving the equations
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exactly by the Cholesky factorization gets more and more expensive when the dimen-
sion m of the equations gets larger. We propose below to use iterative methods such
as the CG method and the CR method.

Let ∇2g(y;µ)u = v represent either of the equations in ẏ and ÿ in system (2.9).
Let Hk denote the BFGS quasi-Newton matrix, which we have computed in the cor-
rector procedure of the kth iteration. We will use this matrix as a left preconditioner
when we apply the CG method (or the CR method) to ∇2g(y;µ)u = v. Specifi-
cally, multiplying ∇2g(y;µ)u = v by Hk from the left side, we transform it into
the equivalent system of linear equations Hk∇2g(yk;µk)u = Hkv and then apply
the CG method (or the CR method) to the resulting system from an initial point
u0 = Hkv. If Hk approximates (∇2g(yk;µk))−1 with a reasonable accuracy, or at
least, if Hk captures the eigenvalue structure of (∇2g(yk;µk))−1, this precondition-
ing technique considerably improves the condition number of the original coefficient
matrix ∇2g(yk;µk).

We use an approximated scaled norm, which we have used in Step 1-BFGS (3.1),
as a stopping criteria for the CG method; more precisely, we stop the CG iteration
when

(∇2g(yk;µk)u− v)THk(∇2g(yk;µk)u− v) < µkεcg.(3.2)

Here u denotes an iterate of the CG method.
At each iteration of the CG method, we need to compute a vector ∇2g(z;µ)u ∈

R
m for some u ∈ R

m. In general, the computation of the vector ∇2g(z;µ)u is much
cheaper than the computation of the entire Hessian matrix ∇2g(z;µ).

3.4. A note on the simple DIPM. In the introduction we introduced the log-
arithmic barrier function g̃(·;µ) : Y++ → R and the associated family (1.4) of strictly
convex minimization problems. After that, we presented a simple dual predictor-
corrector interior-point method, the DIPM, for SDP (1.2). Recall that the LDIPM
is a variant of the DIPM. In this section, we show that all of the discussions in sec-
tions 3.1, 3.2, and 3.3 can be easily simplified to adapt them to the DIPM.

We first replace Condition 1.1 by the following.
Condition 3.2.
(i) There is an interior feasible solution X0 of the primal SDP (1.1).
(ii) An interior feasible solution (y0,S0) ∈ R

m × S
n
++ of the dual SDP (1.2) is

known in advance.
(iii) The data matrices Ap (p = 1, 2, . . . ,m) are linearly independent.
For each (y, µ) ∈ Y++ × R++, let S(y;µ) =

∑m
p=1 Apyp − C and X(y;µ) =

µS(y;µ)−1. Then the gradient and the Hessian matrix of g̃(·;µ) at each (y, µ) ∈
Y++ × R++ are given by

∇g̃(y;µ) = (a1 −A1 •X(y;µ), a2 −A2 •X(y;µ), . . . , am −Am •X(y;µ))
T

and

∇2g̃(y;µ) = M ,

respectively, where M ∈ S
m is given by (2.4) with S = S(y;µ).

Now we are ready to relate the DIPM to the LDIPM. All the discussions in
sections 3.1, 3.2, and 3.3 remain valid if we replace

• R
m, on which g(·;µ) (µ ∈ R++) is defined, by the set Y++, on which g̃(·;µ)

(µ ∈ R++) is defined,
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• the systems (2.9) of linear equations in the first derivative ẏ and the second
derivative ÿ by

∇2g̃(y;µ)ẏ =
a

µ
, Ṡ =

m∑
p=1

Apẏp, ∇2g̃(y;µ)ÿ =
r

µ
,

where a, r ∈ R
m are given by (2.10).

Also we can easily adapt all the discussions on the LDIPM in sections 4.2, 4.3, 4.4,
and 4.5 to the DIPM.

Major differences between the DIPM and the LDIPM are the following:
(i) The explicit formula of X(y;µ) is available in the DIPM, while X(y;µ) in the

LDIPM is computed through an iterative method (section 2.2).
(ii) The Lagrange multiplier vector y of the DIPM is restricted to Y++, while y of

the LDIPM can vary in the entire space R
m.

Although the DIPM is more attractive than the LDIPM due to feature (i), numerical
results, which we will report in section 5, support that the LDIPM is more efficient
than the DIPM. We have not discovered the exact reason, but feature (ii) is probably
a critical weak point of the DIPM, because when y ∈ Y++ is near to the boundary
of Y++, a little perturbation to (y, µ) may cause a drastic change in X(y;µ) and
g(y;µ).

4. Additional techniques.

4.1. Dynamical adjustment of b. In many applications of the SDP of the
form (1.5), it is not necessary that the equality constraint I •X = b hold strictly.
For example, suppose that the feasible region of the equality standard form SDP
(1.1) is bounded and that a positive number b satisfying I • X + 1 ≤ b for every
feasible solution X of (1.1) is available. Then, adding artificial redundant constraints
I•X+Xn+1,n+1 = b andXn+1,n+1 ≥ 0 to (1.1), we can transform (1.1) into an SDP of
the form (1.5). In this case, we may replace the equality constraint I•X+Xn+1,n+1 =
b by χ ≤ I•X+Xn+1,n+1 ≤ χ, where b−1 < χ ≤ χ <∞. Thus the equality constraint
I •X +Xn+1,n+1 = b is allowed to be satisfied loosely.

In general, we may regard SDP (1.5) itself as a special case of the equality standard
form SDP (1.1), in which its feasible region is bounded and a positive number b′

satisfying I •X + 1 ≤ b′ for every feasible solution X of (1.5) is available; just take
b′ = b+1. Therefore we can apply the transformation mentioned above to SDP (1.5).

We will give another good example.
LMI (Linear matrix inequality): Let F p ∈ S

� (p = 0, 1, . . . ,m). Consider an

LMI:
∑m
p=1 F pyp − F 0 ∈ S

�
+. The LMI has a solution y = (y1, y2, . . . , ym)T ∈ R

m if
and only if the following SDP has a nonpositive optimal value:


minimize w

subject to
m∑
p=1

F pyp + Iw − S = F 0, w ≥ −1, S ∈ S
�
+.

(4.1)

Let n = #+ 1, ap = 0 (p = 1, 2, . . . ,m), b = 1,

C =

(
F 0 0

0T −1

)
∈ S

n, Ap =

(
F p 0

0T 0

)
∈ S

n (p = 1, 2, . . . ,m).

Then, we can rewrite (4.1) as our dual form SDP (1.6). In this case, we may replace
the objective function bw = w of the resulting SDP by b′′w, with any b′′ > 0; hence
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the primal equality constraint I •X = b needs to be satisfied loosely in the sense
χ ≤ I •X ≤ χ, where 0 < χ ≤ χ <∞.

The looseness of the equality constraint I •X = b will provide our method with
lots of flexibility. Theoretically, we consider a class of central trajectories C(b) (b ∈
[χ, χ]) characterized by (2.8). For each fixed b ∈ [χ, χ], we know that the central
trajectory C(b) leads to a primal-dual optimal solution of SDP (1.5), so that we may
perform the predictor procedure described in section 2.3 at any point (X, w,S) =
(X(y;µ), w(y;µ),S(y;µ)) that satisfies (2.8) for any b ∈ [χ, χ]. This then allows
us to loosely solve the equation φ(w;y, µ) = b, discussed in section 2.2, such that
χ ≤ φ(w;y, µ) ≤ χ. This technique saves much computation time.

On the other hand, the definition of the function g(·;µ) involves b, so that the
function value, the gradient vector, and the Hessian matrix of g(·;µ) with a fixed
µ are affected by perturbations of b. Therefore, we need to fix b, or at least not
perturb b much, to consistently perform the minimization of the function g(·;µ) with
a fixed µ > 0 in our corrector procedure. In particular, a little perturbation to b
may destroy the convergence of the corrector procedure. This would become more
serious as µ becomes smaller. As a compromise, we take the following strategy in our
numerical experiment reported in section 5. Let χ : R++ → R++ be a nondecreasing
continuous function; we use χ(µ) = 10−7 + min{10−2, 10µ} for every µ ∈ R++ in
our numerical experiment. We stop the iteration described in section 2.2 to compute
a solution w = w(y;µ) of the equation φ(w;y, µ) = b with a fixed µ > 0 when
|φ(w;y, µ)−b| < χ(µ). Now suppose that the corrector procedure utilizing the Newton
iteration or the BFGS iteration has successfully terminated, satisfying the stopping
criterion (y, µ) ∈ N(εc) or ∇g(y;µ)TH∇g(y;µ) ≤ µεc, respectively. Then we must
have

|I •X − b| ≤ χ(µ), Iw − S = C −
m∑
p=1

Apyp, XS = µI, X ∈ S
n
++, S ∈ S

n
++,

∇g(y;µ)T∇2g(y;µ)−1∇g(y;µ) ≤ µεc or ∇g(y;µ)TH∇g(y;µ) ≤ µεc.

Let b′ = I •X. Then the resulting point (X,y, w,S) lies (approximately) on the
central trajectory C(b′), and we can perform Step 2-N (the predictor procedure using
the Newton method) or its variant (the predictor procedure using a preconditioned
iterative method) described in section 3.3.

4.2. A step length based on a quadratic approximation of g(z + αd;µ)
in α. For determining a step length α ∈ (0, 1] in Step 1-N or Step 1-BFGS, we
propose to employ a quadratic approximation of g(z + αd;µ) in α:

g(z + αd;µ) ≈ g(z) + α∇g(z;µ)Td+
α2

2
dT∇2g(z;µ)d.(4.2)

Let αmin = −∇g(z;µ)Td/dT∇2g(z;µ)d be the minimizer of the quadratic function.
Then choose a step length α = min{αmin, 1.0}. In the case of the DIPM method, we
need to shorten the step length α when z+αd �∈ Y++. In our numerical experiment,
which we will report in section 5, we multiply the step length α by a constant ratio
τ = 0.8 iteratively until z + αd ∈ Y++ holds. τ was chosen empirically.

We tried Armijo’s and Wolfe’s line search rules in our numerical experiments. We
found, however, that either of the rules often leads us into a jam or makes the BFGS
quasi-Newton method not converge. One major reason might be that inaccuracies
occur in the computation of the value of the merit function g(·;µ). In particular, when
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we employed a loose solution w of the equation φ(w;y, µ) = b as described in section
4.1, they did not work effectively at all. On the other hand, the step length based
on the one-step quadratic approximation method without any line search, mentioned
above, worked well in both the DIPM and the LDIPM.

4.3. One additional primal-dual interior-point method iteration to in-
crease the accuracy. Suppose that the LDIPM using the BFGS quasi-Newton
method as the corrector procedure results in approximate optimal solutions X� ∈ S

n
++

of the primal SDP (1.5), and (y�, w�,S�) ∈ R
m+1 × S

n
++ of the dual SDP (1.6), at

the #th iteration. We will show how we perform one iteration of the primal-dual
interior-point method using the HRVW/KSH/M search direction [14, 17, 19] to get
approximate optimal solutions with a higher accuracy. We compute a search direction
(dX,dy, dw,dS) by solving

Ap • (X� + dX) = ap (p = 1, 2, . . . ,m), I • (X� + dX) = b,
m∑
p=1

Ap(y
�
p + dyp) + I(w� + dw)− (S� + dS) = C,

X�dS + dXS� = βµ�I −X�S�,

where β ∈ [0, 1] denotes a centering parameter. Since (y�, w�,S�) is an interior feasible
solution of SDP (1.6) and X�S� = µ�I holds for some µ� ∈ R++, we obtain

dS =

m∑
p=1

Apdyp + Idw,

dX = (β − 1)µ�(S�)−1 − µ�(S�)−1

(
m∑
p=1

Apdyp + Idw

)
(S�)−1,

∇2g(y�;µ�)dy =

(
M − hhT

hm+1

)
dy = ρ− ρm+1

hm+1
h,(4.3)

hm+1dw = ρm+1 − hTdy.

Here M ∈ S
m
++, h ∈ R

m, and hm+1 ∈ R are given by (2.4) with S = S�, and

ρp = βµ�Ap • (S�)−1 − ap ∈ R (p = 1, 2, . . . ,m),

ρm+1 = βµ�I • (S�)−1 − b ∈ R, ρ = (ρ1, ρ2, . . . , ρm)T ∈ R
m.

We apply the CG method to system (4.3), utilizing the BFGS quasi-Newton
matrix H� obtained at the #th iteration as an effective preconditioning matrix. We
stop the CG iteration when an approximate solution dy satisfying(

∇2g(y�;µ�)dy − ρ+
ρm+1

hm+1
h

)T
H�

(
∇2g(y�;µ�)dy − ρ+

ρm+1

hm+1
h

)
< µεpd(4.4)

is obtained. Here εpd > 0. Note that this stopping criterion is compatible with the
ones we have employed so far for the BFGS quasi-Newton iteration in the corrector
procedure and for the CG method to compute the predictor directions.

The dual step length αd = max{α ∈ [0, 1] : S� + αdS ∈ S
n
+}, the primal step

length αp = max{α ∈ [0, 1] : X̂ = X� + αdX ∈ S
n
+}, and the primal objective value

C • X̂ can be computed from the sparse matrices S� and dS. Details are omitted
here.
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4.4. Exploiting sparsity. There are many places in which we can exploit the
sparsity of data matrices C,Ap (p = 1, 2, . . . ,m) in the DIPM and the LDIPM.
Among others, we mention the following.

(I) A sparse Cholesky factorization NNT of the dual matrix variable S. We use
a Cholesky factorization NNT of the dual matrix variable S when we evaluate the
value of the function φ(·;y, µ) and its derivative to compute an approximate solution
of (1.8). We can apply various existing heuristic methods, such as the minimum degree
ordering for less fill-in, the (nested) dissection ordering for less fill-in, and the reverse
Cuthill–McKee ordering for reducing bandwidth [11]. More generally, we can handle a
case in which S is the sum of low rank (dense) matrices in S

n and a matrix that allows
a sparse Cholesky factorization. Such a case appears in the SDP relaxation of the
graph equibisection problem. Suppose that S ∈ S++ has “a sparse and rank-#-dense
structure”:

S = S0 +

�∑
i=1

qit
T
i ∈ S

n
++(4.5)

for some #, qj , tj ∈ R
n (j = 1, 2, . . . , #), and some sparse matrix S0 that allows a

sparse Cholesky factorization N0N
T
0 . Define Sj = S0 +

∑j
i=1 qit

T
i (j = 1, 2, . . . , #).

Then, applying the Sherman–Morrison formula recursively to each Sj (j = 1, 2, . . . , #),
we see that

S−1
j+1 = S−1

j −
S−1
j qj+1t

T
j+1S

−1
j

1 + tTj+1S
−1
j qj+1

= S−1
j + uj+1v

T
j+1,

where

uj+1 = − S−1
j qj+1

1 + tTj+1S
−1
j qj+1

and vj+1 = S−1
j tj+1.

Consequently, we obtain that

S−1 = N−T
0 N−1

0 +

�∑
i=1

uiv
T
i .(4.6)

We will call the formula (4.6) a Cholesky and rank-#-factorization of S−1. Note that a
multiplication of S−1 by a vector ω ∈ R

n is now reduced to the following procedure.
• Let z1 =

∑�
i=1 uiv

T
i ω.

• Solve N0z2 = ω in z2 ∈ R
n.

• Solve NT
0 z3 = z2 in z3 ∈ R

n.
• Let S−1ω = z1 + z3.

(II) Use of the Cholesky and rank-#-factorization (4.6) of S−1. Suppose that a
Cholesky and rank-#-factorization (4.6) of the inverse S−1 of a dual matrix variable
S of the form (4.5) is available at some iteration. Recall that the identity XS = µI
holds. Therefore, if we maintain the vectors qj , tj ,uj ,vj ∈ R

n (j = 1, 2, . . . , #) and a

sparse lower triangular matrix N0, not only S but also X = µS−1 is restored at any
time, saving a significant amount of memory. We should also mention that all of the
computations in our method can be carried out without restoring the dense matrix
X from those vectors and matrices explicitly. We have mentioned above a procedure
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for computing S−1ω for a given ω ∈ R
n. Given F j ∈ S

n (j = 1, 2, . . . , q), we can
apply that procedure to the computation of

Trace F 1S
−1F 2S

−1 . . .F qS
−1 =

q∑
i=1

eTi F 1S
−1F 2S

−1 . . .F qS
−1ei.

Here ei denotes the ith unit coordinate vector in R
n. Assuming that S−1ω can be

done in O(n2) arithmetic operations for any ω ∈ R
n, the computation of the trace

of matrices above requires O(qn2) arithmetic operations. In most of the computation
involving X and S−1 in the LDIPM, q is either 1 or 2. The unique exceptional case
is the computation of rp (p = 1, 2, . . . ,m + 1) involved in the right-hand side of the
equation on the second-order derivative ÿ in (2.9). (See (2.10).) In this case, q turns
out to be 3. The approximation of the second derivative is considered to be one of
the most expensive parts in the LDIPM, even when we use the CG or CR method.

4.5. The limited memory BFGS quasi-Newton method. When the di-
mension m of the dual variable vector y is large, say more than several thousand, it
is usually impossible to store the entire m×m BFGS matrix H in standard worksta-
tions. In such cases, we may replace the full BFGS quasi-Newton matrix used in Step
1-BFGS by the limited memory BFGS update. In their recent paper [20], Morales
and Nocedal proposed using the limited memory BFGS quasi-Newton matrix to pre-
condition the CG method. In our predictor procedure described in section 3.3, we
can employ the limited memory BFGS quasi-Newton matrix to precondition the CG
method (or the CR method).

5. Numerical results. We wrote MATLAB codes for the LDIPM and the
DIPM. Each of the methods has four variants, using either of the Newton method
or the BFGS quasi-Newton method as a corrector procedure, and using either of the
first-order or the second-order predictor procedures. The primary purposes here are
to verify that all variants work numerically and to investigate the effectiveness of the
corrector procedure using the BFGS quasi-Newton method, and of the predictor pro-
cedure using the CG method preconditioned by the BFGS quasi-Newton matrix. All
of the numerical experiments were done using MATLAB Version 5.2 on a Macintosh
Power PC 750 running at 400MHz with 360 MB memory. In this implementation,
we used two MATLAB matrix types, the standard dense matrix (two-dimensional ar-
ray) type and the MATLAB sparse matrix type, to cope with both dense and sparse
data matrices C,Ap (p = 1, 2, . . . ,m). Computation of the matrices

∑m
p=1 Apyp and

C −∑m
p=1 Apyp was done via appropriate matrix types, depending on their sparsity.

This saved a considerable amount of computational time. However, we employed nei-
ther of the sparsity techniques (I) and (II) mentioned in section 4.4 because simple
and/or efficient MATLAB implementation of such techniques is difficult. In partic-
ular, we computed and maintained the primal matrix variable X throughout the
iterations.

5.1. Test problems. We consider three kinds of SDPs, an SDP relaxation of a
box constrained quadratic 0-1 program, a norm minimization problem, and a linear
matrix inequality.

BQ 01IP (Box constrained quadratic 0-1 integer program). Let Q ∈ S
� be a

matrix whose components are chosen from random numbers uniformly distributed in
the interval (0.0, 1.0). Consider the problem:

maximize xTQx subject to xi = −1 or 1 (i = 1, 2, . . . , #).
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A upper bound of the objective function value can be computed by solving an SDP
relaxation of this problem:{

maximize Q •X
subject to Xii = 1 (i = 1, 2, . . . , #), I •X ≤ #+ 1, X ∈ S

�
+.

The inequality constraint I•X ≤ #+1 is redundant but is added to transform the SDP
into our standard form SDP (1.5). Let n = # + 1, m = #, ap = 1.0 (p = 1, 2, . . . ,m),
b = #+ 1, and

C =

(
Q 0
0T 0

)
∈ S

n,
Ap = the n× n matrix with the pth diagonal component

1 and all other components 0 (p = 1, 2, . . . ,m).

Then we can rewrite the SDP above in our standard form (1.5). We used the
MATLAB dense matrix type for C, and the MATLAB sparse matrix type for Ap

(p = 1, 2, . . . ,m). Since it is difficult to guess good initial points, the following tenta-
tive initial points were chosen:{

y0 = 0 ∈ R
m, µ0 =

√
m for the LDIPM,

(y0, w0) = (0, λmax +m+ 1) ∈ R
m+1, µ0 =

√
m for the DIPM,

(5.1)

where λmax denotes the largest eigenvalue of C.
NMIN (Norm minimization problem). Let F p ∈ R

q×r (p = 0, 1, . . . ,m). We
consider the problem of minimizing ‖F 0 −

∑m
p=1 ypF p‖ in a vector variable y ∈ R

m.
Here ‖F ‖ denotes the 2-norm of F . We can reformulate this problem as an SDP:

minimize w subject to
m∑
p=1

Apyp + Iw − S = C, S ∈ S
n
+.

Here

n = q + r, C =

(
O F T

0

F 0 O

)
, Ap =

(
O F T

p

F p O

)
(p = 1, 2, . . . ,m).

If we define ap = 0 (p = 1, 2, . . . ,m) and b = 1, then the SDP above turns out to
be our dual form SDP (1.6). In our numerical experiments, we assigned a random
number uniformly distributed in the interval (0.0, 1.0) to each component of F p (p =
0, 1, . . . ,m). Each matrix C,Ap (p = 1, 2, . . . ,m) involves 2qr nonzeros and q2 + r2

zeros. We used the MATLAB sparse matrix type for C,Ap (p = 1, 2, . . . ,m), and
initial points were chosen as in (5.1).

LMI (Linear matrix inequality), given in section 4.1. In our numerical experi-
ments, we generated two types of sparse data matrices with nonzero element densities
d = 0.04 and 0.2. For each d = 0.04 and 0.2, we assigned to each element of F p

(p = 0, 1, . . . ,m) a random number uniformly distributed in the interval (0.0, 1.0)
with the probability d, and 0.0 with the probability 1.0 − d; hence each matrix F p

(p = 1, 2, . . . ,m) is expected to have n2d nonzero elements. We used the MATLAB
sparse matrix type for Ap (p = 0, 1, . . . ,m) in both cases, and initial points were
chosen as in (5.1).

5.2. Parameters, accuracy, and stopping criteria. We tried various values
for the parameters εp (the tolerance used in the predictor procedure; see sections 3.1
and 3.3), εc (the tolerance used in the corrector procedures; see sections 3.1 and 3.2), γ
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Table 5.1
Change in the condition numbers of the Hessian matrix and of the preconditioned Hessian

matrix in the case of the SDP relaxation of the BQ01IP with n = 201, m = 200. Here ∇2gk =
∇2g(yk;µk).

Condition number

k µk p.f.error rel.error ∇2gk Hk∇2gk CG1 CG2

1 1.42e+1 2.70e−2 2.82e+1 5.18e+4 3.44e+3 5 2
2 6.64e+0 4.67e−2 5.63e+0 4.09e+4 1.11e+3 7 6
3 4.07e+0 4.72e−3 2.10e+0 7.58e+4 1.13e+3 10 8
4 2.12e+0 4.60e−2 6.77e−1 2.48e+5 5.14e+2 12 4
5 1.11e+0 8.79e−2 2.78e−1 6.01e+5 8.70e+2 21 8
6 4.54e−1 6.73e−3 9.89e−2 9.43e+5 2.59e+1 15 7
7 8.62e−2 4.03e−3 1.75e−2 1.29e+6 5.14e+1 17 5
8 1.64e−2 4.41e−4 3.28e−3 1.49e+6 1.50e+2 20 5
9 1.64e−3 7.47e−5 3.27e−4 1.51e+7 1.92e+2 14 3

10 1.64e−4 1.93e−7 3.27e−5 1.52e+8 3.24e+1 7 1
11 1.64e−5 5.26e−7 3.26e−6 1.52e+9 3.21e+2 8 0
12 1.64e−6 5.31e−7 3.22e−7 1.52e+10 3.20e+2 - -

Average iterations 12.4 4.5

(the reduction factor used for the barrier parameter µ in the predictor procedure; see
section 3.1), and εcg (the tolerance used in the CG method; see section 3.3) and then
determined the following values for them: εp = 1.0, εc = 0.01, γ = 0.9, εcg = 0.001 for
the first-order derivative, and εcg = 0.01 for the second-order derivative. Also we used
the one-step quadratic approximation method, mentioned in section 4.2, to choose a
step length in the corrector procedure along a search direction generated by either
the Newton method or the quasi-Newton BFGS method.

The following symbols are used in the numerical experiments of the next subsec-
tions:

rel.error = the relative error =

∣∣∣∑m
p=1 apy

k
p + bwk −C •Xk

∣∣∣
max{|C •Xk|, 1.0} ,

p.f.error = the primal feasibility error

= max
{|ap −Ap •Xk| : p = 1, 2, . . . ,m

}
.

Here k denotes the last iteration.
In the numerical experiments which we report next, we stopped the iteration when

the relative error and the primal feasibility error both became less than 10−6. In all
cases, we succeeded in generating approximate optimal solutions with this accuracy,
but more sophisticated implementations are required to compute higher accuracy
optimal solutions.

5.3. The condition number of ∇2g(yk;µk) vs. the condition number of
Hk∇2g(yk;µk). Table 5.1 shows how the values of

• the condition number of ∇2g(yk;µk),
• the condition number ofHk∇2g(yk;µk), whereHk denotes the quasi-Newton

BFGS matrix (see section 3.3),
• “CG1,” the number of iterations in the CG method with the initial point
Hkā for approximating the first derivative ẏ(µk) (see (2.9) for the definition
of ā), and
• “CG2,” the number of iterations in the CG method with the initial point Hkr̄
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(a) Spectrum of ∇2g(yk;µk). (b) Spectrum of Hk∇2g(yk;µk).

Fig. 5.1. Spectra of the Hessian matrix ∇2g(yk;µk) and of the preconditioned Hessian matrix
Hk∇2g(yk;µk) at the 3rd, 6th, 9th, and 12th iterations for the BQ01IP in Table 5.1.

for approximating the second derivative ÿ(µk) (see (2.9) for the definition of
r̄)

change along the sequence {(yk, µk)} generated by the BFGS second-order predictor
variant of the LDIPM applied to the instance of the SDP relaxation of the BQ01IP
with n = 201 and m = 200. We see that the condition number of ∇2g(yk;µk)
got worse rapidly after iteration 8 or after the barrier parameter µk became smaller
than 10−2. But the condition number of the preconditioned matrix Hk∇2g(yk;µk)
remained small, and there was no increasing tendency in the number of iterations
of the CG method in the predictor procedure. Figure 5.1(a) shows the spectrum of
∇2g(yk;µk), and Figure 5.1(b) shows the spectrum of Hk∇2g(yk;µk) at the 3rd,
6th, 9th, and 12th iterations, respectively. We can also observe from these figures
that the preconditioned matrix Hk∇2g(yk;µk) has a narrower range for its spectrum
than the Hessian matrix ∇2g(yk;µk), which is a favorable fact for CG methods. We
conclude that it is advantageous to precondition the Hessian matrix ∇2g(yk;µk) by
Hk.

5.4. The LDIPM vs. the DIPM. Table 5.2 shows numerical results on the
SDP relaxation of the BQ01IP with n = 101, 201; Table 5.3, numerical results on
NMIN with q = 20, r = 30 (n = 50), m = 100, 200; and Table 5.4, numerical
results on LMI with n = 50, m = 200, d = 0.04, 0.2. For each case, five problems
are generated randomly in the ways mentioned in section 5.1. We use the following
symbols for the average or geometric mean over the five problems:

Iter. = average number of iterations,

New. = average number of Newton iterations,

BFGS = average number of BFGS updates,

CG = average number of CG iterations,

Chol. = average number of Cholesky factorizations of S,

κ = the geometric mean of the condition numbers of the Hessian matrices of

g(·;µk) at the last iterates,
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Table 5.2
SDP relaxation of BQ01IP.

n = 101, m = 100
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 12.2 24.2 - - 210.0 3.6e+7 - 156
LDIPM Newton/2nd 10.0 17.0 - - 115.2 2.4e+7 - 95

BFGS/1st 11.6 - 148.8 118.6 511.4 2.2e+7 3.5e+1 67
BFGS/2nd 10.0 - 136.2 121.8 412.0 2.8e+7 3.5e+1 56
Newton/1st 15.4 44.2 - - 81.6 4.6e+9 - 217

DIPM Newton/2nd 11.2 28.4 - - 53.0 3.8e+9 - 142
BFGS/1st 17.0 - 181.6 186.0 237.8 4.4e+9 5.3e+1 79
BFGS/2nd 11.6 - 162.0 129.6 187.2 7.8e+9 5.4e+1 60

n = 201, m = 200
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 13.4 27.0 - - 285.4 6.2e+7 - 3252
LDIPM Newton/2nd 10.8 19.6 - - 165.8 3.4e+7 - 1529

BFGS/1st 12.6 - 201.2 188.4 795.8 2.7e+7 7.8e+1 763
BFGS/2nd 10.2 - 180.0 177.2 567.8 2.2e+7 8.6e+1 585
Newton/1st 17.8 53.4 - - 104.6 1.7e+10 - 3630

DIPM Newton/2nd 12.2 32.2 - - 63.4 1.8e+10 - 2217
BFGS/1st 18.8 - 245.8 274.4 313.0 1.0e+10 1.2e+2 982
BFGS/2nd 12.2 - 214.8 187.2 247.6 1.8e+10 2.1e+2 699

Table 5.3
NMIN with q = 20, r = 30 (n = 50).

m = 100
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 13.0 29.2 - - 152.6 2.0e+9 - 168
LDIPM Newton/2nd 11.8 23.0 - - 86.6 4.0e+9 - 129

BFGS/1st 13.2 - 179.6 121.2 360.8 2.7e+9 2.7e+2 58
BFGS/2nd 12.0 - 162.0 141.0 273.4 3.3e+9 2.5e+2 53
Newton/1st 16.4 42.4 - - 79.4 1.9e+9 - 220

DIPM Newton/2nd 13.0 28.2 - - 49.4 2.8e+9 - 138
BFGS/1st 18.2 - 246.8 203.0 300.4 3.5e+9 2.4e+2 89
BFGS/2nd 13.4 - 201.8 188.4 229.4 1.6e+9 4.1e+2 69

m = 200
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 14.8 39.2 - - 198.6 7.8e+9 - 843
LDIPM Newton/2nd 12.6 28.0 - - 107.8 9.2e+9 - 544

BFGS/1st 14.2 - 340.0 228.2 608.2 4.8e+9 3.3e+2 240
BFGS/2nd 12.6 - 319.8 262.2 509.4 1.2e+10 1.7e+3 210
Newton/1st 16.2 41.8 - - 81.0 8.8e+9 - 854

DIPM Newton/2nd 13.0 26.8 - - 48.8 1.2e+10 - 547
BFGS/1st 17.4 - 379.2 335.6 428.6 1.8e+10 1.5e+3 315
BFGS/2nd 13.6 - 332.8 298.6 359.2 1.5e+10 2.7e+3 244

p.κ = the geometric mean of the condition numbers of the preconditioned Hessian

matrices of g(·;µk) at the last iterates,

CPU = average CPU time in seconds.

In all cases in which either the Newton method or the BFGS method was used in
the corrector procedure, and either the first-order or the second-order was used in the
predictor procedure, the number of iterations, the number of the Newton iterations,
the number of BFGS quasi-Newton iterations, and the CPU time required for the
LDIPM are less than those for the DIPM method. In particular, the differences are
larger in the first-order predictor cases. From these observations, we may conclude
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Table 5.4
LMI with n = 50, m = 200.

Density: d = 0.04
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 15.4 39.4 - - 215.0 2.1e+8 - 131
LDIPM Newton/2nd 13.4 28.4 - - 118.8 4.0e+8 - 86

BFGS/1st 15.6 - 424.4 258.6 756.2 3.4e+8 1.8e+3 65
BFGS/2nd 13.0 - 381.6 265.6 594.4 3.6e+8 2.5e+3 56
Newton/1st 17.4 47.2 - - 89.8 2.9e+8 - 138

DIPM Newton/2nd 13.8 32.4 - - 56.2 4.7e+8 - 86
BFGS/1st 19.0 - 449.0 364.8 504.4 2.9e+8 2.2e+3 69
BFGS/2nd 14.0 - 396.2 303.8 423.0 3.0e+8 2.4e+3 59

Density: d = 0.2
Method Correc./Pred. Iter. New. BFGS CG Chol. κ p.κ CPU

Newton/1st 14.8 41.4 - - 200.0 3.8e+8 - 387
LDIPM Newton/2nd 12.6 29.0 - - 106.2 3.1e+8 - 239

BFGS/1st 14.6 - 389.4 257.0 680.4 2.2e+8 3.9e+2 130
BFGS/2nd 12.8 - 362.2 287.6 547.8 3.1e+8 2.3e+3 116
Newton/1st 16.6 46.8 - - 87.0 3.1e+8 - 391

DIPM Newton/2nd 13.0 31.6 - - 55.0 2.2e+8 - 248
BFGS/1st 18.0 - 424.4 354.8 477.6 3.2e+8 7.2e+2 153
BFGS/2nd 13.6 - 373.8 328.8 400.6 4.0e+8 1.5e+3 125

that the log barrier function g(·;µ) in the LDIPM behaves “less nonlinearly” than the
log barrier function g̃(·;µ) in the DIPM. We must mention, however, that the number
of Cholesky factorizations required for the LDIPM method is a few times larger than
the number required for the DIPM. This is because the evaluations of the function
g(·;µ), its gradient, and its Hessian matrix in the LDIPM generally require more
than one Cholesky factorization, while the function g̃(·;µ) in the DIPM is defined
in terms of an explicit formula (1.3), and its evaluation requires only one Cholesky
factorization.

5.5. The Newton variants vs. the BFGS variants. The BFGS variants
and the Newton variants of the LDIPM worked quite similarly in the number of
iterations, while the BFGS variants of the DIPM required a few more iterations than
the corresponding Newton variants. This may be also explained by the observation
that the log barrier function g(·;µ) of the LDIPM is less nonlinear than the log barrier
function g̃(·;µ) of the DIPM.

In general, one iteration of the Newton method, one iteration of the quasi-Newton
BFGS method, and one iteration of the CG method requireO(m3), O(m2), andO(m2)
arithmetic operations, respectively. Also each computation of the Hessian matrices
∇2g(y;µ) and ∇2g̃(y;µ) requires O(m2n2 + mn3) arithmetic operations. Although
“CG” and “BFGS” of the BFGS variants are larger than “New.” of the Newton
variants in all cases, the total arithmetic operations required for the BFGS and the
CG methods are much smaller than those required for the Newton method. However,
we have to pay particular attention to a critical difference in the “Chol.” column,
which shows the total number of the Cholesky factorization of the dual matrix variable
S = Iw − C +

∑m
p=1 Apyp computed from a given (y, w), required in the Newton

variant and the BFGS variant. In dense computation, one computation of S and its
Cholesky factorization require O(mn2 + n3) arithmetic operations. When m is as
large as n, the amount of work required for these computations can be the most time
consuming part of the BFGS variant.
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Table 5.5
Effectiveness of one additional primal-dual interior-point iteration.

LDIPM
Corrector BFGS BFGS BFGS

Problem Predictor 1st-order 1st-order 1st-order
One add.it. - CG method Cholesky factorization

BQ01IP p.f.error 8.6e−7 9.1e−9 7.1e−10
n = 201 rel.error 3.7e−7 5.1e−10 5.2e−10
m = 200 CG - 29.8 -
NMIN p.f.error 6.4e−7 1.9e−9 2.9e−9
n = 50 rel.error 6.1e−7 6.1e−10 1.6e−9
m = 200 CG - 51.0 -

LMI (density: d = 0.2) p.f.error 7.7e−7 1.3e−9 6.2e−10
n = 50 rel.error 3.1e−7 6.4e−10 3.6e−10
m = 200 CG - 53.6 -

LMI (density: d = 0.04) p.f.error 8.5e−7 5.4e−9 5.1e−9
n = 50 rel.error 3.8e−7 2.3e−9 2.5e−9
m = 200 CG - 62.8 -

5.6. The first-order predictor vs. the second-order predictor. In this
MATLAB implementation, the BFGS first-order predictor variant performed a little
worse than the BFGS second-order predictor variant in terms of the CPU time. In
a more serious implementation using compiler languages like C and C++, the BFGS
first-order predictor variant may turn out to be more efficient because the computation
of the second-order derivative is expected to be more expensive than that of the first-
order derivative. See (II) of section 4.4.

5.7. Sparsity. Table 5.4 shows numerical results on LMI with n = 50, m =
200, and nonzero element density d = 0.04 and 0.2 in the data matrices F p (p =
0, 1, . . . , 200). Although exploiting sparsity is implemented in a primitive level in this
MATLAB code, this table indicates how important it is in the LDIPM and the DIPM.
Recall that we exploited neither of the sparsity techniques (I) and (II) mentioned in
section 4.4.

5.8. One additional primal-dual interior-point method iteration to in-
crease the accuracy. Table 5.5 shows the effectiveness of the technique which we
mentioned in section 4.3. We stopped the iteration of the BFGS first-order variant
of the LDIPM, applied to five problems each of the four types of problems, at a k̂th
iteration when it attained a primal-dual pair of optimal solutions with the primal-
feasibility accuracy and the relative error in the primal and dual objective values both
less than 10−6 (middle column). Then we applied one additional primal-dual interior-
point iteration using either of the Cholesky factorization or the CG method. We
stopped the CG iteration when the stopping criterion (4.4) held for εpd = 10−5. From
Table 5.5, we see that one iteration using the CG method worked as effectively as one
iteration using the Cholesky factorization to get highly accurate optimal solutions.

6. Concluding remarks. Although we have reported some numerical results,
we are not satisfied. The current code is written in pure MATLAB language, and
thus it is very slow. It does not take enough sparsity consideration into account to
efficiently solve large scale problems. Many issues remain to be studied further in
working toward more practically efficient implementations for large scale problems.
Among others, we need to explore the use of
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• sparse Cholesky factorization of the dual matrix variable S =
∑m
p=1 Apyp +

Iw −C,
• the limited memory quasi-Newton BFGS method [20].
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1. Introduction. Consider the constrained optimization problem

P minimize f0(x)

subject to fn(x) ≤ 0, n = 1, . . . ,M,

fn(x) = 0, n = M + 1, . . . , N,

x ∈ C.

We focus mostly on the study of necessary optimality conditions for P. For problems
with only smooth equality constraints, necessary optimality conditions can be traced
back to Lagrange. The Fritz John and the Karush–Kuhn–Tucker necessary conditions
were developed to cope with problems involving inequality constraints. For research
on necessary optimality conditions for problem P with nonsmooth data, we refer
to [1, 5, 8, 10, 11, 13, 17, 21, 22, 23] and the references therein. The research in
this paper continues that of [1, 14, 16, 17, 21]. In those papers necessary optimality
(suboptimality) conditions were established for P under the mild assumptions that
fn, n = 0, 1, . . . ,M , are lower semicontinuous extended-valued functions, fn, n =
M +1, . . . , N , are continuous functions, and C is a closed subset in finite dimensional
spaces, reflexive Banach spaces, and Asplund spaces, respectively. However, certain
questions arising in control theory lead to optimization problems in more general
spaces (e.g., spaces with weak-Hadamard smooth renorm in [3, 25]). This motivates
us to generalize the results in [1, 14, 16, 17, 21] to more general settings. The main
purpose of this paper is to prove such necessary optimality conditions in general
“bornologically” smooth Banach spaces. Our proofs use ideas similar to those in
[1, 21], yet simplify them even in finite dimensional spaces. We should mention
that, in Asplund space, it is shown in [14] that under additional normal compactness
assumptions one can derive exact necessary optimality conditions in terms of the
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limiting normal cone to the epigraphs and graphs of the constraint functions. We will
state and prove our main results in section 3 after discussing preliminaries in the next
section.

It is worth pointing out that allowing inequality constraints involving lower semi-
continuous extended-valued functions and equality constraints involving continuous
functions is not merely a technical generalization. Such a general setting enables us
to apply our necessary optimality conditions to many seemingly unrelated problems.
We discuss several such applications in section 4. They are subdifferential charac-
terizations of singular normal vectors to the epigraph and the graph of a function,
subdifferential calculus, and necessary optimality conditions for mathematical pro-
grams with equilibrium constraints.

2. Preliminaries. Let X be a real Banach space with closed unit ball BX and
(topological) dualX∗. For any x ∈ X and r > 0 we use Br(x) to denote the closed ball
centered at x with radius r. For a set S in X, we denote its diameter by diam(S) :=
sup{||x− y|| : x, y ∈ S}, and we denote its indicator function by iS , i.e., iS(x) = 0 for
x ∈ S, and iS(x) = +∞ for x 	∈ S. We denote the (minimum) distance between two
sets S and T by d(S, T ) := inf{‖s−t‖ : s ∈ S and t ∈ T}. In particular, when T = {x}
this reduces to the distance between a point x and a set S, d(S, x) := inf{‖x − s‖ :
s ∈ S}. A bornology β of X is a family of closed bounded and centrally symmetric
subsets of X whose union is X, which is closed under multiplication by scalars and
is directed upwards. (That is, the union of any two members of β is contained in
some member of β.) We will denote by X∗

β the dual space of X endowed with the
topology of uniform convergence on β-sets. The most important bornologies are those
formed by all (symmetric) bounded sets (the Fréchet bornology, denoted by F ), weak
compact sets (the weak Hadamard bornology, denoted by WH), compact sets (the
Hadamard bornology, denoted by H), and finite sets (the Gateaux bornology, denoted
by G).

We will define a convex bornology as one that also contains all convex closures
of the sets in the corresponding bornology. In particular, any finite dimensional
subspace is included in the subspace spanned by some element of a convex bornology.
In this paper, we consider only convex bornology, usually denoted by β. Note that the
convex Gateaux bornology lies strictly between the Gateaux and Hadamard bornology,
while for the Fréchet, weak Hadamard, and Hadamard bornologies the convex and
nonconvex definitions are the same.

By a function we always mean an extended-real-valued function, usually lower
semicontinuous and proper (that is to say, not everywhere equal to +∞ and nowhere
to −∞). Given a function f on X, we say that f is β-differentiable at x and has a
β-derivative ∇βf(x) if f(x) is finite and

t−1(f(x+ tu)− f(x)− t〈∇βf(x), u〉)→ 0

as t→ 0, uniformly in u ∈ V for every V ∈ β. We say that a function f is β-smooth
at x if f is β-differentiable in a neighborhood U of x and ∇βf : U → X∗

β is continuous
in a neighborhood of x. It is not hard to check that a convex function f is β-smooth
at x if and only if f is β-differentiable on a convex neighborhood of x. Now we can
define the β-subdifferential and the related β-normal cone.

Definition 2.1 (β-subdifferential and normal cone). Let f : X → R∪{+∞} be a
lower semicontinuous function and f(x) < +∞. We say that f is β-subdifferentiable
and x∗ is a β-viscosity subderivative of f at x if there exists a locally Lipschitz function
g such that g is β-smooth at x, ∇βg(x) = x∗, and f − g attains a local minimum at
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x. We call the set of all β-viscosity subderivatives of f at x the β-subdifferential of f
at x, and we denote it by ∂βf(x). For a closed subset S ⊂ X and x ∈ S, we define
the β-normal cone of S at x by Nβ(S;x) := ∂βiS(x).

In what follows, a lower semicontinuous function is understood as a function with
range R∪{+∞}. Recall that a bump function is a bounded function with a bounded
nonempty support. We say that a Banach space is β-smooth, provided that it has a
β-smooth Lipschitzian bump function. We will often need the following weak fuzzy
sum rule (see [2, 7, 27]).

Theorem 2.2 (Weak fuzzy sum rule). Let X be a β-smooth Banach space. Let
f1, . . . , fN be lower semicontinuous functions on X, with x ∈ ∩Nn=1dom(fn). Then, for

any x∗ ∈ ∂β(
∑N
n=1 fn)(x), any ε > 0, and any weak-star neighborhood U of 0 in X∗,

there exist xn ∈ Bε(x), x
∗
n ∈ ∂βfn(xn), n = 1, . . . , N , such that |fn(xn) − fn(x)| < ε,

||x∗
n|| · diam({x1, . . . , xN}) < ε, n = 1, 2, . . . , N , and

x∗ ∈
N∑
n=1

x∗
n + U.

For the Fréchet subdifferential, the arbitrary weak-star neighborhood U in Theo-
rem 2.2 can be replaced by an arbitrary norm neighborhood under additional condi-
tions. Such results are often referred to as strong fuzzy sum rules. We will need the
following form of the strong fuzzy sum rule (see [15, 27]).

Theorem 2.3 (Strong fuzzy sum rule). Let X be an Asplund space. Let f1, . . . , fN
be lower semicontinuous functions on X, with x ∈ ∩Nn=1dom(fn). Suppose that all
but one of fn, n = 1, 2, . . . , N , are locally Lipschitz around x. Then, for any x∗ ∈
∂F (

∑N
n=1 fn)(x) and any ε > 0, there exist xn ∈ Bε(x), x

∗
n ∈ ∂F fn(xn), n = 1, . . . , N ,

such that |fn(xn)− fn(x)| < ε, ||x∗
n|| · diam({x1, . . . , xN}) < ε, n = 1, 2, . . . , N , and∥∥∥∥∥x∗ −

N∑
n=1

x∗
n

∥∥∥∥∥ < ε.

3. Necessary optimality conditions. We establish necessary optimality con-
ditions for problem P in β-smooth Banach spaces that generalize those in [1, 17, 21].
Following [1], we will use the quantities τn, n = 0, 1, . . . , N , to simplify the notation.
The τn’s associated with the inequality constraints and the cost function are always
1, i.e., τn := 1, n = 0, 1, . . . ,M . This corresponds to nonnegative multipliers. The
τn’s associated with the equality constraints are either 1 or −1, corresponding to mul-
tipliers with arbitrary sign, i.e., τn ∈ {−1, 1}, n = M + 1, . . . , N . Our main result is
the following necessary optimality conditions.

Theorem 3.1 (Fuzzy multiplier rule). Let X be a β-smooth Banach space, let
C be a closed subset of X, and let fn be lower semicontinuous for n = 0, 1, . . . ,M
and continuous for n = M + 1, . . . , N . Assume that x̄ is a local solution of P. Let
ε > 0 be an arbitrary positive number, and let U be an arbitrary weak-star neighbor-
hood of 0 in X∗. Suppose that lim infx→x̄ d(∂βfn(x), U) > 0 for n = 1, . . . ,M , and
lim infx→x̄ d(∂βfn(x) ∪ ∂β(−fn)(x), U) > 0 for n = M + 1, . . . , N . Then there exist
(xn, fn(xn)) ∈ Bε(x̄, fn(x̄)), n = 0, 1, . . . , N , and xN+1 ∈ Bε(x̄) ∩ C such that

0 ∈ ∂βf0(x0) +

N∑
n=1

µn∂β(τnfn)(xn) +Nβ(C;xN+1) + U,

where µn > 0, n = 1, . . . , N .
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Without the condition that the β-subdifferentials of τnfn’s are bounded away
from U , we cannot guarantee that the coefficient of ∂βf0(x0) is 1. Nevertheless, the
following weaker necessary condition always holds.

Theorem 3.2 (Weak fuzzy multiplier rule). Let X be a β-smooth Banach space,
let C be a closed subset of X, and let fn be lower semicontinuous for n = 0, 1, . . . ,M
and continuous for n = M + 1, . . . , N . Assume that x̄ is a local solution of P. Then,
for any positive number ε > 0 and any weak-star neighborhood U of 0 in X∗, there
exist (xn, fn(xn)) ∈ Bε(x̄, fn(x̄)), n = 0, 1, . . . , N , and xN+1 ∈ Bε(x̄) ∩ C such that

0 ∈
N∑
n=0

µn∂β(τnfn)(xn) +Nβ(C;xN+1) + U,

where µn ≥ 0, n = 0, 1, . . . , N , satisfy
∑N
n=0 µn = 1.

Proof. Let V be a weak-star neighborhood of 0 in X∗, and let r > 0 satisfy V +
rBX∗ ⊂ U . If lim infx→x̄ d(∂βfn(x), V ) > 0 for n = 1, . . . ,M , and lim infx→x̄ d(∂βfn(x)
∪∂β(−fn)(x), V ) > 0 for n = M + 1, . . . , N , then the conclusion of Theorem 3.1
holds. We need only to rescale the result of Theorem 3.1 by multiplying µ0 =
1/(1+

∑N
n=1 µn). Suppose that one of the conditions, say the condition corresponding

to index j, fails. Then the conclusion of Theorem 3.2 holds trivially for µj = 1 and
µn = 0, n 	= j.

We turn to the proof of Theorem 3.1. The idea is simple. We observe that if x̄ is
a solution to the constrained optimization problem P, then it is a local minimum of
the following function:

f0 +

M∑
n=1

if−1
n ((−∞,fn(x̄)]) +

N∑
n=M+1

if−1
n (0) + iC ,

where f−1(S) := {x ∈ X : f(x) ∈ S}. Applying the weak fuzzy sum rule of Theorem
2.2 yields a necessary condition in terms of the subdifferential of f0 and the normal
cones to the level sets of the fn and C. The key then is to relate the normal cones to
the level sets of the fn to their subdifferentials. We discuss their relationship in the
following theorems.

Theorem 3.3. Let X be a β-smooth Banach space, and let f : X → R ∪ {+∞}
be a lower semicontinuous function. Suppose that ξ ∈ Nβ(f

−1((−∞, a]); x̄). Then,
for any ε > 0 and any weak-star neighborhood U of 0 in X∗, either

(a)

lim inf
x→x̄

d(∂βf(x), U) = 0

or
(b) there exist λ > 0, (x, f(x)) ∈ Bε((x̄, f(x̄))), and x∗ ∈ ∂βf(x) such that

λx∗ − ξ ∈ U.

Proof. Assume that (a) is not true, i.e.,

lim inf
x→x̄

d(∂βf(x), U) > c > 0.(1)

We prove (b) for the nontrivial case when ξ 	= 0. We may always assume that a = f(x̄),
because x̄ ∈ f−1((−∞, a]) implies thatNβ(f

−1((−∞, a]); x̄) ⊂ Nβ(f
−1((−∞, f(x̄)]); x̄).
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Choose a weak-star neighborhood V of 0 in X∗, a finite dimensional subspace L of X,
and a positive number r such that rBX∗ +L⊥+max(1, ‖ξ‖(1+r)/c)V ⊂ U . Without
loss of generality we may assume that ε < r/(1 + ‖ξ‖). Choose δ ∈ (0, ε) such that

〈ξ, h〉 < ε‖ξ‖‖h‖ ∀x̄+ h ∈ f−1((−∞, a]) ∩ (x̄+ L) ∩Bδ(x̄), h 	= 0,(2)

and

inf
x∈Bδ(x̄)

d(∂βf(x), U) > c.

Define

K(ξ, ε) := {x ∈ X : 〈ξ, x〉 ≥ ε‖ξ‖‖x‖}.

Then

[x̄+K(ξ, ε)] ∩ f−1((−∞, a]) ∩ (x̄+ L) ∩Bδ(x̄) = {x̄},(3)

and, therefore,

g := f + ix̄+K(ξ,ε) + ix̄+L

attains a (local) minimum f(x̄) at x̄ over Bδ(x̄). Note that Nβ(x̄ + K(ξ, ε); ·) ⊂⋃
α≥0 α(−ξ + ε‖ξ‖BX∗). Applying the weak fuzzy sum rule of Theorem 2.2, we

conclude that there exist x ∈ Bδ(x̄) ⊂ Bε(x̄) such that

0 ∈ ∂βf(x) +
⋃
α≥0

α(−ξ + ε‖ξ‖BX∗) + L⊥ + V.(4)

Now choose x∗ ∈ ∂βf(x), α ≥ 0, and b∗ ∈ BX∗ such that

0 ∈ x∗ + α(−ξ + ε‖ξ‖b∗) + L⊥ + V.(5)

We must have α‖ξ‖(1 + ε) ≥ c, for otherwise inclusion (5) would imply d(x∗, U) ≤
d(x∗, V + L⊥) ≤ c, a contradiction. Let λ = 1/α > 0. Then λ ≤ ‖ξ‖(1 + ε)/c.
Multiplying inclusion (5) by λ, we have

0 ∈ λx∗ − ξ + ε‖ξ‖b∗ + L⊥ + λV

⊂ λx∗ − ξ + rBX∗ + L⊥ +
‖ξ‖(1 + ε)

c
V

⊂ λx∗ − ξ + U.

Similarly we have a corresponding result for the normal cone to the level sets
f−1(a) of a continuous function.

Theorem 3.4. Let X be a β-smooth Banach space, and let f : X → R be a
continuous function. Suppose that ξ ∈ Nβ(f

−1(a); x̄). Then, for any ε > 0 and any
weak-star neighborhood U of 0 in X∗, either

(a)

lim inf
x→x̄

d(∂βf(x) ∪ ∂β(−f)(x), U) = 0

or



CONSTRAINED OPTIMIZATION PROBLEMS 1037

(b) there exist λ > 0, (x, f(x)) ∈ Bε((x̄, f(x̄))), and x∗ ∈ ∂βf(x) ∪ ∂β(−f)(x)
such that

λx∗ − ξ ∈ U.

Proof. Assume that (a) is not true, i.e.,

lim inf
x→x̄

d(∂βf(x) ∪ ∂β(−f)(x), U) > c > 0.(6)

As in the proof of Theorem 3.3, we prove (b) for the case in which ξ 	= 0. Choose a
weak-star neighborhood V of 0 in X∗, a finite dimensional subspace L of X, and a
positive number r such that rBX∗ + L⊥ +max(1, ‖ξ‖(1 + r)/c)V ⊂ U . Without loss
of generality we may assume that ε < r/(1 + ‖ξ‖). Choose δ ∈ (0, ε) such that

〈ξ, h〉 < ε‖ξ‖‖h‖ ∀x̄+ h ∈ f−1(a) ∩ (x̄+ L) ∩Bδ(x̄), h 	= 0,(7)

and

inf
x∈Bδ(x̄)

d(∂βf(x) ∪ ∂β(−f)(x), U) > c.

Define

K(ξ, ε) := {x ∈ X : 〈ξ, x〉 ≥ ε‖ξ‖‖x‖}.
Then

[x̄+K(ξ, ε)] ∩ f−1(a) ∩ (x̄+ L) ∩Bδ(x̄) = {x̄}.(8)

We have that either
(a) f(x) ≥ a ∀x ∈ [x̄+K(ξ, ε)] ∩ (x̄+ L) ∩Bδ(x̄) or
(b) f(x) ≤ a ∀x ∈ [x̄+K(ξ, ε)] ∩ (x̄+ L) ∩Bδ(x̄).

In fact, suppose on the contrary that there exist x1, x2 ∈ [x̄+K(ξ, ε)]∩(x̄+L)∩Bδ(x̄)
such that f(x1) > a and f(x2) < a. Then x1, x2 	= x̄. Since f is continuous,
there exists r ∈ (0, 1) such that z := rx1 + (1 − r)x2 satisfies f(z) = a. Clearly
z ∈ [x̄+K(ξ, ε)]∩ (x̄+L)∩Bδ(x̄), and therefore z = x̄ by (8). However, this leads to
0 = r(x1− x̄)+(1−r)(x2− x̄) or r(x1− x̄) = −(1−r)(x2− x̄) ∈ K(ξ, ε)∩ [−K(ξ, ε)] =
{0}, a contradiction.

Define

g :=

{
f − a+ ix̄+K(ξ,ε) + ix̄+L if we have (a),
−f + a+ ix̄+K(ξ,ε) + ix̄+L if we have (b).

Then, it follows from (8) that g attains a (local) minimum f(x̄) at x̄ over Bδ(x̄).
The rest of the proof is the same as that of Theorem 3.3.
Now we can prove Theorem 3.1.
Proof of Theorem 3.1. Let V be a weak-star neighborhood of 0 in X∗ such that

(N + 1)V ⊂ U . Then, we have lim infx→x̄ d(∂βfn(x), V ) > 0 for n = 1, . . . ,M and
lim infx→x̄ d(∂βfn(x) ∪ ∂β(−fn)(x), V ) > 0 for n = M + 1, . . . , N . Decreasing ε if
necessary, we may assume that, for any y ∈ Bε(x̄), lim infx→y d(∂βfn(x), V ) > 0 for
n = 1, . . . ,M , and lim infx→y d(∂βfn(x) ∪ ∂β(−fn)(x), V ) > 0 for n = M + 1, . . . , N .
Observe that x̄ is a minimum of the function

f0 +

M∑
n=1

if−1
n ((−∞,fn(x̄)]) +

N∑
n=M+1

if−1
n (0) + iC .
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Since fn, n = 1, . . . ,M , are lower semicontinuous and fn, n = M +1, . . . , N , are con-
tinuous we can choose η ∈ (0, ε/2) such that y ∈ Bη(x̄) implies fn(y) > fn(x̄) − ε/2
for n = 1, . . . ,M , and fn(y) ∈ (fn(x̄)−ε/2, fn(x̄)+ε/2) for n = M+1, . . . , N . By the
weak fuzzy sum rule of Theorem 2.2 there exist (x0, f0(x0)) ∈ Bη(x̄), xN+1 ∈ Bη(x̄)∩
C, yn ∈ Bη(x̄), n = 1, . . . , N , with |if−1

n ((−∞,fn(x̄)])(yn) − if−1
n ((−∞,fn(x̄)])(x̄)| < η,

n = 1, . . . ,M , and |if−1
n (0)(yn) − if−1

n (0)(x̄)| < η, n = M + 1, . . . , N (and, there-

fore, (yn, fn(yn)) ∈ Bε/2((x̄, fn(x̄)))), x∗
0 ∈ ∂βf(x0), x∗

N+1 ∈ Nβ(C;xN+1), y∗n ∈
Nβ(f

−1
n ((−∞, fn(x̄)]); yn) for n = 1, . . . ,M , and y∗n ∈ Nβ(f

−1
n (0); yn) for n = M +

1, . . . , N such that

0 ∈ x∗
0 +

N∑
n=1

y∗n + x∗
N+1 + V.(9)

Theorems 3.3 and 3.4 imply that there exist (xn, fn(xn)) ∈ Bε/2((yn, fn(yn))) ⊂
Bε((x̄, fn(x̄))), µn > 0, and x∗

n ∈ ∂βfn(xn) (x∗
n ∈ ∂βfn(xn) ∪ ∂β(−fn)(xn)) for

n = 1, . . . ,M (n = M + 1, . . . , N) such that

y∗n ∈ µnx
∗
n + V.(10)

Combining (9) and (10) completes the proof.

4. Applications.

4.1. Approximation of singular normal vectors to the epigraph and the
graph of a function. The relationship between the normal vectors to the epigraphs
and graphs of a function and the subdifferential of the function plays an important
role in nonsmooth problems. The characterization of such singular normal vectors is
rather delicate. It first appeared in Rockafellar [20] for functions on finite dimensional
spaces. Infinite dimensional generalizations were discussed in [9, 18] for the Fréchet
singular normal vectors. Here we show that an extension of such characterizations to
β-smooth singular normal vectors follows directly from Theorems 3.3 and 3.4.

Theorem 4.1. Let X be a β-smooth Banach space, and let f : X → R ∪ {+∞}
be a lower semicontinuous function. Suppose that (x̄∗, 0) ∈ Nβ(epi f ; (x̄, a)) (which
implies that a ≥ f(x̄)). Then, for any ε > 0 and any weak-star neighborhood U of 0
in X∗, there exist x, x∗, and λ ∈ (0, ε) such that x∗ ∈ ∂βf(x), (x, f(x)) ∈ Bε(x̄, f(x̄)),
and

λx∗ − x̄∗ ∈ U.

Proof. We may assume that ε < 1. Since Nβ(epi f ; (x̄, a)) ⊂ Nβ(epi f ; (x̄, f(x̄))),
we may assume that a = f(x̄). Set F (x, t) = f(x) − t. Then epi f = F−1((−∞, 0]).
We next apply Theorem 3.3 to the function F . Since, for any (x, t), d(∂βF (x, t), U ×
[−ε, ε]) > 0, by (b) there exist

((x, t), F (x, t)) ∈ Bε/2(((x̄, f(x̄)), 0)),(11)

(x∗, t∗) ∈ ∂βF (x, t),(12)

and λ > 0 such that

λ(x∗, t∗)− (x̄∗, 0) ∈ U × (−ε, ε).(13)
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It follows from the definition of F and (11) and (12) that t∗ = −1 and (x, f(x)) ∈
Bε((x̄, f(x̄))). Thus, inclusion (13) implies that λ ∈ (0, ε) and

λx∗ − x̄∗ ∈ U.

Similarly, applying Theorems 3.4 and 4.4 to F−1(0), we have the following parallel
results.

Theorem 4.2. Let X be a β-smooth Banach space, and let f : X → R∪{+∞} be
a continuous function. Suppose that (x̄∗, 0) ∈ Nβ(graph f ; (x̄, f(x̄))). Then, for any
ε > 0 and any weak-star neighborhood U of 0 in X∗, there exist x, x∗, and λ ∈ (0, ε)
such that x∗ ∈ ∂βf(x) ∪ ∂β(−f)(x), (x, f(x)) ∈ Bε(x̄, f(x̄)), and

λx∗ − x̄∗ ∈ U.

For the Fréchet subdifferential, it is possible to strengthen Theorems 3.3 and 3.4
by replacing the arbitrary weak-star neighborhood U of 0 in X∗ by an arbitrary ball
around 0 under additional assumptions on the geometric property of the space X.
Such stronger versions of these theorems are derived, in finite dimensional spaces,
in reflexive Banach spaces, and in Asplund spaces, respectively, in [21, 1, 17]. The
characterization of the Fréchet singular normal vectors in [9, 17, 20] then follows im-
mediately with arguments similar to those in Theorems 4.1 and 4.2. For completeness,
we give an alternative short proof of the Asplund space version of Theorems 3.3 and
3.4 in [18].

Theorem 4.3. Let X be an Asplund space, and let f : X → R ∪ {+∞} be a
lower semicontinuous function. Suppose that ξ ∈ NF (f

−1((−∞, a]); x̄). Then either
(a)

lim inf
x→x̄

d(∂F f(x), 0) = 0

or
(b) for any ε > 0 there exist λ > 0, (x, f(x)) ∈ Bε((x̄, f(x̄))), and x∗ ∈ ∂F f(x)

such that

‖λx∗ − ξ‖ < ε.

Proof. As in the proof of Theorem 3.3 we consider the case in which

lim inf
x→x̄

d(∂F f(x), 0) > c > 0,(14)

ξ 	= 0, and a = f(x̄). Choose η ∈ (0, ε) satisfying

2η‖ξ‖+ η‖ξ‖(1 + 2η)

2c
<

ε

2
,(15)

and choose δ ∈ (0, ε) such that

〈ξ, h〉 < η‖ξ‖‖h‖ ∀x̄+ h ∈ f−1((−∞, a]) ∩Bδ(x̄), h 	= 0,(16)

f is bounded below on Bδ(x̄), and

inf
x∈Bδ(x̄)

d(∂F f(x), 0) > c.
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Then

[x̄+K(ξ, η)] ∩ f−1((−∞, a]) ∩Bδ(x̄) = {x̄},(17)

where K(ξ, η) is the cone defined in the proof of Theorem 3.3. Define, for each natural
number k,

gk := f − a+ kdx̄+K(ξ,2η).

Then gk is bounded below on Bδ(x̄), and gk(x̄) = 0. We consider two possible cases:
(A) infBδ(x̄) gk < 0 and (B) infBδ(x̄) gk = 0. If we have case (A), then by the Ekeland
variational principle [6] there exists yk ∈ Bδ(x̄) such that gk(yk) < 0 and

z → gk(z) +
1

k
‖z − yk‖

attains a (local) minimum at yk over Bδ(x̄). We must have yk 	∈ x̄ + K(ξ, η), for
otherwise (17) implies that yk 	∈ f−1((−∞, a]) and gk(yk) ≥ 0, a contradiction. We
claim that

dx̄+K(ξ,2η)(yk) ≥ η

(2η + 1)
‖yk − x̄‖.(18)

Indeed, if

‖h‖ < η

(2η + 1)
‖yk − x̄‖,

or equivalently

‖h‖ < η‖yk − x̄‖ − 2η‖h‖,
then

〈ξ, yk − x̄+ h〉 = 〈ξ, yk − x̄〉+ 〈ξ, h〉
< η‖ξ‖‖yk − x̄‖+ ‖ξ‖‖h‖
< 2η‖ξ‖[‖yk − x̄‖ − ‖h‖]
≤ 2η‖ξ‖‖yk − x̄+ h‖.

That is to say, yk − x̄+ h 	∈ K(ξ, 2η). Since f(yk) is bounded from below, we have

lim
k→∞

dx̄+K(ξ,2η)(yk) = 0.(19)

Combining (18) and (19), we have yk → x̄ as k → ∞. Therefore, for k sufficiently
large we have yk ∈ int Bδ(x̄). In the case (B) we set yk = x̄. Thus, in both cases (A)
and (B),

z → gk(z) +
1

k
‖z − yk‖

attains a local minimum at yk when k is sufficiently large. By the strong fuzzy
sum rule of Theorem 2.3 there exist xk, zk ∈ int Bδ(x̄), x∗

k ∈ ∂F f(xk), and z∗k ∈
∂F dx̄+K(ξ,2η)(zk) such that

‖x∗
k + kz∗k‖ < η +

1

k
.(20)
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Since K(ξ, 2η) is convex, so is the function dx̄+K(ξ,2η). Moreover, this function is a
contraction. By convex analysis we have

∂F dx̄+K(ξ,2η)(·) ⊂ {α(−ξ + 2η‖ξ‖BX∗) : α > 0} ∩BX∗ .(21)

Let z∗k = αk(−ξ + 2η‖ξ‖b∗) for some b∗ ∈ BX∗ . It follows from (20) that

‖x∗
k − kαkξ‖ < 2kαk‖ξ‖η + η +

1

k
.(22)

We must have kαk > c/[2‖ξ‖(1 + 2η)], for otherwise we would have ‖x∗
k‖ < c, a

contradiction. Now letting λk = 1/kαk and multiplying (22) by λk, we have

‖λkx∗
k − ξ‖ < 2η‖ξ‖+ 2η‖ξ‖(1 + 2η)

c
+

2‖ξ‖(1 + 2η)

kc
.

For

k >
c

‖ξ‖(1 + 2η)ε
,

setting λ = λk, x = xk, and x∗ = x∗
k, we have

‖λx∗ − ξ‖ < ε.

Modifying the proof of Theorem 4.3 as in the proof of Theorem 3.4, we can prove
a corresponding approximation for the Fréchet normal cone of f−1(a) when f is a
continuous function.

Theorem 4.4. Let X be an Asplund space, and let f : X → R ∪ {+∞} be a
continuous function. Suppose that ξ ∈ NF (f

−1(a); x̄). Then either
(a)

lim inf
x→x̄

d(∂F f(x) ∪ ∂F (−f)(x), 0) = 0

or
(b) for any ε > 0 there exist λ > 0, (x, f(x)) ∈ Bε((x̄, f(x̄))), and x∗ ∈ ∂F f(x)∪

∂F (−f)(x) such that
‖λx∗ − ξ‖ < ε.

The methods in the proofs of Theorems 4.1 and 4.2 provide an alternative proof for
the following Fréchet subdifferential characterization of the singular Fréchet normal
vectors to the epigraph and graph of a function.

Theorem 4.5 (see [17]). Let X be an Asplund space, and let f : X → R∪{+∞}
be a lower semicontinuous function. Suppose that (x̄∗, 0) ∈ NF (epi f ; (x̄, a)) ((x̄

∗, 0) ∈
NF (graph f ; (x̄, f(x̄)))). Then, for any ε > 0, there exist x, x∗, and λ ∈ (0, ε) such
that x∗ ∈ ∂F f(x) (x

∗ ∈ ∂F f(x) ∪ ∂F (−f)(x)), (x, f(x)) ∈ Bε(x̄, f(x̄)), and

‖λx∗ − x̄∗‖ < ε.

Remark. Theorems 4.3, 4.4, and 4.5 were discussed in [17, 18] using a different
approach. Their authors first prove Theorem 4.5 with a method patterned on that
of Ioffe [9] and then deduce Theorems 4.3 and 4.4 from Theorem 4.5. The latter
procedure is quite involved. It appears that our approach here is somewhat more
efficient.
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4.2. Chain rule and subdifferential calculus. Here we show that the nec-
essary optimality conditions in Theorem 3.2 imply a chain rule, which in turn yields
other subdifferential calculus rules such as sum rules, product rules, and quotient rules.
The key relationship between the chain rule and the necessary optimality condition for
constrained minimization problems is established through the following observation
discussed in [4, 26].

Consider functions f1, . . . , fN : X → R ∪ {+∞} and a function f : RN →
R ∪ {+∞} that is nondecreasing for each of its first M variables (M ≤ N). Sup-
pose that f(f1, . . . , fN ) attains a local minimum at x̄. Then one can check that
(x̄, (f1(x̄), . . . , fN (x̄))) is a local solution to the following minimization problem (on
X ×RN ):

minimize f(y)

subject to fn(x)− yn ≤ 0, n = 1, . . . ,M,

fn(x)− yn = 0, n = M + 1, . . . , N.

Applying the fuzzy multiplier rule of Theorem 3.1 yields the following chain rule.
Theorem 4.6 (Fuzzy chain rule). Let X be a β-smooth Banach space. Sup-

pose that f1, . . . , fM : X → R ∪ {+∞} are lower semicontinuous functions, that
fM+1, . . . , fN are continuous functions, and that f : RN → R∪{+∞} is a lower semi-
continuous function nondecreasing for each of its firstM variables (M ≤ N). Suppose
that f(f1, . . . , fN ) attains a local minimum at x̄. Then, for any positive number ε > 0
and any weak-star neighborhood U of 0 in X∗, there exist (xn, fn(xn)) ∈ (x̄, fn(x̄))+
εBX×R, n = 0, 1, . . . , N , (y, f(y)) ∈ (ȳ, f(ȳ))+εBRN+1 , where ȳ = (f1(x̄), . . . , fN (x̄)),
and µ = (µ1, . . . , µN ) ∈ ∂βf(y) + εBRN such that

0 ∈
N∑
n=1

∂β(µnfn)(xn) + U.

Remark. (a) When f is C1 we have more precisely µ = f ′(ȳ). This smooth
version of the chain rule is useful in deriving other calculus rules. For example, setting
f(f1, . . . , fN ) :=

∑N
n=1 fn, f(f1, . . . , fN ) :=

∏N
n=1 fn, and f(f1, f2) := f1/f2, we may

deduce a subdifferential sum rule, a subdifferential product rule, and a subdifferential
quotient rule, respectively.

(b) Similarly, setting f(f1, . . . , fN ) := max{fn : n = 1, . . . , N}, we may deduce a
subdifferential formula for the maximum function.

Remark. In fact, the chain rule in this section is equivalent to the necessary
optimality conditions for the constrained minimization problem in Theorem 3.1. Here
we use Theorem 3.1 to deduce the subdifferential chain rule. The use of a chain rule
to deduce necessary optimality conditions for constrained minimization problems can
be found, e.g., in [17]. (The discussion in [17] is for the Fréchet subdifferential, but
the methods used there are also applicable to the more general β-subdifferentials
discussed here.)

4.3. Mathematical programs with equilibrium constraints. Mathemati-
cal programs with equilibrium constraints (MPEC) are a generalization of the bilevel
programming problem. In this section we show that the necessary optimality con-
ditions in Theorem 3.1 can be used to deduce necessary optimality conditions for
such problems. Lou, Pang, and Ralph’s monograph [12] is an excellent source for
the history and the state of the art of this problem up to 1996. We will discuss the
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following generalized MPEC (in Euclidean spaces) introduced in Outrata [19], which
also encompasses problems outside the traditional setting of MPEC:

MPEC Minimize f0(x)

subject to 0 ∈ h(x) + F (g(x)),

x ∈ C,

where f0 : Rr → R ∪ {+∞} is a lower semicontinuous function, C is a subset of Rr,
h : Rr → Rq and g : Rr → Rp are continuous functions, and F : Rp → 2R

q

is a
multifunction with a closed graph.

The problemMPEC is very general. It encompasses many optimization problems
with nonstandard constraints (see [19] and the references therein). We can also recover
problem P fromMPEC by letting g(x) = x, F (x) = [f1(x),+∞)×· · ·×[fM (x),+∞)×
{0N−M}, and h(x) = {0M} × (fM+1(x), . . . , fN (x)), where 0I is the origin of RI .

However, the main point we would like to make in this section is that it is not
hard to convertMPEC into P. In doing so we can easily derive necessary optimality
conditions for MPEC from Theorem 3.1. To make the notation easier we denote
the components of g and h by g = (f1, . . . , fp) and h = (fp+1, . . . , fp+q). Then it is
not hard to see that if x̄ is a solution to problem MPEC, then (x̄, g(x̄),−h(x̄)) is a
solution to the following optimization problem:

AP Minimize f0(x)

subject to fn(x)− un = 0, n = 1, 2, . . . , p,

fn(x) + vn−p = 0, n = p+ 1, . . . , p+ q,

(x, u, v) ∈ C × graph F.

Since the usual norms in Euclidean spaces are Fréchet smooth, we can apply
the necessary conditions of Theorem 3.1 to problem AP. Observing that in finite
dimensional spaces weak-star and strong neighborhoods are the same, we have the
following theorem.

Theorem 4.7 (Fuzzy necessary conditions for MPEC). Let x̄ be a solution to
problem MPEC. Then, for any ε > 0, there exist (x0, f0(x0)) ∈ Bε((x̄, f0(x̄))),
x̃ ∈ Bε(x̄), ũ ∈ Bε(g(x̄)), ṽ ∈ Bε(−h(x̄)), xn ∈ Bε(x̄), τn ∈ {−1, 1}, and µn > 0, n =
1, 2, . . . , p+ q, such that

((τ1µ1, . . . , τpµp), (−τp+1µp+1, . . . ,−τp+qµp+q))
∈ NF (graph F ; (ũ, ṽ)) + εB(23)

and

0 ∈ ∂F f0(x0) +

p+q∑
n=1

µn∂F (τnfn)(xn) +NF (C; x̃) + εB.(24)

Multiplying (23) and (24) by µ0 = 1/(1+
∑p+q
n=1 µn) yields the following corollary.

Corollary 4.8. Let x̄ be a solution to problem MPEC. Then, for any ε > 0,
there exist (x0, f0(x0)) ∈ Bε((x̄, f0(x̄))), x̃ ∈ Bε(x̄), ũ ∈ Bε(g(x̄)), ṽ ∈ Bε(−h(x̄)),
xn ∈ Bε(x̄), τn ∈ {−1, 1}, and µn > 0, n = 0, 1, 2, . . . , p+ q, with

∑p+q
n=0 µn = 1, such

that

((τ1µ1, . . . , τpµp), (−τp+1µp+1, . . . ,−τp+qµp+q))
∈ NF (graph F ; (ũ, ṽ)) + εB(25)
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and

0 ∈ µ0∂F f0(x0) +

p+q∑
n=1

µn∂F (τnfn)(xn) +NF (C; x̃) + εB.(26)

To compare the necessary conditions derived above with existing results in the
literature, we write them in terms of the limiting subdifferentials, limiting normal
cones, and limiting coderivatives (see [13]). We start with the definitions of these
objects.

Definition 4.9. Let X be a finite dimensional Banach space. First let f : X →
R ∪ {+∞} be a lower semicontinuous function. Define

∂f(x) :=

{
lim
k→∞

vk : vk ∈ ∂F f(xk), (xk, f(xk))→ (x, f(x))

}

and

∂∞f(x) :=

{
lim
k→∞

tkvk : vk ∈ ∂F f(xk), tk → 0+, (xk, f(xk))→ (x, f(x))

}
,

and call ∂f(x) and ∂∞f(x) the limiting subdifferential and singular subdifferential of
f at x, respectively. Second, let S be a closed subset of X. Define

N(S;x) :=

{
lim
k→∞

vk : vk ∈ NF (S;xk), S � xk → x

}
,

and call N(S;x) the limiting normal cone of S at x. Finally, let F : X → 2Y be a
multifunction with closed graph, and let y ∈ F (x). We define the limiting coderivative
∂∗F (x; y) : Y ∗ → 2X

∗
of F at (x, y) by x∗ ∈ D∗F (x; y)(y∗) if and only if

(x∗,−y∗) ∈ N(graphF ; (x, y)).

Theorem 4.10 (Limiting necessary conditions for MPEC). Let x̄ be a solution
to problemMPEC. Then, either

(A1) there exist µ ∈ D∗F (g(x̄);−h(x̄))(ν) with µ := (µ1, . . . , µp) and ν :=
(−µp+1, . . . ,−µp+q), µ0 ≥ 0, τn ∈ {−1, 1}, n = 1, 2, . . . , p+ q, such that

0 ∈ µ0∂f0(x̄) +
∑

{n:µn �=0}
∂(µnfn)(x̄) +

∑
{n:µn=0}

∂∞(τnfn)(x̄) +N(C; x̄),

or
(A2) there exist x∗

0 ∈ ∂∞f0(x̄), x∗
n ∈ ∂∞(τnfn)(x̄) not all zero, where τn ∈

{−1, 1}, n = 1, 2, . . . , p+ q, such that

p+q∑
n=0

x∗
n = 0.

Proof. For each natural number k, let ε = 1
k in Corollary 4.8. Then there

exist (xk0 , f(x
k
0)) ∈ B 1

k
((x̄, f(x̄))), ũk ∈ B 1

k
(g(x̄)), ṽk ∈ B 1

k
(−h(x̄)), xkn ∈ Bε(x̄),

τkn ∈ {−1, 1}, and µkn > 0, n = 0, 1, 2, . . . , p+ q, with
∑p+q
n=0 µ

k
n = 1, such that

((τk1 µ
k
1 , . . . , τ

k
p µ

k
p), (−τkp+1µ

k
p+1, . . . ,−τkp+qµkp+q))

∈ NF (graph F ; (ũk, ṽk)) +
1

k
B(27)
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and ξk0 ∈ ∂F f0(x
k
0), ξ

k
n ∈ ∂F (τ

k
nfn)(x

k
n), n = 1, 2, . . . , p+ q, and ξ̃k ∈ NF (C; x̃k) such

that ∥∥∥∥∥
p+q∑
n=0

µknξ
k
n + ξ̃k

∥∥∥∥∥ <
1

k
.(28)

We will take limits as k →∞. Observe first that, passing to subsequences if necessary,
we may assume that τn = τkn ∈ {−1, 1} are independent of k. Now we consider the
following two cases.

The regular case, when the sequence tk = ‖ξk0‖+
∑p+q
n=1 ‖µknξkn‖ is bounded. With-

out loss of generality we may assume that µk0ξ
k
0 → x∗

0, µk0 → µ0, µknξ
k
n → x∗

n,
τnµ

k
n → µn, n = 1, . . . , p + q, and ξ̃k → x̃∗. Then we must have x∗

0 ∈ µ0∂f0(x̄),
x∗
n ∈ ∂(µnfn)(x̄) for µn 	= 0, x∗

n ∈ ∂∞(τnfn)(x̄) for µn = 0, x̃∗ ∈ N(C; x̄), µ ∈
D∗F (g(x̄);−h(x̄))(ν) with µ := (µ1, . . . , µp) and ν := (−µp+1, . . . ,−µp+q), and

p+q∑
n=0

x∗
n + x̃∗ = 0.(29)

This is (A1).
The singular case, when the sequence tk = ‖ξk0‖ +

∑p+q
n=1 ‖µknξkn‖ is unbounded.

Without loss of generality we may assume that tk → ∞, µknξ
k
n/t

k → x∗
n, n =

0, 1, 2, . . . , p+q, and ξ̃k/tk → x̃∗. Then we must have x∗
0 ∈ ∂∞f(x̄), x∗

n ∈ ∂∞(τnfn)(x̄),
n = 1, 2, . . . , p+ q, x̃∗ ∈ N(C; x̄), and

p+q∑
n=0

x∗
n + x̃∗ = 0.(30)

It is clear that x∗
n, n = 0, . . . , p+ q, are not all zero. This is (A2).

If all the functions fn, n = 0, 1, . . . , p + q, are locally Lipschitz near x̄, then
∂∞(τnfn)(x̄) = {0} for all n = 0, 1, . . . ., p+q. Then Theorem 4.10 takes the following
much simpler form.

Theorem 4.11. Let x̄ be a solution to problem MPEC. Suppose that all the
functions fn, n = 0, 1, . . . , p+ q, are locally Lipschitz around x̄. Then there exist µ ∈
D∗F (g(x̄);−h(x̄))(ν) with µ := (µ1, . . . , µp) and ν := (−µp+1, . . . ,−µp+q), µ0 ≥ 0,
τn ∈ {−1, 1}, n = 1, 2, . . . , p+ q, such that

0 ∈
p+q∑
n=0

∂(µnfn)(x̄) +N(C; x̄).(31)

First order necessary conditions for mathematical programs with equilibrium con-
straints (also known as optimization problems with variational inequality constraints)
are the subject of much research (see [12, 24, 19] and the references therein). The
model in [19] is the most general so far, and [24] represents one approach to the deriva-
tion of necessary conditions for such problems with nonsmooth data. We briefly indi-
cate how to recover the first order necessary conditions in [19, 24] from Theorems 4.10
and 4.11. In [19], Outrata discussed the case in which f0 is Lipschitz and all the func-
tions fn, n = 1, . . . , p+q, are smooth. Then ∂(µnfn)(x̄) = µnf

′(x̄), n = 1, 2, . . . , p+q.
Noticing that the constraint qualification condition (CQ) in [19] rules out the possi-
bility that µ0 = 0 (so that we can always rescale to make µ0 = 1), Theorem 3.1 in [19]
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follows directly from Theorem 4.11. In [24], Ye discusses the optimization problem
with variational inequality constraints. The essential difficulties are contained in the
following form of the problem:

VI minimize h0(y, z)

subject to 0 ∈ h(y, z) +N(Ω; z),

(y, z) ∈ C.

Here Ω is a closed convex set, and N(Ω; ·) is the convex normal cone of Ω. It is
easy to see that problem VI is a special case ofMPEC with x = (y, z), g(y, z) = z,
F (z) = N(Ω; z). Applying Theorem 4.10, we have the following necessary conditions
that generalize the necessary optimality conditions in [24] by allowing h to be a
continuous function and h0 to be a lower semicontinuous function.

Theorem 4.12. Let h = (h1, . . . , hq) be a continuous function, and let h0 be
a lower semicontinuous function. Suppose that (ȳ, z̄) is a solution to problem VI.
Then, either

(A1) there exist ν0 ≥ 0, ν = (−ν1, . . . ,−νq), τ0 = 1, τn ∈ {−1, 1}, n = 1, . . . , q,
such that

0 ∈
∑

{n:νn �=0}
∂(νnhn)(ȳ, z̄) +

∑
{n:νn=0}

∂(τnhn)(ȳ, z̄)

+ {0} ×D∗N(Ω; ȳ;−h(ȳ, z̄))(ν) +N(C; (ȳ, z̄))

or
(A2) there exist x∗

0 ∈ ∂∞h0(ȳ, z̄), x
∗
n ∈ ∂∞(τnhn)(ȳ, z̄) not all zero, where τn ∈

{−1, 1}, n = 1, 2, . . . , q, such that

q∑
n=0

x∗
n = 0.
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Abstract. In this paper, an interior point trust region algorithm for the solution of a class
of nonlinear semidefinite programming (SDP) problems is described and analyzed. Such nonlinear
and nonconvex programs arise, e.g., in the design of optimal static or reduced order output feedback
control laws and have the structure of abstract optimal control problems in a finite dimensional
Hilbert space. The algorithm treats the abstract states and controls as independent variables. In
particular, an algorithm for minimizing a nonlinear matrix objective functional subject to a nonlinear
SDP-condition, a positive definiteness condition, and a nonlinear matrix equation is considered. The
algorithm is designed to take advantage of the structure of the problem. It is an extension of an
interior point trust region method to nonlinear and nonconvex SDPs, with a special structure which
applies sequential quadratic programming techniques to a sequence of barrier problems and uses
trust regions to ensure robustness of the iteration. Some convergence results are given, and, finally,
several numerical examples demonstrate the applicability of the considered algorithm.

Key words. interior point method, trust region method, nonlinear semidefinite program, non-
convex programming, primal method, static output feedback, optimal control
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1. Introduction. This work is concerned with the development of an interior
point-based algorithm combined with a trust region strategy for a special class of
nonlinear and nonconvex semidefinite programming (SDP) problems. Optimization
problems of this type arise for several applications in system and control theory (see,
i.e., [5], [26], [35], and the references therein). In particular, this paper was motivated
by the problem of designing static or reduced order output feedback compensators for
stabilizing a linear quadratic control system. These problems are important exam-
ples of difficult, and in general nonconvex, nonlinear control problems. They consist
of determining static output feedback (SOF) matrices which minimize a nonlinear
objective functional such that the SOF gain stabilizes the corresponding closed loop
system (see, i.e., [3], [22], [28]). Problems of this type can be formulated as specially
structured nonconvex and nonlinear matrix optimization problems including nonlinear
SDP-constraints. In particular, they have the following general form:

min
F,L

J(F,L) s.t. h(F,L) = 0, Y (F,L) ≺ 0, L � 0,(1.1)

where F ∈ R
p×r, L ∈ R

n×n, L = LT , and p, r < n. The functions h, Y : R
p×r ×

R
n×n → R

n×n, J : R
p×r × R

n×n → R are assumed to be at least twice continuously
differentiable, and the nonlinear matrix function Y (·) is supposed to be symmetric.
As indicated above, minimization problems of the form (1.1) often arise in the design
of optimal SOF matrices. The structure of the equation h(F,L) = 0 allows an explicit
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composition of the optimization variables (F,L) into basic variables L and nonbasic
variables F . This structure is analogous to the one exhibited by many discretized op-
timal control problems. In the language of those problems, F represents the controls,
L represents the states, h(F,L) = 0 represents the state equation, and the nonlinear
SDP-constraints

Y (F,L) ≺ 0, L � 0(1.2)

can be interpreted as state and control constraints. In (1.1) the optimization variable
spaces are given by R

p×r and R
n×n, respectively. Both spaces are finite dimensional

Hilbert spaces if we choose the inner product by 〈X,Z〉 = Tr(XTZ), where Tr(·)
denotes the trace operator.

The main goal of this paper is to propose and analyze an algorithm for finding
an approximate solution to (1.1). The difficulties in solving (1.1) arise from the fact
that it is a nonlinear and nonconvex matrix optimization problem. It is composed
of an objective functional, which is nonlinear in the matrix variables F and L, and
a constraint set, which consists of a nonlinear SDP-condition in F and L, a positive
definiteness condition on L, and a nonlinear matrix equation. Thus, (1.1) is a specially
structured nonlinear and nonconvex SDP-problem. To our knowledge, there is no gen-
eral algorithm available for solving nonlinear and nonconvex SDP-problems expect the
QQP-algorithm developed by Jarre [18]. The major drawback of the QQP-method is
the use of the QR-decomposition of the Jacobian of the nonlinear equality constraints
for computing a search direction and the evaluation of the Hessian matrix in every
QQP-iteration, which can be very time-consuming. This is another motivation for the
development of an interior point-based algorithm for solving nonlinear SDP-problems
of the form (1.1). In particular, using ideas of nonlinear interior point methods and
usual SDP-approaches combined with trust region techniques, we construct an opti-
mization solver for (1.1), which exploits the inherent structure of this problem class
without evaluating the Hessian matrix explicitly. Generalization of modern interior
point methods to general nonconvex programs has been recognized during the last
few years; see, for example, Byrd, Gilbert, and Nocedal [6], Conn, Gould, Orban, and
Toint [8], Dennis, Heinkenschloss, and Vicente [11], El-Bakry, Tapia, Tsuchiya, and
Zhang [13], Forsgren and Gill [14], Gay, Overton, and Wright [15], Vanderbei and
Shanno [36], and the references therein. Moreover, trust region methods have proved
to be very successful and robust in solving nonlinear programming problems (see, i.e.,
[6], [9], [8], [10], [11], [29], [37]). Finally, there is a huge number of papers dealing with
linear (convex) SDP-problems; see, for example, [1], [2], [30], [35], and the references
therein.

Following the strategy of interior point and SDP-methods, we associate with (1.1)
the following barrier problem in the matrix variables F and L:

minF,L Φµ(F,L) = J(F,L)− µ[log det(L) + log det(−Y (F,L))] s.t. h(F,L) = 0,
(1.3)

where µ > 0 and L, −Y (F,L) are (implicitly) assumed to be positive definite. The
main goal of this paper is to produce a constrained trust region (CTR) algorithm for
finding an approximate solution of the barrier problem (1.3), for fixed µ, that is tai-
lored to the structure of the problem and effectively enforces the positive definiteness
conditions L � 0, −Y (F,L) � 0 of the (nonlinear) SDP-constraints. This algorithm
can be applied repeatedly to problem (1.3), for decreasing values of µ, to approximate
the solution of the original nonlinear SDP-problem (1.1). The CTR approach for
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solving (1.3) can be considered as a variant of a sequential quadratic programming
method, which has a good global and local convergence behavior. In our approach,
the quadratic trust region subproblem decomposes into two trust region subproblems
that are easier to solve. In particular, we use a tangent space method for solving the
trust region subproblems (see, i.e., [6], [10], [11], [28]).

The organization of this paper is as follows. In subsection 1.1 we state the basic
problem structure and assumptions which are needed to develop the algorithm. Then,
in subsection 1.2, we discuss the framework of the interior point (barrier) method
applied to (1.1). In subsection 1.3 we give a short overview of (static) output feedback
problems arising in system and control theory, which justifies the formulation of the
general nonlinear SDP-problem (1.1).

The main part of this paper is contained in section 2. In this section we discuss
in detail a CTR method for solving the barrier problem (1.3). In particular, we use
a so-called tangent space approach. Therein, we exploit the structure of the problem
for decomposing the trial step into a quasi-normal and a tangential component as
done in [28]. We include the SDP-conditions explicitly in our CTR subproblems by
imposing a fraction rule which is similar to that of [6].

In sections 2.1 and 2.2 we state in detail how we compute the quasi-normal and the
tangential step during the CTR algorithm for solving barrier problem (1.3). There-
after, in subsection 2.3, we consider the overall CTR method, and in subsection 2.4
we discuss the main global convergence result for this algorithm class.

After deriving the CTR approach for solving (1.3), in section 3 we consider the
whole interior point constrained trust region (IPCTR) algorithm for computing an
optimal solution of the nonlinear SDP-problem (1.1) and establish a global conver-
gence result for IPCTR; i.e., we ensure that any accumulation point of the generated
sequence of IPCTR is a first order Karush–Kuhn–Tucker (KKT) point of (1.1).

Finally, in the last section we illustrate the numerical performance of the IPCTR
algorithm by using test examples from the engineering literature.

Notation: Throughout this paper, 〈·, ·〉 denotes the inner product defined by
〈M,Z〉 = Tr(MTZ), where Tr(·) is the trace operator, and ‖·‖ denotes the Frobenius

norm given by ‖M‖ = 〈M,M〉 12 , while other norms will be specified, e.g., the 2-norm
‖ · ‖2. For a matrix M ∈ R

m×m we use the notation M � 0, M � 0, M ≺ 0, M � 0
if it is positive definite, positive semidefinite, negative definite, negative semidefinite,
respectively. For a twice differentiable mapping g : U × V → W (U ,V,W being finite
dimensional Hilbert spaces), we denote by gU (U, V ), gV (U, V ), gUU (U, V ), etc., the
first and second partial derivatives of g with respect to U , V at (U, V ) ∈ U × V,
respectively. The notations ∇gU (·), ∇2gUU (·), and so on will be used in the case that
g is real valued, respectively. Moreover, the notation gU (·)H is used when a linear
operator gU (·) is applied to an element H ∈ U . Furthermore, by g∗U (·) we denote
the adjoint operator of gU (·). The space of linear and bounded operators from U
to V is denoted by L(U ,V). Finally, the matrices AF and QF are always used as
abbreviations for A + BFC and CTFTRFC + Q, respectively.

1.1. Problem structure and assumptions. In this section we discuss the ba-
sic problem structure to develop the algorithm and state the basic assumptions which
we impose on the nonlinear SDP-problem (1.1) and the corresponding barrier prob-
lem (1.3). We will also introduce some fundamental quantities that are subsequently
needed. For constructing the algorithm, we use a technique which is often considered
in the applications of optimal control problems and other SQP-based methods if the
variables can be decomposed into states and controls. In particular, if the mapping
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hL(F,L) is invertible, the linearized equality constraint equation possesses a unique
solution. This is the basic structure that we will extract in the subsequent sections
for developing the algorithm. Note that the same problem structure has been already
used in the past; see, for example, [21], [20], [11], [28], and the references therein.

During the whole paper we use the following basic assumptions.
Assumption 1.1.
(i) J : R

p×r × R
n×n → R, h, Y : R

p×r × R
n×n → R

n×n are at least twice
continuously differentiable, F ∈ R

p×r, L ∈ R
n×n, L = LT , p, r < n, and

Y (·) = Y (·)T .
(ii) There exist F0 ∈ R

p×r and L0 ∈ R
n×n such that (F0, L0) ∈ Fs, where

Fs := {(F,L) | Y (F,L) ≺ 0, L � 0}.(1.4)

(iii) For given (F,L) ∈ Fs, the mapping hL(F,L) is invertible.
Assumption 1.1(ii) ensures that barrier problem (1.3) is well defined and that Fs

is nonempty. Moreover, the invertibility of Y (F,L) follows from the definition of Fs.
Assumptions 1.1(i) and (iii) guarantee the differentiability of the barrier functional
Φµ(F,L) for every µ > 0.

The Lagrangian function associated with barrier problem (1.3) is defined by

�µ(F,L,K) = Φµ(F,L) + 〈K,h(F,L)〉,(1.5)

where K ∈ R
n×n denotes the Lagrange multiplier for the constraint h(F,L) = 0.

The linearized equality constraints are given by

hF (F,L)∆F + hL(F,L)∆L + h(F,L) = 0,(1.6)

where hF (F,L)∆F and hL(F,L)∆L are the partial derivatives of h applied to ∆F ∈
R
p×r and ∆L ∈ R

n×n, respectively. If the mapping hL(F,L) is invertible, then (1.6)
implies

∆L = −h−1
L (F,L)hF (F,L)∆F − h−1

L (F,L)h(F,L),

which leads to the following natural representation of the step S = (∆L,∆F ) ∈
R
n×n × R

p×r:

(∆L,∆F ) = T (F,L)∆F + (−h−1
L (F,L)h(F,L), 0),(1.7)

where 0 is the zero matrix and, denoting by I the identity mapping, the linear operator

T (F,L) = (T1(F,L), I) = (−h−1
L (F,L)hF (F,L), I) ∈ L(Rp×r,Rn×n × R

p×r)

characterizes the null space of h′(F,L), which can be represented by

N (h′(·)) = {(∆L,∆F ) | hF (·)∆F +hL(·)∆L = 0} = {T (·)∆F,∆F ∈ R
p×r}.(1.8)

Thus, the step S can be decomposed into a so-called quasi-normal component Sn and
tangential component St. Note that Sn is of the form Sn = (∆Ln, 0). Therefore, the
displacement along Sn is made only in the L-variables. The tangential component
is in the null space of h′, and it is of the form St = (T1(F,L)∆F,∆F ). Hence, the
displacement along St can be made in the F-variables, where the L-part of St, also
denoted by ∆Lt, depends on ∆F .
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1.2. Outline of the interior point method. We begin by describing the
framework of our algorithm. It is basically a sequential minimization of the log-
arithmic barrier function Φµ(F,L), defined in (1.3), subject to a nonlinear matrix
equality constraint; i.e., we propose to (approximately) solve (1.3) for a sequence
of barrier parameters µj > 0, j = 0, 1, 2, . . . , whose limiting value is zero. An ap-
proximate minimizer of problem (1.3), (Fj+1, Lj+1), defines an outer iterate, and the
associated adjustment of the barrier parameter and other tolerances defines the outer
iteration. Outer iterations will be indexed by the subscript j ≥ 0. Each outer it-
erate (Fj+1, Lj+1) is computed by using an appropriate inner iteration algorithm to
approximately solve (1.3), with a corresponding sequence of inner iterates {(Fk, Lk)}.

Our method mainly works with primal variables, while dual variables are com-
puted from the primal iterate via the solution of a certain equation. We do this
because for nonconvex problems the advantage of using dual variables directly may
be outdone by the difficulties arising from loss of primal-dual symmetry and from the
loss of monotonicity properties which are present in convex primal-dual formulations.

The overall algorithm for decreasing values of the barrier parameter can be de-
scribed as follows. Assume that for given µj > 0 a (strictly) feasible point (F0, L0)
for Φµj (·, ·) is known, i.e., (F0, L0) ∈ Fs. Note that we do not suppose that (F0, L0)
satisfies the equality constraints of (1.3). Then, the method consists of finding suc-
cessively approximate solutions of the corresponding barrier problems. We formally
state the outer iteration as Algorithm 1.1.

Algorithm 1.1. Choose µ0 > 0, ε0 > 0, a, b ∈ (0, 1), and (F0, L0) ∈ Fs. Set
j = 0.

For j = 0, 1, 2, . . . do (Outer iteration)
(Inner iteration) For µ = µj > 0 minimize barrier problem (1.3) starting
from (F0, L0) := (Fj , Lj) ∈ Fs. Stop this inner algorithm as soon as an
inner iterate (Fk, Lk) satisfies

||∇�µj

F (Fk, Lk,Kk)||+ ||h(Fk, Lk)|| ≤ εj ,

where

∇�µF (F,L,K) = ∇JF (F,L)−µY ∗
F (F,L)Y −1(F,L)+h∗

F (F,L)K(1.9)

and K is the solution of the adjoint equation

∇�µL(F,L,K) = h∗
L(F,L)K +∇JL(F,L)− µM(F,L) = 0,(1.10)

M(F,L) = L−1 + Y ∗
L (F,L)Y −1(F,L).(1.11)

Choose µj+1 ∈ (0, aµj), εj+1 ∈ (0, bεj) and set (Fj+1, Lj+1) = (Fk, Lk).
All the iterates generated by this algorithm form a single sequence {(Fj , Lj)}j≥0.

Since each inner iteration consists of minimizing (1.3) for fixed µj > 0, the (approx-
imate) solution of the jth barrier problem, denoted by (Fj+1, Lj+1), also satisfies
the SDP-constraints. For more detail, we refer to the following sections. Therein
we consider a trust region method for finding an approximate solution of each bar-
rier problem, which is tailored to the special structure of the nonlinear SDP-problem
considered in this paper.

1.3. Application/background: Output feedback problems. The design of
stabilizing feedback control laws has been an active research area of the control com-
munity for several decades. In this area, the optimal static output feedback problem
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is an important example of a difficult (in general nonconvex and nonlinear) control
problem. The optimal control problem consists of finding an SOF gain matrix which
minimizes an infinite time quadratic objective function in such a way that the feedback
gain yields an asymptotically stable closed loop system. Since the resulting nonlinear
and nonconvex matrix optimization problems are of considerable importance, there
exist various algorithms for obtaining a numerical solution. Several researchers have
refined the algorithms by using techniques from mathematical optimization such as
step size rules, iterative solvers for solving the first order optimality system, Newton’s
method, quasi-Newton method, and interior point-based approaches. For example,
the algorithms stated in [3] are in general first order methods. The development of
higher order methods was introduced by [34]. The authors in [34] used Newton’s
method combined with an Armijo line search rule as a globalization strategy. In
[31] the optimal SOF problem was solved by a quasi-Newton method. Moreover, the
author in [24] and [22] developed special interior point algorithms for tackling such
problem classes numerically.

Recently, Leibfritz and Mostafa [28] used a CTR approach for solving the optimal
SOF problem. However, to our knowledge, neither they nor any of the above authors
considered interior point trust region methods, which can be used in general for solving
nonlinear and possibly nonconvex optimization problems. This was one of our main
motivations in developing an interior point trust region-based algorithm for solving
the optimal SOF design problem, which can be formulated as a special nonlinear and
nonconvex SDP-minimization problem. As shown in [27], the optimal SOF design
problem is a special case of the nonlinear SDP-problem (1.1). In particular, defining
J(F,L) = 〈L,QF 〉, h(F,L) = AFL+LAT

F +P , and Y (F,L) = AFL+LAT
F , problem

(1.1) reduces to

min
F,L

Tr(LQF ) s.t. AFL + LAT
F + P = 0, AFL + LAT

F ≺ 0, L � 0,(1.12)

where AF = A + BFC, QF = CTFTRFC + Q. Therein we assume that the data
matrices A, B, C, Q, R are appropriately dimensioned real constant matrices. In this
case F is the so-called static output feedback controller matrix, AF denotes the closed
loop system matrix, and h(F,L) = 0 is a Lyapunov equation in the unknowns F and
L. Moreover, the SDP-conditions Y (F,L) = AFL + LAT

F ≺ 0, L � 0, represent the
stability of a linear system of the form ẋ(t) = AFx(t), x(0) = x0. A further example of
an SOF design problem, which falls within the class of problem (1.1), is the so-called
SOF H2/H∞ problem. In its simplest form, we can define the problem functions of
(1.1) by J(F,L) = 〈L,QF 〉 and

h(F,L) = AFL + LAT
F + P +

1

γ2
LQFL,

Y (F,L) =

(
AF +

1

γ2
LQF

)
L + L

(
AF +

1

γ2
LQF

)T
,

where γ > 0 is given (see [22] and the references therein). Note that in the above SOF
problems, Assumptions 1.1(i) and (iii) are always satisfied for every (F,L) ∈ Fs. In
particular, one can show that the mapping hL(F,L) is bijective on Fs (see, i.e., [28,
Lemma 3.2]).

Most of the available algorithms require an initial stabilizing SOF controller ma-
trix, which can demand great computational effort. Recently, linear matrix inequali-
ties (LMIs) have attained much attention in control engineering (see, i.e., [5] and the
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references therein), since many control problems can be formulated in terms of LMIs.
For example, this includes H∞ (see, i.e., [7]), H2 (see, i.e., [16]), and mixed H2/H∞
(see, i.e., [19]) design problems. However, the resulting controllers are state feedback
or of order n equal to the plant. The difficulties arise if we want to design SOF
controllers. In this case, the corresponding control problem results in a special struc-
tured nonconvex SDP-problem (see, i.e., [23], [26], [22], and the references therein).
In particular, the problem of finding an SOF controller can be reduced to an SDP-
problem with a nonconvex objective function over a convex set containing LMIs. For
solving this problem, the author in [23] derived an algorithm, the so-called sequential
linear programming matrix method (SLPMM). In our numerical testing we have used
SLPMM for determining a feasible point for Φµ, i.e., a matrix pair (F,L) satisfying
the nonlinear SDP-constraints (1.2) of the corresponding SOF design problem. Then,
if not otherwise stated, we have taken the result of SLPMM as a starting point for
our interior point trust region method. For more details on SOF design problems, we
refer the interested reader to [22], [23], [26], [27], and the references therein.

During the whole paper we make the following assumptions on the constant data
matrices if we consider SOF design problems.

Assumption 1.2. Let A,P,Q ∈ R
n×n, B ∈ R

n×p, C ∈ R
r×n, R ∈ R

p×p be given
with P � 0, Q � 0, R � 0, and C having full rank r ≤ n.

2. Constrained trust region method for the barrier problem. In this sec-
tion we give a detailed description of the algorithm for solving the barrier problem
(1.3). We develop a CTR method for solving this problem class. In particular, this
trust region method is used as the inner iteration procedure in the interior point Al-
gorithm 1.1 for determining an approximate solution of nonlinear SDP-problem (1.1).
The trust region algorithm that we propose generates a sequence {(Fk, Lk)}, and
each pair (Fk, Lk) is strictly feasible with respect to the nonlinear SDP-constraints,
(Fk, Lk) ∈ Fs. At iteration k the pair (Fk, Lk) is given, and we need to compute
a trial step Sk = (∆Lk,∆Fk). The step Sk is computed by solving some trust re-
gion subproblems. Then the new point is tested using some merit function to decide
whether it is a better approximation to a solution of (1.3). The trust region radius is
then adjusted, and a new quadratic model of (1.3) is formed. Throughout the section,
we assume that µ > 0 is fixed and an (initial) pair (F,L) ∈ Fs is known; i.e., we can
choose this pair as the solution of the previous barrier problem.

For solving the trust region subproblems, we use a tangent space approach (see,
i.e., [11], [10]). In this approach the trial step is determined as Sk = Sn+St, where Sn

denotes the quasi-normal component and St is the tangential component with respect
to the null space of the constrained Jacobian. The role of Sn is to move towards
feasibility, and the role of St is to move towards optimality. However, note that we
do not require feasibility with respect to the nonlinear equality constraint h(F,L) = 0
of (1.3).

For deriving the CTR subproblem, we need the following lemma, which states the
first and second order partial derivatives of the barrier and the Lagrangian functional
applied to elements of the domain space. Since the proof of this result is straightfor-
ward, we omit it.

Lemma 2.1. Let (F,L) ∈ Fs, K ∈ R
n×n, L ∈ R

n×n, and µ > 0 be given. Then
the barrier function Φµ of (1.3) and the Lagrangian functional �µ are twice continu-
ously differentiable on Fs. Moreover, the first and second order partial derivatives of
Φµ and the Lagrangian function (1.5) applied to elements ∆F ∈ R

p×r and ∆L ∈ R
n×n
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are given by

Φµ
F (·)∆F = 〈∆F,∇Φµ

F (·)〉 = 〈∆F,∇JF (·)− µY ∗
F (·)Y −1(·)〉,

Φµ
L(·)∆L = 〈∆L,∇Φµ

L(·)〉 = 〈∆L,∇JL(·)− µM(·)〉,
�µF (·)∆F = 〈∆F,∇�µF (·)〉 = 〈∆F,∇Φµ

F (·) + h∗
F (·)K〉,

�µL(·)∆L = 〈∆L,∇�µL(·)〉 = 〈∆L,∇Φµ
L(·) + h∗

L(·)K〉,
�µFF (·)(∆F,∆F ) = 〈∆F,∇2�µFF (·)∆F 〉,
�µFL(·)(∆F,∆L) = 〈∆F,∇2�µFL(·)∆L〉 = �µLF (·)(∆L,∆F ),

�µLL(·)(∆L,∆L) = 〈∆L,∇2�µLL(·)∆L〉,

where M(F,L) is defined by (1.11) and

∇2�µFF (·)∆F = ∇2JFF (·)∆F + (hFF (·)∆F )∗K
+ µY ∗

F (·)(Y −1(·)YF (·)∆FY −1(·))− µ(YFF (·)∆F )∗Y −1(·),
∇2�µFL(·)∆L = ∇2JFL(·)∆L + (hFL(·)∆L)∗K

+ µY ∗
F (·)(Y −1(·)YL(·)∆LY −1(·))− µ(YFL(·)∆L)∗Y −1(·),

∇2�µLL(·)∆L = ∇2JLL(·)∆L + (hLL(·)∆L)∗K
+ µL−1∆LL−1 + µY ∗

L (·)(Y −1(·)YL(·)∆LY −1(·))− µ(YLL(·)∆L)∗Y −1(·).

Using Lemma 2.1, the necessary optimality conditions for the barrier problem
(1.3) are given by

∇�µF (F,L,K) = ∇JF (F,L)− µY ∗
F (F,L)Y −1(F,L) + h∗

F (F,L)K = 0,(2.1)

∇�µL(F,L,K) = h∗
L(F,L)K +∇JL(F,L)− µ(L−1 + Y ∗

L (F,L)Y −1(F,L)) = 0,(2.2)

h(F,L) = 0,(2.3)

and implicitly L � 0, Y (F,L) ≺ 0. Observe that, by setting µ = 0 in (2.1) and (2.2),
we obtain the KKT conditions for nonlinear SDP-problem (1.1).

For given (F,L) ∈ Fs and K ∈ R
n×n we introduce a quadratic model

q(∆F,∆L) = �µ+�µF∆F+�µL∆L+
1

2

(
�µFF (∆F,∆F ) + 2�µFL(∆F,∆L) + �µLL(∆L,∆L)

)
(2.4)

of �µ(F + ∆F,L + ∆L,K) about the current iterate (F,L,K), where ∆F ∈ R
p×r,

∆L ∈ R
n×n, and �µ = �µ(F,L,K). Using the quadratic model (2.4) of �µ, we can

define the CTR subproblem. For example, to determine (∆F,∆L) from the current
point (F,L,K), we minimize the quadratic model q subject to linearized equality
constraints and a trust region constraint for restricting the step. The trust region
constraint does not prevent the new variables (F + ∆F,L + ∆L) from satisfying the
SDP-constraints unless the trust region radius is sufficiently small. Since it is not
desirable to impede progress of the iteration by employing small trust regions, we
explicitly bound the F - and L-variables by imposing a fraction rule similar to (see
[6])

L + ∆L � (1− σ)L � 0, Y (F + ∆F,L + ∆L) � (1− σ)Y (F,L),

where σ ∈ (0, 1) is chosen close to one and (F,L) is given such that L � 0, Y (F,L) ≺ 0.
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Hence, at each inner iteration, we solve the following CTR subproblem:

min q(∆F,∆L)

s.t. hF (F,L)∆F + hL(F,L)∆L + h(F,L) = 0,
Y (F + ∆F,L + ∆L) � (1− σ)Y (F,L),

∆L � −σL, ||(∆F,∆L)|| ≤ δ,

(2.5)

where δ > 0 is the current trust region radius. However, in this straightforward ap-
proach it is well known that the linearized constraints and the trust region constraint
may be inconsistent in such a way that the CTR subproblem (2.5) does not have a
solution (see, i.e., [10]). To overcome this difficulty, two main approaches have been
introduced in the trust region literature, the tangent space approach and the full space
approach.

We use the tangent space approach in which each trust region problem of the form
(2.5) is decomposed into two trust region subproblems; in particular, the quasi-normal
problem for obtaining Sn and the tangential problem for computing St with respect
to the null space of the constraint Jacobian. For building a basis of the null space of
h′(F,L), we use a technique which is often considered in the applications of optimal
control problems (see, for example, [11], [28], and the references therein). Especially,
as discussed in subsection 1.1, the solutions of the linearized constraints (1.6) of h are
of the form (∆L,∆F ) = Sn + T (F,L)∆F if the mapping hL(F,L) is invertible. As a
result of (1.8) the linearized equality constraints (1.6) can be split into two equations.

Lemma 2.2. Let (F,L) ∈ Fs be given and hL(F,L) be invertible; then the lin-
earized constraints (1.6) decompose into the following equations:

hL(F,L)∆Ln + h(F,L) = 0,(2.6)

hL(F,L)∆Lt + hF (F,L)∆F = 0.(2.7)

Proof. By using the decomposition (1.7), constraints (1.6) can be restated as

hL(F,L)∆Lt + hF (F,L)∆F + hL(F,L)∆Ln + h(F,L) = 0.(2.8)

Since T (F,L)∆F is the null space operator of h′(F,L), (1.8) implies

hL(F,L)∆Lt + hF (F,L)∆F = 0 ∀ ∆F ∈ R
p×r,

which corresponds to (2.7). Thus, (2.8) reduces to (2.6).
As a result of the decomposition (1.7) of S and Lemma 2.2, the CTR subproblem

(2.5) can be split into two subproblems which are easier to solve. The first one gives the
quasi-normal component Sn, while the second one yields the tangential component St

of the trial step S = Sn + St. Moreover, note that the L-part ∆Lt of the tangential
component defined by (2.7) depends on ∆F . In particular, the solution is given
by ∆Lt = T1(F,L)∆F . Therefore, we always interpret ∆Lt as a matrix function
depending on ∆F .

2.1. Computation of the quasi-normal component. At each step of the
CTR algorithm for the barrier problem we solve a trust region subproblem for ob-
taining the quasi-normal component. Let δ be the current trust region radius and
(F,L) ∈ Fs be given. The quasi-normal component is required to have the form
Sn = (∆Ln, 0) and is related to the trust region subproblem for the linearized con-
straints. Thus, the displacement along Sn is made only in the L-variables, and as a
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consequence, (L,F ) and (L,F ) + Sn have the same F -components. Therefore, the
quasi-normal step is computed by solving the following normal subproblem:

min
1

2
||hL(F,L)∆L̂n + h(F,L)||2 s.t. ||∆L̂n|| ≤ ωδ, ∆L̂n � −σωL,

where σ, ω ∈ (0, 1) are given scalars.
One approach to solving the quasi-normal problem is the following: In the first

step, compute a solution ∆L̂n of (2.6), and in a second step, control the size of ∆L̂n

such that it lies inside of the trust region and such that all eigenvalues of ∆L̂n +σωL
are nonnegative. This can be done by determining the solution of the one-dimensional
minimization problem

min
β>0

1

2
||βhL(F,L)∆L̂n + h(F,L)||2 s.t. β||∆L̂n|| ≤ ωδ, β∆L̂n � −σωL.

First we consider only the SDP-condition

σωL + β∆L̂n � 0(2.9)

for β > 0. Let ETE = L be the Cholesky factorization of L � 0. Then, if ∆L̂n � 0,
the above SDP-condition is fulfilled for all β > 0. Thus, suppose that ∆L̂n is not
positive semidefinite. In this case, (2.9) is equivalent to finding β > 0 such that

σωI + βE−T∆L̂nE−1 � 0.

With this change, the problem of determining β > 0 satisfying (2.9) is equivalent
to the step length problem in ordinary linear programming; i.e., we obtain (see, for
example, [32, section 4.2])

β = − σω

λmin(E−T∆L̂nE−1)
,(2.10)

where λmin(E−T∆L̂nE−1) < 0 denotes the smallest eigenvalue of E−T∆L̂nE−1.
With this observation, an approximate solution of this minimization problem is

given by

β =




1 if ||∆L̂n|| ≤ ωδ,∆L̂n � 0,
ωδ

||∆L̂n|| if ||∆L̂n|| > ωδ,∆L̂n � 0,

min
(

1, ωδ
||∆L̂n|| ,− σω

λmin(E−T ∆L̂nE−1)

)
if ∆L̂n �� 0.

(2.11)

Finally, the component ∆L̂n is replaced by ∆Ln = β∆L̂n, which is an approxi-
mate solution of the quasi-normal problem.

As outlined above, we do not have to solve the quasi-normal subproblem exactly.
We only have to guarantee that the quasi-normal component is small close to feasible
points and that it satisfies a form of Cauchy decrease condition. Assuming that (F,L)
is in Fs, which is an open set in R

p×r×R
n×n, and that the matrix operator h−1

L (F,L)
is uniformly bounded in Fs, we can show the following important result.

Lemma 2.3. Let ω, σ ∈ (0, 1), δ > 0 be defined as above, and (F,L) ∈ Fs.
Suppose that there exist positive constants ν1, ν2 such that ||h−1

L (F,L)|| ≤ ν1 and
||E−1|| ≤ ν2 for all (F,L) ∈ Fs, where E denotes the Cholesky factor of L � 0. Then
the quasi-normal component

Sn = (−βh−1
L (F,L)h(F,L), 0) = (∆Ln, 0),
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where β > 0 is defined by (2.11), satisfies

||Sn|| ≤ ν1||h(F,L)||(2.12)

and

||h(F,L)||2 − ||h(F,L) + hL(F,L)∆Ln||2 ≥ κ||h(F,L)||min(||h(F,L)||, ωδ, ωσ)
(2.13)

for the positive constant κ = min(1, 1
ν1
, 1
ν1ν2

2
).

Proof. Using β ∈ (0, 1], the boundedness of h−1
L (F,L), and ||Sn|| = ||∆Ln||, we

deduce that

||Sn|| ≤ β||h−1
L (F,L)|| ||h(F,L)|| ≤ ν1||h(F,L)||.

Now, let us prove (2.13). Obviously, we have

||h(F,L)||2 − ||h(F,L) + hL(F,L)∆Ln||2
= ||h(F,L)||2 − ||h(F,L)− βhL(F,L)(h−1

L (F,L)h(F,L))||2
= ||h(F,L)||2 − ((1− β)||h(F,L)||)2
= β(2− β)||h(F,L)||2 ≥ β||h(F,L)||2.

Thus, we need to consider three cases. If β = 1, then

||h(F,L)||2 − ||h(F,L) + hL(F,L)∆Ln||2 ≥ ||h(F,L)||min(||h(F,L)||, ωδ, ωσ).

If β = ωδ
||∆L̂n|| and using

1

||∆L̂n|| ≥
1

||h−1
L (F,L)|| ||h(F,L))|| ≥

1

ν1||h(F,L))|| ,

we obtain

||h(F,L)||2 − ||h(F,L) + hL(F,L)∆Ln||2 ≥ ωδ

ν1
||h(F,L)||

≥ ||h(F,L)||
ν1

min(||h(F,L)||, ωδ, ωσ).

Otherwise, β = − σω
λmin(E−T ∆L̂nE−1)

. Using λmin(E−T∆L̂nE−1) < 0, the boundedness

of E, and the relation

|λmin| ≤ ρ(A) := max
i
|λi| ≤ ||A||,

where A ∈ R
n×n denotes an arbitrary matrix and λi the corresponding eigenvalues of

A, we get

||h(F,L)||2 − ||h(F,L) + hL(F,L)∆Ln||2 ≥ σω

|λmin(E−T∆L̂nE−1)| ||h(F,L)||2

≥ σω

||E−T || ||E−1|| ||∆L̂n|| ||h(F,L)||2

≥ σω

||E−1||2 ||h−1
L (F,L)|| ||h(F,L)|| ||h(F,L)||2

≥ ||h(F,L)||
ν1ν2

2

min(||h(F,L)||, ωδ, ωσ).
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Hence, the result holds for κ = min(1, 1
ν1
, 1
ν1ν2

2
).

Condition (2.12) tells us that the quasi-normal component Sn = (∆Ln, 0) =
(β∆L̂n, 0) is indeed small close to feasible points. Condition (2.13) is just a weaker
form of Cauchy decrease for the quasi-normal subproblem.

2.2. Approximate solution of the tangential problem. In this section we
show how to derive a conjugate gradient (CG) algorithm to compute the tangential
component of the step. Assuming that the quasi-normal component Sn = (∆Ln, 0)
is computed by the procedure stated in the previous section, the second trust region
subproblem for determining the tangential component is defined by minimizing q(Sn+
St) subject to a trust region constraint and the SDP-conditions defined in (2.5).

By using Lemma 2.1 and the representation (1.7) of the step, and observing
that �µ, �µL∆Ln, �µLL(∆Ln,∆Ln) are constant terms not depending on ∆F , a simple
calculation shows that q(Sn + St) can be restated as a function ψ depending only on
∆F , i.e.,

ψ(∆F ) = 〈∆F,∇Φµ
F 〉+ 〈∆F, T ∗

1 (F,L)∇Φµ
L〉+ 〈∆F,∇2�µFL∆Ln〉

+ 〈∆F, T ∗
1 (F,L)∇2�µLL∆Ln〉+

1

2
〈∆F,∇2�µFF∆F 〉

+ 〈∆F,∇2�µFLT1(F,L)∆F )〉+
1

2
〈∆F, T ∗

1 (F,L)∇2�µLLT1(F,L)∆F )〉,(2.14)

where Φµ = Φµ(F,L) and T1(F,L) = −h−1
L (F,L)hF (F,L) ∈ L(Rp×r,Rn×n) denotes

the first component mapping of the operator T defined by (1.7). Then we approxi-
mately solve the trust region subproblem

min∆F ψ(∆F )

s.t. Y (F + ∆F,L + T1(F,L)∆F + ∆Ln) � (1− σ)Y (F,L),
T1(F,L)∆F + ∆Ln � −σL, ||∆F || ≤ δ

(2.15)

for computing the F -part of the tangential component. Thereafter, having found an
approximate solution of (2.15), the L-part of St can be obtained by solving (2.7) for
∆Lt, i.e., ∆Lt = T1(F,L)∆F . In [11] such an approach is referred to as the decoupled
approach, because the trust region constraint is of the form ||∆F || ≤ δ. Note that the
minimization has to be taken over the null space N (h′(F,L)). Interpreting ∆Lt as a
function of ∆F means that N (h′(F,L)) is projected onto the set {∆F ∈ R

p×r}. The
decoupled approach has the advantage that the minimization problem (2.15) is defined
in the space of the F -variables, which, in general, has a much smaller dimension than
the space of the L-variables.

Now we apply a modification of the CG algorithm proposed by Steihaug [33] for
finding an approximate solution of the tangential problem (2.15), where ψ(∆F ) is
given by (2.14). In order to state the modified CG approach, we ignore for a moment
the trust region and the SDP-constraints in (2.15) and derive the Newton step for
minimizing ψ(∆F ) in the following result.

Lemma 2.4. Let µ > 0, (F,L) ∈ Fs, and K = (h−1
L )∗∇Φµ

L be given. Assume
that ∆F ∈ R

p×r is a solution to the problem minψ(∆F ), where ψ(∆F ) is defined by
(2.14); then ∆F satisfies the Newton equation

U t(∆F ) = ∇2�µFLT1(F,L)∆F +∇2�µFF∆F + h∗
F∆Kt(∆F )

= − (∇Φµ
F +∇2�µFL∆Ln + h∗

F (K + ∆Kn)
)
,(2.16)
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where ∆Ln denotes the quasi-normal component as defined in the previous paragraph,
T1(F,L) = −h−1

L (F,L)hF (F,L) ∈ L(Rp×r,Rn×n), and ∆Kn, ∆Kt(∆F ) are solutions
of the following equations:

h∗
L∆Kn +∇2�µLL∆Ln = 0,(2.17)

h∗
L∆Kt(∆F ) + (∇2�µFL)∗∆F +∇2�µLLT1(F,L)∆F = 0,(2.18)

where h∗
L, h

∗
F , (∇2�µFL)∗ denote the adjoint operators of hL, hF ,∇2�µFL, respectively.

Proof. Using properties of the defined inner product, the Newton equation (2.16)
follows by a direct differentiation of ψc(∆F ) with respect to ∆F .

Note that by defining ∆K = ∆Kn+∆Kt(∆F ), the solutions of (2.17) and (2.18)
can be interpreted as the quasi-normal and the tangential component, respectively,
of the step ∆K for the multiplier K, which itself is defined by the adjoint equation
(2.2).

A practical way for approximately solving the tangential subproblem (2.15) is to
apply a modification of the CG algorithm which is tailored to the special structure
of this nonlinear SDP-problem. The main difference of this modified CG version is
the following. Assuming that µ > 0, σ ∈ (0, 1), (F,L) ∈ Fs, and K and ∆Ln are
given, then during each CG iteration we compute a positive scalar τ , which makes
sure that, on exit, the step ∆F stays inside the current trust region and F + ∆F ,
T1(F,L)∆F + ∆Ln satisfy the SDP-constraints of (2.15). Thus, we know that an
approximate solution of (2.15) yields simultaneously a direction ∆F which lies inside
of the current trust region and (F + ∆F,L + T1(F,L)∆F + ∆Ln) ∈ Fs. This leads
to the following algorithm for computing an approximation of ∆F .

Algorithm 2.1 (CG method for solving the tangential subproblem).
0. Set V0 = 0 and solve (2.17) for ∆Kn. Compute

U0 = − (∇Φµ
F +∇2�µFL∆Ln + h∗

F (K + ∆Kn)
)
.(2.19)

Choose D0 = U0, and ε > 0.
1. For i = 0, 1, 2, . . . do

1.1 Solve (2.18) for ∆Kt(Di) and compute ai = ||Ui||2
〈Di,Ut(Di)〉 .

1.2 Compute

τi = max{τ > 0 | ||Vi + τDi|| ≤ δ,∆Ln + T1(F,L)(Vi + τDi) � −σL,
Y (F + Vi + τDi, L + T1(F,L)(Vi + τDi) + ∆Ln)
� (1− σ)Y (F,L)}.

1.3 If ai ≤ 0 or ai > τi, then set ∆F = Vi + τiDi and stop; otherwise, set
Vi+1 = Vi + aiDi.

1.4 Set η = min{ε, ||U0||}, and update the residual: Ui+1 = Ui − aiU(Di).

1.5 Check truncation criteria: If ||Ui+1||
||U0|| ≤ η, set ∆F = Vi+1 and stop.

1.6 Compute bi = ||Ui+1||2
||Ui||2 and set Di+1 = Ui+1 + biDi.

2. Solve (2.7) for ∆Lt.
There are different ways in which the modified CG method can terminate.
(1) A direction of negative curvature is encountered in the CG iteration. In this

case, we follow this direction until reaching the boundary of the intersection of
the trust region and the SDP-constraints. Then the resulting step is returned
as an approximate solution of tangential subproblem (2.15).
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(2) The CG iterate has stepped outside of the intersection of the trust region and
the SDP-constraints. In this case, we backtrack to this region and return the
resulting step as an approximate solution of (2.15).

(3) The algorithm terminates with the inexact criterion 1.6 of Algorithm 2.1.
Note that, on exit, Algorithm 2.1 returns a step ∆F, and it is ensured that this step
is an approximate solution of the tangential subproblem (2.15). Thereafter, for given
∆F , we obtain the L-part of the tangential component St by solving (2.7) for ∆Lt,
i.e., ∆Lt = T1(F,L)∆F . By the construction of the CG algorithm, it is assured that,
on exit, the pair (F + ∆F,∆Lt + ∆Ln) satisfies the SDP-constraints of the tangential
problem (2.15). Furthermore, if the CG algorithm terminates in step 1.6, then ∆F
can be interpreted as an inexact Newton step which lies inside the trust region and
satisfies the nonlinear SDP-constraints. Finally, in the implementation of Algorithm
2.1, we also include a preconditioner for speeding up the CG method (see, i.e., [22,
page 121, equation (3.4.146)]).

Since the conjugate gradient Algorithm 2.1 starts by minimizing the quadratic
function ψ(∆F ) along the direction U0 defined by (2.19), it is quite clear that it
produces a reduced tangential component that satisfies the fraction of Cauchy decrease
condition

ψ(0)− ψ(∆F ) ≥ θd(ψ(0)− ψ(cd))(2.20)

with θd = 1, where cd denotes the Cauchy step (compare with [11, section 5.2.3]).
Note that the Cauchy step is defined as the solution of the problem

min∆F ψ(∆F )

s.t. Y (F + ∆F,L + T1(F,L)∆F + ∆Ln) � (1− σ)Y (F,L),
T1(F,L)∆F + ∆Ln � −σL, ||∆F || ≤ δ, ∆F ∈ span{U0},

(2.21)

where U0 defined by (2.19) is the steepest-descent direction for the function ψ(∆F )
at ∆F = 0 (see Lemma 2.4). Here, the fixed parameter σ ∈ (0, 1) guarantees that the
Cauchy step cd remains strictly feasible with respect to the SDP-constraints. Thus,
as in many trust region algorithms, the tangential component gives a decrease on
ψ(∆F ) which is smaller than a uniform fraction of the Cauchy decrease given by cd

for the same function ψ(∆F ). The fulfillment of the Cauchy decrease condition (2.20)
for the tangential component is important for assuring the global convergence of the
trust region method to a first order KKT point of the barrier problem.

2.3. Detailed description of the trust region algorithm. In the previous
sections we have specified how the normal and the tangential subproblems are to be
solved. Now we can give a precise description of the CTR algorithm for solving the
barrier problem (1.3) for a fixed barrier parameter µ > 0. We need to introduce a
merit function and the corresponding actual and predicted reduction for measuring the
improvement of the algorithm. As a merit function we use the augmented Lagrangian
function

Λρ(F,L,K) = �µ(F,L,K) + ρ||h(F,L)||2,
where ρ denotes a positive penalty parameter and �µ(·) denotes the Lagrangian func-
tion associated with barrier problem (1.3).

In our derivation of the CTR method we closely follow [10], [11], and [28]. At
iteration k the actual decrease in the merit function is given by

aredρk(Sk) = Λρk(Fk, Lk,Kk)− Λρk(Fk + ∆Fk, Lk + ∆Lk,Kk+1),
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where ∆Lk = ∆Lnk +∆Ltk and Sk = Sn+St denotes the trial step which is computed
by the procedures described in the subsections above. The predicted decrease is
defined by

predρk(Sk) = qk(0)− qk(Sk)− 〈∆Kk, h
k
L∆Lk + hkF∆Fk + hk〉

+ ρk(||hk||2 − ||hkL∆Lk + hkF∆Fk + hk||2),

where ∆Kk = Kk+1 −Kk and hk = h(Fk, Lk).
From the computation of the quasi-normal component ∆Lnk , we know that ∆Lnk =

βk∆L̂nk , βk ∈ (0, 1], and ∆L̂nk is a solution of (2.6), which implies hkL∆Lnk = −βkhk.
Moreover, the L-part of St is given by ∆Ltk = T1(Fk, Lk)∆F k. Thus, hkL∆Ltk +
hkF∆Fk = 0. Combining the last two facts and using hkL∆L = hkL∆Lnk + hkL∆Ltk, we
obtain hkL∆Lk + hkF∆Fk + hk = (1− βk)hk. Therefore, the predicted decrease can be
restated as

predρk(Sk) = qk(0)− qk(Sk)− (1− βk)〈∆Kk, h
k〉+ ρkβk||hk||2.(2.22)

To decide whether to accept or reject a trial step Sk, we evaluate the ratio rk =
aredρk(Sk)/predρk(Sk). If the ratio is too small, we reject the trial step and decrease
the trust region δk. On the other hand, if the trial step is accepted, we increase
the trust region. To update the penalty parameter ρk we use the scheme proposed
by El-Alem [12]. For estimating the Lagrange multiplier Kk, we solve the adjoint
equation

h∗
L(Fk, Lk)Kk +∇JL(Fk, Lk)− µM(Fk, Lk) = 0,(2.23)

where M(F,L) is defined by (1.11), (Fk, Lk) ∈ Fs, and µ > 0 is fixed.
A reasonable termination criterion for the CTR algorithm is

||∇�µj

F (Fk, Lk,Kk)||+ ‖h(Fk, Lk)‖ ≤ ε,(2.24)

where ε > 0 is a prespecified tolerance and ∇�µF (F,L,K) is defined by (1.9).
We can now outline the main procedures of the CTR algorithm for solving the

barrier problem.
Algorithm 2.2 (CTR algorithm for the barrier problem). Let 0 < a1 ≤ a2 < 1,

0 < γ1 < γ2 < γ3 < 1, ρ̄ > 0, ρ−1 ≥ 1, µ > 0, and ε > 0 be given. Choose
(F0, L0) ∈ Fs. Calculate K0 by (2.23), and pick δ0 such that 0 < δmin ≤ δ0 ≤ δmax.

For k = 0, 1, 2, . . . do
1. If ||∇�µj

F (Fk, Lk,Kk)||+ ||hk|| ≤ ε, stop.
2. Compute ∆Lnk and βk as stated in subsection 2.1.
Solve the tangential problem (2.15) for obtaining ∆Fk as stated in subsection
2.2.
Determine ∆Ltk by solving (2.7).
Set ∆Lk = ∆Lnk + ∆Ltk and define Sk = (∆Lk,∆Fk).

3. Compute Kk+1 by (2.23) with Fk + ∆Fk and set ∆Kk = Kk+1 −Kk.
4. Compute predρk−1

(Sk) by using (2.22), and update the penalty parameter as
follows:
If predρk−1

(Sk) ≥ ρk−1βk

2 ||hk||2, then set ρk = ρk−1. Otherwise set

ρk =
2(qk(Sk)− qk(0) + (1− βk)〈∆Kk, h

k〉)
βk||hk||2 + ρ̄.
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5. Compute the ratio rk =
aredρk (Sk)

predρk (Sk) .

6. Update the trust region and accept or reject the step by the following:
(a) If rk < γ1, set δk+1 = a1 max{||∆Lnk ||, ||∆Fk||}, or

if γ1 ≤ rk < γ2, set δk+1 = a2 max{||∆Lnk ||, ||∆Fk||}, and
reject the step. Set Fk+1 = Fk, Lk+1 = Lk, Kk+1 = Kk.

(b) If γ2 ≤ rk < γ3, set δk+1 = δk, or
if rk ≥ γ3, set δk+1 = min{max{2δk, δmin}, δmax}, and
accept the step. Set Fk+1 = Fk + ∆Fk, Lk+1 = Lk + ∆Lk,
Kk+1 = Kk + ∆Kk.

Note that the sequence {(Fk, Lk)} generated by the CTR Algorithm 2.2 is always
contained in the set Fs (see Lemma 2.5 below).

The global as well as local convergence behavior of Algorithm 2.2 can been shown
by using the same general assumptions as in Dennis, El-Alem, and Maciel [10] or in
Dennis, Heinkenschloss, and Vicente [11]. Since the whole convergence analysis is
beyond the scope of this paper, in the next section we state only the main global
convergence result.

2.4. Convergence behavior of the CTR Algorithm 2.2. The proof of the
global convergence of the CTR Algorithm 2.2 for solving the barrier problem (1.3)
to a first order KKT point can be established similarly to the convergence theory
presented in [10] for general equality constrained optimization problems. Therefore,
we omit the proof and refer the interested reader to [11, section 7] or [10, section 7]
for the details of the whole convergence theory of CTR methods.

We start by stating some general assumptions under which global convergence
can be proved for Algorithm 2.2. These assumptions are used by several authors; for
example, see [6], [11], [10], [12], [29], and the references therein. Note that the set Fs,
which is the set of all pairs (F,L) satisfying the nonlinear SDP-constraints, is an open
subset of R

p×r×R
n×n. Let Ω ⊆ Fs be such that for all iterations k of Algorithm 2.2,

(Fk, Lk) and (Fk+∆Fk, Lk+∆Lk) are in Ω. By Lemma 2.1, we know that all problem
functions are twice continuously differentiable on Fs. For applying the convergence
theory of [11] or [10] to our algorithm, we need the following assumptions.

Assumption 2.1. Let Assumptions 1.1(i)–(iii) be fulfilled and µ > 0 be given.
Assume that the functions J(F,L), Φµ(F,L), h(F,L), Y (F,L), and their first and
second order derivatives are bounded in Ω ⊆ Fs. Moreover, suppose that the sequences
{T (Fk, Lk)} and {H(Fk, Lk)} are bounded in Ω ⊆ Fs, where {H(Fk, Lk)} denotes
the Hessian of the Lagrangian of the barrier problem defined by (1.5). Furthermore,
let Y −1(F,L) and the operator h−1

L (F,L) be uniformly bounded in Fs. Finally, the
sequences {Fk}, {L−1

k }, {Kk} are bounded.
Before stating the global convergence result of Algorithm 2.2, we show the fol-

lowing result.
Lemma 2.5. Let Assumption 2.1 be satisfied; then the sequence of iterates

{(Fk, Lk)} generated by the CTR Algorithm 2.2 satisfies (Fk, Lk) ∈ Fs for all k ≥ 0.
Proof. Let (F0, L0) be chosen in Fs. Without loss of generality, we may assume

for k ≥ 0 that the pair (Fk, Lk) ∈ Fs lies in Fs. Using the results of section 2.1,
at iteration k ≥ 0 the quasi-normal component satisfies ∆Lnk = βk∆L̂nk � −σωLk,
where σ, ω ∈ (0, 1) are given scalars and βk ∈ (0, 1] is defined by (2.11). Moreover,
using the discussion in section 2.2, at iteration k ≥ 0 the approximate solution of the
tangential problem (2.15) fulfills the nonlinear SDP-conditions

Y (Fk + ∆Fk, Lk + T1(Fk, Lk)∆Fk + ∆Lnk ) � (1− σ)Y (Fk, Lk),
T1(Fk, Lk)∆Fk + ∆Lnk � −σLk,

(2.25)
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where ∆Fk is computed by the CG Algorithm 2.1. From the rules that update δk
in step 6 of Algorithm 2.2, [10, Theorem 8.1] tells us that an acceptable step is
always found after a finite number of unsuccessful iterations. Using this fact, we can
ignore the rejected steps and work only with successful iterates. Hence, a successful
iterate (Fk+1, Lk+1) = (Fk + ∆Fk, Lk + ∆Ltk + ∆Lnk ) satisfies Y (Fk+1, Lk+1) � (1−
σ)Y (Fk, Lk) ≺ 0 and Lk+1 � (1 − σ)Lk � 0, where ∆Ltk = T1(Fk, Lk)∆Fk. Thus,
(Fk, Lk) ∈ Fs for all k ≥ 0.

This lemma guarantees the feasibility of the generated sequence with respect to
the nonlinear SDP-conditions. It assures that Algorithm 2.2 produces an approximate
solution of the barrier problem which always satisfies these conditions.

In the previous sections, we have described in detail how we compute the approx-
imate solutions of the quasi-normal and the tangential subproblems. Particularly,
in Lemma 2.3 we have shown that the quasi-normal component Sn, as computed in
subsection 2.1, is small close to feasible points and that it fulfills a certain form of the
Cauchy decrease condition; i.e., Sn satisfies (2.12) and (2.13). Moreover, in subsec-
tion 2.2, the tangential component is computed by the CG Algorithm 2.1. Thus, the
tangential component also satisfies a Cauchy decrease condition, i.e., the fraction of
Cauchy decrease (2.20). The fulfillment of these conditions together with Assumption
2.1 is enough for showing the global convergence of Algorithm 2.2. In particular, mak-
ing straightforward modifications to [11, Theorem 7.5 and Corollary 7.6], the following
convergence result can be proved.

Theorem 2.6. Let Assumption 2.1 be satisfied. Then the sequence of iterates
{(Fk, Lk)} generated by the CTR Algorithm 2.2 for solving the barrier problem (1.3)
satisfies

lim inf
k→∞

(||∇�µj

F (Fk, Lk,Kk)||+ ||h(Fk, Lk)||) = 0,

where ∇�µF (F,L,K) is given by (1.9) and Kk denotes the solution of the adjoint
equation (1.10).

Moreover, if {(Fk, Lk)} is a bounded sequence, then {(Fk, Lk)} has a limit point
satisfying the first order necessary optimality conditions of the barrier problem (1.3),
i.e., conditions (2.1)–(2.3) and (1.2).

In the next section, we will see that this theorem guarantees the finite termination
property of the interior point algorithm; for example, we can terminate the CTR
method as soon as a current iterate satisfies ||∇�µF (F,L,K)||+ ||h(F,L)|| ≤ ε, where
ε > 0 is a prespecified tolerance.

3. IPCTR algorithm. In this section we consider the overall algorithm, the
IPCTR method, in which Algorithm 2.2 is executed for decreasing values of the barrier
parameter µ. We are not concerned here with conditions assuring a good local rate
of convergence, but consider only the global convergence properties of the IPCTR
algorithm. The study of the local convergence behavior is a part of our current
research and will be considered in a forthcoming paper.

Algorithm 3.1 (IPCTR Algorithm). Choose µ0 > 0, ε0 > 0, a, b ∈ (0, 1), and
(F0, L0) ∈ Fs. Set j = 0.

1. For fixed µj > 0 apply Algorithm 2.2 from (Fj , Lj) ∈ Fs until it finds a point
(Fj+1, Lj+1) satisfying

||∇�µj

F (Fj+1, Lj+1,Kj+1)||+ ||h(Fj+1, Lj+1)|| ≤ εj ,(3.1)

where ∇�µF (F,L,K) is defined by (1.9) and Kj+1 denotes the solution of the
adjoint equation (1.10) evaluated at (Fj+1, Lj+1).
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2. Choose µj+1 ∈ (0, aµj) and εj+1 ∈ (0, bεj).
3. Increase j by one, and go to step 1.

To establish the global convergence result of Algorithm 3.1 we need the same
assumptions as for the convergence of the inner loop to a first order KKT point of
the barrier problem. In particular, we have the following theorem.

Theorem 3.1. Suppose that {(Fj , Lj)} is generated by Algorithm 3.1 and that,
for each barrier problem, Assumption 2.1 holds. Furthermore, let {(Fj , Lj)} be bounded.
Then, at each outer iteration, the inner algorithm succeeds in finding a pair (Fj+1, Lj+1)

satisfying (3.1). If µj → 0 and εj → 0, then any accumulation point (F̂ , L̂) of
{(Fj , Lj)} satisfies the first order necessary optimality condition of the nonlinear SDP-
problem (1.1); i.e., there exists K̂ ∈ R

n×n such that L̂ � 0, Y (F̂ , L̂) ≺ 0, and

∇JF (F̂ , L̂) + h∗
F (F̂ , L̂)K̂ = 0, h(F̂ , L̂) = 0, h∗

L(F̂ , L̂)K̂ +∇JL(F̂ , L̂) = 0.

Proof. Suppose that for some value of µj the inner Algorithm 2.2 fails to find a
point satisfying (3.1). This implies that Algorithm 2.2 generates an infinite sequence
{(Fk, Lk)} for the barrier problem (1.3) with µ = µj such that

||∇JF (Fk, Lk)− µY ∗
F (Fk, Lk)Y −1(Fk, Lk) + h∗

F (Fk, Lk)Kk||+ ||h(Fk, Lk)|| �→ 0,

which contradicts the result of Theorem 2.6. Thus, the inner loop succeeds in finding
(Fj+1, Lj+1) satisfying (3.1) for j ≥ 0.

Let J be a subsequence of indices j such that (Fj , Lj) converges to (F̂ , L̂)
when j → ∞ in J . Since, by construction of Algorithm 2.2, 0 ≤ εj+1 < εj and
0 ≤ ||∇�µj

F (Fj+1, Lj+1,Kj+1)|| + ||h(Fj+1, Lj+1)|| ≤ εj for all j ≥ 0, the sequence
{||∇�µj

F (Fj+1, Lj+1,Kj+1)||+||h(Fj+1, Lj+1)||} is a monotonically decreasing sequence
which is bounded below by zero. Thus, using εj → 0, it converges to zero and this
implies

||∇�µj−1

F (Fj , Lj ,Kj)|| → 0, ||h(Fj , Lj)|| → 0

if j → ∞ in J . Using this relation and Lemma 2.5, we deduce that h(Fj , Lj) → 0

and (Fj , Lj) ∈ Fs for all j ≥ 0 and µj > 0. Therefore, we conclude that (F̂ , L̂) ∈ Fs
and h(Fj , Lj)→ h(F̂ , L̂) = 0 if j →∞ in J . Hence, (F̂ , L̂) is feasible for (1.1).

Moreover, the sequence {Kj} defined as the solution of the adjoint equation
(2.23) is uniformly bounded in Fs. Now, using Assumption 2.1, the boundedness
of Y ∗

L (Fj , Lj), {L−1
j }, and Y −1(F,L) in Fs implies the existence of positive constants

θi, i = 1, 2, 3, independent of j such that

||Y ∗
L (Fj , Lj)|| ≤ θ1, ||L−1

j || ≤ θ2, ||Y −1(Fj , Lj)|| ≤ θ3

for all j ≥ 0. Therefore, since Kj denotes the exact (unique) solution of the adjoint
equation (2.23), we obtain

||h∗
L(Fj , Lj)Kj +∇JL(Fj , Lj)||
≤ ||h∗

L(Fj , Lj)Kj +∇JL(Fj , Lj)− µj−1M(Fj , Lj)||+ µj−1||M(Fj , Lj)||
≤ µj−1

(||L−1
j ||+ ||Y ∗

L (Fj , Lj)|| ||Y −1(Fj , Lj)||
) ≤ µj−1 (θ2 + θ1 θ3) .

Hence, using µj → 0, we know that ||h∗
L(Fj , Lj)Kj +∇JL(Fj , Lj)|| → 0 and

h∗
L(Fj , Lj)Kj+∇JL(Fj , Lj)−µj−1M(Fj , Lj)→ h∗

L(F̂ , L̂)K̂+∇JL(F̂ , L̂) = 0,(3.2)
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whenever j → ∞ in J . Since {Kj}, defined as the solution of the adjoint equation
(2.23), is uniformly bounded, and using (3.2), we know that it converges to the limit
point K̂.

Finally, the boundedness of Y ∗
F (Fj , Lj), Y

−1(F,L), and (3.1) implies

||∇JF (Fj , Lj) + h∗
F (Fj , Lj)Kj || ≤ µj−1||Y ∗

F (Fj , Lj)Y
−1(Fj , Lj)||

+ ||∇JF (Fj , Lj) + h∗
F (Fj , Lj)Kj − µj−1Y

∗
F (Fj , Lj)Y

−1(Fj , Lj)||
≤ εj−1 + µj−1 ||Y ∗

F (Fj , Lj)|| ||Y −1(Fj , Lj)|| ≤ εj−1 + µj−1 θ4 θ3,

where θ4 > 0 denotes the positive constant such that ||Y ∗
F (Fj , Lj)|| ≤ θ4. Now, since

µj → 0 and εj → 0, we deduce that ||∇JF (Fj , Lj) + h∗
F (Fj , Lj)Kj || → 0 and

∇JF (Fj , Lj)+h∗
F (Fj , Lj)Kj−µj−1Y

∗
F (Fj , Lj)Y

−1(Fj , Lj)→ ∇JF (F̂ , L̂)+h∗
F (F̂ , L̂)K̂ = 0

if j → ∞ in J . Therefore, any accumulation point (F̂ , L̂) of {(Fj , Lj)} satisfies the
first order necessary optimality condition of (1.1).

In a practical implementation of the IPCTR algorithm, we would like the step to
satisfy the following properties near a solution of the nonlinear SDP-problem:

(i) it should provide a fast local rate of convergence;
(ii) it should at least satisfy approximately the KKT conditions of (1.1);
(iii) it should have problem depending updating rules for the barrier parameter

sequence and the inner termination tolerances which enforce the fast local
rates.

As shown in Theorem 3.1, the second condition is satisfied. We can guarantee that at
least an accumulation point of the generated sequence satisfies the first order condi-
tions of (1.1). Under stronger assumptions, it will be also possible to show that any
accumulation point of this sequence is a local solution of the nonlinear SDP-problem
(1.1). As noted above, the study of the local convergence behavior of the IPCTR
method is a part of our current research which will be considered in a forthcoming
paper. But the numerical results stated in the next section show that the IPCTR ap-
proach achieves fast local rates for sufficiently small barrier parameters in the vicinity
of a solution of (1.1). Therein, we have chosen the parameter sequences {µj} and {εj}
to be problem-dependent. In particular, instead of using a linear decrease in these
parameter sequences as stated in Algorithm 3.1, we have chosen a more attractive
updating rule for the barrier parameter and the inner termination tolerance. The
barrier parameter is selected according to how much reduction one has made in the
optimality conditions of the nonlinear SDP-problem, i.e.,

µj+1 = min

{
aµj , ||H(Fj+1, Lj+1,Kj+1)||1+ξ, 〈Lj+1, Z〉1+ξ

n

}
,(3.3)

and the updating rule for the inner termination criterion is chosen by

εj+1 = min
{
bεj , ||H(Fj+1, Lj+1,Kj+1)||1+ξ} ,(3.4)

where 0 < ξ ≤ 1, Z denotes the solution of the Lyapunov equation

Lj+1Z + ZLj+1 − 2µjI = 0,

and H(F,L,K) represents the KKT conditions of (1.1) defined by

H(F,L,K) = (h∗
F (F,L)K +∇JF (F,L), h(F,L), h∗

L(F,L)K +∇JL(F,L))
T
.
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With these updating rules, it will be possible to establish, under assumptions similar
to those used in damped Newton methods, superlinear and quadratic convergence
rates for the IPCTR algorithm near a solution of the nonlinear SDP-problem (1.1).

As indicated in Theorem 3.1, we can terminate the IPCTR Algorithm 3.1 as soon
as an actual iterate (Fj , Lj) approximately satisfies the KKT conditions of (1.1). For
example, choosing εout > 0 sufficiently small with εout < ε0, we terminate Algorithm
3.1 as soon as

‖H(Fj , Lj ,Kj)‖ ≤ εout.(3.5)

Then, we know that the actual approximate solution of the barrier problem, with
corresponding (in general small) barrier parameter µ, is an approximate guess of the
solution of (1.1). Finally, in our numerical tests presented in the next section, we
always set the inner termination criterion εj+1 = εout iff εj+1 generated by (3.4) is
less than the outer termination tolerance εout for some j ≥ 0.

4. Numerical results. In this section, several examples are given for test pur-
poses in order to test the IPCTR approach. We present examples borrowed from the
control literature for designing an optimal (static or reduced order) output feedback
control law. As noted in the introduction, these problems can be formulated as a
nonlinear SDP-problem of the form (1.1). In particular, the goal is to solve (1.12)
with our IPCTR method, which can be found in Algorithm 3.1.

The IPCTR algorithm was implemented using MATLAB 5.1 facilities. In par-
ticular, for solving the several (Lyapunov) equations during the procedures, we used
the Control System Toolbox function LYAP. Moreover, since the algorithm initially
requires a (strictly) feasible starting point (F0, L0) with respect to the nonlinear SDP-
constraints (1.2), in most of the cases we determine such a starting point by the
SLPMM proposed by Leibfritz [22], [23].

We compare the performance of the IPCTR algorithm with the CTR approach
developed in [28] and with Newton’s method combined with an Armijo step size rule
as proposed by [34] and [31]. In the numerical examples, we denote the Newton
algorithm by ARMIJO.

For IPCTR, the following data are given in the tables: the outer iteration counter
j; the barrier parameter µj ; the inner termination criterion εj ; the inner iteration
counter k; the inner termination measure ||(∇�µj

F )k||+ ||hk||, evaluated at each inner
iterate, where (∇�µj

F )k = ∇�µj

F (Fk, Lk,Kk) is defined as in (3.1) and hk = h(Fk, Lk);
the norm of the equality constraints ||hk||; the trust region radius δk; and finally, the
accumulated number of CG iterations needed for determining an approximate solution
of the tangential subproblem during each trust region iteration k. Furthermore, note
that for each j ≥ 1 the index k = 0 only indicates an update of the barrier parameter
and an evaluation of all quantities at the actual outer iterate for the new barrier
parameter µ; i.e., it contains only the initial data information for the next inner loop.
Hence, we do not take this step into account if we count the overall number of inner
iterations needed by the IPCTR algorithm.

We test our code with several different examples and various parameter selections.
Since it is impossible to present all of them within the limitation of this paper, we
restrict ourselves to the following representative examples.

Example 1 (Chemical reactor models). We consider two examples of a chemical
reactor. The goal is to determine an optimal solution of the nonlinear SDP-problem
(1.12). Note that this solution corresponds to an optimal stabilizing SOF control
law. We compare the convergence behavior of the IPCTR method with the CTR and
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ARMIJO approaches used in the past. The first chemical reactor example appeared
in Appendix D of [17], and the data matrices are given by

A =


 1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


 ,

B =


 0 0

5.679 0
1.136 −3.146
1.136 0


 , C =

[
1 0 1 −1
0 1 0 0

]
,

R = I2, and P = Q = I4. The real parts of the eigenvalues of A are (−8.66, 1.99,−5.06,
0.06). This implies that the SDP-conditions (1.2) for the choice F = 0 are not satis-
fied.

Thus, initially, we compute a pair (F0, L0) satisfying (1.2) by SLPMM, which
yields

F0 =

[
0.0923 −1.3344
1.2776 0.1647

]
, L0 =


 1.9105 0.1459 −1.2034 0.1808

0.1459 0.9652 −0.0956 0.1363
−1.2034 −0.0956 2.3199 0.0511
0.1808 0.1363 0.0511 0.6457


 .

Choosing εout = 10−6 and considering Figure 4.1, we observe that IPCTR terminates
after 4 outer and a total of 9 inner iterations, and CTR as well as ARMIJO also
require 9 iterations for reaching the optimal solution

F∗ =

[
0.3571 −2.6242
2.5816 0.7764

]
, L∗ =


 0.5113 0.0205 −0.1258 0.0629

0.0205 0.0275 0.0097 0.0166
−0.1258 0.0097 0.5313 0.4636
0.0629 0.0166 0.4636 0.5421


 .

In IPCTR, we have taken the parameters µ0 = 0.1, ε0 = 1, a = 0.001, b = 0.4.
After the 4th outer iteration, IPCTR terminates, since (F3, L3,K3) satisfies (3.5).
Moreover, Figure 4.1 also illustrates the global as well as the fast local behavior of all
three methods. Thus, for this example, all three algorithms are competitive.

The convergence behavior for the second chemical reactor model can be found in
Figure 4.2, where for this instance the data matrices are defined as follows: R = I2,
P = Q = I4, and

A =


 1.400 −0.208 6.715 −5.676

−0.581 −4.290 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


 ,

B =


 0 0

5.679 0
1.136 −3.146
1.136 0


 , C =

[
1 0 1 −1
0 1 0 0
0 0 1 −1

]
.

Starting the algorithms with (F0, L0) computed by SLPMM and setting εout =
10−6, after 4 outer and a total of 8 inner IPCTR, 9 CTR, and 13 ARMIJO iterations,
respectively, the methods converge to the same solution (F∗, L∗) giving J∗ = 3.503526.
Furthermore, Figure 4.2 illustrates the quadratic local convergence rates of IPCTR
and CTR, while ARMIJO achieves only a linear rate of convergence for this example.
Finally, we observe that IPCTR needs fewer iterations than CTR and ARMIJO. In
the next example, we will see that the performance of the IPCTR algorithm can be
much better than CTR and ARMIJO.
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Fig. 4.1. Convergence: first chemical reac-
tor model.
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Fig. 4.2. Convergence: second chemical re-
actor model.

Example 2 (Aircraft model). This model appeared in Appendix F of [17] and
describes a linearized model of the longitudinal equations of motions of an airplane.
Again, the goal is to determine an optimal SOF control gain for the linearized dy-
namics of this model which is equivalent to an optimal solution of the nonlinear
SDP-problem (1.12). The following are the data matrices for the resulting linearized
state space model of the aircraft:

A =




0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859


 , B =




0 0 0
−0.12 1 0

0 0 0
4.419 0 −1.665
1.575 0 −0.0732


 ,

C =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, P =




0.0089 0 0 0.0047 0.0059
0 0.0015 −0.0037 0 0
0 −0.0037 0.0295 0 0

0.0047 0 0 0.0169 0.0190
0.0059 0 0 0.0190 0.0237


 ,

R = 0.5I3, and Q = diag(0.001, 2.501, 2.501, 0.001, 0.001). Choosing P , Q, and R by
the data above, we obtain the data set referred to as (AC1). On the other hand,
(AC2) refers to the data set with R = I3 and P = Q = I5.

For the different data sets (AC1) and (AC2), the performance of the trust region
algorithms are plotted in Figure 4.3 and Figure 4.4, respectively. These figures illus-
trate that for these instances IPCTR performs much better than CTR. In particular,
for the data set (AC1), IPCTR needs only 8 outer and a total of 39 inner iterations,
while CTR requires 70 iterations. Moreover, the ARMIJO algorithm reaches the solu-
tion after 115 iterations. For (AC1), we have used the result of SLPMM for initializing
the algorithms, i.e., a run of SLPMM gives F0 as

F0 =

[
0.8190 −0.0180 0.3200
0.0247 −1.7164 0.0356
2.1739 0.0236 1.8139

]
,

and we have terminated the algorithms as soon as (3.5) holds with εout = 10−8. In
IPCTR the following parameters have been used: µ0 = 0.01, ε0 = 1, a = 0.001,
b = 0.4.

On the other hand, considering the data set (AC2), we have chosen µ0 = 0.1,
ε0 = 31, a = 0.01, b = 0.4, and F0 by
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Fig. 4.3. Convergence (AC1): IPCTR vs.
CTR.
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Fig. 4.4. Convergence (AC2): IPCTR vs.
CTR.

F0 =

[
−3.04 205.19 −1.9500
74.30 −4808.6 73.20
−7.00 463.00 −3.60

]
,

together with an L0 satisfying the nonlinear SDP-conditions (1.2). For this data set
and this initial gain, we can draw the same observations as for (AC1). The IPCTR
algorithm converges within 8 outer and a total of 68 inner iterations, while CTR needs
94 iterations. In contrast to this, the ARMIJO approach breaks down. This indicates
the robustness of the trust region methods compared with an Armijo globalization
strategy. Moreover, it underlines that the interior point approach can be faster than
non–interior point methods.

Table 4.1 demonstrates numerically the global as well as the local behavior of the
IPCTR algorithm. For computing the tangential component during the inner trust
region iteration procedure, IPCTR requires no more than 10 (preconditioned) CG
iterations. In this table we see that the barrier parameter sequence tends very rapidly
to zero. The observed rate of convergence is quadratic for sufficiently small barrier pa-
rameters and close to the solution of the nonlinear SDP-problem, i.e., consider the last
three outer iterations. The behavior illustrated in Table 4.1 is typical for the IPCTR
algorithm. During the first few outer iterations, for relatively big µ’s, it computes an
approximate solution of the corresponding barrier problem very inaccurately. Then,
as µ tends to zero, IPCTR solves the barrier problems with a higher accuracy and
reaches the region of fast convergence during the last few outer iterations. Moreover,
in a vicinity of the solution of (1.1), IPCTR requires only one inner iteration per outer
iteration; for example, it reduces µ at each iteration. This local behavior is typical for
IPCTR. For all examples that we have tested, we have always observed this behavior
of IPCTR close to a solution of (1.1). Finally, these examples justify the usefulness
of the interior point strategy combined with trust region globalization for solving the
problem class considered in this paper. They indicate that the IPCTR algorithm is
potentially efficient for the solution of nonconvex and nonlinear SDP-problems of the
form (1.1).

Collection of test examples. Since there is no test set available for nonlinear SDP-
problems (like the CUTE [4] test set for nonlinear programming), we have built our
own collection of test examples for the special class of nonlinear SDP-problems con-
sidered in this paper. To test the IPCTR algorithm, we selected several examples
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Table 4.1
Convergence behavior of IPCTR for (AC2).

j µj εj k ||(∇µj

F )k||+ ||hk|| ||hk|| δk icg

0 1.0e–01 3.1e+01 0 1.3167e+02 5.085e+00 1.317e+02 –
1 3.1825e+01 1.120e+00 2.633e+02 1
2 2.8282e+01 1.195e–01 5.267e+02 7

1 9.8e–04 1.2e+01 0 2.7823e+01 1.286e–00 5.267e+02 –
1 5.8808e+01 3.974e–01 1.053e+03 10
...

...
...

...
...

48 6.1222e–00 1.135e–00 1.000e+10 10

2 1.2e–05 4.9e–00 0 6.1227e–00 1.135e–00 1.000e+10 –
1 2.5075e–00 6.685e–01 1.000e+10 3

3 1.7e–09 1.9e–00 0 3.2909e–00 1.080e–00 1.000e+10 –
1 4.0449e–00 1.125e–00 1.000e+10 10
...

...
...

...
...

7 1.8711e–00 5.158e–01 4.129e–01 1

4 2.9e–17 7.9e–01 0 2.8029e–00 1.081e–00 4.129e–01 –
1 4.5173e–00 7.110e–01 4.129e–01 2
...

...
...

...
...

6 1.1405e–01 1.318e–02 8.259e–01 3

5 8.8e–33 1.3e–02 0 1.4669e–01 3.953e–02 8.259e–01 –
1 6.2357e–03 2.515e–03 1.652e–00 6

6 7.7e–64 3.8e–05 0 1.1697e–02 7.546e–03 1.652e–00 –
1 1.9680e–05 5.866e–06 3.303e–00 8

7 6.1e–128 1.0e–08 0 3.8270e–05 1.760e–05 3.303e–00 –
1 5.4517e–11 1.755e–11 6.607e–00 9

from the test collection described in [25]. This testing environment contains different
examples for designing optimal static or reduced order output feedback controllers.
As already noted, such problems can be transformed to nonlinear SDP-problems of
the form (1.1). For more information about (static or reduced order) output feedback
design, we refer the interested reader to [22] and the references therein.

In Table 4.2, we give the results of our preliminary tests. For each example, we
report the name along with its dimensions n, p, and r; the problem type (SOF for
static output feedback, ROF for reduced order output feedback); and the number
of the overall inner iterations performed by IPCTR. For comparison, the table also
shows the number of iterations taken by CTR and ARMIJO. Finally, it lists the initial
pair chosen for (F0, L0) (SLPMM for the result of the SLPMM procedure, OTHER
if otherwise taken). Note that the main computational work for IPCTR, CTR, and
ARMIJO is comparable. For example, all of these methods compute a step using
a CG procedure similar to Algorithm 2.1. Therein, in IPCTR and CTR, we must
solve three linear equations per CG iteration, while in ARMIJO, we need to solve
five linear equations in every CG iteration. Moreover, in IPCTR and CTR the same
number of linear equations must be solved during each trust region iteration of these
algorithms, while in ARMIJO, we need to solve five linear equations. Thus, we can
compare the performance of the algorithms by the number of iterations that they need
for finding an approximate solution of (1.1). Observe that for the test examples listed
in Table 4.2, the IPCTR algorithm outperforms the CTR and the ARMIJO rival.
Furthermore, the Newton method combined with the Armijo line search strategy fails
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Table 4.2
Several examples from the test problem set [25].

Name n p r Type ARMIJO CTR IPCTR (F0, L0) ?
(AC1) 5 3 3 SOF 115 70 39 SLPMM
(AC1) 5 3 3 SOF 272 94 83 OTHER
(AC2) 5 3 3 SOF – 14 11 SLPMM
(AC2) 5 3 3 SOF – 94 68 OTHER
(AC3) 5 2 4 SOF 59 14 12 SLPMM
(AC4) 5 3 3 SOF 299 18 14 OTHER
(AC9) 10 2 3 ROF – 83 63 OTHER
(NN2) 4 2 3 SOF – 36 25 SLPMM
(NN3) 4 2 3 SOF 59 55 43 SLPMM
(NN6) 5 3 2 SOF – 1921 721 OTHER
(HE4) 8 4 6 SOF 333 75 59 SLPMM
(HE4) 8 4 6 SOF – 14 14 OTHER
(MFP) 4 3 2 SOF – 28 15 SLPMM
(EB1) 10 1 1 SOF 642 27 27 SLPMM
(CM1) 20 1 2 SOF – 28 23 SLPMM
(CM2) 60 1 2 SOF – 37 30 SLPMM
(ROC1) 9 2 2 ROF – 709 151 SLPMM
(ROC1) 9 2 2 ROF – 725 101 OTHER
(ROC2) 9 2 2 ROF – 6982 373 OTHER
(ROC4) 5 3 3 ROF – 2251 379 OTHER
(MS1) 9 4 4 ROF – 65 39 OTHER
(MS2) 6 3 3 ROF 571 56 31 OTHER

in most of the cases (indicated by the dash) for finding an approximate solution of
these nonconvex SDP-problems with accuracy less than εout = 10−8. In contrast to
this, the trust region strategies are very robust. For all tested examples, they find
a solution within the desired accuracy independently of the starting point. But the
IPCTR method is often much faster than the CTR rival.

Table 4.2 contains only a selection of test examples from the test problem set of
[25]. However, for other examples in this test collection we can draw the same ob-
servations. IPCTR requires fewer or not more iterations than CTR or ARMIJO, and
in most of the cases, ARMIJO needs more iterations than the trust region methods.
But note that, as presented in Example 1, for some examples all three algorithms can
behave very similarly. Moreover, near a solution of (1.1), we have always observed
the fast local convergence rates together with the one-step termination of the inner
loop and the reduction of the barrier parameter in every iteration as demonstrated
in Table 4.1. Finally, we have never observed a failure of the IPCTR algorithm in
any of the examples tested. The IPCTR method had always reached an approximate
solution within the desired accuracy. Again, this indicates that the IPCTR algorithm
is very robust and potentially efficient for the solution of nonconvex and nonlinear
SDP-problems of the form considered in this paper.
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Abstract. We give a pattern search method for nonlinearly constrained optimization that is
an adaption of a bound constrained augmented Lagrangian method first proposed by Conn, Gould,
and Toint [SIAM J. Numer. Anal., 28 (1991), pp. 545–572]. In the pattern search adaptation, we
solve the bound constrained subproblem approximately using a pattern search method. The stopping
criterion proposed by Conn, Gould, and Toint for the solution of the subproblem requires explicit
knowledge of derivatives. Such information is presumed absent in pattern search methods; however,
we show how we can replace this with a stopping criterion based on the pattern size in a way that
preserves the convergence properties of the original algorithm. In this way we proceed by successive,
inexact, bound constrained minimization without knowing exactly how inexact the minimization is.
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1. Introduction. In this paper we consider the extension of pattern search
methods to nonlinearly constrained optimization problems of the form

minimize f(x)
subject to c(x) = 0,

� ≤ x ≤ u,
(1.1)

where f : R
n → R and c(x) = (c1(x), . . . , cm(x)). We allow the possibility that some

of the variables are unbounded either above or below by permitting �j , uj = ±∞,
j ∈ {1, . . . , n}. This formulation assumes that any general inequality constraints have
been converted into equality constraints by the introduction of nonnegative slack
variables, leaving bounds as the only explicit inequality constraints.

The pattern search method presented here is an adaptation of an augmented
Lagrangian method due to Conn, Gould, and Toint [4], which is the basis for the sub-
routine AUGLG in the LANCELOT optimization package [5]. The method of Conn, Gould,
and Toint involves successive bound constrained minimization of an augmented La-
grangian. Since the analysis of pattern search methods has recently been extended to
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bound constrained minimization [17, 18], an adaptation of the augmented Lagrangian
method of Conn, Gould, and Toint to pattern search naturally suggests itself. Further-
more, the multiplier update of Algorithm 1 in [4] does not involve information about
derivatives of the objective or constraints, so the augmented Lagrangian approach is
consistent with the derivative-free nature of pattern search algorithms.

Since there exist broad classes of pattern search methods for unconstrained [16, 28]
and bound constrained minimization [17, 18], it seems to us natural to first extend
pattern search methods to nonlinearly constrained minimization via algorithms that
proceed by successive unconstrained or bound constrained minimization, such as the
augmented Lagrangian method we discuss here. In the absence of information about
derivatives of the objective and constraints, it is difficult to design pattern search
algorithms for general nonlinearly constrained minimization that produce only feasible
directions or feasible iterates. This is due to the fact that a pattern in a pattern search
algorithm would need to include a sufficiently rich set of search directions to capture
any feasible improvement in the objective. When nonlinear constraints are present,
it is not clear how to design such a pattern without first-order information.

We show that despite the absence of an explicit estimation of any derivatives (a
characteristic of pattern search methods), our pattern search augmented Lagrangian
approach exhibits all of the first-order convergence properties of the original algorithm
of Conn, Gould, and Toint. This at first is surprising, since the original algorithm
allows its subproblems to be solved approximately, and the stopping criterion for the
solution of the subproblems is based on the magnitude of a measure of first-order
stationarity for bound constrained minimization. This information is not explicitly
available in a direct search method. However, as we discuss in section 5.1, there is a
correlation between the size of the pattern in bound constrained pattern search and
the amount of local feasible descent. Using this correlation, we are able to establish
convergence to Karush–Kuhn–Tucker points of (1.1) even without explicit knowledge
of derivatives. That is, we are able to proceed by successive, inexact minimization of
the augmented Lagrangian via pattern search methods, even without knowing exactly
how inexact the minimization is.

This is the main contribution of the work presented here. Otherwise, the extension
of pattern search to constrained minimization by means of the augmented Lagrangian
approach of Conn, Gould, and Toint is straightforward, due to the strength and
generality of the convergence analysis presented in [4].

The question of treating general nonlinear constraints with direct search mini-
mization algorithms has a long history, beginning with the original work on direct
search methods. Rosenbrock [24] proposed treating constraints, using his rotating di-
rections method, by redefining the objective near the boundary of the feasible region
in a way that would tend to keep the iterates feasible, a form of penalization. Similar
ideas for modifying the objective in the case of bound constraints are discussed by
Spendley, Hext, and Himsworth [26] and Nelder and Mead [21] in connection with
their simplex-based methods. In these approaches the objective is given a suitably
large value (in the case of minimization) at all infeasible points.

More systematic approaches to penalization have also appeared. The treatment of
inequality constraints via exact, nonsmooth penalization (though not by that name)
appears as early as the work of Hooke and Jeeves [12]. More recently, Kearsley
and Glowinski [10, 13] have applied pattern search methods with exact, nonsmooth
penalization to equality constrained problems arising in control. Weisman’s MINIMAL
algorithm (see [11]) applies the pattern search algorithm of Hooke and Jeeves to a
nonsmooth quadratic penalty function and incorporates an element of random search.
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Davies and Swann [6], in connection with applying the pattern search method of Hooke
and Jeeves to constrained optimization, recommend the use of the reciprocal barrier
method of Carroll [3] (also see [8]).

A direct search method for constrained minimization that has proven popular
in application is the complex method of Box [2], which was originally developed to
address difficulties encountered with Rosenbrock’s method. In this algorithm, the
objective is sampled at a broader set of points than in the simplex-based methods,
to try to avoid premature termination. There is also an element of random search
involved. The ACSIM algorithm of Dixon [7] combines ideas from the simplex method
of Nelder and Mead and the complex method with elements of hem-stitching and
quadratic modeling to accelerate convergence.

In the special case of bound constraints, Spendley [25] also suggested the expedi-
ent of simply setting to the corresponding bound any variable that would otherwise
become infeasible when applying the simplex algorithm of Nelder and Mead. In [14],
Keefer proposed a hybrid, feasible iterates algorithm for bound constrained minimiza-
tion that uses the algorithm of Nelder and Mead for variables suitably far from their
bounds, and the method of Hooke and Jeeves for variables that are on or near one of
their bounds, since the pattern in the algorithm of Hooke and Jeeves conforms in a
natural way to the boundary of the feasible region. In the case of linear constraints
there is the algorithm of May [19], which is an extension of Mifflin’s derivative-free
unconstrained minimization method [20]. May’s algorithm also takes into account
the particular geometry of the feasible region. May’s algorithm is notable because
it is accompanied by convergence analysis results; however, it is not a direct search
method, insofar as it does rely on a model of the objective.

Others have proposed modifications of the method of Hooke and Jeeves along the
lines of feasible directions algorithms. These methods involve a limited calculation of
sensitivity information to compute feasible directions at the boundary of the feasible
region if the algorithm appears to have stalled. Klingman and Himmelblau [15] give
an algorithm with a simple construction of a suitable feasible direction. The method
of Glass and Cooper [9] is more sophisticated and computes a new search direction
by solving a linear programming problem involving a linear approximation of the
objective and constraints, just as one would in a derivative-based feasible directions
algorithm.

Finally, we note the flexible tolerance method of Paviani and Himmelblau [11, 22].
This algorithm, based on the method of Nelder and Mead, alternatively attempts to
reduce the objective and constraint violation, depending on the extent to which the
iterates are infeasible.

These proposals for direct search algorithms for constrained minimization have
often proven effective in practice but have not been accompanied by any conver-
gence analysis. In historical context, this is not surprising. The early development
of direct search methods (particularly the work cited here) predates even the first
global convergence analysis of practical unconstrained minimization algorithms using
the Armijo–Goldstein–Wolfe conditions. Instead, in the 1960s the emphasis in op-
timization was on the development of new computational methods, not on proving
theoretical properties. And, in fact, some of the heuristics in the approaches dis-
cussed above do not always work in practice. For instance, see Box’s comments on
Rosenbrock’s method in [2], and Keefer’s comments on Box’s method in [14].

Nevertheless, some of the heuristics proposed in this early research on direct
search methods can be placed on firm theoretical grounds. For instance, Keefer’s
observation that the pattern search method of Hooke and Jeeves works particularly
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well for bound constrained problems can be explained analytically [17]. In this paper
we apply analytical and algorithmic advances made since the original development
of direct search methods to construct a direct search method for general nonlinear
programming with provable first-order global convergence properties.

2. The augmented Lagrangian method of Conn, Gould, and Toint. We
base our augmented Lagrangian pattern search method on Algorithm 1 of [4]. To
facilitate comparison of the pattern search approach with the original algorithm, we
adhere to the notation of [4] throughout.

The augmented Lagrangian in [4] is

Φ(x;λ, S, µ) = f(x) +

m∑
i=1

λici(x) +
1

2µ

m∑
i=1

siici(x)
2.(2.1)

The vector λ = (λ1, . . . , λm)
T is the Lagrange multiplier estimate for the equality

constraints, µ is the penalty parameter, and the entries sii of the diagonal matrix
S are positive weights. The equality constraints of (1.1) are incorporated in the
augmented Lagrangian Φ, while the simple bounds are left explicit. For a particular
choice of multiplier estimate λ(k), penalty parameter µ(k), and scaling S(k), we define

Φ(k)(x) = Φ(x;λ(k), S(k), µ(k)).

Following [4], unless otherwise indicated by an explicit argument, ∇xΦ(k) denotes

∇xΦ(k) ≡ ∇xΦ(k)(x(k)) = ∇xΦ(x(k);λ(k), S(k), µ(k))

for the iterate x(k).
Conn, Gould, and Toint define the first-order Lagrange multiplier update to be

λ(x, λ, S, µ) = λ+ Sc(x)/µ.(2.2)

This is the Hestenes–Powell multiplier update for the augmented Lagrangian (2.1).
For the purposes of a pattern search augmented Lagrangian approach, which assumes
no explicit knowledge of derivative information, one appears to have no choice other
than some variant of the Hestenes–Powell multiplier update, since other multiplier
update formulae (such as those discussed in [1, 27]) require information about deriva-
tives.

We denote by P the projection onto the set B = { x | � ≤ x ≤ u }; P is defined
componentwise by

(P [x])i =



�i if xi ≤ �i,
ui if xi ≥ ui,
xi otherwise.

Given x ∈ B and a vector v, we define

P (x, v) = x− P [x− v].

The geometrical meaning of P (x, v) is illustrated in Figure 2.1. If x is interior to
B, then P (x, v) = 0 if and only if v = 0, while if x is on the boundary of B, then
P (x, v) = 0 if and only if v is normal to B (in the sense of convex analysis).
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x

✕

−v

x− v

P [x− v]
❃

x− P [x− v]
≡ P (x, v)

Fig. 2.1. An example of P (·, ·).

At iteration k of the original augmented Lagrangian algorithm described in [4],
we approximately solve the subproblem

minimize Φ(k)(x)
subject to � ≤ x ≤ u.(2.3)

The degree to which this subproblem must be solved is given by

‖ P (x(k),∇xΦ(k)) ‖ ≤ ω(k),(2.4)

where ω(k) is updated at each iteration k. (Unless otherwise noted, we use ‖ · ‖ to
denote the Euclidean vector norm or its induced matrix norm.)

We adapt Algorithm 1 in [4] to pattern search by solving the bound constrained
subproblem (2.3) using a bound constrained pattern search method. However, pattern
search methods do not have recourse to derivatives or explicit approximations thereof.

For that reason we replace (2.4) with a new stopping criterion that is based on the
size of the pattern. As we discuss in section 5, we retain the convergence properties
of the original Conn, Gould and Toint algorithm because the size of the pattern and
the stationarity condition (2.4) are correlated, even though we do not have explicit
control of ‖P (x(k),∇xΦ(k))‖.

3. Bound constrained pattern search algorithms. We next review relevant
features of the general pattern search method for the bound constrained problem

minimize F (x)
subject to � ≤ x ≤ u.(3.1)

We concentrate only on features that we need for the results that follow. For a full
discussion, see [17, 18].

3.1. The bound constrained pattern search method. Figure 3.1 outlines
the generalized pattern search method for minimization with bound constraints. To
define a particular pattern search method, we must specify the pattern (a set of
possible trial directions) Π(j), the bound constrained exploratory moves algorithm
used to find a feasible step s(j), and the algorithms for updating Π(j) and ∆(j). The
options and conditions accompanying these choices are discussed in [17, 18].

We make use of the following observations.
1. At iteration j, the step s(j) must be in the set ∆(j)Π(j), and x(j) + s(j) must

be feasible. We allow the possibility s(j) = 0.
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Let x(0) ∈ B and ∆(0) > 0 be given.
For j = 0, 1, . . . ,

a) Compute F (x(j)).

b) Determine a step s(j) using a bound constrained exploratory moves algorithm.

c) If F (x(j) + s(j)) < F (x(j)), then x(j+1) = x(j) + s(j). Otherwise x(j+1) = x(j).

d) Update Π(j) and ∆(j).

Fig. 3.1. The generalized pattern search method for bound constrained problems.

2. The pattern Π(j) contains a distinguished subset of trial directions known as
the core pattern, which we denote by Γ(j). The core pattern is constructed to
ensure that if x(j) is not a constrained stationary point of (3.1), then at least
one element p in Γ(j) is a feasible direction of descent. The elements of Γ(j)

are required to be uniformly bounded in norm: there exists d∗, independent
of j, such that ‖ p ‖ ≤ d∗ for all p ∈ Γ(j).

3. We may accept any step s(j) that yields simple decrease in F .
4. If

min
{
F (x(j) + s) | s ∈ ∆(j)Γ(j), x(j) + s ∈ B

}
< F (x(j)),(3.2)

then the step s(j) returned by the bound constrained exploratory moves al-
gorithm must also produce simple decrease on F (x(j)). (Note, though, that
s(j) need not be an element of ∆(j)Γ(j).)

5. The update of ∆(j) depends on whether or not the step s(j) satisfied the
simple decrease criterion.

3.2. The update of ∆(j). The conditions under which we allow ∆(j) to be
reduced are at the heart of the results that follow. The aim of the update of ∆(j) is to
force a strict reduction in F . An iteration with F (x(j) + s(j)) < F (x(j)) is successful ;
otherwise, the iteration is unsuccessful. We cannot update ∆(j) in an arbitrary man-
ner, as discussed in [17, 18]. However, for the purposes of analyzing the augmented
Lagrangian pattern search algorithm, the update of ∆(j) can be summarized as

if F (x(j) + s(j)) < F (x(j)), then ∆(j+1) ≥ ∆(j);(3.3)

if F (x(j) + s(j)) ≥ F (x(j)), then ∆(j+1) < ∆(j).(3.4)

If an iteration is successful, it may be possible to increase the scale factor ∆(j), but
∆(j) is not allowed to decrease. If an iteration is unsuccessful, the scale factor ∆(j)

must be decreased.

4. The pattern search augmented Lagrangian method. We now state the
augmented Lagrangian pattern search algorithm. At iteration k in the outermost
loop of the algorithm, we denote by {x(k,j)} the sequence of iterates produced in the
solution of (2.3) via a bound constrained pattern search algorithm. Thus, for a given
value of k, we look for an approximate solution of the subproblem (2.3) starting from
x(k,0) = x(k) and proceed until we find j∗ such that x(k,j∗) solves (2.3) to an acceptable
degree. We modify the original algorithm by replacing the stopping criterion (2.4) for
the solution of the subproblems with one that is suitable for pattern search while still
allowing us to use the analysis from [4].
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In order to relate the stopping criterion in the pattern search solution of the
subproblems to the multiplier estimates and the penalty parameter, we introduce the
function

θ(λ, µ) = (1 + ‖ λ ‖+ 1/µ)−1.

We note that any function θ(λ, µ) such that θ(λ, µ) = O((‖ λ ‖+1/µ)−1) as (‖ λ ‖+
1/µ)→∞ suffices for the purposes of proving convergence.

Our algorithm closely resembles Algorithm 1 in [4]. We use boxes to highlight
the elements that differ.

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates λ(0)

is given. The positive constants η0, µ0, ω0, τ < 1, γ1 < 1, δ∗ � 1 , η∗ � 1,
αω, βω, αη, and βη are specified. The diagonal matrices S1 and S2, for which 0 <
S−1

1 ≤ S2 < ∞, are given. (The inequalities are to be understood elementwise for
the diagonal elements.) Set µ(0) = µ0, α

(0) = min(µ(0), γ1), ω
(0) = ω0(α

(0))αω ,

δ(0) = θ(λ(0), µ(0))ω(0) , η(0) = η0(α
(0))αη , and k = 0.

Step 1 [Inner iteration]. Define a scaling matrix S(k) for which S−1
1 ≤ S(k) ≤

S2.

Set x(k,0) = x(k). Apply a bound constrained pattern search method to

minimize Φ(k)(x)
subject to � ≤ x ≤ u(4.1)

to find the first iteration j∗ for which the scale factor is sufficiently small; that is,

∆(k,j∗) ≤ δ(k).(4.2)

Set x(k) = x(k,j∗).

If

‖ c(x(k)) ‖ ≤ η(k),

execute Step 2. Otherwise, execute Step 3.

Step 2 [Test for convergence and update Lagrange multiplier estimates].

If δ(k) ≤ δ∗ and ‖c(x(k))‖ ≤ η∗, stop. Otherwise, set

λ(k+1) = λ(x(k), λ(k), S(k), µ(k)),

µ(k+1) = µ(k),

α(k+1) = min(µ(k+1), γ1),

ω(k+1) = ω(k)(α(k+1))βω ,

δ(k+1) = θ(λ(k+1), µ(k+1)) ω(k+1) ,

η(k+1) = η(k)(α(k+1))βη ,

increment k by one, and go to Step 1.
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Step 3 [Reduce the penalty parameter]. Set

λ(k+1) = λ(k),

µ(k+1) = τµ(k),

α(k+1) = min(µ(k+1), γ1),

ω(k+1) = ω0(α
(k+1))αω ,

δ(k+1) = θ(λ(k+1), µ(k+1)) ω(k+1) ,

η(k+1) = η0(α
(k+1))αη ,

increment k by one, and go to Step 1.
We have replaced the stopping criterion (2.4) for the inner iteration of Algorithm

1 in [4] with (4.2), which is based on the scale factor ∆, because we do not assume
explicit information about the derivatives. The remaining modifications to Algorithm
1 in [4] concern the management of the sequence {δ(k)}, which controls the stopping
criterion we have introduced.

5. Convergence analysis. We now discuss the convergence properties of the
augmented Lagrangian pattern search algorithm. As we shall see, altering the original
algorithm by solving the bound constrained subproblem via pattern search leaves the
convergence properties of the original algorithm almost entirely unchanged.

In [4], Conn, Gould, and Toint call a component of x(k) floating if

�i < x
(k)
i − (∇xΦ(k))i < ui.

For a convergent subsequence {x(k)}, k ∈ K, with limit point x∗, they define the
index set

I1 =
{
i | x(k)

i are floating for all k ∈ K sufficiently large and �i < x
∗
i < ui

}

and let Â(x) denote the corresponding columns of the Jacobian of c(x), where A(x)
is the entire Jacobian of c(x).

The following assumptions are made in [4].
AS1. The functions f(x) and c(x) are twice continuously differentiable for all

x ∈ B.
AS2. The iterates {x(k)} considered lie within a closed, bounded domain Ω.
AS3. The matrix Â(x∗) has column rank no smaller than m at any limit point

x∗ of the sequences {x(k)} considered in this paper.
In addition, in order to be assured that a bound constrained pattern search algo-

rithm applied to the subproblem (4.1) will find an iterate satisfying (4.2), we assume
the following.

PS1. For a given k, the set B ∩ {x | Φ(k)(x) ≤ Φ(k)(x(k,0))
}
is compact.

That is, we assume compactness of the set of x ∈ B for which the augmented La-
grangian is no larger than the value of the augmented Lagrangian at the point at
which we begin the solution of the subproblem. Under hypothesis (PS1), we are
assured that in the inner iteration (the pattern search minimization of the bound
constrained augmented Lagrangian),

lim inf
j→+∞

∆(k,j) = 0
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(see [17, 18]). Thus the termination criterion (4.2) will eventually be satisfied, the
pattern search solution of the augmented Lagrangian subproblem will halt, and the
overall iteration of the pattern search augmented Lagrangian algorithm is well-defined.

We also assume the following uniform bound.
PS2. There exists d∗ such that for all k and j we have ‖p‖ ≤ d∗ for all p ∈ Γ(k,j).
This uniformity in the pattern search algorithms used in the successive minimiza-

tion of the augmented Lagrangian is not at all restrictive. For instance, one could
simply choose for all (k, j) a single set Γ.

5.1. The relationship between the pattern size and stationarity. The
following result is the key to analyzing the augmented Lagrangian pattern search
method. The important observation in connection with the stopping criterion (4.2)
is that at unsuccessful iterations of the pattern search solution of (4.1) there is a
correlation between ∆(k,j) and the stationarity of the augmented Lagrangian. The
rules for updating ∆(k,j), summarized in (3.3) and (3.4), mean that ∆(k,j) can drop
below δ(k) only at an unsuccessful iteration of the pattern search. Thus (4.2) can
occur only at an unsuccessful iteration of the solution of the subproblem. At an
unsuccessful iteration, we do not find an acceptable step in ∆(k,j)Γ(k,j); that is,

Φ(k)(x(k,j) + s) ≥ Φ(k)(x(k,j)) for all s ∈ ∆(k,j)Γ(k,j) with (x(k,j) + s) ∈ B.

Now, the set of steps s for s ∈ ∆(k,j)Γ(k,j) includes a set of generators for the tangent
cone of the bound constrained feasible region [17, 18]. The fact that none of the steps
s yields a feasible trial point with a smaller value of Φ(k) tells us something about
the size of ‖P (x(k),∇xΦ(k))‖. Proposition 5.1 makes this precise and shows that the
weaker condition (4.2) we have introduced guarantees that (2.4) will be satisfied.
Proposition 5.1. There exists C5.1, independent of k, such that

‖ P (x(k),∇xΦ(k)) ‖ ≤ C5.1 ω
(k)

for all iterations k of the pattern search augmented Lagrangian method.
Proof. Given k, we know that at the end of Step 1, the inner iteration, x(k) ≡

x(k,j∗) for some j∗. For convenience, let

q(k,j
∗) = P (x(k),∇xΦ(k)) ≡ P (x(k,j∗),∇xΦ(k)(x(k,j∗))).

First suppose

∆(k,j∗) ≥ ‖ q
(k,j∗) ‖∞
d∗

.(5.1)

Then (5.1), (4.2), and the rule for updating δ(k) in either Step 2 or Step 3 give us

‖ q(k,j∗) ‖∞ ≤ d∗∆(k,j∗) ≤ d∗δ(k) ≤ d∗ω(k),

and thus

‖ q(k,j∗) ‖ ≤ n 1
2 d∗ω(k).(5.2)

On the other hand, suppose

∆(k,j∗) <
‖ q(k,j∗) ‖∞

d∗
.



1084 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

The proof of Proposition 5.2 in [17] shows that if ∆(k,j∗) < ‖q(k,j∗)‖∞/d∗, there is a
step s ∈ ∆(k,j∗)Γ(k,j∗) such that x(k,j∗) + s ∈ B and

∇xΦ(k)(x(k,j∗))T s < −n− 1
2 ‖ q(k,j∗) ‖ ‖ s ‖.(5.3)

Because x(k,j∗) is an unsuccessful iterate, we know from (3.2) that

0 ≤ Φ(k)(x(k,j∗) + s)− Φ(k)(x(k,j∗)).(5.4)

At the same time we have

Φ(k)(x(k,j∗) + s)− Φ(k)(x(k,j∗)) = ∇xΦ(k)(ξ)T s(5.5)

for some ξ in the line segment (x(k,j∗), x(k,j∗) + s) connecting x(k,j∗) and x(k,j∗) + s.
Thus from (5.4), (5.5), and (5.3), we obtain

0 ≤ Φ(k)(x(k,j∗) + s)− Φ(k)(x(k,j∗))

= ∇xΦ(k)(x(k,j∗))T s+ (∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)))T s

≤ −n− 1
2 ‖ q(k,j∗) ‖ ‖ s ‖+ ‖ ∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)) ‖ ‖ s ‖,

which yields

‖ q(k,j∗) ‖ ≤ n 1
2 ‖ ∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)) ‖.(5.6)

Applying the mean-value theorem again, for some ζ ∈ (x(k,j∗), ξ) we have

∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)) = ∇2
xxΦ

(k)(ζ)(ξ − x(k,j∗)),

and thus

‖∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗))‖ ≤ ‖∇2
xxΦ

(k)(ζ)‖ ‖ξ − x(k,j∗)‖(5.7)

≤ ‖∇2
xxΦ

(k)(ζ)‖ ‖s‖.
Now,

∇2
xxΦ

(k)(ζ) = ∇2
xxf(ζ)+

m∑
i=1

λ
(k)
i ∇2ci(ζ)+

1

µ(k)

(
∇c(ζ)S∇c(ζ)T+

m∑
i=1

siici(ζ)∇2ci(ζ)

)
.

By construction, ω(k) → 0, so δ(k) → 0, so by (AS2), ζ lies in a compact subset that
is independent of k. Furthermore, the bound S(k) ≤ S2 is independent of k. Thus we
can find M , independent of k, such that

‖ ∇2
xxΦ

(k)(ζ) ‖ ≤ M +M‖ λ(k) ‖+M 1

µ(k)
= M/θ(λ(k), µ(k)).

Returning to (5.7), we have

‖ ∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)) ‖ ≤
(
M/θ(λ(k), µ(k))

)
‖ s ‖.(5.8)

Thus from (5.6), (5.8), the fact that s ∈ ∆(k,j∗)Γ(k,j∗), and (4.2), we have

‖ q(k,j∗) ‖ ≤ n 1
2 ‖ ∇xΦ(k)(ξ)−∇xΦ(k)(x(k,j∗)) ‖

≤ n 1
2

(
M/θ(λ(k), µ(k))

)
‖ s ‖

≤ n 1
2 d∗

(
M/θ(λ(k), µ(k))

)
∆(k,j∗)

≤ n 1
2 d∗

(
M/θ(λ(k), µ(k))

)
δ(k).
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Finally, the rule for updating δ(k) in either Step 2 or Step 3 is δ(k) = θ(λ(k), µ(k))ω(k),
whence

‖ q(k,j∗) ‖ ≤ n 1
2 d∗Mω(k).(5.9)

Combining (5.2) and (5.9) yields the proposition.

5.2. Convergence results. Proposition 5.1 means that the asymptotic behav-
ior of ‖P (x(k),∇xΦ(k))‖ in the augmented Lagrangian pattern search algorithm is
like that of the same quantity in the original algorithm. This, in turn, allows us to
piggyback the convergence analysis for the augmented Lagrangian pattern search al-
gorithm on that for the original augmented Lagrangian algorithm in [4]. Because of
Proposition 5.1, the original proofs of all these results still hold.

The first convergence result corresponds to Theorem 4.4 and Lemma 4.3 in [4].
Let

gL(x;λ) = ∇f(x) +
m∑
i=1

λi∇ci(x).

Theorem 5.2. Assume that (AS1) holds. Let x∗ be any limit point of the sequence
{x(k)} generated by the augmented Lagrangian pattern search algorithm for which
(AS2) and (AS3) hold, and let K be the set of indices of an infinite subsequence of
the x(k) whose limit is x∗. Then the following hold:

(i) c(x∗) = 0.
(ii) x∗ is a Karush–Kuhn–Tucker point (first-order stationary point) for prob-

lem (1.1), λ∗ is the corresponding vector of Lagrange multipliers, and the sequence
{λ(x(k), λ(k), S(k), µ(k))} converges to λ∗ for k ∈ K.

(iii) There are positive constants a1, a2, s1 and an integer k0 such that

‖ λ(x(k), λ(k), S(k), µ(k))− λ∗ ‖ ≤ a1ω(k) + a2‖ x(k) − x∗ ‖
and

‖ c(x(k)) ‖ ≤ s1(a1ω(k)µ(k) + µ(k)‖ λ(k) − λ∗ ‖+ a2µ(k)‖ x(k) − x∗ ‖)
for all k ≥ k0, k ∈ K.

(iv) The gradients ∇xΦ(k) converge to gL(x
∗;λ∗) for k ∈ K.

As in [4], under additional assumptions we obtain stronger results. Following [4],
if J1 and J2 are any index sets, and HL(x

∗, λ∗) is the Hessian of the Lagrangian, then
HL(x

∗, λ∗)[J1,J2] is the matrix formed by taking the rows and columns of HL(x
∗, λ∗)

indexed by J1 and J2, respectively, while A(x
∗)[J1] is the matrix formed by taking the

columns of A(x∗) indexed by J1. We then make the following assumptions.
AS4. The second derivatives of the functions f(x) and ci(x) are Lipschitz con-

tinuous at all points within Ω.
AS5. Suppose that (x∗, λ∗) is a Karush–Kuhn–Tucker point for problem (1.1)

and that

J1 = { i | (gL(x∗;λ∗))i = 0 and �i < x
∗
i < ui } ,

J2 = { i | (gL(x∗;λ∗))i = 0 and (x∗i = �i or x
∗
i = ui) } .

Then we assume that the matrix[
HL(x

∗, λ∗)[J,J] (A(x∗)[J])
T

A(x∗)[J] 0

]
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is nonsingular for all sets J , where J is any set made up from the union of J1 and
any subset of J2.

The next result is Lemma 5.1 from [4]. This result also holds for the augmented
Lagrangian pattern search algorithm and relates the convergence of the iterates to
the error in the multipliers, a relationship characteristic of augmented Lagrangian
methods [1, 27]. Again, the proof in [4] holds for the pattern search variant because
of Proposition 5.1.
Lemma 5.3. Suppose that (AS1) holds. Let {x(k)} ⊂ B, k ∈ K, be a subsequence

which converges to the Karush–Kuhn–Tucker point x∗ for which (AS2), (AS4), and
(AS5) hold, and let λ∗ be the corresponding vector of Lagrange multipliers. Assume
that {λ(k)}, k ∈ K, is any sequence of vectors, that {S(k)}, k ∈ K, is any sequence
of diagonal matrices satisfying 0 < S−1

1 ≤ S(k) ≤ S2 < ∞, and that {µ(k)}, k ∈ K,
form a nonincreasing sequence of positive scalars, so that the product µ(k)‖λ(k) − λ∗‖
converges to zero as k increases. Now, suppose further that

‖ P (x(k),∇xΦ(k)) ‖ ≤ ω(k),

where the ω(k) are positive scalar parameters which converge to zero as k ∈ K in-
creases. Then there are positive constants µ, a3, a4, a5, a6, and s1 and an integer
value k0 so that if µ

(k0) ≤ µ, then
‖ x(k) − x∗ ‖ ≤ a3ω(k) + a4µ

(k)‖ λ(k) − λ∗ ‖,(5.10)

‖ λ(x(k), λ(k), S(k), µ(k))− λ∗ ‖ ≤ a5ω(k) + a6µ
(k)‖ λ(k) − λ∗ ‖,

and

‖ c(x(k)) ‖ ≤ s1(a5ω(k)µ(k) + (µ(k) + a6(µ
(k))2)‖ λ(k) − λ∗ ‖)(5.11)

for all k ≥ k0, k ∈ K.
The following is Corollary 5.2 in [4].

Corollary 5.4. Suppose that the conditions of Lemma 5.3 hold and that λ̂(k+1)

is any Lagrange multiplier estimate for which

‖ λ̂(k+1) − λ∗ ‖ ≤ a16‖ x(k) − x∗ ‖+ a17ω(k)

for some positive constants a16 and a17 and all k ∈ K sufficiently large. Then there
are positive constants µ, a3, a4, a5, a6, s1 and an integer value k0 so that if µ

(k0) ≤ µ,
then (5.10),

‖ λ̂(k+1) − λ∗ ‖ ≤ a5ω(k) + a6µ
(k)‖ λ(k) − λ∗ ‖,

and (5.11) hold for all k ≥ k0, k ∈ K.
We also inherit the following result indicating that we may generally expect the

penalty parameter to remain bounded away from zero. This is Theorem 5.3 in [4].
Taken together with the convergence of the multiplier estimates, this means that
the stopping tolerance for the inexact minimization of the augmented Lagrangian is
decreasing at the same rate as in the original algorithm. However, in section 6 of [4]
the authors show that in the case of nonunique limit points one can have µ(k) → 0,
in which case the stopping tolerance δk decreases more like (µ(k))2.
Theorem 5.5. Suppose that the iterates {x(k)} of the augmented Lagrangian pat-

tern search algorithm converge to the single limit point x∗, that (AS1), (AS2), (AS4),
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and (AS5) hold, and that αη and βη satisfy αη < min(1, αω) and βη < min(1, βω).
Then there is a constant µ > 0 such that µ(k) > µ for all k.

The proof of Theorem 5.5 makes use of the fact that ‖P (x(k),∇xΦ(k))‖ = O(ω(k)),
whereas the proofs of the preceding convergence results require only that

‖ P (x(k),∇xΦ(k)) ‖ → 0.

Finally, we have the following result on the rate of convergence of the outer
iteration, corresponding to Theorem 5.5 in [4].
Theorem 5.6. Under the assumptions of Theorem 5.5, the iterates x(k) and

the Lagrange multiplier estimates λ̄(k) of the augmented Lagrangian pattern search
algorithm are at least R-linearly convergent with R-factor at most µ̂min(βω,βη), where
µ̂ = min[γ1, µ] and where µ is the smallest value of the penalty parameter generated
by the algorithm in question.

6. Application to inequality constrained minimization. Special consider-
ation is due to the general problem

minimize f(x)
subject to g(x) ≤ 0,

� ≤ x ≤ u,
(6.1)

converted into the form (1.1) via the introduction of nonnegative slack variables:

minimize f(x)
subject to g(x) + z = 0,

� ≤ x ≤ u,
z ≥ 0.

(6.2)

The augmented Lagrangian associated with (6.2) is

Φ(x, z;λ, S, µ) = f(x) + λT (g(x) + z) +
1

2µ

m∑
i=1

sii(gi(x) + zi)
2.(6.3)

Explicit equality constraints may also be present in (6.1); we ignore them here for
brevity.

The introduction of slacks increases the dimension of the bound constrained sub-
problem that we must solve at each outer iteration. Unfortunately, increases in di-
mension usually cause a degradation in performance for pattern search methods. We
can avoid this increase in dimension because of the simple way in which the slacks
z enter into (6.3). One approach [1, 23] is to note that, given x, we can minimize
Φ(x, z;λ, S, µ) explicitly in z for z ≥ 0. This leads to a subproblem in x alone:

minimize Φ(x, z(x);λ, S, µ)
subject to � ≤ x ≤ u,

where

Φ(x, z(x);λ, S, µ) = f(x) +
µ

2

m∑
i=1

1

sii

(
max

(
0, λi +

sii
µ
gi(x)

)2

− λ2
i

)
.

The multiplier update formula (2.2) is also modified:

λi(x, λ, S, µ) = max(0, λi + siici(x)/µ), i = 1, . . . ,m.
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See [1] for further discussion. The reduced augmented Lagrangian Φ(x, z(x);λ, S, µ)
has Lipschitz first derivatives. If one were using a quasi-Newton method for the min-
imization of the augmented Lagrangian, one might be loath to eliminate z, since the
resulting problem is not C2 and one loses any assurance of local superlinear conver-
gence. However, pattern search methods do not have such favorable local convergence
properties, and thus ostensibly nothing is lost and much is gained by the reduction of
dimension of the subproblems.

7. Conclusion. We have demonstrated that it is possible to construct a globally
convergent augmented Lagrangian pattern search algorithm for optimization with
general constraints and simple bounds. Extensive numerical tests of this algorithm
remain to be done. We agree with the perspective of the authors in [4]:

We have deliberately not included the results of numerical testing as,
in our view, the construction of appropriate software is by no means
trivial and we wish to make a thorough job of it. We will report on
our numerical experience in due course.

This caution is particularly apt in view of the sort of problems to which pattern search
is typically applied.

Acknowledgments. We wish to thank the associate editor and the two refer-
ees for their careful reading of the paper and their many helpful comments. The
presentation is much clearer as a consequence of their efforts.
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1. Introduction. The central path is of fundamental importance in the study
of interior point algorithms. The geometric view of the central path is that of an
analytic curve which converges to an optimal solution. Most interior point methods
“follow” the central path approximately to reach the optimal set. In this paper we will
re-examine the convergence property of the central path for semidefinite optimization
(SDO). We will show that the characterization of the limit point of the central path
as found in [1] is not correct in the absence of strict complementarity. This negative
result raises the question of whether the central path always converges. Since there
does not seem to be any simple proof of the convergence property in the literature,
we include a complete proof as an appendix to this paper.

We first formulate SDO problems in standard form and recall the definition of
the central path and some of its properties.

1.1. The central path in SDO. By Sn we denote the space of all real sym-
metric n× n matrices, and for any M,N ∈ Sn we define

M •N = trace(MN) =
∑
i,j

mijnij .

The convex cones of symmetric positive semidefinite matrices and positive definite
matrices will be denoted by Sn+ and Sn++, respectively; X � 0 and X � 0 mean that
a symmetric matrix X is positive semidefinite and positive definite, respectively.
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We will consider the following primal-dual pair of semidefinite programs in the
standard form:

(P) min
X∈Sn

{C •X : Ai •X = bi (i = 1, . . . ,m) X � 0} ,

(D) max
y∈Rm,S∈Sn

{
bT y :

m∑
i=1

Aiyi + S = C, S � 0

}
,

where Ai ∈ Sn (i = 1, . . . ,m) and C ∈ Sn, b ∈ R
m. We assume that Ai (i = 1, . . . ,m)

are linearly independent. The solutions X and (y, S) will be referred to as feasible
solutions if they satisfy the primal and dual constraints, respectively.

We assume that both (P) and (D) satisfy the interior point condition; i.e., there
exists (X0, S0, y0) such that

Ai •X0 = bi (i = 1, . . . ,m), X0 � 0, and

m∑
i=1

Aiy
0
i + S

0 = C, S0 � 0.

The primal and dual feasible sets will be denoted by P and D, respectively, and
P∗ and D∗ will denote the respective optimal sets. It is well known that under our
assumptions both P∗ and D∗ are nonempty and bounded. The optimality conditions
for (P) and (D) are

Ai •X = bi, X � 0 (i = 1, . . . ,m),∑m
i=1Aiyi + S = C, S � 0,

XS = 0.

(1)

A strictly complementary solution can be defined as an optimal solution pair
(X,S) satisfying the rank condition: rank X + rank S = n. Contrary to linear
optimization (LO), for SDO the existence of the strictly complementary solution is
not generally ensured.

We now relax the optimality conditions (1) to

Ai •X = bi, X � 0 (i = 1, . . . ,m),∑m
i=1Aiyi + S = C, S � 0,

XS = µI,

(2)

where I is the identity matrix and µ ≥ 0. It is easy to see that for µ = 0 (2) gives
(1), and hence it may have more than one solution. On the other hand, it is well
known that for µ > 0 system (2) has a unique solution, denoted by (X(µ), S(µ), y(µ))
(see, e.g., [6]). As for LO, this solution is seen as the parametric representation of an
analytic curve (the central path) in terms of the parameter µ > 0.

It has been shown that the central path for SDO shares many properties with
the central path for LO. First, the basic property was established that the central
path restricted to 0 < µ ≤ µ̄ for some µ̄ > 0 is bounded, and thus it has limit points
as µ ↓ 0 in the optimal set [9], [5]. Then it was shown that the limit points are in
the relative interior of the optimal set [5], [1]. Finally, it was claimed by Goldfarb
and Scheinberg [1] that the central path converges for µ ↓ 0 to the so-called analytic
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center of the optimal solution set. Although this result has been widely cited in the
recent literature, we will show in this paper that it is not correct in the absence of
strict complementarity. Let us mention that the correct proofs of this fact—however,
only under the assumption of strict complementarity—were given in [9] and later in
[4].

Since the central path does not converge to the analytic center in general, it is
natural to ask whether it always converges. The convergence property seems to be
a “folkloric” result that is already mentioned on page 74 of the review paper [10]
(without supplying references or a proof). In [7] the convergence of the central path
for the linear complementarity problem (LCP) is proven with the help of some results
from algebraic geometry. In [6], Kojima, Shindoh, and Hara mention that this proof
for LCP can be extended to the monotone semidefinite complementarity problem
(which is equivalent to SDO) without giving a formal proof. A more general result
was shown in [2], where convergence is proven for a class of convex SDO problems
that includes SDO.

We include a complete convergence proof in an appendix to this paper, which also
uses some ideas from the theory of algebraic sets, but in a different manner from [7].
It is also much shorter, and requires fewer auxiliary results, than the proof in [2].

1.2. Analytic center of the optimal solution set. A pair of optimal solutions
(X,S) ∈ P∗ × D∗ is called a maximally complementary solution pair to the pair of
problems (P) and (D) if it maximizes rank (X)+rank (S) over all optimal solution
pairs. The set of maximally complementary solutions coincides with the relative
interior of (P∗ ×D∗). Another characterization is as follows: (X̄, S̄) ∈ P∗ × D∗ is
maximally complementary if and only if

R(X̂) ⊆ R(X̄) ∀X̂ ∈ P∗, R(Ŝ) ⊆ R(S̄) ∀Ŝ ∈ D∗,

where R denotes the range space. For proofs of these characterizations see [5] and [1]
and the references therein.

Let X̄ and S̄ be a pair of maximally complementary optimal solutions. Denote

|B| := rank X̄, and |N | := rank S̄.

Obviously, |B|+ |N | ≤ n. Without loss of generality (applying an orthonormal trans-
formation of problem data, if necessary) we can assume that

X̄ =



X̄B 0 0

0 0 0

0 0 0


 , S̄ =




0̄ 0 0

0 S̄N 0

0 0 0


 ,

where X̄B ∈ S|B|
++ and S̄N ∈ S|N |

++. Therefore, each optimal solution pair (X̂, Ŝ) is of
the form

X̂ =



X̂B 0 0

0 0 0

0 0 0


 , Ŝ =




0̂ 0 0

0 ŜN 0

0 0 0


 ,

where X̂B ∈ S|B|
+ and ŜN ∈ S|N |

+ , since R(X̂) ⊆ R(X̄) and R(Ŝ) ⊆ R(S̄).



CONVERGENCE OF THE CENTRAL PATH IN SDO 1093

In what follows we consider the partition of any M ∈ Sn corresponding to the
above optimal partition so that

M =



MB MBN MBT

MNB MN MNT

MTB MTN MT


 .

We denote by I = {B,BN,BT,NB,N,NT, TB, TN, T} the index set corre-
sponding to the optimal partition. If we refer to all the blocks of M except MB , we
will write M i (i ∈ I −B).

Now, the optimal solutions sets can be characterized by using the block partition:

P∗ =
{
X : ABi •XB = bi ( i = 1, . . . , n), XB ∈ S|B|

+ , Xk = 0 (k ∈ I −B)
}
,

D∗ =

{
(S, y) :

m∑
i=1

ANi yi + S
N = CN , SN ∈ S|N |

+ ,

m∑
i=1

Aki yi = C
k, Sk = 0 (k ∈ I −N)

}
.

The analytic centers of these sets are defined as follows: Xa ∈ P∗ is the analytic
center of P∗ if

(Xa)
B
= arg max

XB∈S|B|
++

{
ln detXB : ABi •XB = bi, i = 1, . . . ,m

}
,

and (ya, Sa) ∈ D∗ is the analytic center of D∗ if

(
ya, (Sa)

N
)
= arg max

y∈Rm,SN∈S|N|
++

{
ln detSN :

m∑
i=1

ANi yi + S
N = CN ,

m∑
i=1

Aki yi = C
k, k ∈ I −N

}
.

We end this section with two known results about the central path.
Lemma 1.1 (see [5]). Any limit point (X∗, S∗) of the central path is a maximally

complementary optimal solution; i.e., it satisfies

X∗B � 0 and S∗N � 0.

Lemma 1.2 (see, e.g., [3, Lemma 2.3.2]). For any µ > 0 the central path
X(µ), S(µ), y(µ) is the analytic center of the level set of the duality gap{

(X,S, y) : Ai •X = bi (i = 1, . . . ,m),

m∑
i=1

Aiyi + S = C,

C •X − bT y = µn, X ∈ Sn+, S ∈ Sn+
}
.
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As a corollary we see that the primal µ-center X(µ) is the analytic center of the
set

{X : C •X = C •X(µ), Ai •X = bi (i = 1, . . . ,m), X � 0} .
We will use this observation in the next section.

The last two lemmas make it plausible that the central path converges to the
analytic center of the optimal set, but in the next section we show that this is not
true.

2. Counterexamples. Let n = 4, m = 4, b = [1 0 0 0]T , and

C =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , A1 =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 ,

A2 =




0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


 , A3 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 , A4 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


 .

The primal problem (P) can be simplified to the following: Minimize x44 such that

X =




1− x22 x12 x13 x14

x12 x22 − 1
2x44 − 1

2x33

x13 − 1
2x44 x33 0

x14 − 1
2x33 0 x44


 � 0.

The optimal set of (P) is given by all the positive semidefinite matrices of the
form

X∗ =




1− x22 x12 0 0

x12 x22 0 0

0 0 0 0

0 0 0 0


 .(3)

Solutions of the form X∗ are clearly optimal, since C � 0 and therefore Tr (CX) ≥ 0
∀X ∈ P.

The dual problem is to maximize y1 such that

S =



−y1 0 0 0

0 −y1 −y3 −y2
0 −y3 −y2 −y4
0 −y2 −y4 1− y3


 � 0.
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Thus the dual problem has a unique optimal solution

y∗i = 0 (i = 1, 2, 3, 4), S∗ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 .(4)

It is also easy to see from (3) and (4) that strict complementary does not hold. The
central path is well defined for this example, since the matrices A1, . . . , A4 are clearly
linearly independent and strictly feasible solutions exist for both the primal and the
dual problem. Indeed,

x22 =
1

2
, x33 = x44 =

1

4
, xij = 0 (i �= j)

defines a positive definite feasible solution for (P), and y1 = −1, y2 = − 1
2 , and

y3 = y4 = 0 defines a strictly feasible solution of (D).
The analytic center of P∗ is obviously given by



1
2 0 0 0

0 1
2 0 0

0 0 0 0

0 0 0 0


 .

However, we will show that the limit point of the primal central path satisfies

X(µ)→




0.4 0 0 0

0 0.6 0 0

0 0 0 0

0 0 0 0


 as µ ↓ 0.

Due to the structure of feasible S ∈ D and the fact that X(µ) = µS(µ)−1, the
primal central path has the following structure:

X(µ) =




1− x22(µ) 0 0 0

0 x22(µ) − 1
2x44(µ) − 1

2x33(µ)

0 − 1
2x44(µ) x33(µ) 0

0 − 1
2x33(µ) 0 x44(µ)


 .

By Lemma 1.2, the point on the central path X(µ) is, for any µ > 0, the analytic
center of a level set. The level set is given by the primal feasibility and a level
condition, which is x44 = x44(µ) > 0 in our case. This implies that X(µ) maximizes

det




1− x22 0 0 0

0 x22 − 1
2x44(µ) − 1

2x33

0 − 1
2x44(µ) x33 0

0 − 1
2x33 0 x44(µ)


(5)
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under the conditions

x22 ∈ (0, 1), x33 > 0, x22x33x44(µ)− x
3
33 + x

3
44(µ)

4
> 0.

Setting the gradient (with respect to x22 and x33) of the determinant in (5) to
zero, we obtain the two equations

x33(µ)x44(µ)− 2x22(µ)x33(µ)x44(µ) +
1

4
x44(µ)

3 +
1

4
x33(µ)

3 = 0,(6)

(1− x22(µ))

(
x22(µ)x44(µ)− 3

4
x33(µ)

2

)
= 0.(7)

Using x22(µ) ∈ (0, 1), we deduce from (7) that

x33(µ) =
2√
3

√
x22(µ)x44(µ).

Substituting this expression in (6) and simplifying, we obtain

2√
3

√
x22(µ)− 10

3
√
3
x22(µ)

3/2 +
1

4
x44(µ)

3/2 = 0.

In the limit where µ ↓ 0, we have x44(µ) → 0. Moreover, we can assume that
x22(µ) is positive in the limit, since the limit point of the central path is maximally
complementary (Lemma 1.1). Denoting limµ↓0 x22(µ) := x22(0) > 0, we have

2√
3

√
x22(0)− 10

3
√
3
x22(0)

3/2 = 0,

which implies x22(0) = 0.6.

An example for the second order cone. The following example shows that
the central path may already fail to converge to the analytic center of the optimal set
in the special case of second order cone optimization.

Consider the problem of minimizing x12 subject to


x11 x12 0 0 0

x12 x22 0 0 0

0 0 x33 x22 0

0 0 x22 x12 0

0 0 0 0 1− (x11 + x33)



� 0.

Note that this problem is equivalent to a second order cone optimization problem:
the semidefiniteness constraint is on a block-diagonal matrix with all blocks of size
1× 1 or 2× 2; it is also easy to check that the notions of analytic center and central
path coincide whether the example is viewed as an SDO or as a second order cone
problem.

The optimal set is given by all matrices of the above form where x12 = x22 = 0,
and the analytic center of the optimal set is given by the optimal solution where
x11 = x33 =

1
3 .

Using exactly the same technique as in the previous example, one can show that
the limit point for the central path is x11 = 2/7, x33 = 3/7. However, the proof is
more technical for this example due to the larger number of variables, and is therefore
omitted.
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3. Conclusions and future work. The purpose of this paper was twofold:
• to show that the central path in SDO may converge to an optimal solution
which is not the analytic center of the optimal set (in the absence of strict
complementarity);
• to give a simplified yet rigorous proof that the central path always converges
for SDO.

The first result raises some questions:
• Can we give a “geometrical” characterization of the limit point of the central
path?
• For which subclasses of SDO problems can one guarantee convergence of the
central path to the analytic center of the optimal set?

We therefore hope that the observations in this paper will lead to a renewed interest
in the limiting behavior of the central path in SDO.

Appendix. Convergence proof for the central path. In this appendix we
give a proof of the convergence of the central path for SDO by using a result from
algebraic geometry.

Definition A.1 (algebraic set). A subset V ∈ Rk is called an algebraic set if V
is the locus of common zeros of some collection of polynomial functions on R

k.
Lemma A.2 (curve selection lemma). Let V ⊂ R

k be a real algebraic set, and let
U ⊂ R

k be an open set defined by finitely many polynomial inequalities:

U =
{
x ∈ R

k : g1(x) > 0, . . . , gl(x) > 0
}
.

If U ∩ V contains points arbitrarily close to the origin, then there exists an ε > 0 and
a real analytic curve

p : [0, ε) �→ R
k

with p(0) = 0 and with p(t) ∈ U ∩ V for t > 0.
A proof of the curve selection lemma is given in [8, Lemma 3.1, p. 25].
Theorem A.3. The central path in semidefinite optimization always converges.
Proof. Let (X∗, y∗, S∗) be any limit point of the central path of (P) and (D).
With reference to Lemma A.2, let the real algebraic set V be defined via

V =


(X̄, S̄, ȳ, µ)

∣∣∣∣∣∣∣∣
Ai • X̄ = 0 (i = 1, . . . ,m),∑

i(ȳi)Ai + S̄ = 0,

(X̄ +X∗)(S̄ + S∗)− µI = 0,




and let the open set U be defined as the set of all (X̄, S̄, ȳ, µ) such that all principal
minors of (X̄ +X∗) and (S̄ + S∗) are positive and µ > 0.

Now V ∩U corresponds to the central path excluding its limit points, in the sense
that if (X̄, S̄, ȳ, µ) ∈ U ∩V then X(µ) = (X̄ +X∗) and S(µ) = (S̄+S∗), where X(µ)
(respectively, S(µ)) denotes the µ-center of (P ) (respectively, (D)) as before.

Moreover, the zero element is in the closure of V ∩ U , by construction.
The required result now follows from the curve selection lemma. To see this,

note that Lemma A.2 implies the existence of an ε > 0 and an analytic function
p : [0, ε) �→ Sn × Sn × R

m × R such that

p(t) =
(
X̄(t), S̄(t), ȳ(t), µ(t)

)→ (0n×n, 0n×n, 0m, 0) as t ↓ 0,(8)
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and if t > 0,
(
X̄(t), S̄(t), ȳ(t), µ(t)

) ∈ U ∩ V , i.e.,
Ai • X̄(t) = 0 (i = 1, . . . ,m),∑

i ȳi(t)Ai + S̄(t) = 0,

(X̄(t) +X∗)(S̄(t) + S∗)− µ(t)I = 0,

(9)

and X̄(t) � 0, S̄(t) � 0, µ(t) > 0.
Since the centrality system (2) has a unique solution, the system (9) also has a

unique solution given by

X̄(t) +X∗ = X(µ(t)), S̄(t) + S∗ = S(µ(t))

if t > 0. By (8), we therefore have

lim
t↓0
X(µ(t)) = X∗, lim

t↓0
S(µ(t)) = S∗, lim

t↓0
µ(t) = 0.

Since µ(t) > 0 on (0, ε), µ(0) = 0, and µ is analytic on [0, ε), there exists an interval,

say (0, ε′), where dµ(t)
dt > 0. Therefore the inverse function µ−1 : µ(t) �→ t exists on

the interval (0, µ(ε′)). Moreover, µ−1(t) > 0 ∀ t ∈ (0, µ(ε′)) and limt↓0 µ−1(t) = 0.
This implies that

lim
t↓0
X(t) = lim

t↓0
X(µ(µ−1(t))) = lim

t↓0
X̄(µ−1(t)) +X∗ = X∗.

Similarly, limt↓0 S(t) = S∗, which completes the proof.
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Abstract. A method for the solution of minimization problems with simple bounds is presented.
Global convergence of a general scheme requiring the approximate solution of a single linear system at
each iteration is proved and a superlinear convergence rate is established without requiring the strict
complementarity assumption. The algorithm proposed is based on a simple, smooth unconstrained
reformulation of the bound constrained problem and may produce a sequence of points that are not
feasible. Numerical results and comparison with existing codes are reported.
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1. Introduction. We are concerned with the solution of simple bound con-
strained minimization problems of the form

(PB) min f(x) s.t. l ≤ x ≤ u,

where the objective function f is sufficiently smooth, l and u are constant vectors,
and the inequalities are valid componentwise. In this paper we introduce a globally
and superlinearly convergent algorithm that does not require strict complementarity
and uses only matrix-vector products, thus being well suited for large scale cases.

The algorithms most widely used to solve problem (PB), when the dimension is
small, fall into the active set category. At each iteration of methods in this class, a
working set is defined that is supposed to approximate the set of active constraints at
the solution and that is iteratively updated. In general, only a single constraint can be
added to or deleted from the active set at each iteration, and this can slow down the
convergence rate, especially when dealing with large scale problems. Note, however,
that, for the special case of problem (PB), it is possible to envisage algorithms that
update the working set more efficiently [17, 23], especially in the quadratic case [12].
Actually, a number of proposals have been made for designing algorithms that quickly
identify the correct active set. With regard to (PB), the seminal work is [3] (see also
[2]), in which it is shown that if the strict complementarity assumption holds, then it
is possible, using a projection method, to add to or delete from the current estimated
active set many constraints at each iteration and yet find an active set in a finite
number of steps. This work has motivated a lot of additional studies on projection
techniques, both for the general linearly constrained case and for the box constrained
case (see, e.g., [5, 6, 7, 14] and [36, 37]).

Trust region-type algorithms for unconstrained optimization have been success-
fully extended to handle the presence of bounds on the variables. The global conver-
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gence theory thus developed is very robust [9, 22] and, under appropriate assumptions,
it is possible to establish a superlinear convergence rate without requiring strict com-
plementarity [22, 30, 32]. Furthermore, numerical results [10, 22, 32] show that these
methods are effective. Another algorithm also based on a trust region philosophy,
but in connection with a nonsmooth merit function, is proposed in [41]. A major
difference between this latter algorithm and the techniques so far considered is that
the iterates generated are not forced to remain feasible throughout.

We finally mention that interior point methods for the solution of problem (PB)
are currently an active field of research and that some interesting theoretical results
can be obtained in this framework. In particular, in [27] a local superlinearly conver-
gent algorithm that does not require strict complementarity is proposed. Computa-
tional experience with this class of methods is still very limited (see [8, 27, 38]).

The method that we propose in this paper for the solution of (PB) does not fit into
any of the categories considered above. At each iteration k we compute estimates Lk,
Uk of the variables that we suppose will be, respectively, at their lower, upper bounds
at the solution, and we also compute an estimate F k of the variables we believe to be
free. This partition of the variables obviously suggests performing an unconstrained
minimization in the space of free variables, and this is the typical approach in active
set methods. If one aims to develop a locally fast convergent method, an obvious
choice for the unconstrained minimization algorithm in the subspace of free variables
is the Newton method; this requires the (possibly inexact) solution of the Newton
equation

∇2f(xk)FkFkd = −∇f(xk)Fk ,(1)

where the subscripts F k attached to a vector or to a matrix denote the subvector
or the principal submatrix corresponding to the indices in F k. There are two main
problems with the direction dk so obtained. On the one hand, the point xk + dk

is not necessarily feasible; on the other hand, in general the algorithms based on
this kind of considerations can be shown to be superlinearly convergent only if strict
complementarity holds at the solution. The remedy usually adopted for the first
problem is to “artificially” modify the Newton direction given by (1) so as to guarantee
that xk + dk is feasible. With respect to the second issue, we note that, with the
exception of a few recent works [27, 32], superlinear convergence has been proved
only under the strict complementarity assumption. The solution we propose to the
aforementioned problems is the following. First of all, we observe that the difficulty in
obtaining a superlinear convergence rate in the case of a solution which is not strictly
complementary is due to the possible loss of curvature information that we have in the
subspace of those variables that are active but with a zero multiplier. To overcome
this problem we suggest modifying (1) by adding a “correction” term

∇2f(xk)FkFkd = −∇f(xk)Fk + correction,(2)

which brings in the missing information. The correction term in (2) is simple to
calculate and is eventually zero if the solution towards which the algorithm converges
is strictly complementary or, more generally, if the estimates Lk, Uk, F k eventually
coincide with the sets they approximate (i.e., if exact identification of the active
constraints occurs). (See [28, 29] for a similar approach.) The local Newton-type
process defined by (2) is shown to be superlinearly convergent without the need for the
strict complementarity assumption. However, we still have to face the first problem
we mentioned above: the point xk + dk, where dk is given by (2), may be infeasible.



1102 F. FACCHINEI, S. LUCIDI, AND L. PALAGI

Contrary to what is usually done, we prefer to leave the direction dk untouched, since
it is well known that the Newton direction is usually very good. Instead we give the
algorithm the freedom to generate infeasible points. Obviously, in this case we cannot
directly use the objective function f(x) to measure progress towards optimality, as
is usually done by most of the existing algorithms. Instead, we define a very simple
differentiable exact penalty function that is used to assess the quality of the points
generated by the algorithm. We remark that the penalty function has an extremely
simple structure and requires just a few scalar products to be evaluated, so that the
overhead for using the penalty function instead of the original objective function is
usually negligible. We actually believe that the possibility of developing so-called
infeasible-point algorithms for the solution of (PB) is an important contribution of
this paper. The only possible disadvantage of our infeasible-point approach is that in
some applications the objective function f might not be defined outside the feasible
set. From this point of view, it may be important to note that the algorithm we
propose allows the user to control the “degree of infeasibility” of the points generated.
In fact, while the algorithm is intrinsically infeasible, it only generates points that
are contained in a prescribed “enlargement” of the original feasible set of the type
(l − α, u + β), where α and β are n-dimensional vectors of positive constants that
are user-selected. It is then obvious that, in principle, we can force the algorithm to
generate points that are only “slightly” infeasible. In any case, if the function f is
defined on the whole space, the possibility of violating some of the constraints may
give additional, beneficial flexibility.

The algorithm described in this paper is largely based on [18] and [19], where many
of the theoretical results reported here were already outlined. The main novelty here
is a complete theory for a truncated scheme, suitable for large scale problems, and a
rather sophisticated implementation of the resulting algorithm along with extensive
numerical results. Below we summarize some relevant features of the algorithm and
of its implementation.

(a) A complete global convergence theory is established.
(b) It is shown that our general scheme does not prevent superlinear convergence,

in the sense that if a step length of one along the search direction yields
superlinear convergence, then, without requiring strict complementarity, the
step length of one is eventually accepted.

(c) Rapid changes in the working set are allowed.
(d) The points generated by the algorithms at each iteration need not be feasible.
(e) The main computational burden per iteration is given by the approximate

solution of a square linear system whose dimension is equal to the number of
variables estimated to be nonactive.

(f) A particular truncated Newton-type algorithm is described which falls within
the general scheme of point (a) and for which it is possible to establish,
under the strong second order sufficient condition but without requiring strict
complementarity, a superlinear convergence rate.

(g) Numerical results and comparison of an algorithm’s performance with those
of Lancelot [11] and Tron [32] are reported.

The paper is organized as follows. In the next section some basic definitions and
assumptions are stated. In section 3 a detailed exposition of the local algorithm and
of its convergence properties is given. In section 4 the conjugate gradient iterative
scheme for the calculation of the direction is described. Section 5 contains the glob-
alization scheme, which is based on a suitable merit function and on a nonmonotone
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stabilization scheme. In particular, in section 5.1 the main properties of the differen-
tiable merit function for (PB) are recalled, whereas in section 5.2 the nonmonotone
stabilization algorithm is defined. Section 6 is dedicated to numerical experiments.

First we fix the notation. If M is an n × n matrix with rows Mi, i = 1, . . . , n,
and if I and J are index sets such that I, J ⊆ {1, . . . , n}, we denote by MI the
|I| × n submatrix of M consisting of rows Mi, i ∈ I, and we denote by MI,J the
|I| × |J | submatrix of M consisting of elements Mi,j , i ∈ I, j ∈ J . We indicate by E
the n × n identity matrix. If w is an n vector, we denote by wI the subvector with
components wi, i ∈ I. Given two n-dimensional vectors w, v, we denote by w ◦ v the
Hadamard product of the two vectors, namely the vector whose ith component is wivi,
and by max[w, v] the componentwise max vector. Using a nonstandard notation that,
however, simplifies the presentation, we denote by wp the vector whose components
are wpi .

A superscript k is used to indicate iteration numbers; furthermore, we often omit
the arguments and write, for example, fk instead of f(xk). Finally, by ‖ · ‖ we denote
the Euclidean norm.

2. Problem formulation and preliminaries. For convenience we recall prob-
lem (PB)

(PB) min f(x) s.t. l ≤ x ≤ u.

For simplicity we assume that the objective function f : R
n → R is three times

continuously differentiable (even if weaker assumptions can be used; see Remark 5.1)
and that li < ui for every i = 1, . . . , n. Note that −∞ and +∞ are admitted values
for li and ui, respectively; i.e., we also consider the case in which some (possibly all)
bounds are not present. In what follows we indicate by F the feasible set of (PB),
that is, F = {x ∈ Rn : l ≤ x ≤ u}.

Let α ∈ R
n and β ∈ R

n be two fixed vectors of positive constants, and let xa and
xb be two feasible points such that f(xa) < f(xb). We define the following functions
a(x), b(x), and c(x):

a(x) = α− l + x, b(x) = β + u− x, c(x) = f(xb)− f(x).(3)

The algorithm proposed in this paper generates a sequence of points which belong to
the following open set:

S = {x ∈ R
n : a(x) > 0, b(x) > 0, c(x) > 0}.

Roughly speaking, xb determines the maximum function value which can be taken
by the objective function at the points generated by the algorithm, whereas xa is used
as the starting point. We remark that not every point produced by the algorithm is
feasible; feasibility is only ensured in the limit. Note also that α and β are arbitrar-
ily fixed before starting the algorithm and never changed during the minimization
process.

To guarantee that no unbounded sequences are produced by the minimization
process, we make the following standard assumption.

Assumption 1. The set S is bounded.
Assumption 1 is automatically satisfied if either of the following conditions hold:
• all the variables have finite lower and upper bounds;
• f(x) is radially unbounded, that is, lim‖x‖→∞ f(x) = +∞.
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For notational convenience, in this paper we consider in detail the results only for the
case in which all the variables are box constrained, i.e., the case in which no li is −∞
and no ui is +∞. The extension to the general case is trivial but cumbersome, and
therefore we omit it. With this assumption, the KKT conditions for x̄ to solve (PB)
are

∇f(x̄)− λ̄ + µ̄ = 0,

λ̄ ≥ 0, (l − x̄)′λ̄ = 0,

µ̄ ≥ 0, (x̄− u)′µ̄ = 0,

l ≤ x̄ ≤ u,

(4)

where λ̄ ∈ R
n and µ̄ ∈ R

n are the KKT multipliers. Strict complementarity is said
to hold at the KKT point (x̄, λ̄, µ̄) if x̄i = li implies λ̄i > 0 and x̄i = ui implies
µ̄i > 0. It is also possible to give second order sufficient conditions of optimality for
(PB). The most common is the KKT second order sufficient condition; see, e.g., [2].
However, in order to prove a superlinear convergence rate without assuming strict
complementarity, we shall employ a stronger condition, known as the strong second
order sufficient condition (SSOSC). This condition has already been employed, with
the same purpose, in [27, 30, 32] (see also [40]).

Assumption 2 (SSOSC). Let (x̄, λ̄, µ̄) be a KKT triplet for (PB). We say that
the SSOSC holds at x̄ if

z′∇2f(x̄)z > 0 ∀z ∈ {z ∈ R
n : zi = 0, if λ̄i > 0 or µ̄i > 0}.

We note that the SSOSC boils down to the KKT second order sufficient condition
if the strict complementarity assumption holds. In general, however, Assumption 2
is stronger than the KKT second order sufficient condition in that it requires the
positive definiteness of the Hessian of the objective function on a larger region.

3. The local superlinearly convergent algorithm. In this section we define
the local algorithm by the iteration

xk+1 = xk + dk,(5)

and we show how to build the direction dk. The calculation of dk is based on an
identification technique of the set of the active constraints and on the solution of
KKT-like equations for (PB).

As regards the identification technique, following [20], we define the sets of indices
L,U, F of the variables estimated to be active, respectively, at their lower bound,
upper bound, or estimated to be free:

L(x) = L(x; ς) =

{
i : xi ≤ li + min

[
ςc(x)ai(x)λi(x),

ui − li
3

]}
,

U(x) = U(x; ς) =

{
i : xi ≥ ui −min

[
ςc(x)bi(x)µi(x),

ui − li
3

]}
,

F (x) = F (x; ς) = {1, . . . , n} \ (L(x) ∪ U(x)).

(6)

Here ς is a positive constant; a(x), b(x), and c(x) are the barrier functions defined by
(3); and λ(x), µ(x) are two functions that satisfy, among others things, the following
properties: (i) they are continuous; (ii) if (x̄, λ̄, µ̄) is a KKT triplet for (PB), then
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λ(x̄) = λ̄ and µ(x̄) = µ̄. Such functions are called “multiplier functions;” see [20]
and the references therein. In particular, we use the following multiplier functions
that trivially satisfy these features and possess additional properties needed in the
definition of the local algorithm:

λ(x) = [(u− x)2 + (x− l)2]−1 ◦ (x− u)2 ◦ ∇f(x),(7)

µ(x) = −[(u− x)2 + (x− l)2]−1 ◦ (l − x)2 ◦ ∇f(x).(8)

The following theorem shows the main properties of L(x), U(x), F (x) needed in
what follows. The validity of this theorem immediately follows from Theorem 2.1 and
Remark 2.1 in [20].

Theorem 3.1. Let (x̄, λ̄, µ̄) be a KKT triplet for (PB). Then, there exists a
neighborhood Ω of x̄ such that, for all x ∈ Ω,

{i : λ̄i > 0} ⊆ L(x) ⊆ {i : li = x̄i},
{i : µ̄i > 0} ⊆ U(x) ⊆ {i : ui = x̄i},

{i : li < x̄i < ui} ⊆ F (x) ⊆ {i : λ̄i = 0 and µ̄i = 0}.
(9)

Moreover, if the strict complementarity assumption holds, then, for all x ∈ Ω,

L(x) = {i : li = x̄i}, U(x) = {i : ui = x̄i}, F (x) = {i : li < x̄i < ui}.
We observe that identification techniques have recently been proposed that allow

one to identify exactly the active constraints at the solution without requiring strict
complementarity [16]. However, the direction that can be obtained by using that
partition of the variables does not allow us to obtain a globally convergent algorithm,
at least in the present framework.

We are now ready to specify the direction dk that we use in (5). We obtain dk as
an (approximate) solution of the following linear system:

 ∇
2f(xk)Fk

ELk

EUk


 d = −


 ∇fkFk

(xk − l)Lk

(xk − u)Uk


 ,(10)

where we denote by Lk, Uk, and F k the sets L(xk), U(xk), F (xk) evaluated at the
current iterate xk. From (10) we get immediately the components of dk corresponding
to indices in Lk ∪ Uk:

dkLk = −(xk − l)Lk ,(11)

dkUk = −(xk − u)Uk .(12)

Roughly speaking, the direction corresponding to indices in Lk ∪ Uk is such that
(xk + dk)Lk∪Uk “touches” the boundary of the box. By back-substituting (11) and
(12) into (10), we see that dkFk can be found as the solution of

∇2fkFk,FkdFk = −∇fkFk −∇2fkFk,Lk∪Ukd
k
Lk∪Uk .(13)

We can recognize here that the “correction” term introduced in (2) is given by
−∇2fkFk,Lk∪Ukd

k
Lk∪Uk .

As we are interested in the solution of large optimization problems, the exact
solution at each iteration of (13), when |F k| is large, may be wasteful, if at all possible.
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Then one can use only an approximate solution of system (13) and require that this
solution become more and more accurate while approaching a KKT point. Indeed,
we require that dkFk satisfy a system of the type

HkdkFk = −gk + rk,

where Hk = ∇2fkFk,Fk ,

gk = ∇fkFk +∇2fkFk,Lk∪Ukd
k
Lk∪Uk ,(14)

and rk represents a residual in the solution of system (13).
For the approximate computation of dkFk we use a conjugate gradient (CG)-type

algorithm. The CG scheme NCCGA that we use differs from standard ones, and it
is reported in the next section. Here we state only the properties that the direction
dkFk obtained by NCCGA must satisfy to ensure convergence of the algorithm. In
the next section we will show that the CG gradient algorithm NCCGA satisfies these
assumptions.

Assumption 3. The direction dkFk must satisfy the following properties:

(gk)′dkFk ≤ −K̂1‖gk‖2,(15)

‖dkFk‖ ≤ K̂2‖gk‖,(16)

K̂1, K̂2 being positive constant.
Assumption 4. The direction dkFk must satisfy the following property:

lim
k→∞

‖HkdkFk + gk‖
‖gk‖ = 0.(17)

Now we can prove the main features of the direction dk obtained by (11), (12),
and the application of the CG-type method to system (13).

Theorem 3.2. Assume that dkLk , dkUk satisfy (11), (12), and that dkFk satisfies
Assumption 3. Let {xk} be a sequence of points such that xk ∈ S. If {dk} → 0, then
every accumulation point x̄ of {xk}, together with λ(x̄), µ(x̄), is a KKT point. More-
over, for every xk belonging to S, dk is equal to zero if and only if (xk, λ(xk), µ(xk))
is a KKT point of (PB).

Proof. Suppose that xk ∈ S and {dk} → 0. Taking into account that the number
of subsets of {1, . . . , n} is finite, there exists a subsequence that, without loss of
generality, we label again {xk} such that the index sets Lk, Uk, and F k are constant,
and hence we can write:

L(xk) = L, U(xk) = U, F (xk) = F.

From (15) we can write

K̂1‖gk‖2 ≤ |(gk)′dkFk | ≤ ‖gk‖‖dkFk‖,
and using the definition (14) of gk, we get

K̂1‖∇fkFk +∇2fkFk,Lk∪Ukd
k
Lk∪Uk‖ ≤ ‖dkFk‖.

Taking into account that dk also satisfies (11), (12) and that xk stays in a compact
set, passing to the limit we get

x̄L = lL, x̄U = uU ,(18)

∇fF (x̄) = 0.(19)
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By (7), (8), (19) we have

λF (x̄) = 0, µF (x̄) = 0.

Then, by the definition (6) of the index set F , we have

lF ≤ x̄F ≤ uF ,(20)

so that, recalling (18), we conclude that x̄ is feasible.
By the definition (6) of L and (7), (8), (18), we have

λL(x̄) = ∇fL(x̄) ≥ 0, µL(x̄) = 0.(21)

Analogously, by the definition (6) of U , (7), (8), and (18), we also have

µU (x̄) = −∇fU (x̄) ≥ 0, λU (x̄) = 0.(22)

Now, noting that (18)–(22) imply (4), we have that x̄ is a KKT point.
As regards the second statement of the theorem, the only if part is a direct

consequence of the proof above; hence we have to prove the if part. Suppose that xk

together with λ(xk), µ(xk) is a KKT point for (PB). Since xk is feasible, we have, by
the definition (6),

(xk − l)Lk = −dLk = 0,

(xk − u)Uk = −dUk = 0.

Furthermore, by the first equation of (4) and again by (9), we have that

∇fkFk = 0.

This means, by definition, that gk = 0, and hence from (16) we get dFk = 0.
The preceding theorem shows that if xk is not a KKT point, then dk is not zero,

and hence the algorithm (5) is well defined.
We now analyze the local properties of the algorithm. We show that, if con-

vergence towards a point satisfying the SSOSC occurs, then the convergence rate is
superlinear.

Theorem 3.3. Let (x̄, λ̄, µ̄) be a KKT triplet of (PB) satisfying the SSOSC, and
suppose that the directions dkLk , dkUk satisfy (11), (12), and dkFk satisfies Assumptions
3 and 4. Then, there exists a neighborhood Ω of x̄ such that if x0 ∈ Ω, the sequence
{xk} produced by iteration (5) is well defined and converges superlinearly to x̄.

Proof. We observe that the direction dk is the same direction considered in [20]
with reference to a local algorithm for the solution of inequality constrained problems
of general type. Hence we can obtain the result by applying [20, Theorem 3.1] and
classical results of truncated Newton methods [13]. However, to give a better insight
into the algorithm, we sketch a direct proof here. The index sets (Lk, F k, Uk) even-
tually can belong to only a finite number of triplets of index sets (Lh, Fh, Uh) all
satisfying (9), i.e.,

{i : λ̄i > 0} ⊆ Lh ⊆ {i : li = x̄i},
{i : µ̄i > 0} ⊆ Uh ⊆ {i : ui = x̄i},

{i : li < x̄i < ui} ⊆ Fh ⊆ {i : λ̄i = 0 and µ̄i = 0}.
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Hence the direction dk is a (truncated) Newton direction for one of finitely many
systems of the type 

 ∇fFh(x)

(x− l)Lh

(x− u)Uh


 = 0

all having the solution x̄. Under the SSOSC, the Jacobians of these systems[ ∇2fFh,Fh(x̄) ∇2fFh,Lh∪Uh(x̄)

0 ELh∪Uh

]

are all invertible. The desired convergence property then easily follows by standard
results of (truncated) Newton methods [13].

We note that we can obtain a superlinear convergence rate without assuming
strict complementarity and with a very simple iterative scheme. We also remark that
we do not impose feasibility of the iteration, and this gives the iteration more freedom.

4. The truncated scheme for dF k . We consider in this section a CG-type
method for the solution of system (13), i.e.,

∇2fkFk,Fkd
k
Fk = −∇fkFk −∇2fkFk,Lk∪Ukd

k
Lk∪Uk .

Essentially, the computation of dkFk is based on the use of a CG-type algorithm
for the minimization of the quadratic model

φ(d) = fk + (gk)′d +
1

2
d′Hkd,

where again Hk = ∇2fkFk,Fk and gk = ∇fkFk +∇2fkFk,Lk∪Ukd
k
Lk∪Uk .

Standard CG methods generate sequences {pi}, {si}, where {pi} approximates
iteratively the solution dkFk , and where {si} are the conjugate directions. The general
scheme is

pi+1 = pi + λisi,
si+1 = ri+1 + βisi,

where λi minimizes the quadratic function φ along the direction si, and βi is chosen so
as to maintain conjugacy between the directions si. Usually the CG scheme terminates
either if the residual ri = −∇φ(pi) is in the norm below a prescribed tolerance or if
a negative curvature direction (si)′Hksi ≤ 0 is encountered. The CG scheme that we
use is derived from [25] and differs from the more standard CG algorithms outlined
above in that if a negative curvature is found, the algorithm does not stop, but
continues to generate conjugate directions. In other words, it tries to determine a
good approximation of the Newton direction even if Hk is not positive definite. To
this aim, the CG algorithm also generates a new sequence {di} that differs from {pi}
only if a negative curvature direction si is found. Indeed, in this case the update rule
is di+1 = di − λisi; that is, the opposite direction −si is taken. The algorithm then
stops either if the residual ‖ri‖ is below a given tolerance or if (si)′Hsi = 0. The
direction dkFk is set either to pi or to di, depending on the outcome of a suitable angle
condition test.

The truncated scheme is outlined below. In the description of the algorithm,
we eliminated the dependencies from the iteration k when this does not produce
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confusion. Hence H = Hk, g = gk, and dkFk = dF . Moreover, ipos and ineg count the
number of iterations where directions of positive and negative curvature, respectively,
are generated.

Negative curvature conjugate gradient algorithm (NCCGA).
Data: η > 0, σ ∈ (0, 1), c ∈ (0, 1). Define tol = η‖g‖.
Step 0: Set p0 = 0, d0 = 0, r0 = −g, s0 = r0, i = ineg = ipos = 0.

Step 1: If |(si)′Hsi| ≤ σ‖si‖2, set dF =
{−g if i = 0

di if i > 0
and stop.

Step 2: Compute λi =
(si)′ri

(si)′Hsi
,

pi+1 = pi + λisi, ri+1 = ri − λiHsi,

di+1 =




di − λisi, ineg = ineg + 1 if (si)′Hsi < −σ‖si‖2,

di + λisi ipos = ipos + 1 if (si)′Hksi > σ‖si‖2.

Step 3: If ‖ri+1‖ >tol, compute βi =
‖ri+1‖2
‖ri‖2 ,

si+1 = ri+1 + βisi,

set i = i + 1, and go to Step 1; otherwise, go to Step 4.

Step 4: If (ineg = 0 or ipos = 0), set dF = di+1 and stop;
otherwise, set

p =

{
pi+1 if g′pi+1 ≤ 0,
−pi+1 if g′pi+1 > 0.

If | g′p |≥ c ‖g‖2, set dF = p; otherwise, set dF = di+1 and stop.
Remark 4.1. We recall that Theorem 2.2(c) of [25] ensures that there exist

positive constants K̂1 and K̂2 such that the direction dkFk produced by Algorithm
NCCGA satisfies Assumption 3, i.e.,

(gk)′dkFk ≤ −K̂1‖gk‖2,
‖dkFk‖ ≤ K̂2‖gk‖.

Moreover, Assumption 4 is satisfied if we take ηk → 0 in the stopping criterion
‖ri+1‖ ≤ ηk‖gk‖ of the NCCGA above.

5. Globalization scheme. In this section we define a globally and superlinearly
convergent algorithm for problem (PB). In section 3 we have defined a local algorithm.
However, far from a solution, we have to tackle the following problems:

(i) the direction dk may be a “bad” direction;
(ii) global convergence must be enforced by using a stabilization technique;
(iii) superlinear convergence must be retained.
We introduce a general algorithm model for the solution of (PB), which is based

on the nonmonotone stabilization technique proposed in [26] and on a merit function
P (x; ε) studied in [18]. Nonmonotone algorithms are known to be very efficient in
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forcing global convergence while preserving a fast convergence rate. The use of a
penalty function is needed, as explained in the introduction, since we do not force
feasibility of the iterates, and thus the objective function f cannot be used to gauge
progress towards optimality.

A key point in establishing the properties of the algorithm is the existence of some
relation between the search direction and the penalty function.

To be more specific, the algorithm model is an iterative process of the form

xk+1 = xk + ρkdk,(23)

where dk is the search direction defined in section 3 and ρk is a stepsize. The algorithm
model that we use includes different strategies for enforcing global convergence with-
out requiring a monotonic reduction of the merit function. This may be reasonable in
many situations. For example, if the sequence {dk} goes to zero, then, by Theorem
3.2, the corresponding sequence of points {xk} is converging to a KKT point. Then
an effective criterion to control if convergence is taking place is to check whether
the norm of the direction is decreasing. In this case the unit step size (ρk = 1) can
be accepted without computing the merit function. Otherwise, a check on the merit
function value is made, and the algorithm may perform a nonmonotone Armijo-type
linesearch procedure [24] with P (x; ε) as a merit function.

To assist the reader, we split the presentation of the new algorithm into two parts.
In the next subsection we briefly recall the expression of the merit function and its
main exactness properties, and we prove that a positive scalar γ exists such that the
condition

∇P (xk; ε)′dk ≤ −γ‖dk‖2(24)

holds for sufficiently small values of the penalty parameter. Then, in subsection 5.2 we
introduce a general algorithm model for the minimization of P (x; ε), which uses the
direction dk, and we show that this algorithm is globally convergent to KKT points
of (PB).

5.1. The merit function for (PB). The merit function P is a particular case
of the class of continuously differentiable exact penalty functions introduced in [18].
We report here only some of its basic features; the interested reader is referred to
[18] for a more complete discussion. The penalty function makes use of the multiplier
functions λ(x) and µ(x) defined in (7) and (8), and it is defined as follows:

P (x; ε) = f(x)+λ(x)′r(x; ε)+µ(x)′s(x; ε)+
1

εc(x)

[
(r(x; ε)2)′a−1(x) + (s(x; ε)2)′b−1(x)

]
,

with

r(x; ε) = max
[
l − x,−ε

2
c(x)a(x) ◦ λ(x)

]
,(25)

s(x; ε) = max
[
x− u,−ε

2
c(x)b(x) ◦ µ(x)

]
,

where a(x), b(x), and c(x) are the shifted barrier functions defined by (3), and xb is
the point defined in section 2.

The penalty function depends on a positive parameter ε; furthermore, it is defined
only in the open set S defined in section 2. It can be proved that the level sets of
the penalty function {x ∈ S : P (x; ε) ≤ P (xa; ε)} are compact [18]. In particular,
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this implies that a minimization algorithm, starting from a point x0 ∈ S such that
P (x0; ε) ≤ P (xa; ε), applied to the penalty function will never generate unbounded
sequences. A detailed study of the properties of P (x; ε) can be found in [18]. It can
be proved that, for sufficiently small values of the penalty parameter ε > 0, there is a
one-to-one correspondence between (unconstrained) stationary and minimum points
of the penalty function on S and KKT and minimum points of (PB) with a function
value smaller than f(xb).

The properties of the penalty function outlined above clearly show that we can
solve (PB) by performing a single unconstrained minimization of P (x; ε), provided
that ε is small enough. From this point of view, another important feature of the
penalty function P (x; ε) is that, in spite of the terms (25), it is continuously differ-
entiable in S (see [18]), so that standard efficient methods for unconstrained smooth
minimization can be employed. However, if one wants to develop a practical algo-
rithm, at least two important questions have to be answered: how to calculate a
suitable value of ε so that, as discussed above, the unconstrained minimization of
the penalty function is equivalent to the solution of (PB), and which unconstrained
optimization algorithm to employ for the minimization of the penalty function. In
[18] a very general scheme for updating ε has been proposed that, coupled with prac-
tically any standard unconstrained minimization algorithm, allows us to solve (PB).
This scheme has, however, a drawback in that it does not exploit the structure either
of (PB) or of the minimization algorithm employed. The algorithm that we present
avoids in a novel and innovative way the two drawbacks mentioned above. In partic-
ular, the unconstrained minimization algorithm we use is a nonmonotone linesearch
scheme which uses the search direction defined in section 3. Since this algorithm is so
tailored to the structure of the problem, we can use a rule for updating the penalty
parameter different from that proposed in [18] and which, for the problem at hand,
seems much more efficient from a practical point of view.

As a first step in the definition of the algorithm, we have to show the relationship
between the direction dk defined in section 3 and the merit function P (x; ε).

To this end we define the constant ς that appears in (6) as ς = ε/2; that is, we
have

L(x) = L(x; ε) :=

{
i : xi ≤ li + min

[
εc(x)

2
ai(x)λi(x),

ui − li
3

]}
,(26)

U(x) = U(x; ε) :=

{
i : xi ≥ ui −min

[
εc(x)

2
bi(x)µi(x),

ui − li
3

]}
,(27)

and F (x) = F (x; ε) = {1, . . . , n}\(L(x) ∪ U(x)), where ε is the penalty parameter.
We prove that the direction dk obtained by (11), (12), and (13), solved by algo-

rithm NCCGA with Lk, Uk, F k given by (26) and (27), satisfies the descent condition
(24) for sufficiently small values of the penalty parameter ε.

Theorem 5.1. There exists an ε̄ > 0 such that for every ε ∈ (0, ε̄] and xk ∈
{x ∈ S : P (x; ε) ≤ P (xa; ε)} the following relation holds:

∇P (xk; ε)′dk ≤ −γ‖dk‖2(28)

for some positive γ, where dk is obtained by (11), (12), and (13) solved by NCCGA,
with Lk, Uk, F k given by (26) and (27).
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Proof. First we report the expression of the gradient1 of P (x; ε) (see [18]):

∇P (x; ε) =− 1

εc(x)
a−1(x) ◦ [2e + r(x, ε) ◦ a−1(x)

] ◦ r(x; ε) +∇λ(x)r(x; ε)

+
1

εc(x)
b−1(x) ◦ [2e + s(x, ε) ◦ b−1(x)

] ◦ s(x; ε) +∇µ(x)s(x; ε)

+
1

εc(x)2
[
(r(x; ε)2)′a−1(x) + (s(x; ε)2)′b−1(x)

]∇f(x),

(29)

where ∇λ,∇µ are the gradients of the twice continuously differentiable multiplier
functions and e ∈ Rn is a vector of all ones.

The proof is by contradiction. Assume that the theorem is false; then there exist
sequences {xk}, {εk}, and {γk} such that

εk ↓ 0, γk ↓ 0, xk ∈ {x ∈ S : P (x; εk) ≤ P (xa; εk)},
∇P (xk; εk)′dk > −γk‖dk‖2.(30)

Furthermore, we shall assume, without loss of generality, that the index sets Lk,
F k, and Uk are constant, so that we can write

L(xk) = L, F (xk) = F, U(xk) = U.

By (29) we can write

(∇P k)′dk = − 1

εkck
(rk)′

[
2e + (ak)−1 ◦ rk

] ◦ (ak)−1 ◦ dk + (rk)′(∇λk)′dk

+
1

εkck
(sk)′

[
2e + (bk)−1 ◦ sk

] ◦ (bk)−1 ◦ dk + (sk)′(∇µk)′dk(31)

+
1

εk(ck)2
[
(rk)′

(
(ak)−1 ◦ rk

)
+ (sk)′

(
(bk)−1 ◦ sk

)]
(∇fk)′dk.

Recalling that dk satisfies (11), (12), the definitions (25), (26), (27), and that S
is compact by Assumption 1, we have, for εk small enough,

i ∈ L =⇒ rki = (l − xk)i = dki , ski = −εkck

2 bki µ
k
i ,

i ∈ F =⇒ rki = −εkck

2 aki λ
k
i ski = −εkck

2 bki µ
k
i ,

i ∈ U =⇒ rki = −εkck

2 aki λ
k
i , ski = (xk − u)i = −dki ;

(32)

hence, rearranging terms, (31) becomes

(∇P k)′dk = − 1

εkck
(dkL)′[2e + (l − xk) ◦ (ak)−1]L ◦ ((ak)−1 ◦ dk)L

− 1

εkck
(dkU )′[2e + (xk − u) ◦ (bk)−1]U ◦ ((bk)−1 ◦ dk)U

+ (λkF − µkF )′dkF +
εkck

4
(λkF )′(λkF ◦ dkF )− εkck

4
(µkF )′(µkF ◦ dkF )

1We remark that the terms of the gradient have been rearranged using the expression of the
multiplier functions λ, µ, so that the expression of ∇f(x) does not appear explicitly in the above
formula.
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+
1

2
(λkU )′

[
2e− εkck

2
λk
]
U

◦ dkU −
1

2
(µkL)′

[
2e− εkck

2
µk
]
L

◦ dkL

+ (dkL)′[(∇λk)′dk]L − (dkU )′[(∇µk)′dk]U(33)

− εkck

2
(ak ◦ λk)′F [(∇λk)′dk]F − εkck

2
(ak ◦ λk)′U [(∇λk)′dk]U

− εkck

2
(bk ◦ µk)′L[(∇µk)′dk]L − εkck

2
(bk ◦ µk)′F [(∇µk)′dk]F

+
1

εk(ck)2

[
((rk)2)′(ak)−1 + ((sk)2)′(bk)−1

]
(∇fk)′dk.

We now make the following readily verifiable observations.
(i) Each element of the vectors [2e+(l−xk)◦(ak)−1]L and [2e+(xk−u)◦(bk)−1]U

is greater than 1.
(ii) Recalling the definition (7) and (8) of the multiplier functions λ and µ, we

have the following:
(1)

(λkF − µkF )′dkF = (∇fkF )′dkF .

By using conditions (15) and (16) and the definition (14) we can write

(∇fkFk)′dkFk ≤ − K̂1

K̂2
2

‖dkFk‖2 − (dkFk)′∇2fkFk,Lk∪Ukd
k
Lk∪Uk ,

and, since ‖∇2fk‖ is bounded, we have

(∇fkFk)′dkFk ≤ −K1‖dkFk‖2 + K2

(‖dkFk‖‖dkLk‖+ ‖dkFk‖‖dkUk‖
)
.(34)

Hence

(λkF − µkF )′dkF ≤ −K1‖dkF ‖2 + K2

(‖dkF ‖‖dkL‖+ ‖dkF ‖‖dkU‖
)

for some positive constants K1,K2.
(2) By using (15) we have K̂1‖gk‖2 ≤ |(gk)′dkFk | ≤ ‖gk‖‖dkFk‖, and from the

definitions (7), (8), and (14) we get

‖λkF ‖ ≤ ‖∇fkF ‖ ≤ K3

(‖dkF ‖+ ‖dkU‖+ ‖dkL‖
)
,

‖µkF ‖ ≤ ‖∇fkF ‖ ≤ K3

(‖dkF ‖+ ‖dkU‖+ ‖dkL‖
)
.

(3) By (7), (8), and (32),

(λk)i =
(dk)2i

(xk − u)2i + (l − xk)2i
∇f(xk)i, i ∈ U,

(µk)i = − (dk)2i
(xk − u)2i + (l − xk)2i

∇f(xk)i, i ∈ L.

(iii) The quantities ‖xk − l‖, ‖xk − u‖, ‖λ(xk)‖, ‖µ(xk)‖, ‖∇λ(xk)‖, ‖∇µ(xk)‖,
and ‖∇f(xk)‖ are bounded.
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Then, taking into account (33) and points (i)–(iii) above, we can assert that, for εk

small enough,

(∇P k)′dk ≤ − K1

εkck
‖dkL‖2 −K2‖dkF ‖2 − K3

εkck
‖dkU‖2 + K4‖dkL‖2 + K5‖dkU‖2

+ K6‖dkL‖‖dkF ‖+ K7‖dkL‖‖dkU‖+ K8‖dkF ‖‖dkU‖
+ 1

εk(ck)2
[(dkL)′((ak)−1 ◦ dkL) + (dkU )′((bk)−1 ◦ dkU )](∇fk)′dk

+ εkK9‖dk‖2,

(35)

where K1, . . . ,K9 are positive constants. Equations (30) and (35) imply that for k
sufficiently large we can write

0 ≤ γk‖dk‖2 − K1

εkck
‖dkL‖2 −K2‖dkF ‖2 −

K3

εkck
‖dkU‖2 + K4‖dkL‖2

+ K5‖dkU‖2 + K6‖dkL‖‖dkF ‖+ K7‖dkL‖‖dkU‖+ K8‖dkF ‖‖dkU‖

+
1

εk(ck)2
[(dkL)′((ak)−1 ◦ dkL) + (dkU )′((bk)−1 ◦ dkU )](∇fk)′dk + εkK9‖dk‖2(36)

≤ −(‖dkL‖, ‖dkF ‖, ‖dkU‖)Qk(‖dkL‖, ‖dkF ‖, ‖dkU‖)′

+
1

εk(ck)2
[(dkL)′((ak)−1 ◦ dkL) + (dkU )′((bk)−1 ◦ dkU )](∇fk)′dk︸ ︷︷ ︸

∗

,

where Qk is the symmetric matrix defined by

Qk =




K1

εkck
−K4 − γk − εkK9 −K6

2 −K7
2

−K6
2 K2 − γk − εkK9 −K8

2

−K7
2 −K8

2
K3

εkck
−K5 − γk − εkK9


 .

For εk and γk small enough (in particular, γk = K2/2 works for all small εk), it is
easily seen that Qk is a positive definite matrix with eigenvalues uniformly bounded
away from zero. We now note that we can assume, without loss of generality, that the
bounded quantity ‖dk‖ admits a limit and that, by Proposition 3.4 in [18], xk → x̄ ∈
F ∩ S. By (9) we have that ‖dkL‖ → 0 and ‖dkU‖ → 0. We consider now two different
cases: (a) dk converges to 0, (b) dk converges to a vector different from 0.

(a) In this case, by Theorem 3.2, x̄ is a KKT point. We show that ck �→ 0.
First we note that for all k we have P (xk; εk) ≤ P (xa; εk) ≤ f(xa), where the
last inequality holds because xa is feasible. Moreover, we have also P (xk; εk) ≥
f(xk) + λ(xk)′r(xk; εk) + µ(xk)′s(xk; εk). Now, assume by contradiction that ck →
0 (i.e., f(x̄) = f(xb)). Then, recalling the expression of P , we must have that
s(xk; εk), r(xk; εk) → 0. Hence we have f(xb) = f(x̄) ≤ lim infk→∞ P (xk; εk) ≤
f(xa). This leads to f(xb) ≤ f(xa), which is a contradiction with the assumption
that f(xa) < f(xb). Hence the expression (*) in (36) is dominated by the quadratic
term (‖dkL‖, ‖dkF ‖, ‖dkU‖)Qk(‖dkL‖, ‖dkF ‖, ‖dkU‖)′, so that we have a contradiction from
(36).

(b) In this case, as we already observed, dkL → 0 and dkU → 0, so that we must

have dkF → d̃F �= 0. Since we can write (∇fk)′dk = (∇fkL)′dkL+(∇fkF )′dkF +(∇fkU )′dkU ,
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then, using (34), we have that

lim
k→∞

(∇fk)′dk = lim
k→∞

(∇fkF )′dkF ≤ −K1‖d̃F ‖2 < 0,

which leads, for k large enough, to (∇fk)′dk < 0, so that the term (*) is nonposi-
tive. Since the quadratic term in (36) tends to a negative quantity, again we have a
contradiction from (36) and the proof is complete.

Theorem 5.1 states that the direction dk defined in section 3 satisfies suitable “de-
scent” conditions with respect to the merit function P if ε is smaller than a threshold
value ε̄. However the value ε̄ generally is not known in advance and therefore has to
be determined during the minimization process.

5.2. A nonmonotone algorithm for the minimization of P (x; ε). In this
section we describe the NMSB algorithm for the solution of problem (PB). The al-
gorithm is basically a nonmonotone line search algorithm [26] for the unconstrained
minimization of the function P (x; ε), coupled with a simple updating scheme of the
parameter ε. We show that every limit point of the sequence produced by the algo-
rithm is a KKT point of (PB) and that if one of the limit points satisfies the SSOSC,
then the whole sequence converges with a superlinear convergence rate.

In order to help the reader understand the different roles played by the merit
function and by the nonmonotone scheme, we first give a brief description of a simple
monotone version of the algorithm. Everywhere in this section we assume that the
direction dk is obtained by (11), (12), and (13) solved by NCCGA. The solution of the
linear system by NCCGA represents the major computational burden at each iteration
in the algorithm, but usually requires a limited number of CG inner iterations.

In the monotone version, starting from a point x0 ∈ S and such that P (x0; ε) ≤
P (xa; ε), the algorithm generates the point xk+1 = xk + ρkdk, where ρk is obtained
by means of a monotone linesearch described below. The algorithm stops if a KKT
point is found (or, equivalently, if ‖dk‖ = 0).

monotone linesearch: Given ζ ∈ (0, 1) and σ ∈ (0, 1/2),

If ∇P (xk; ε)′dk ≤ −ζε‖dk‖2, then

find the smallest integer from i = 0, 1, . . . such that

xk + 2−idk ∈ S,
P (xk + 2−idk; ε) ≤ P (xk; ε) + σ2−i∇P (xk; ε)′dk,

set xk+1 = xk + 2−idk;

Otherwise (update ε)

set ε = 0.5ε and x0 =

{
xk if P (xk, ε) ≤ P (xa; ε),
xa otherwise,

set k = 0 and restart the monotone algorithm.
Endif

Basically, the linesearch procedure is divided into two main parts. The first
consists of checking whether condition (28) of Theorem 5.1 holds. If not, the value
of ε is reduced. Theorem 5.1 guarantees that after a finite number of reductions
the value of ε settles down and condition (28) is always satisfied. Note also that
when a reduction of ε takes place, we can restart the minimization process with xk

or xa, depending on which of the two gives a better value of the penalty function.
If the current value of ε appears to be sufficiently small, a stepsize ρk is found such
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that the new point xk+1 = xk + ρkdk is in the set S where the function P (x; ε)
is defined, and an Armijo condition is satisfied. We note that, thanks to the form
of the constraints, it is possible to find analytically the value of the step such that
l−α < xk+1 < u + β, and any further reduction of ρk maintains the feasibility of the
new point. The only part that must be performed iteratively is finding the value of ρk

such that f(xk+1) < f(xb). This procedure is very simple and is similar to analogous
procedures in interior point methods.

The monotone scheme enforces the reduction of the merit function at every step
and performs a linesearch to determine an appropriate stepsize. This traditional ap-
proach can be improved by allowing the merit function value to increase in a controlled
manner and by using a criterion based on the size of the search direction to assess the
acceptability of the stepsize of one. These more refined strategies, which do not even
require the evaluation of the merit function at each step, are based on [24, 26, 33, 34],
and there is currently wide numerical experience indicating that they are often bene-
ficial from the computational point of view. This is even more true in the case of the
minimization of penalty functions, which can easily have narrow curved valleys.

We now pass to the description of this nonmonotone version of the algorithm.
The changes with respect to the latter algorithm, although extensive, concern only
the criteria for the choice of the stepsize ρk. Since in this version we do not necessarily
evaluate the merit function at each iteration, we introduce the new counters j, which
is increased every time we evaluate the merit function, and 3(j), which denotes the
iteration at which the merit function has been evaluated.

Nonmonotone stabilization algorithm for box constrained problems (NMSB)

Data: Choose ε > 0, xa, xb ∈ F s.t. f(xa) < f(xb),
α, β ∈ Rn with α, β > 0,
δ0 ≥ 0, θ ∈ (0, 1), an integer N ≥ 0.

Initialization: Set x0 = xa, k = 0, j = 0, 3(j) = 0, and δ = δ0.
Compute P (x0; ε) and set Rj = P (x0; ε).

Iteration: If (‖dk‖ = 0), return xk and stop.
If k �= 3(j) +N ,

find xk+1 by a standard-step;
Otherwise,

find xk+1 by a function-step.
Endif
Set k = k + 1, and repeat Iteration.

The algorithm performs two different kind of steps: standard-steps and function-
steps. Standard-steps usually account for the majority of the steps; more precisely, we
always perform standard steps except every N iterations, where N is a nonnegative
integer chosen by the user (with usual values between 5 and 20).

Standard-step: If ‖dk‖ ≤ δ,
Find a ρk such that xk + ρkdk ∈ S;
set xk+1 = xk + ρkdk, δ = θδ.

Otherwise,
find xk+1 by a function-step.

End if

As we discussed briefly at the beginning of section 5, the main criterion of the
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algorithm for assessing progress towards optimality is the magnitude of the search
direction dk. In a standard-step we therefore check whether ‖dk‖ is smaller than a
quantity that we drive to zero while the algorithm progresses. If this simple test is
passed, the algorithm does not even compute the merit function, and only a control on
the fact that the new iterate xk+1 belongs to S is performed. If, instead, the direction
is not sufficiently small, the merit function is computed and a nonmonotone Armijo-
type linesearch procedure is performed, proceeding essentially as in a function-step
described below.

Function-step: Compute P (xk; ε).
If P (xk; ε) ≥ Rj ,

backtrack: replace xk by x�(j), set k = 3(j),
find xk+1 by a nonmonotone linesearch;

Otherwise,
update Rj , set 3(j) = k and j = j + 1.

If ‖dk‖ ≤ δ, then
find a ρk such that xk + ρkdk ∈ S;
set xk+1 = xk + ρkdk, δ = θδ.

Otherwise,
find xk+1 by a nonmonotone linesearch.

Endif
Endif

Function-steps occur at least every N iterations and should be regarded as a
safeguard. In these steps the merit function is always computed, and its value is
compared with the reference value Rj . If the value of the merit function is smaller
than the reference value, the algorithm proceeds as in a standard-step; i.e., the stepsize
of one is accepted if the direction is sufficiently small, and otherwise a linesearch is
performed. Otherwise, if the value of the merit function is larger than Rj , that is,
if it is “too large,” the algorithm “backtracks” by restoring the vector of variables to
the last point at which the objective function was smaller than the reference value
Rj .

The nonmonotone linesearch procedure used in NMSB differs from the monotone
one considered before only in the fact that when performing the Armijo line search
we do not enforce a decrease with respect to the current value of the merit function
P (xk; ε), but rather with respect to a reference value Rj that can be larger than
P (xk; ε).

nonmonotone linesearch: Given ζ ∈ (0, 1) and σ ∈ (0, 1/2),

If ∇P (xk; ε)′dk ≤ −ζε‖dk‖2, then

find the smallest integer from i = 0, 1, . . . such that

xk + 2−idk ∈ S,
P (xk + 2−idk; ε) ≤ Rj + σ2−i∇P (xk; ε)′dk,

set xk+1 = xk + 2−idk, 3(j) = k + 1 and update Rj ;
otherwise (update ε),

set ε = 0.5ε and x0 =

{
xk if P (xk, ε) ≤ P (xa; ε),
xa otherwise,

set k = 0 and restart the NMSB algorithm.
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Note that the reference value Rj is updated only when the merit function value
is calculated. To complete the description of the algorithm we have to specify only
the updating rule for the reference value Rj . To this end we recall that the index j is
increased every time we set 3(j) = k, i.e., every time the penalty function is evaluated.
Therefore {x�(j)} is the sequence of points at which the merit function is evaluated,
and {Rj} is the sequence of reference values. The reference value is initially set to
P (x0; ε). Whenever a point x�(j) is generated such that P (x�(j), ε) < Rj , the reference
value is updated by taking into account a fixed number m(j) ≤ m̄ of previous values
of the penalty function. To be precise, the updating rule for Rj is the following.

Update Rj: Given m̄ ≥ 0, set m(0) = 0 and let m(j + 1) be such that

m(j + 1) ≤ min[m(j) + 1, m̄].

Choose the value Rj+1 to satisfy

P (x�(j+1); ε) ≤ Rj+1 ≤ max
0≤i≤m(j+1)

P (x�(j+1−i); ε).(37)

The NMSB algorithm is a very general scheme and encompasses many possible
extensions of unconstrained algorithms.

For example, if we set m̄ = 0, δ0 = 0, and N = 0, we obtain the Armijo monotone
stabilization algorithm described at the beginning. If we set m̄ > 0, δ0 = 0, and
N = 0, we obtain the box constrained version of the nonmonotone algorithm proposed
in [24].

The following result holds.
Theorem 5.2. Suppose that Assumption 1 holds. Let {xk} be the sequence

generated according to the NMSB algorithm described above. Then
(i) after a finite number of iterations the penalty parameter ε stays fixed;
(ii) there exists at least one limit point of the sequence {xk};
(iii) every limit point of the sequence {xk} is a KKT of (PB);
(iv) every limit point x̄ of the sequence {xk} is such that f(x̄) ≤ f(xa).
Point (i) follows from the test ∇P (xk; ε)′dk ≤ −ζε‖dk‖2 performed during the

linesearch in the NMSB algorithm. In fact, Theorem 5.1 guarantees that after a finite
number of reductions the value of ε settles down and condition (28) is always satisfied.
The proof of points (ii)–(iv), albeit conceptually very similar to that in [26], is tedious
and not particularly illuminating. We refer the reader to [21] for a detailed proof of
the theorem.

In the statement of Theorem 5.2 we have stressed the properties of the algorithm
in terms of the properties of problem (PB). However, we can equivalently see algorithm
NMSB as an algorithm for the minimization of the penalty function P . From this
point of view, we can also see that every accumulation point of the sequence generated
by the algorithm is a stationary point of the penalty function. This easily follows by
the fact that every KKT point of (PB) is a stationary point of P (x; ε) for every
positive value of ε; see [18].

We now pass to analyzing the local properties of the algorithm.
Theorem 5.3. Suppose that the sequence {xk} produced by the algorithm con-

verges to a point x̄ satisfying the SSOSC. Then, eventually xk+1 = xk + dk (i.e., the
stepsize of one is accepted eventually), and the convergence rate is superlinear.

Proof. We first observe that the gradient of P is semismooth according to the
definition of [35, 39]. This follows easily by the expression (29) and the facts that the



TRUNCATED NEWTON ALGORITHM FOR LARGE BOX PROBLEMS 1119

composite of semismooth functions is semismooth, that the max operator is semis-
mooth, and that smooth functions are also semismooth [35]. Now, taking into account
that S is compact by Assumption 1 and that (11), (12), (16) hold, we have that the
direction dk is bounded. Moreover, from Theorem 5.2, ε settles after a finite number of
iterations. Since xk → x̄, a KKT point, this implies that ∇P (xk; ε)→ ∇P (x̄; ε) = 0,
and hence from (28) we have that dk → 0. Now, since f(x̄) < f(xb), then eventually
xk + dk ∈ S, and the Armijo rule eventually accepts stepsize one by [15, Theorem
3.2]. Now superlinear convergence follows from Theorem 3.3.

Remark 5.1. It may be interesting to note that at the beginning of the paper
we made, for simplicity, the blanket assumption that f is three times continuously
differentiable. However, it is possible to show that to establish global convergence it
is sufficient to assume continuous differentiability of the objective function, while to
prove the superlinear convergence rate of the algorithm it is enough to assume that
the Hessian of f is semismooth. Furthermore, these differentiability assumptions are
only needed on S.

Remark 5.2. In Theorem 5.3, for simplicity, we made the assumption that
{xk} → x̄. We remark, however, that it is standard to prove that if one of the limit
points of the sequence {xk} generated by the algorithm satisfies the strong second
order sufficient condition, then the whole sequence converges to this point.

6. Numerical experiments. In this section we analyze the behavior of an im-
plementation of NMSB algorithm. The following choices were made.

• Given a user-supplied starting point xu, we generate the two points xa, xb
required by the algorithm in the following simple way. First, we project xu
onto the feasible region, thus obtaining a point x̃. Then we generate a new
feasible point x̂ by moving from x̃ along the gradient of the objective function
with a prefixed stepsize

δ0 = min

(
2 max(|f(x̃)|, 10−3)

max(10−20, ‖∇f(x̃)‖2) , 1

)

and by then projecting the resulting point onto the feasible region, namely,

x̂ = mid
[
l, x̃− δ0∇f(x̃), u

]
,

where mid is the componentwise median of the three vectors in the arguments.
Finally, if f(x̃) < f(x̂), we set xa = x̃ and xb = x̂; otherwise, we set xa = x̂
and xb = x̃.

• The starting point of the minimization process is x0 = xa.
• The barrier parameters α and β are chosen according to the rule given below:

αi = max[0, li − (xu)i] + mid[0.1, ui − li, 10],
βi = max[0, (xu)i − ui] + mid[0.1, ui − li, 10].

The mid term in the definition of α and β makes the wideness of S propor-
tional in a safeguarded way to the wideness of the box. The first term instead
ensures that the user-supplied point xu belongs to S.
• The initial value of the penalty parameter is given by

ε0 = 10−3 min

[
10−2,

1

f(xb)
,

1

‖∇f(xa)‖2
]
,

where if one of the denominators is zero, we understand that the correspond-
ing term is +∞.
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• We set the remaining parameters in NMSB to the following values:

N = 20, m̄ = 20, δ0 = 103, σ = 0.5, θ = 0.5, ζ = 10−3.

We note that in our experience the choice of the barrier parameters α, β and of
the initial penalty parameter ε is not crucial. In particular, the updating rule for the
penalty parameter allows one to easily recover from an unsuitable initial choice of ε0.

Regarding the stopping rule, we employed two criteria: we terminated the algo-
rithm if either

‖∇P f(xk)‖ ≤ 10−5,

‖max[l − xk, 0]‖+ ‖max[xk − u, 0]‖ ≤ 10−5(1 + ‖xk‖),(38)

or

‖dk‖ ≤ 10−9,

where ∇P f(x) is the projected gradient defined by

∇P f(x̄)i =




min[0,∇f(x̄)i] if x̄i = li,

∇f(x̄)i if li < x̄i < ui,

max[0,∇f(x̄)i] if x̄i = ui.

The first conditions are the measure of the violation of the classical KKT con-
ditions; the second one is validated by Theorem 3.2. All the runs were made on a
Pentium II with 128 MB RAM, using Fortran90 with the default optimization com-
piling option. We tested the algorithm on box constrained problems from the CUTE
collection [4], and we selected those problems whose number of variables n can be
set by the user. We considered the use of a preconditioner for the CG-type method
NCCGA, and we refer to the implementation of the NMSB algorithm that uses the
preconditioner as P-NMSB, and to the nonpreconditioned version as NMSB. From a
theoretical point of view, the choice of the preconditioning matrix is not significant;
however, the numerical behavior may be heavily affected by this choice. In particular,
we used the incomplete Cholesky factorization (ICFS) code described in [31]. The
ICFS routine has the advantage of requiring an amount of memory that can be fixed
in advance, and it is equal to n ·p; we used p = 5. In our opinion, a possible drawback
to the use of such a preconditioner is the fact that we need to explicitly evaluate and
store, although in sparse format, the Hessian matrix ∇2FF f . When |F | is large and
the matrix is dense, this can be a heavy task that may not always be compensated by
the minor computational costs of the CG scheme. However, on the problems of the
CUTE collections, the use of the preconditioner significantly improved the behavior
of the NMSB algorithm, mainly in terms of inner iterations of the CG scheme.

We summarize in Table 1 the results obtained by the NMSB and the P-NMSB
codes. As measures of performance, we report the number of function evaluations,
Hessian evaluations, inner CG iterations, and cpu time in seconds. The first part of
the table contains the number of “wins” and “ties” between NMSB and P-NMSB. We
say that an algorithm wins against the other when the measure of the corresponding
performance index is better by at least 10% than that of the other algorithm. The
algorithms are tied if their performance with respect to a given criterion differs by at
most 10%. We are aware that this scoring (as any other kind of global comparison
measure) is questionable; on the other hand, we think it is useful to give a concise
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Table 1
Wins and cumulative results of NMSB versus P-NMSB.

Wins Ties Cumulative results
NMSB P-NMSB NMSB P-NMSB

function evl. 4 8 20 872 756
Hessian evl. 4 8 20 790 659
inner CG its. 1 30 1 15223 1010
cpu time 7 13 12 385.32 293.55

idea of what the behavior of the algorithm is. The second part of Table 1 reports the
overall results (the sum of the measure of performance on all the problems).

On one problem the two versions of the algorithm did not converge to the same
solution. The results in Table 1 do not take into account performance on this problem.

Table 1 shows that the use of a preconditioner strongly influences the number of
inner iterations of the CG scheme. On the other performance criteria the two versions
NMSB and P-NMSB are tied on many problems (72%), and on the remaining ones P-
NMSB performs slightly better than NMSB. Hence we use the preconditioned version
P-NMSB for the comparison with other algorithms.

In particular, we compared P-NMSB with LANCELOT [11] and TRON [32].
TRON uses the preconditioner ICFS with the same value of the parameter p = 5.
LANCELOT implements different types of preconditioners that can be set by the
user. We used the default preconditioner that corresponds to a banded preconditioner.
For each code (P-NMSB, TRON, LANCELOT) we recorded the number of function
evaluations (nf), Hessian evaluations (nh), inner CG iterations (ncg), and cpu time
in seconds (time). As regards the stopping criteria for TRON and LANCELOT, we
also used for these algorithms the conditions (38). The results obtained by P-NMSB,
TRON, and LANCELOT on the problems of the CUTE collections are reported in
Table 2. On seven problems P-NMSB did not converge to the same solution of either
TRON or LANCELOT. We put an ∗ near the names of these problems. We note,
however, that in four cases out of these seven, P-NMSB reaches a point with a lower
function value.

In order to better understand the comparative behavior of the codes, we sum-
marize the results in Tables 3 and 4. The problems where the algorithms do not
converge to the same solution are not taken into account in these two tables. In
particular, Table 3 summarizes the number of wins, in terms of function evaluations,
Hessian evaluations, inner CG iterations, and runtime, of P-NMSB versus TRON
and of P-NMSB versus LANCELOT. As above, we say that an algorithm wins when
the measure of the performance index is at least 10% better than that of the other
algorithm, whereas the algorithms tie if their performance with respect to a given
criterion differs by at most 10%.

In Table 4, we report the cumulative results, i.e., the sum of function evaluations,
Hessian evaluations, inner CG iterations, and runtime on all the problems.

From the tables above it seems fair to say that P-NMSB and TRON behave
similarly on most problems with regard to function evaluations, Hessian evaluations,
and runtime, while TRON is slightly better in terms of inner iterations. However,
since the two algorithms use the same preconditioner, we think that the cpu time is
the main important performance criterion, and with respect to that the two algorithms
have the same performance. This evidence supports the claim that P-NMSB has no
heavy “internal” operations and, in particular, that the use of the penalty function
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Table 2
Performance of P-NMSB, TRON, and LANCELOT on CUTE problems.

P-NMSB TRON LANCELOT
Problem n nf nh ncg time nf nh ncg time nf nh ncg time
BDEXP 15000 12 10 10 3.49 11 11 10 3.88 10 10 12 3.99
CVXBQP1 15000 7 3 3 0.90 2 2 0 0.33 1 1 5 1.33
JNLBRNG1 15625 29 26 31 13.31 26 26 28 12.93 24 24 2029 123.30
JNLBRNG2 15625 20 17 18 8.64 16 16 18 7.75 14 14 898 56.12
JNLBRNG3 15625 14 12 12 6.14 6 6 6 2.74 6 6 219 15.46
JNLBRNGA 15625 25 23 26 10.51 23 23 24 10.60 21 21 1584 86.33
JNLBRNGB 15625 12 10 10 4.70 9 9 11 3.90 8 8 419 23.42
MCCORMCK 15000 6 4 4 1.62 7 6 6 1.61 4 4 4 2.19
NCVXBQP1 15000 6 3 3 1.86 2 2 0 0.31 4 4 2 2.45
NCVXBQP2 * 15000 35 33 37 7.3 8 8 6 1.49 6 6 333 4.78
NCVXBQP3 * 15000 113 101 107 20.65 11 11 8 2.31 7 7 129 2.89
NOBNDTOR 14884 38 36 64 17.02 38 38 51 18.73 36 36 1386 93.47
NONSCOMP 15000 8 6 6 1.64 8 8 7 1.58 8 8 8 2.73
OBSTCLAE * 15625 8 6 16 3.97 27 27 37 11.56 5 5 7452 591.44
OBSTCLAL * 15625 26 25 35 12.01 25 25 28 10.08 24 24 604 33.44
OBSTCLBL * 15625 24 20 32 10.85 19 19 25 9.91 18 18 2088 145.
OBSTCLBM * 15625 15 10 19 6.15 9 9 12 4.71 5 5 1378 110.36
OBSTCLBU * 15625 25 20 30 10.76 20 20 24 9.5 19 19 621 43.03
SSC 15625 9 7 23 6.27 8 8 18 6.31 1 1 111 14.82
TORSION1 14884 40 38 62 16.20 39 39 48 16.07 37 37 1148 66.2
TORSION2 14884 27 23 47 11.29 23 23 31 10.76 14 14 2026 123.88
TORSION3 14884 21 19 27 7.42 20 20 22 6.87 19 19 332 17.0
TORSION4 14884 26 22 40 9.48 24 24 30 9.22 14 14 634 26.83
TORSION5 14884 12 10 13 3.89 11 11 11 3.35 9 9 93 5.36
TORSION6 14884 17 13 25 5.87 15 15 18 5.50 8 8 159 7.15
TORSIONA 14884 41 39 64 19. 39 39 48 17.64 37 37 1147 74.79
TORSIONB 14884 25 22 50 12.01 23 23 33 11.78 15 15 2079 141.52
TORSIONC 14884 21 19 27 8.39 20 20 22 7.65 19 19 332 19.71
TORSIOND 14884 26 22 38 10.52 24 24 30 10.25 14 14 659 31.85
TORSIONE 14884 12 10 13 4.34 11 11 11 3.8 9 9 93 6.15
TORSIONF 14884 17 13 24 6.57 15 15 18 6.06 7 7 166 8.45
TORSIONG 14884 65 63 113 33.40 63 63 82 32.59 61 61 2338 176.64
TORSIONH 14884 9 7 18 4.68 7 7 14 4.26 1 1 102 9.03
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Table 3
Wins of P-NMSB versus TRON, and of P-NMSB versus P-LANCELOT.

Wins Ties Wins Ties
P-NMSB TRON P-NMSB P-LANCELOT

function evl. 1 11 14 0 19 7
Hessian evl. 5 3 18 2 12 12
inner its. 2 19 5 24 1 1
cpu time 1 6 19 26 0 0

Table 4
Cumulative results of P-NMSB, TRON, and LANCELOT.

Cumulative results
P-NMSB TRON LANCELOT

function evl. 545 490 401
Hessian evl. 477 489 401
inner its. 771 597 17985
cpu time 229.16 216.47 1140.17

does not affect the computational time of the algorithm, as was expected.
As regards LANCELOT, we observe that it almost always performs better than

P-NMSB (and also of TRON) in terms of function and Hessian evaluations. However,
the number of inner iterations and the cpu time are significantly worse than those of
P-NMSB. Since the preconditioner of LANCELOT is different from the one used by
P-NMSB and TRON, it is not possible to draw any definitive general conclusion.

In summary, we think that the NMSB algorithm is reliable and efficient and that
its performance is comparable with that of TRON and, at least on the problems of
the CUTE collection, is better than that of LANCELOT.

Acknowledgments. We wish to thank an anonymous referee and Dr. Nick
Gould for useful comments and suggestions that led to a significant improvement of
the paper.
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Abstract. We consider the problem of finding a point in a nonempty bounded convex body Γ in
the cone of symmetric positive semidefinite matrices Sm

+ . Assume that Γ is defined by a separating

oracle, which, for any given m×m symmetric matrix Ŷ , either confirms that Ŷ ∈ Γ or returns several
selected cuts, i.e., a number of symmetric matrices Ai, i = 1, . . . , p, p ≤ pmax, such that Γ is in
the polyhedron {Y ∈ Sm

+ | Ai • Y ≤ Ai • Ŷ , i = 1, . . . , p}. We present a multiple-cut analytic center
cutting plane algorithm. Starting from a trivial initial point, the algorithm generates a sequence
of positive definite matrices which are approximate analytic centers of a shrinking polytope in Sm

+ .

The algorithm terminates with a point in Γ within O(m3pmax/ε2) Newton steps (to leading order),
where ε is the maximum radius of a ball contained in Γ.

Key words. analytic center, cutting plane methods, multiple cuts, semidefinite programming
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1. Introduction. Let Sm be the set of m×m symmetric matrices, and let Sm+
be its subset of symmetric positive semidefinite matrices. We consider the problem
of finding a point in a convex subset Γ of Sm+ . We assume that Γ contains a full-
dimensional closed ball with radius ε > 0. The set Γ is implicitly defined by a separat-
ing oracle, which, for any givenm×m symmetric matrix Ŷ , either confirms that Ŷ ∈ Γ
or returns several cuts, i.e., a number of symmetric matrices Ai, i = 1, . . . , p, p ≤
pmax, such that Γ is in the polyhedron {Y ∈ Sm+ | Ai • Y ≤ Ai • Ŷ , i = 1, . . . , p}. Here
pmax is the maximum number of cuts admitted in each iteration.

In a recent paper [8], we presented an analytic center cutting plane method for
the case pmax = 1, in which a single cut is added in each iteration. The method
was shown to have a worst-case complexity of O(m3/ε2) (to leading order). However,
to make a cutting plane algorithm practically efficient, adding multiple cuts is often
necessary. The purpose of this paper is to propose and analyze an analytic cutting
plane method that uses multiple cuts for solving the convex semidefinite feasibility
problem mentioned above. In admitting multiple cuts in an analytic center cutting
plane method, we face some new theoretical problems that are different from the
single-cut situation; these include (a) the problem of finding a feasible starting point
for the Newton iteration after several new cuts have been added, (b) the estimation
of the number of Newton steps needed to obtain a new approximate center through
estimating the changes in the primal-dual potential function.

Our paper extends the multiple-cut schemes of Goffin and Vial [2], Luo [5], and
Ye [10] from R

m
+ to Sm+ . Such extensions not only broaden the applications of cutting
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plane methods but also extend several classical theoretical results for nonnegative
vectors to positive semidefinite matrices. We note that for our multiple-cut analytic
center cutting plane algorithm, the complexity analysis on the number of Newton
iterations per oracle call follows the approach in [3]. For the complexity analysis
on the number of oracle calls, we follow the approach in [10], but we simplify the
proofs of some results analogous to those in [10] by considering all the added cuts
simultaneously instead of inductively.

In this paper we will show that, starting from a trivial initial point, the multiple-
cut algorithm generates a sequence of positive definite matrices which are approximate
analytic centers of a shrinking polytope in Sm+ . The algorithm will stop with a solu-
tion in at most O(m3pmax/ε

2) (to leading order) Newton steps. Our analysis shows
that when the problem is specialized to the space of positive semidefinite diagonal
matrices (which is equivalent to the nonnegative orthant Rm+ ), the complexity bound
is reduced to O(m2pmax/ε

2). This complexity bound is lower than the existing bound
of O(m2p2max/ε

2) obtained in [2] and [10], where the same cuts are considered. Our
bound appears to be better than that obtained in [5]. (Note that the proof for the
bound appearing in [5] is incomplete, and, to the best of our knowledge, a provable
bound should be O(m2p2max/ε

2).) Furthermore, the analysis in [5] is carried out only
for the so-called shallow cuts, which are placed at some distance away from the cur-
rent testing point and hence may not be as efficient as our proposed algorithm, where
the cuts pass through the testing point.

We are able to obtain better complexity results than existing ones even when the
problem is specialized to R

m
+ , because in each oracle call we admit only cuts that are

sufficiently good. We shall not give the precise definition of “goodness” here but refer
the reader to section 4. Roughly speaking, based on our criteria, the admitted cuts
Ai, i = 1, . . . , p, in each oracle call are effective in reducing the size of the polytope in
the sense that each should be able to delete a sizable portion of the current polytope
that cannot be otherwise deleted by the other admitted cuts. One obvious advantage
of having such a selection criterion is that the number of cuts added in each iteration
is reduced, since only effective cuts are admitted, and this translates into savings in
the computational cost in each Newton step.

We will now introduce some notations. For matrices A, Y ∈ Sm, we define

A • Y := Tr(ATY ) =

m∑
i,j=1

AijYij ,

where “T” stands for the transpose, and “Tr” denotes the trace. We write Y 	 0 and
Y 
 0 if Y is positive definite and positive semidefinite, respectively. For Y 
 0, we
denote its symmetric square root by Y 1/2. The 2-norm of a vector x is denoted by
‖x‖, and the matrix 2-norm of a matrix A is denoted by ‖A‖. For A ∈ Sm, we write

‖A‖F := (A •A)1/2, λ(A) := (λ1(A), . . . , λm(A))T ,

where λ1(A), . . . , λm(A) are the eigenvalues of A. Note that ‖A‖F = ‖λ(A)‖ and
‖A‖ = ‖λ(A)‖∞. We will use these facts in the paper without explicitly mentioning
them. For a positive vector x ∈ R

n, we write

lnx :=
n∑
i=1

lnxi.
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We use diag(x) to denote the diagonal matrix whose diagonal is the vector x. For a
positive vector x, we will use x−1 to denote the vector obtained from x by inverting
all of its components.

Generally, we use capital letters for matrices, lower case letters for vectors, and
Greek letters for scalars. For convenience, we let m̄ = m(m+ 1)/2.

Let svec be an isometry identifying Sm with R
m̄, so thatK•L = svec(K)T svec(L),

and let smat be the inverse of svec. Given any G ∈ Sm, we let G©∗ G ∈ R
m̄×m̄ be

the unique symmetric matrix such that

(G©∗ G) svec(M) = svec(GMG) ∀ M ∈ Sm.

It is easy to see that if G is positive definite, then G©∗ G is positive definite and
(G©∗ G)1/2 = G1/2©∗ G1/2. If G is nonsingular, then (G©∗ G)−1 = G−1©∗ G−1.

Throughout, we make the following assumptions:
A1. Γ is a convex subset of Sm+ .
A2. Γ ⊂ Ω0, where Ω0 := {Y ∈ Sm | 0 � Y � I}.
A3. Γ contains a full-dimensional ball of radius ε > 0. That is, there exists Y c ∈ Sm

such that {Y ∈ Sm : ‖Y − Y c‖F ≤ ε} ⊂ Γ.
Note that Assumption A2 is made for convenience. It can be satisfied by scaling if
the original convex set Γ̂ is bounded. That is, suppose there exists a constant γ > 0
such that for all Y ∈ Γ̂, ‖Y ‖ ≤ γ. Then the scaled set Γ = {Y/γ | Y ∈ Γ̂} satisfies
A2.

The organization of the paper is as follows. In section 2, we describe our multiple-
cut analytic center cutting plane algorithm for semidefinite feasibility problems. Sec-
tion 3 is devoted to the analysis of the computation of an approximate analytic center
for a working set. In particular, we establish the number of Newton steps required
to compute an approximate analytic center in terms of the number of cuts added. In
section 4, we establish the dual potential increment when the current working set is
changed to the next working set. Subsequently, we establish complexity results for
our multiple-cut cutting plane algorithm.

2. A multiple-cut analytic center cutting plane method. We first define
the analytic center and then propose a multiple-cut analytic center cutting plane
method at the end of this section.

Let Ai • Y ≤ ci, i = 1, . . . , nk, be all the cuts defining the kth working set Ωk.
Define

A := (svecA1, svecA2, . . . , svecAnk
), c := (c1, c2, . . . , cnk

)T .

Then the set Ωk can be represented as

Ωk = {Y ∈ Ω0 | AT svecY ≤ c}.

We define the following potential function on the set Ωk:

φk(Y ) = −
nk∑
i=1

ln(ci −Ai • Y )− ln(detY )− ln(det(I − Y )),

where “det” denotes the determinant. We let

φk(Ω) := min{φk(Y ) | Y ∈ Ω}.
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The unique minimizer of φk(Y ) over Ωk is known as the analytic center of Ωk.
It is easy to see that the analytic center of the initial working set Ω0 is I/2, where

I is the identity matrix. As a matter of fact,

φ0(Y ) = − ln(detY )− ln(det(I − Y ))

= − ln

m∏
i=1

λi(Y )− ln

m∏
i=1

λi(I − Y )

= −
m∑
i=1

ln [λi(Y )(1− λi(Y ))] .

The minimum of φ0(Y ) must satisfy λ1(Y ) = · · · = λm(Y ) = 1/2, and hence Y = I/2.
It is known [7, Proposition 5.4.5] that φk is a strongly 1-self-concordant function

on Ω and

∇φk(Y ) = svec

(
nk∑
i=1

Ai
ci −Ai • Y − Y

−1 + (I − Y )−1

)
,

∇2φk(Y ) = AS−2AT + Y −1©∗ Y −1 + (I − Y )−1©∗ (I − Y )−1,

where S = diag (s) and s = c−AT svec(Y ) > 0. Strictly speaking, ∇φk(Y ) should be
the m×m matrix within the round brackets. However, we have identified the m×m
matrix with a vector in R

m̄ through the linear isometry svec. Similarly, ∇2φk(Y ) is
identified with an R

m̄ × R
m̄ matrix.

The optimality conditions for minimizing φk are

Sx = e, (e denotes the vector of ones)

Y Z = I,

(I − Y )V = I,

AT svecY + s = c,(2.1)

Ax− svecZ + svecV = 0,

I 	 Y 	 0, Z, V 	 0, s, x > 0.

With a slight abuse of language, we also call the solution (Ȳ , s̄, x̄, Z̄, V̄ ) of (2.1) the
analytic center of Ωk.

Definition 2.1. Given a point (Y, s, x, Z, V ) ∈ Sm × R
nk × R

nk × Sm × Sm,
with 0 ≺ Y ≺ I, we define

η(Y, s, x, Z, V ) =
√
‖Sx− e‖2 + ‖λ(Y Z)− e‖2 + ‖λ((I − Y )V )− e‖2.(2.2)

We call (Y, s, x, Z, V ) an η-approximate (analytic) center of Ωk if η(Y, s, x, Z, V ) ≤ η,
all the linear equalities in (2.1) are satisfied, and x, s > 0, Z, V 	 0. Obviously, a
0-approximate center is exactly the analytic center of Ω.

Definition 2.2. Given Y ∈ Sm such that 0 ≺ Y ≺ I, and s = c−A T svec(Y ) >
0, we define

δk(Y ) =
√
∇φk(Y )T [∇2φk(Y )]−1∇φk(Y ) .(2.3)

It was shown [8] that the following lemma holds.
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Lemma 2.3. Given Y ∈ Sm such that 0 ≺ Y ≺ I, let s = c − A T svec(Y ). We
have

δk(Y ) = η(Y, s, xY , ZY , VY )

= min{η(Y, s, x, Z, V ) : Ax− svec(Z) + svec(V ) = 0, x ∈ R
k, Z, V ∈ Sm}.(2.4)

Remark. Given Y ∈ Sm such that 0 ≺ Y ≺ I, s = c − A T svec(Y ) > 0, and
δk(Y ) < η < 1, the minimizer (xY , ZY , VY ) of (2.4) satisfies xY > 0, and ZY , VY 	 0.
For such a Y , we will call Y an η-approximate center of Ωk in the sense that the point
(Y, s, xY , ZY , VY ) is an η-approximate center.

We will now describe our algorithm.
A multiple-cut analytic center cutting plane algorithm.

Step 0. Select η ∈ (0, 1−√3/2), and pick δ̄ ∈ (η, 1). Set k = 0. Let Ω0 be the initial
working set, and let Y0 = I/2 be the initial point.

Step 1. At the kth iteration, call the oracle to either confirm that Yk is a feasible
point of Γ or return pk matrices Ank+1, . . . , Ank+pk ∈ Sm with ‖Ank+i‖F = 1.
If Yk ∈ Γ, stop; otherwise, construct the new working set

Ωk+1 = {Y ∈ Ωk : Ank+i • Y ≤ Ank+i • Yk, i = 1, . . . , pk}.
Step 2. Find a point Ỹ in the interior of Ωk+1 (discussed in section 3).
Step 3. (Recentering) Starting with the point Y = Ỹ in Step 2, perform the dual

Newton method:
3.1. If δk+1(Y ) < η, set Yk+1 = Y , k := k + 1; go to Step 1.
3.2. Otherwise, set

Y+ = Y − ᾱ smat
(
[∇2φk+1(Y )]

−1∇φk+1(Y )
)
,

where ᾱ is determined as follows: if δk+1(Y ) ≥ δ̄, ᾱ = 1
1+δk+1(Y ) ; else,

ᾱ = 1. Set Y = Y+. Go to Step 3.1.
Note that we need the restriction η < 1−√3/2 in order to construct the point Ỹ in
Step 2.

3. Restoration of centrality. In our cutting plane algorithm, approximate
analytic centers are found by using the dual Newton method. Our aim in this section
is to estimate the number of Newton steps required to find an approximate analytic
center for a newly constructed working set. We do so by estimating the amount of
potential value we should reduce for the new set. The mechanics are as follows. Since
the potential function is 1-self-concordant, each Newton step can reduce the potential
function by a constant amount. Thus to estimate the number of Newton steps needed
to find an approximate analytic center for a new working set, all we need is to estimate
the amount of potential value we should reduce for the new set.

To find an approximate analytic center for a new working set, we would ideally
want the Newton method to start with the preceding approximate analytic center Yk.
However, Yk is not in the interior of the new working set Ωk+1, since the new cuts
pass through this point. Thus our immediate task is to find an interior point in Ωk+1

and then use this point as the starting point for the Newton method.
Let nk be the number of cuts defining the set Ωk. Suppose that pk new cuts are

added to form the new set Ωk+1. Recall that

A := (svecA1, svecA2, . . . , svecAnk
), c := (c1, c2, . . . , cnk

)T ,

Bk := (svecAnk+1, svecAnk+2, . . . , svecAnk+pk), d := BTk svecYk.
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Then the sets Ωk and Ωk+1 can be written as

Ωk = {Y ∈ Ω0 | AT svecY ≤ c}, Ωk+1 = {Y ∈ Ωk | BTk svecY ≤ d}.
Let Hk = ∇2φk(Yk) and

Mk := BTkH−1
k Bk.

Suppose (Yk, s
k, xk, Zk, Vk) is an η-approximate center with η < 1−√3/2. (Note

that, by Lemma 2.3, δk(Yk) ≤ η(Yk, s
k, xk, Zk, Vk) ≤ η.) We will now construct

a point (Ỹ , s̃, x̃, Z̃, Ṽ ) that is in the interior of Ωk+1, using a procedure similar to
that in Goffin and Vial [2]. To this end, consider the following convex minimization
problem:

min pkω
TMk ω − lnω

such that ω = (ω1, . . . , ωpk)
T > 0.

Evidently, the above problem has a unique solution that is also the unique solution
to the KKT-conditions:

Mk ω = ξ,(3.1a)

2pk ωi ξi = 1, ωi, ξi > 0, i = 1, . . . , pk.(3.1b)

Let (ω̃, ξ̃) be an approximate solution of the above KKT-conditions, where (3.1a) is
satisfied exactly and max{|2pkω̃i ξ̃i − 1| : i = 1, . . . , pk} ≤ 1/2. Note that, in this
case,

ω̃TMk ω̃ ≤ 3

4
.(3.2)

Note that to find such a pair (ω̃, ξ̃), we can apply Newton’s method to (3.1a) and
(3.1b), where the computational work for each Newton iteration is O(p3k). In general,
this constitutes only a very small fraction of the total computational work involved in
finding an approximate analytic center for Ωk+1. In order not to lengthen the paper
unnecessarily, we shall not establish the complexity of the Newton method for finding
(ω̃, ξ̃) in this paper. Interested readers can refer to [3] for such results.

Let Uk = I − Yk and

∆Y = −smat(H−1
k Bkω̃), ∆s = −AT svec∆Y,(3.3)

∆x = S−2
k A T svec∆Y, ∆Z = −Y −1

k (∆Y )Y −1
k , ∆V = U−1

k (∆Y )U−1
k .(3.4)

Define

Ỹ = Yk +∆Y, s̃ =

(
sk +∆s

ξ̃

)
,(3.5)

x̃ =

(
xk +∆x
ω̃

)
, Z̃ = Zk +∆Z, Ṽ = Vk +∆V.(3.6)

We refer the reader to [3] for an illuminating discussion on the motivation for con-
sidering the optimization problem (3.1a)–(3.1b) in constructing the strictly interior
point of Ωk+1 above.
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It is readily shown that the following result holds:

‖S−1
k A T svec(∆Y )‖2 + ‖Y −1/2

k (∆Y )Y
−1/2
k ‖2F + ‖U−1/2

k (∆Y )U
−1/2
k ‖2F

= svec(∆Y )THk svec(∆Y ) = ω̃TMkω̃ ≤ 3

4
.(3.7)

Lemma 3.1. For any vector q = (q1, . . . , qn)
T with ‖q‖ < 1, the following in-

equality holds:

− ln(e− q) ≤ eT q +
‖q‖2

2(1− ‖q‖) .

Proof. For this proof, we refer to [11].
Lemma 3.2. Suppose (Yk, s

k, xk, Zk, Vk) is an η-approximate center with η < 1.
Then the following inequalities hold:

‖X−1
k ∆x‖ ≤ 1

1− η ‖S
−1
k ∆s‖,

‖Z−1/2
k (∆Z)Z

−1/2
k ‖F ≤ 1

1− η ‖Y
−1/2
k (∆Y )Y

−1/2
k ‖F ,

‖V −1/2
k (∆V )V

−1/2
k ‖F ≤ 1

1− η ‖U
−1/2
k (∆Y )U

−1/2
k ‖F ,

where Xk = diag(xk).
Proof. We shall omit the proof of the first inequality, as it is easy. Now we proceed

with the proof of the second one. We have

‖Z−1/2
k (∆Z)Z

−1/2
k ‖2F =

m∑
i=1

λi

(
Z

−1/2
k Y

−1/2
k (Y

−1/2
k ∆Y Y

−1/2
k )Y

−1/2
k Z

−1/2
k

)2

=

m∑
i=1

θ2i λi

(
Y

−1/2
k ∆Y Y

−1/2
k

)2

≤
(

max
1≤i≤m

θ2i

)
‖Y −1/2

k ∆Y Y
−1/2
k ‖2F ,

where we have used a theorem of Ostrowski [4, p. 225] in the second equality above,
and the θi’s are scalars such that

λmin(Z
−1/2
k Y −1

k Z
−1/2
k ) ≤ θi ≤ λmax(Z

−1/2
k Y −1

k Z
−1/2
k ).

Noting that λmax(Z
−1/2
k Y −1

k Z
−1/2
k ) ≤ 1/(1−η), we have proved the required inequal-

ity. The last inequality in the lemma can be proved similarly.
Theorem 3.3. Suppose (Yk, s

k, xk, Zk, Vk) is an η-approximate center with η <
1 − √3/2. Then the point (Ỹ , s̃, x̃, Z̃, Ṽ ) constructed in (3.5)–(3.6) satisfies the last
three conditions in (2.1).

Proof. First, we show that s̃ > 0 and 0 ≺ Ỹ ≺ I. We have

sk +∆s = sk −AT svec(∆Y ) = Sk
[
e− S−1

k AT svec(∆Y )
]
> 0,
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since ‖S−1
k AT svec(∆Y )‖ ≤

√
3/2 < 1 from (3.7). On the other hand, we also have

Ỹ = Y
1/2
k (I + Y

−1/2
k ∆Y Y

−1/2
k )Y

1/2
k 	 0,

since ‖Y −1/2
k ∆Y Y

−1/2
k ‖F ≤

√
3/2 < 1. That Ỹ ≺ I can be shown similarly. Further-

more, [
A T svecY

BTk svecY

]
+ s =

[
c

d+ BTk svec(∆Y ) + ξ̃

]
=

[
c

d

]
,

where we used the fact that, from (3.1a), BTk svec(∆Y ) = −Mkω̃ = −ξ̃.
Next we show that x̃ > 0 and Z̃, Ṽ 	 0. We have

Z̃ = Z
1/2
k (I + Z

−1/2
k (∆Z)Z

−1/2
k )Z

1/2
k 	 0,

since, by Lemma 3.2,

‖Z−1/2
k (∆Z)Z

−1/2
k ‖F ≤ 1

(1− η)‖Y
−1/2
k (∆Y )Y

−1/2
k ‖F ≤

√
3

2(1− η) < 1.

Furthermore,

[A Bk] x̃− svecZ̃ + svecṼ

= Axk +A∆x+ Bkω̃ − svecZk − svec∆Z + svecVk + svec∆V

= A∆x+ Bkω̃ − svec∆Z + svec∆V

= AS−2
k A T svec(∆Y ) + Y −1

k ©∗ Y −1
k svec(∆Y ) + U−1

k ©∗ U−1
k svec(∆Y ) + Bkω̃

= Hksvec(∆Y ) + Bkω̃ = 0.

Up to this point, we have succeeded in finding in the interior of Ωk+1 a point Ỹ
that is derived from Yk. Our next task is to estimate the potential value of the new
point in Ωk+1.

Lemma 3.4. Suppose δk(Yk) ≤ η. Then the potential value φk+1(Ỹ ) satisfies the
following inequality:

φk+1(Ỹ ) ≤ φk(Yk) +

√
3

2
η +

3

4(2−√3) − ln ξ̃.(3.8)

Proof. Let Ũ = I − Ỹ and Uk = I − Yk. We have

φk+1(Ỹ ) = − ln s̃− ln(d− BTk svec(Ỹ ))− ln(detỸ )− ln(detŨ) = φk(Ỹ )− ln ξ̃.

(3.9)

Note that we used the fact that d− BTk svec(Ỹ ) = −BTk svec(∆Y ) = ξ̃. Now

φk(Ỹ ) = − ln(sk +∆s)− ln det(Yk +∆Y )− ln det(Uk −∆Y )

= φk(Yk)− ln(e+ S−1
k ∆s)− ln det(I + Y

−1/2
k ∆Y Y

−1/2
k )

− ln det(I − U−1/2
k ∆Y U

−1/2
k )
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= φk(Yk)− ln(e+ S−1
k ∆s)− ln

(
e+ λ(Y

−1/2
k (∆Y )Y

−1/2
k )

)
− ln

(
e− λ(U−1/2

k (∆Y )U
−1/2
k )

)
= φk(Yk)− ln(e− q),

(3.10)

where

q =




−S−1
k ∆s

−λ(Y −1/2
k (∆Y )Y

−1/2
k )

λ(U
−1/2
k (∆Y )U

−1/2
k )


 .(3.11)

Note that eT q = ∇φk(Yk)T svec∆Y and ‖q‖2 = svec(∆Y )THk svec(∆Y ) ≤ 3/4.
By applying Lemma 3.1 to (3.10), we have

φk(Ỹ )− φk(Yk) ≤ eT q + ‖q‖2
2(1− ‖q‖)

= ∇φk(Yk)T svec∆Y +
svec(∆Y )THk svec(∆Y )

(2−√3)

≤ δk(Yk)
√
ω̃TMkω̃ +

ω̃TMkω̃

(2−√3)

≤
√
3

2
η +

3

4(2−√3) .(3.12)

Note that in the next to last inequality above, we used the Cauchy inequality to derive
the result: ∇φk(Yk)T svec(∆Y ) ≤ δk(Yk)

√
ω̃TMkω̃.

Substituting the result in (3.12) into (3.9), we prove the lemma.
From Lemma 3.4, we see that the upper bound for the dual potential value

φk+1(Ỹ ) contains the term − ln ξ̃. If we were to consider the dual potential value
alone, then finding an upper bound for − ln ξ̃ would be necessary. But we have
found that finding a tight upper bound for this term is difficult. As a result, we
have decided to consider the primal-dual potential value, for which finding an up-
per bound for − ln ξ̃ is not necessary. To this end, let us define the primal potential
function associated with Ωk. For any ψk(x, Z, V ) ∈ R

nk
++ × Sm++ × Sm++ that satisfies

Ax− svec(Z) + svec(V ) = 0, the primal potential of (x, Z, V ) is defined by

ψk(x, V, Z) = cTx+ I • V − lnx− ln detZ − ln detV.(3.13)

The primal-dual potential function associated with Ωk is

Λk(Y, x, Z, V ) = φk(Y ) + ψk(x, Z, V ).

We should emphasize that the primal-dual potential function is introduced solely for
the purpose of estimating the potential value of (Ỹ , s̃, x̃, Z̃, Ṽ ). It is not needed in our
cutting plane algorithm described in section 2.

Now we shall proceed to establish an analogue of Lemma 3.4 for the primal
potential function. Before doing that, we need the following lemma.
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Lemma 3.5. For the directions (∆x,∆Z,∆V ) given in (3.4), the following in-
equality holds:

∣∣cT∆x− eTX−1
k ∆x− Z−1

k •∆Z − V −1
k •∆V + I •∆V + dT ω̃

∣∣ ≤ η

1− η

√
3

2
.

(3.14)

Proof. Noting that d = BTk svec(Yk) and Hksvec(∆Y ) = −Bkω̃, we have

dT ω̃ = −svec(Yk)T
(A∆x+ svec[Y −1

k (∆Y )Y −1
k ] + svec[U−1

k (∆Y )U−1
k ]
)
.

Let Xk = diag(xk) and Sk = diag(sk). Then∣∣cT∆x+ dT ω̃ − eTX−1
k ∆x− Z−1

k •∆Z − V −1
k •∆V + I •∆V ∣∣

=
∣∣eT (Sk −X−1

k )∆x + (Z−1
k − Yk) • (Y −1

k ∆Y Y −1
k ) + (Uk − V −1

k ) • (U−1
k ∆Y U−1

k )
∣∣

=
∣∣(e−X−1

k (sk)−1)TS−1
k ∆s

∣∣ + ∣∣(Y −1/2
k Z−1

k Y
−1/2
k − I) • (Y −1/2

k ∆Y Y
−1/2
k )

∣∣
+
∣∣(I − U−1/2

k V −1
k U

−1/2
k ) • (U−1/2

k ∆Y U
−1/2
k )

∣∣
≤ ‖e−X−1

k (sk)−1‖ ‖S−1
k ∆s‖ + ‖Y −1/2

k Z−1
k Y

−1/2
k − I‖F ‖Y −1/2

k ∆Y Y
−1/2
k ‖F

+ ‖U−1/2
k V −1

k U
−1/2
k − I‖F ‖U−1/2

k ∆Y U
−1/2
k ‖F

≤
(
‖e−X−1

k (sk)−1‖2 + ‖Y −1/2
k Z−1

k Y
−1/2
k − I‖2F + ‖U−1/2

k V −1
k U

−1/2
k − I‖2F

)1/2

×
(
‖S−1

k ∆s‖2 + ‖Y −1/2
k ∆Y Y

−1/2
k ‖2F + ‖U−1/2

k ∆Y U
−1/2
k ‖2F

)1/2

≤ η (Y −1
k , (sk)−1, (xk)−1, Z−1

k , V −1
k

) (
svec(∆Y )THksvec(∆Y )

)1/2
≤ η

1− η

√
3

2
.

Note that, in the last inequality above, we used (3.7) and the fact that

η(Y −1, (s)−1, (x)−1, Z−1, V −1) ≤ η

1− η .

Lemma 3.6. For the point (x̃, Z̃, Ṽ ) constructed in (3.6), the following inequality
holds:

ψk+1(x̃, Z̃, Ṽ ) ≤ ψk(xk, Zk, Vk) + 3

4(1− η)(2− 2η −√3) +
η

1− η

√
3

2
− ln ω̃.(3.15)

Proof. We have

ψk+1(x̃, Z̃, Ṽ ) = c
Txk + cT∆x− lnxk − ln(e+X−1

k ∆x)− ln detZk

− ln det(I + Z
−1/2
k (∆Z)Z

−1/2
k )− ln detVk

− ln det(I + V
−1/2
k (∆V )V

−1/2
k ) + I • Vk + I •∆V + dT ω̃ − ln ω̃

= ψk(x
k, Zk, Vk) + c

T∆x+ I •∆V + dT ω̃ − ln ω̃ − ln(e+ p),(3.16)
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where

p =




X−1
k ∆x

λ(Z
−1/2
k (∆Z)Z

−1/2
k )

λ(V
−1/2
k (∆V )V

−1/2
k )


 .

Note that eT p = eTX−1
k ∆x+ Z−1

k •∆Z + V −1
k •∆V , and by Lemma 3.2,

‖p‖2 = ‖X−1
k ∆x‖2 + ‖Z−1/2

k (∆Z)Z
−1/2
k ‖2F + ‖V −1/2

k (∆V )V
−1/2
k ‖2F

≤ 1

(1− η)2
(
‖S−1

k ∆s‖2 + ‖Y −1/2
k (∆Y )Y

−1/2
k ‖2F + ‖U−1/2

k (∆Y )U
−1/2
k ‖2F

)

=
1

(1− η)2 svec(∆Y )
THk svec(∆Y ) ≤ 1

(1− η)2
3

4
.(3.17)

By Lemma 3.1 and (3.17), we get from (3.16),

ψk+1(x̃, Z̃, Ṽ ) ≤ ψk(x
k, Zk, Vk) + c

T∆x+ I •∆V + dT ω̃ − ln ω̃ − eT p+ ‖p‖2
2(1− ‖p‖)

≤ ψk(xk, Zk, Vk) + cT∆x+ I •∆V + dT ω̃ − ln ω̃ − eT p+ 3

4(1− η)(2− 2η −√3) .

By applying Lemma 3.5 and (3.7), we prove the lemma.
The next lemma is an analogue of Lemma 3.4 for the primal-dual potential func-

tion.
Lemma 3.7. Suppose η(Yk, s

k, xk, Zk, Vk) is an η-approximate center with η <
1−√3/2. Then

Λk+1(Ỹ , x̃, Z̃, Ṽ ) ≤ Λk(Yk, x
k, Zk, Vk) + β(η) + pk

(
3

4
+ ln 2pk

)
,

where

β(η) = η

√
3

2
+

3

4(2−√3) +
η

1− η

√
3

2
+

3

4(1− η)(2− 2η −√3) .(3.18)

Proof. Combining the results in Lemmas 3.4 and 3.6, we have

Λk+1(Ỹ , x̃, Z̃, Ṽ ) ≤ Λk(Yk, x
k, Zk, Vk) + β(η)− ln ω̃ξ̃.(3.19)

Note that

− ln ω̃ξ̃ = pk ln 2pk +

pk∑
i=1

− ln
(
1− (1− 2pkω̃iξ̃i)

)

≤ pk ln 2pk +

pk∑
i=1

[
(1− 2pkω̃iξ̃i) +

|1− 2pkω̃iξ̃i|2
2(1− |1− 2pkω̃iξ̃i|)

]

≤ pk ln 2pk +
3

4
pk.(3.20)
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By substituting (3.20) into (3.19), the lemma is proved.
With Lemma 3.7, we can finally establish an explicitly known upper bound for

the primal-dual potential value Λk+1(Ỹ , x̃, Z̃, Ṽ ).
Theorem 3.8. Suppose that (Ȳk+1, x̄

k+1, Z̄k+1, V̄k+1) is the analytic center of
Ωk+1, and (Ỹ , x̃, Z̃, Ṽ ) is the point constructed in (3.5)–(3.6). Then

Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1) ≤ pk

(
ln 2pk − 1

4

)
+ β(η) +

2η2

1− η2
,

(3.21)

where β(η) is the constant given in (3.18).
Proof. Suppose that (Yk, s

k, xk, Zk, Vk) is an η-approximate center of Ωk with
η < 1−√3/2. We have

Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1)

= Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk(Yk, x
k, Zk, Vk) + Λk(Ȳk, x̄

k, Z̄k, V̄k)

− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1)

+ Λk(Yk, xk, Zk, Vk)− Λk(Ȳk, x̄
k, Z̄k, V̄k).(3.22)

It is readily shown that

Λk(Ȳk, x̄
k, Z̄k, V̄k)− Λk+1(Ȳk+1, x̄

k+1, Z̄k+1, V̄k+1)

= (nk + 2m)− (nk + pk + 2m) = −pk.(3.23)

Next we need to get an upper bound for the term Λk(Yk, x
k, Zk, Vk)−Λk(Ȳk, x̄k, Z̄k, V̄k)

in (3.22). By following the proof of Lemma 2.1 in [1] and using the quadratic conver-
gence result in [8], it is readily shown that

φk(Yk) ≤ φk(Ȳk) +
η2

1− η2
.(3.24)

Similarly, it can be shown that

ψk(x
k, Zk, Vk) ≤ ψk(x̄

k, Z̄k, V̄k) +
η2

1− η2
.(3.25)

Combining (3.24) and (3.25), we get

Λk(Yk, x
k, Zk, Vk)− Λk(Ȳk, x̄

k, Z̄k, V̄k) ≤ 2η2

1− η2
.(3.26)

By putting the results of Lemma 3.7, (3.23), and (3.26) into (3.22), the theorem is
proved.

With the estimate of Λk+1(Ỹ , x̃, Z̃, Ṽ ) in Theorem 3.8, we are now ready to es-
timate the number of dual Newton steps required to find an approximate analytic
center for Ωk+1 by using the point Ỹ as the initial point.

Theorem 3.9. Given an η-approximate center Yk of Ωk, with η < 1−√3/2, the
total number of dual Newton steps required to find an η-approximate center Yk+1 of
Ωk+1 is

O (pk ln pk) ,
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where the constant O(1) is independent of k.
Proof. By Theorem 2.2.3 in [7], each dual Newton step reduces Λk+1 by a positive

constant γ = δ̄ − ln(1 + δ̄), as long as a point Ŷ with δk+1(Ŷ ) < δ̄ < 1 is not yet
found, while keeping the primal iterate fixed. Now, starting at (Ỹ , s̃, x̃, Z̃, Ṽ ), the
total value of Λk+1 which needs to be reduced is not more than Λk+1(Ỹ , x̃, Z̃, Ṽ ) −
Λk+1(Ȳ , x̄, Z̄, V̄ ); thus Theorem 3.8 implies that at most

1

γ

[
pk

(
ln pk + ln 2− 1

4

)
+ β(η) +

2η2

1− η2

]

Newton steps are required to reach a point Ŷ with δk+1(Ŷ ) ≤ δ̄. From Ŷ onwards, by
Lemma 4.3 in [8], quadratic convergence can be achieved, and thus it needs at most
ln(ln(δ̄/η)) additional full Newton steps to find a point Yk+1 satisfying δk+1(Yk+1) ≤ η.
(We can choose, for example, δ̄ = 0.9 and η = 0.1; then ln(ln(δ̄/η)) ≤ 4.)

4. Potential changes and complexity. Recall that Ωk = {Y ∈ Ω0 | AT svecY
≤ c}. Suppose that Yk is an η-approximate analytic center of Ωk with η < 1−√3/2.
Let

Bk = (svecAnk+1, . . . , svecAnk+pk), d = BTk svec(Yk).

Then

Ωk+1 = {Y ∈ Ωk | BTk svecY ≤ d}.

Let Ȳk and Ȳk+1 be the analytic centers of Ωk and Ωk+1, respectively. Let

r̄k =
√
λmax(BTk H̄−1

k Bk),(4.1)

where H̄k = ∇2φ(Ȳk).
In this section, we estimate the amount that the dual potential will increase when

the working set changes from Ωk to Ωk+1. To this end, we first establish a lemma
that is an extension of a result in [10].

Lemma 4.1. Suppose that n, p are positive integers and v is a positive n-vector
with eT v = n. Then for any positive constant η the following inequality holds:

(‖v − e‖+ η)p
n∏
i=1

vi ≤ pp+1θp,

where θ is a positive constant no greater than 1.3 + η.
Proof. We need to consider only the case in which n ≥ 2, as the inequality holds

trivially when n = 1. Consider the maximization problem

max f(v) := ‖v − e‖p
n∏
i=1

αi

such that eT v = n.

It is shown in [10] that the maximizer v has the form

v1 = γ, v2 = · · · = vn =
n− γ
n− 1

, where γ > 1,
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and

f(v) ≤
(

n

n− 1

)p/2
(p+ 1)p+1 exp

(−p(p+ 2)

p+ 1

)
.

Thus

(‖v − e‖+ η)p
n∏
i=1

vi =

(
‖v − e‖

n∏
i=1

v
1/p
i + η

n∏
i=1

v
1/p
i

)p

≤

(‖v − e‖p n∏

i=1

vi

)1/p

+ η



p

,
(
since

∏n
i=1 vi ≤ ( e

T v
n )n = 1

)

≤
[(

n

n− 1

)1/2

(p+ 1)(p+1)/p exp

(−(p+ 2)

p+ 1

)
+ η

]p

≤ pp+1θp,

where

θ = max
n≥2,p≥1

{(
n

n− 1

)1/2(
1 +

1

p

)1+1/p

exp

( −1
p+ 1

− 1

)
+
η

p
p−1/p

}
≤ 1.3+η.

Lemma 4.2. Suppose Yk is an approximate analytic center of Ωk with δk(Yk) ≤
η < 1−√3/2. Then

φk+1(Ωk+1) ≥ φk(Ωk)− pk
2

ln(pk r̄
2
k θ

2)− ln pk,(4.2)

where θ is a constant depending only on η.
Proof. For simplicity, we will drop the subscripts k and k + 1 in our notations in

this proof and denote, for example, Ωk and Ωk+1 by Ω and Ω+, respectively.
Let Ū = I − Ȳ , Ū+ = I − Ȳ+, and

s̄+ = c−AT svec(Ȳ+), s̄ = c−AT svec(Ȳ ), t̄ = d− BT svec(Ȳ+).

Let

Ḡ = [AS̄−1, −Ȳ −1/2©∗ Ȳ −1/2, Ū−1/2©∗ Ū−1/2].

Note that H̄ = ḠḠT .
First, we establish an upper bound for ln

∏p
j=1 t̄j . We have

t̄ = BT (svecY − svecȲ+) = BT H̄−1 Ḡ
(
ḠT svecY − ḠT svecȲ+

)
= (ḠT H̄−1B)T (ḠT svec(Y − Ȳ )− ḠT svec(Ȳ+ − Ȳ )

)
.

Thus

‖t̄‖ ≤ ‖ḠT H̄−1B‖ (‖ḠT svec(Y − Ȳ )‖+ ‖ḠT svec(Ȳ+ − Ȳ )‖
)
.

By part (iii) of Theorem 2.2.2 in [7], we have

‖ḠT svec(Y − Ȳ )‖ = η(x̄, s, Y, Z̄, V̄ ) ≤ 1− [1− 3δ(Y )]1/3

[1− 3δ(Y )]1/3
≤ 3δ(Y ) ≤ 3η.
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Thus

‖t̄‖ ≤ r̄ (3η + ‖ḠT svec(Ȳ+ − Ȳ )‖
)
.

Hence

ln

p∏
j=1

t̄j =
p

2


1

p

p∑
j=1

ln t̄2j


 ≤ p

2
ln

(∑p
j=1 t̄

2
j

p

)
=

p

2
ln ‖t̄‖2 − p

2
ln p

≤ p ln (3η + ‖ḠT svec(Ȳ+ − Ȳ )‖
)
+ p ln r̄ − p

2
ln p,(4.3)

and the desired upper bound is established.
Now observe that

φ+(Ω+)− φ(Ω) = − ln

p∏
j=1

t̄j − ln

(
n∏
i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ

)
.

Using the bound in (4.3), we have

φ(Ω+)− φ(Ω) ≥ p

2
ln p− p ln r̄ − ln

(
3η + ‖ḠT svec(Ȳ+ − Ȳ )‖

)p n∏
i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ
.

(4.4)

The inequality (4.2) follows, once we have shown that

(
3η + ‖ḠT svec(Ȳ+ − Ȳ )‖

)p n∏
i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ
≤ pp+1 θp.(4.5)

Note that

‖ḠT svec(Ȳ+ − Ȳ )‖2
= svec(Ȳ+ − Ȳ )T

[AS̄−2AT + Ȳ −1©∗ Ȳ −1 + Ū−1©∗ Ū−1
]
svec(Ȳ+ − Ȳ )

= (s̄− s̄+)T S̄−2(s̄− s̄+) + svec(Ȳ+ − Ȳ )T (Ȳ −1©∗ Ȳ −1)svec(Ȳ+ − Ȳ )
+ svec(Ū − Ū+)

T (Ū−1©∗ Ū−1)svec(Ū − Ū+)

=

∥∥∥∥∥∥

 e− S̄−1s̄+

e− λ(Ȳ −1/2Ȳ+Ȳ
−1/2)

e− λ(Ū−1/2Ū+Ū
−1/2)



∥∥∥∥∥∥

2

,

and, by using (2.1), we have

eT S̄−1s̄+ + eTλ(Ȳ −1/2Ȳ+Ȳ
−1/2) + eTλ(Ū−1/2Ū+Ū

−1/2)

= x̄T (c−AT svecȲ+) + Z̄ • Ȳ+ + V̄ • Ū+

= x̄T c+ V̄ • I
= x̄T (c−AT svecȲ ) + Z̄ • Ȳ + V̄ • Ū
= x̄T s̄+ Z̄ • Ȳ + V̄ • Ū
= n+ 2m.
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By Lemma 4.1, (4.5) is proved.
The complexity analysis is based on the following idea. For the sequence of

working sets Ωk, we can establish upper and lower bounds on φ(Ωk). The upper
bound is approximately nk ln ε

−1, which is a consequence of the assumption that Γ
contains a ball of radius ε and the fact that Ωk is defined by nk cuts. The lower
bound is obtained by estimating −∑k−1

i=0 pi ln r̄i, which is a consequence of Lemma
4.2. A sophisticated estimation of r̄k gives rise to a lower bound that is proportional
to nk ln(nk/m

3). The algorithm must terminate before the lower and upper bounds
conflict with each other.

We first establish an upper bound for φk(Ωk).
Lemma 4.3. Let Ωk ⊃ Γ be defined by nk linear inequalities and the positive

semidefinite constraint. Suppose Assumptions A1–A3 hold. Then

φk(Ωk) ≤ −(nk + 2m) ln ε.

Proof. Assumptions A1–A3 imply that there exists a point Y c ∈ Γ such that
(i) all eigenvalues of Y c and I − Y c are greater than or equal to ε;
(ii) for any A ∈ Sm with ‖A‖F = 1 and α ∈ R, if Γ ⊂ {Y | A • Y ≤ α}, then

α−A • Y c ≥ ε.
We will briefly describe how to prove λ(Yc) ≥ εe, before continuing with the proof

of the lemma. Suppose that λj is an eigenvalue of Yc, and vj is a corresponding unit

eigenvector. Consider the matrix Ŷc := Yc − λjvjvTj . Since this matrix has a zero
eigenvalue, it lies on the boundary of Ω0, and by Assumption A3, we have

ε ≤ ‖Ŷc − Yc‖F = ‖λjvjvTj ‖F = λj‖vj‖2 = λj .

The fact that λ(Yc) ≤ (1− ε)e can be proved similarly.
Now we continue with the proof of the lemma. Since Γ ⊂ Ωk,

φk(Ωk) ≤ φk(Y
c) = −

nk∑
i=1

ln(ci −Ai • Y c)− ln detY c − ln det(I − Y c).

Noting that ‖Ai‖F = 1, ci −Ai • Y c ≥ ε, and

detY c =

m∏
i=1

λi(Y
c) ≥ εm, det(I − Y c) =

m∏
i=1

λi(I − Y c) ≥ εm,

we have the desired inequality.
Now we turn to finding a lower bound for φk(Ωk). By Lemma 4.2, we have

φk(Ωk) ≥ φ0(Ω0)−
k−1∑
i=0

pi ln r̄i − 1

2

k−1∑
i=0

pi ln pi −
k−1∑
i=0

pi ln θ −
k−1∑
i=0

ln pi.(4.6)

Obviously, we need to estimate r̄i for each i. We first seek to bound H̄−1
i by D−1

i ,
where Di is defined as follows. Let D0 = 8I, where I is the identity matrix of order
m̄× m̄. For i = 1, 2, . . . , let

Di = D0 +
1

m

i−1∑
j=0

BjBTj ,
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where Bj = [svecAnj+1, . . . , svecAnj+pj ].
Lemma 4.4. Let Ani+j (with ‖Ani+j‖F = 1), j = 1, . . . , pi, be the cuts gener-

ated from the approximate analytic center Yi ∈ Ωi, i = 0, . . . , k − 1. Let cni+j =
svec(Ani+j)

T svec(Yi), j = 1, . . . , pi, i = 1, . . . , k. For any point Y ∈ Ωk, let
s = c−AT svecY , where

A = [B0 B1 · · · Bk−1] , c =




BT0 svec(Y0)

...

BTk−1svec(Yk−1)


 .

Then

sni+j ≤
√
m ∀ j = 1, . . . , pi, i = 1, . . . , k, ∇2φk(Y ) 
 Dk.

In particular, H̄k = ∇2φk(Ȳk) 
 Dk.
Proof. We first estimate sni+j . We have

sni+j = cni+j − svec(Ani+j)
T svec(Y ) = (svecAni+j)

T (svecYi − svecY )
≤ ‖svecAni+j‖ ‖svecYi−1 − svecY ‖
= ‖svecYi − svecY ‖ = ‖Yi − Y ‖F

=


 m∑
j=1

λ2
j (Yi − Y )




1/2

≤ √m .(4.7)

The last inequality holds because, by Assumption A2,

I 
 Yi 
 Yi − Y 
 −Y 
 −I,

implying that e ≥ λ(Yi − Y ) ≥ −e.
Next, let U = I − Y and Si = diag(sni+1, . . . , sni+pi). Then

∇2φk(Y ) = Y
−1©∗ Y −1 + U−1©∗ U−1 +AS−2AT

= Y −1©∗ Y −1 + U−1©∗ U−1 +

k−1∑
i=0

Bi S−2
i BTi(4.8)


 8I +
1

m

k−1∑
i=0

Bi BTi = Dk.

Note that in deriving (4.8) we used the fact that Si �
√
mIpi for each i, and that

Y −1©∗ Y −1 + U−1©∗ U−1 
 8I.

In our complexity analysis, we will make the following assumptions:
A4. pmax ≤ m, where pmax = max{pi | i = 0, 1, . . .}.
A5. Let M̄i = BTi H̄−1

i Bi. There exists a fixed constant τ ≥ 1 such that, for each
i = 0, 1, . . . ,

λmax(M̄i) ≤ τ
Tr(M̄i)

pi
.
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Assumption A4 is made for technical reasons. It is used in the proof of Lemma 4.5.
Such an assumption also appeared in the papers [3] and [10]. Note that Assumption
A4 can be relaxed to pmax ≤ O(m). But, for simplicity, we fix the constant at 1.

Note that Assumption A5 holds trivially with τ = pmax. For the special case in
which a single cut is used in each iteration, it holds with τ = 1. Thus by fixing τ at an
intermediate value between 1 and pmax, we admit only cuts that are sufficiently good
in the sense that the matrix M̄i cannot have too many small eigenvalues. Of course,
one may not want to fix τ at the extreme value 1, since then the criterion is likely to
reject most of the cuts unless there are many mutually orthogonal (with respect to
H̄−1
i ) cuts.
The main advantage of having Assumption A5 is that in each oracle call we have

an objective criterion to select only cuts that are useful from among a possibly large
number of ineffective cuts. In this way, the number of cuts added in each iteration
will not be unnecessarily large, and hence the computational time in each iteration
will not grow as rapidly as in the case where the cuts are admitted unchecked. The
choice of τ in practice would depend on the problem at hand. It should dynamically be
adjusted as information on the quality of the cuts is obtained as the cutting algorithm
progresses. If the choice of τ is too stringent and many good cuts are rejected, then
we can progressively increase its value so that more good cuts are selected.

However, without a priori information on the quality of the cuts, we propose to
choose τ to be a small constant, say 5, based on the following empirical observation.
We conducted numerical experiments on random matrices of the form V TV , where
V ∈ R

m̄×p, for p = 1, . . . ,m, and m = 10, 20, . . . , 260. The elements of V are drawn
independently from the standard normal distribution. We computed the ratio between
the largest eigenvalue of V TV and Tr(V TV )/p for each V , and found that these ratios
are less than 2 for all of the 3510 cases tested.

Now let us continue with our complexity analysis. Let

w2
i = Tr(BTi D−1

i Bi).
Since

pi r̄
2
i ≤ τ Tr(BTi H̄−1

i Bi) ≤ τ Tr(BTi D−1
i Bi) = τw2

i ,

we have

k−1∑
i=0

pi r̄
2
i ≤ τ

k−1∑
i=0

w2
i .(4.9)

Next, we establish an upper bound for the right-hand side of the above inequality. Its
proof is modeled after that of [10, Lemma 3.5]. However, we have simplified the proof
by considering all the cuts simultaneously instead of handling them one by one as in
[10].

Lemma 4.5.

k−1∑
i=0

w2
i ≤

9mm̄

8
ln
(
1 +

nk
8mm̄

)
.

Proof. From the equation

detDi+1 = detDi

pi∏
j=1

[
1 +

1

m
λj(BTi D−1

i Bi)
]
,
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we have

ln detDi+1 − ln detDi =

pi∑
j=1

ln

[
1 +

1

m
λj(B Ti D−1

i B i)
]

≥ 8

9m

pi∑
j=1

λj(B Ti D−1
i B i) =

8

9m
w2
i ,(4.10)

where we used the fact that λmax(BTi D−1
i Bi) ≤ λmax(BTi Bi)/8 = ‖Bi‖2F /8 = pi/8, and

the inequality ln(1 + x) ≥ 8x/9 for 0 ≤ x ≤ 1/8. We also made use of Assumption
A4, which yields that pi ≤ m.

From (4.10), it follows immediately that

ln detDk − ln detD0 ≥ 8

9m

k−1∑
i=0

w2
i .(4.11)

However,

1

m̄
ln detDk ≤ ln

Tr(Dk)

m̄
= ln

1

m̄

[
Tr(D0) +

1

m

k−1∑
i=0

Tr(B iB Ti )
]

= ln
1

m̄

[
8m̄+

1

m

k−1∑
i=0

pi

]
= ln

(
8 +

nk
mm̄

)
,

implying that

ln detDk − ln detD0 ≤ m̄ ln
(
1 +

nk
8mm̄

)
.(4.12)

Combining (4.11) and (4.12), the lemma is proved.
With the above lemma, we can now formally state a lower bound for φk(Ωk).
Lemma 4.6. Suppose that Assumptions A1–A5 hold. Then

φk(Ωk) ≥ − 1

2
(2m+ nk) ln

[
4m+ 9τ mm̄ ln(1 + nk

8mm̄ )

8(2m+ nk)

]

− 1

2

k−1∑
i=0

pi ln pi − nk ln θ −
k−1∑
i=0

ln pi,

where θ is the constant that appeared in (4.2).
Proof. The proof is similar to that of Theorem 10 in [10], after using (4.9) and

Lemma 4.5.
We will next estimate the number of oracle calls required to find a feasible point

of Γ.
Lemma 4.7. Suppose that Assumptions A1–A5 hold. Then the analytic center

cutting plane method stops with a feasible point before k violates the following inequal-
ity:

ε2

pmaxmm̄
≤ 4/m̄+ 9τ ln(1 + nk

8mm̄ )

8(2m+ nk)
exp

(
2nk ln θ + 2

∑k−1
i=0 ln pi

nk + 2m

)
.(4.13)
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Proof. From Lemmas 4.3 and 4.6, we have

−(2m+ nk) ln ε ≥ −1

2
(2m+ nk) ln

[
4m+ 9τmm̄ ln(1 + nk

8mm̄ )

8(2m+ nk)

]

−1

2

k−1∑
i=0

pi ln pi − nk ln θ −
k−1∑
i=0

ln pi.

Thus, the algorithm must terminate before k violates the above inequality; i.e., the
algorithm must terminate before k violates the following inequality:

ε2

mm̄
≤ 4/m̄+ 9τ ln(1 + nk

8mm̄ )

8(2m+ nk)
exp

(∑k−1
i=0 pi ln pi + 2nk ln θ + 2

∑k−1
i=0 ln pi

2m+ nk

)
.

(4.14)

Since
∑k−1
i=0 pi ln pi ≤

∑k−1
i=0 pi ln pmax = nk ln pmax, the algorithm must terminate

before k violates the inequality in the lemma.
Theorem 4.8. Suppose that Assumptions A1–A5 hold. Then the analytic center

cutting plane method terminates in at most O∗(m3τ pmax ln pmax/ε
2) Newton steps,

where the notation O∗ means that lower order terms are ignored. The total number
of cuts added is not more than O∗(m3τ pmax/ε

2).
Proof. Ignoring lower order terms (assuming k � m) and by the assumption that

τ is a constant independent of pmax, the above lemma implies that the algorithm stops
as soon as k satisfies

nk
τ ln(nk/m3)

≥ O
(
m3pmax

ε2

)
.

For large k, lnnk is negligible compared to nk; hence the algorithm requires at most

nk = O∗
(
m3τ pmax

ε2

)

cuts. By Theorem 3.9, the total number of Newton steps is

O

(
k∑
i=1

pi ln pi

)
≤ O(nk ln pmax) = O

∗
(
m3τ pmax ln pmax

ε2

)
.

The theorem is proved.
For feasibility problems in R

m
+ , m̄ should be replaced by m in Lemma 4.7. Thus

the complexity bound is O(m2τ pmax ln pmax/ε
2) for the number of required Newton

steps. This bound is better than the bounds obtained in [2], [5], and [10].
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